webscout 1.2.4__py3-none-any.whl → 1.2.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of webscout might be problematic. Click here for more details.
- webscout/AI.py +204 -0
- webscout/AIutel.py +1 -1
- webscout/__init__.py +5 -2
- webscout/transcriber.py +498 -0
- webscout/version.py +1 -1
- {webscout-1.2.4.dist-info → webscout-1.2.6.dist-info}/METADATA +66 -32
- {webscout-1.2.4.dist-info → webscout-1.2.6.dist-info}/RECORD +11 -11
- webscout/offlineAI.py +0 -206
- {webscout-1.2.4.dist-info → webscout-1.2.6.dist-info}/LICENSE.md +0 -0
- {webscout-1.2.4.dist-info → webscout-1.2.6.dist-info}/WHEEL +0 -0
- {webscout-1.2.4.dist-info → webscout-1.2.6.dist-info}/entry_points.txt +0 -0
- {webscout-1.2.4.dist-info → webscout-1.2.6.dist-info}/top_level.txt +0 -0
webscout/AI.py
CHANGED
|
@@ -21,9 +21,199 @@ import yaml
|
|
|
21
21
|
from webscout.AIutel import Optimizers
|
|
22
22
|
from webscout.AIutel import Conversation
|
|
23
23
|
from webscout.AIutel import AwesomePrompts
|
|
24
|
+
from webscout.AIbase import Provider
|
|
24
25
|
from Helpingai_T2 import Perplexity
|
|
25
26
|
from typing import Any
|
|
26
27
|
import logging
|
|
28
|
+
#------------------------------------------------------KOBOLDAI-----------------------------------------------------------
|
|
29
|
+
class KOBOLDAI(Provider):
|
|
30
|
+
def __init__(
|
|
31
|
+
self,
|
|
32
|
+
is_conversation: bool = True,
|
|
33
|
+
max_tokens: int = 600,
|
|
34
|
+
temperature: float = 1,
|
|
35
|
+
top_p: float = 1,
|
|
36
|
+
timeout: int = 30,
|
|
37
|
+
intro: str = None,
|
|
38
|
+
filepath: str = None,
|
|
39
|
+
update_file: bool = True,
|
|
40
|
+
proxies: dict = {},
|
|
41
|
+
history_offset: int = 10250,
|
|
42
|
+
act: str = None,
|
|
43
|
+
):
|
|
44
|
+
"""Instantiate TGPT
|
|
45
|
+
|
|
46
|
+
Args:
|
|
47
|
+
is_conversation (str, optional): Flag for chatting conversationally. Defaults to True.
|
|
48
|
+
max_tokens (int, optional): Maximum number of tokens to be generated upon completion. Defaults to 600.
|
|
49
|
+
temperature (float, optional): Charge of the generated text's randomness. Defaults to 0.2.
|
|
50
|
+
top_p (float, optional): Sampling threshold during inference time. Defaults to 0.999.
|
|
51
|
+
timeout (int, optional): Http requesting timeout. Defaults to 30
|
|
52
|
+
intro (str, optional): Conversation introductory prompt. Defaults to `Conversation.intro`.
|
|
53
|
+
filepath (str, optional): Path to file containing conversation history. Defaults to None.
|
|
54
|
+
update_file (bool, optional): Add new prompts and responses to the file. Defaults to True.
|
|
55
|
+
proxies (dict, optional) : Http reqiuest proxies (socks). Defaults to {}.
|
|
56
|
+
history_offset (int, optional): Limit conversation history to this number of last texts. Defaults to 10250.
|
|
57
|
+
act (str|int, optional): Awesome prompt key or index. (Used as intro). Defaults to None.
|
|
58
|
+
"""
|
|
59
|
+
self.session = requests.Session()
|
|
60
|
+
self.is_conversation = is_conversation
|
|
61
|
+
self.max_tokens_to_sample = max_tokens
|
|
62
|
+
self.temperature = temperature
|
|
63
|
+
self.top_p = top_p
|
|
64
|
+
self.chat_endpoint = (
|
|
65
|
+
"https://koboldai-koboldcpp-tiefighter.hf.space/api/extra/generate/stream"
|
|
66
|
+
)
|
|
67
|
+
self.stream_chunk_size = 64
|
|
68
|
+
self.timeout = timeout
|
|
69
|
+
self.last_response = {}
|
|
70
|
+
self.headers = {
|
|
71
|
+
"Content-Type": "application/json",
|
|
72
|
+
"Accept": "application/json",
|
|
73
|
+
}
|
|
74
|
+
|
|
75
|
+
self.__available_optimizers = (
|
|
76
|
+
method
|
|
77
|
+
for method in dir(Optimizers)
|
|
78
|
+
if callable(getattr(Optimizers, method)) and not method.startswith("__")
|
|
79
|
+
)
|
|
80
|
+
self.session.headers.update(self.headers)
|
|
81
|
+
Conversation.intro = (
|
|
82
|
+
AwesomePrompts().get_act(
|
|
83
|
+
act, raise_not_found=True, default=None, case_insensitive=True
|
|
84
|
+
)
|
|
85
|
+
if act
|
|
86
|
+
else intro or Conversation.intro
|
|
87
|
+
)
|
|
88
|
+
self.conversation = Conversation(
|
|
89
|
+
is_conversation, self.max_tokens_to_sample, filepath, update_file
|
|
90
|
+
)
|
|
91
|
+
self.conversation.history_offset = history_offset
|
|
92
|
+
self.session.proxies = proxies
|
|
93
|
+
|
|
94
|
+
def ask(
|
|
95
|
+
self,
|
|
96
|
+
prompt: str,
|
|
97
|
+
stream: bool = False,
|
|
98
|
+
raw: bool = False,
|
|
99
|
+
optimizer: str = None,
|
|
100
|
+
conversationally: bool = False,
|
|
101
|
+
) -> dict:
|
|
102
|
+
"""Chat with AI
|
|
103
|
+
|
|
104
|
+
Args:
|
|
105
|
+
prompt (str): Prompt to be send.
|
|
106
|
+
stream (bool, optional): Flag for streaming response. Defaults to False.
|
|
107
|
+
raw (bool, optional): Stream back raw response as received. Defaults to False.
|
|
108
|
+
optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
|
|
109
|
+
conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
|
|
110
|
+
Returns:
|
|
111
|
+
dict : {}
|
|
112
|
+
```json
|
|
113
|
+
{
|
|
114
|
+
"token" : "How may I assist you today?"
|
|
115
|
+
}
|
|
116
|
+
```
|
|
117
|
+
"""
|
|
118
|
+
conversation_prompt = self.conversation.gen_complete_prompt(prompt)
|
|
119
|
+
if optimizer:
|
|
120
|
+
if optimizer in self.__available_optimizers:
|
|
121
|
+
conversation_prompt = getattr(Optimizers, optimizer)(
|
|
122
|
+
conversation_prompt if conversationally else prompt
|
|
123
|
+
)
|
|
124
|
+
else:
|
|
125
|
+
raise Exception(
|
|
126
|
+
f"Optimizer is not one of {self.__available_optimizers}"
|
|
127
|
+
)
|
|
128
|
+
|
|
129
|
+
self.session.headers.update(self.headers)
|
|
130
|
+
payload = {
|
|
131
|
+
"prompt": conversation_prompt,
|
|
132
|
+
"temperature": self.temperature,
|
|
133
|
+
"top_p": self.top_p,
|
|
134
|
+
}
|
|
135
|
+
|
|
136
|
+
def for_stream():
|
|
137
|
+
response = self.session.post(
|
|
138
|
+
self.chat_endpoint, json=payload, stream=True, timeout=self.timeout
|
|
139
|
+
)
|
|
140
|
+
if not response.ok:
|
|
141
|
+
raise Exception(
|
|
142
|
+
f"Failed to generate response - ({response.status_code}, {response.reason}) - {response.text}"
|
|
143
|
+
)
|
|
144
|
+
|
|
145
|
+
message_load = ""
|
|
146
|
+
for value in response.iter_lines(
|
|
147
|
+
decode_unicode=True,
|
|
148
|
+
delimiter="" if raw else "event: message\ndata:",
|
|
149
|
+
chunk_size=self.stream_chunk_size,
|
|
150
|
+
):
|
|
151
|
+
try:
|
|
152
|
+
resp = json.loads(value)
|
|
153
|
+
message_load += self.get_message(resp)
|
|
154
|
+
resp["token"] = message_load
|
|
155
|
+
self.last_response.update(resp)
|
|
156
|
+
yield value if raw else resp
|
|
157
|
+
except json.decoder.JSONDecodeError:
|
|
158
|
+
pass
|
|
159
|
+
self.conversation.update_chat_history(
|
|
160
|
+
prompt, self.get_message(self.last_response)
|
|
161
|
+
)
|
|
162
|
+
|
|
163
|
+
def for_non_stream():
|
|
164
|
+
# let's make use of stream
|
|
165
|
+
for _ in for_stream():
|
|
166
|
+
pass
|
|
167
|
+
return self.last_response
|
|
168
|
+
|
|
169
|
+
return for_stream() if stream else for_non_stream()
|
|
170
|
+
|
|
171
|
+
def chat(
|
|
172
|
+
self,
|
|
173
|
+
prompt: str,
|
|
174
|
+
stream: bool = False,
|
|
175
|
+
optimizer: str = None,
|
|
176
|
+
conversationally: bool = False,
|
|
177
|
+
) -> str:
|
|
178
|
+
"""Generate response `str`
|
|
179
|
+
Args:
|
|
180
|
+
prompt (str): Prompt to be send.
|
|
181
|
+
stream (bool, optional): Flag for streaming response. Defaults to False.
|
|
182
|
+
optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
|
|
183
|
+
conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
|
|
184
|
+
Returns:
|
|
185
|
+
str: Response generated
|
|
186
|
+
"""
|
|
187
|
+
|
|
188
|
+
def for_stream():
|
|
189
|
+
for response in self.ask(
|
|
190
|
+
prompt, True, optimizer=optimizer, conversationally=conversationally
|
|
191
|
+
):
|
|
192
|
+
yield self.get_message(response)
|
|
193
|
+
|
|
194
|
+
def for_non_stream():
|
|
195
|
+
return self.get_message(
|
|
196
|
+
self.ask(
|
|
197
|
+
prompt,
|
|
198
|
+
False,
|
|
199
|
+
optimizer=optimizer,
|
|
200
|
+
conversationally=conversationally,
|
|
201
|
+
)
|
|
202
|
+
)
|
|
203
|
+
|
|
204
|
+
return for_stream() if stream else for_non_stream()
|
|
205
|
+
|
|
206
|
+
def get_message(self, response: dict) -> str:
|
|
207
|
+
"""Retrieves message only from response
|
|
208
|
+
|
|
209
|
+
Args:
|
|
210
|
+
response (dict): Response generated by `self.ask`
|
|
211
|
+
|
|
212
|
+
Returns:
|
|
213
|
+
str: Message extracted
|
|
214
|
+
"""
|
|
215
|
+
assert isinstance(response, dict), "Response should be of dict data-type only"
|
|
216
|
+
return response.get("token")
|
|
27
217
|
#------------------------------------------------------OpenGPT-----------------------------------------------------------
|
|
28
218
|
class OPENGPT:
|
|
29
219
|
def __init__(
|
|
@@ -1237,5 +1427,19 @@ def opengpt(prompt, stream):
|
|
|
1237
1427
|
else:
|
|
1238
1428
|
response_str = opengpt.chat(prompt)
|
|
1239
1429
|
print(response_str)
|
|
1430
|
+
|
|
1431
|
+
@cli.command()
|
|
1432
|
+
@click.option('--prompt', prompt='Enter your prompt', help='The prompt to send.')
|
|
1433
|
+
@click.option('--stream', is_flag=True, help='Flag for streaming response.')
|
|
1434
|
+
@click.option('--raw', is_flag=True, help='Stream back raw response as received.')
|
|
1435
|
+
@click.option('--optimizer', type=str, help='Prompt optimizer name.')
|
|
1436
|
+
@click.option('--conversationally', is_flag=True, help='Chat conversationally when using optimizer.')
|
|
1437
|
+
def koboldai_cli(prompt, stream, raw, optimizer, conversationally):
|
|
1438
|
+
"""Chat with KOBOLDAI using the provided prompt."""
|
|
1439
|
+
koboldai_instance = KOBOLDAI() # Initialize a KOBOLDAI instance
|
|
1440
|
+
response = koboldai_instance.ask(prompt, stream, raw, optimizer, conversationally)
|
|
1441
|
+
processed_response = koboldai_instance.get_message(response) # Process the response
|
|
1442
|
+
print(processed_response)
|
|
1443
|
+
|
|
1240
1444
|
if __name__ == '__main__':
|
|
1241
1445
|
cli()
|
webscout/AIutel.py
CHANGED
webscout/__init__.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
"""Webscout.
|
|
2
2
|
|
|
3
3
|
Search for words, documents, images, videos, news, maps and text translation
|
|
4
|
-
using the DuckDuckGo.com
|
|
4
|
+
using the Google, DuckDuckGo.com, yep.com, phind.com, you.com, etc Also containes AI models
|
|
5
5
|
"""
|
|
6
6
|
|
|
7
7
|
import logging
|
|
@@ -9,7 +9,10 @@ from .webscout_search import WEBS
|
|
|
9
9
|
from .webscout_search_async import AsyncWEBS
|
|
10
10
|
from .version import __version__
|
|
11
11
|
from .DWEBS import DeepWEBS
|
|
12
|
-
from .
|
|
12
|
+
from .AIutel import appdir
|
|
13
|
+
from .transcriber import transcriber
|
|
14
|
+
|
|
15
|
+
|
|
13
16
|
__all__ = ["WEBS", "AsyncWEBS", "__version__", "cli"]
|
|
14
17
|
|
|
15
18
|
logging.getLogger("webscout").addHandler(logging.NullHandler())
|
webscout/transcriber.py
ADDED
|
@@ -0,0 +1,498 @@
|
|
|
1
|
+
import requests
|
|
2
|
+
import http.cookiejar as cookiejar
|
|
3
|
+
import sys
|
|
4
|
+
import json
|
|
5
|
+
from xml.etree import ElementTree
|
|
6
|
+
import re
|
|
7
|
+
from requests import HTTPError
|
|
8
|
+
import html.parser
|
|
9
|
+
|
|
10
|
+
html_parser = html.parser.HTMLParser()
|
|
11
|
+
import html
|
|
12
|
+
|
|
13
|
+
def unescape(string):
|
|
14
|
+
return html.unescape(string)
|
|
15
|
+
WATCH_URL = 'https://www.youtube.com/watch?v={video_id}'
|
|
16
|
+
|
|
17
|
+
class TranscriptRetrievalError(Exception):
|
|
18
|
+
"""
|
|
19
|
+
Base class for exceptions raised when a transcript cannot be retrieved.
|
|
20
|
+
"""
|
|
21
|
+
ERROR_MESSAGE = '\nCould not retrieve a transcript for the video {video_url}!'
|
|
22
|
+
CAUSE_MESSAGE_INTRO = ' This is most likely caused by:\n\n{cause}'
|
|
23
|
+
CAUSE_MESSAGE = ''
|
|
24
|
+
GITHUB_REFERRAL = (
|
|
25
|
+
'\n\nIf you are sure that the described cause is not responsible for this error '
|
|
26
|
+
'and that a transcript should be retrievable, please create an issue at '
|
|
27
|
+
'https://github.com/OE-LUCIFER/Webscout/issues. '
|
|
28
|
+
'Please add which version of youtube_transcript_api you are using '
|
|
29
|
+
'and provide the information needed to replicate the error. '
|
|
30
|
+
'Also make sure that there are no open issues which already describe your problem!'
|
|
31
|
+
)
|
|
32
|
+
|
|
33
|
+
def __init__(self, video_id):
|
|
34
|
+
self.video_id = video_id
|
|
35
|
+
super(TranscriptRetrievalError, self).__init__(self._build_error_message())
|
|
36
|
+
|
|
37
|
+
def _build_error_message(self):
|
|
38
|
+
cause = self.cause
|
|
39
|
+
error_message = self.ERROR_MESSAGE.format(video_url=WATCH_URL.format(video_id=self.video_id))
|
|
40
|
+
|
|
41
|
+
if cause:
|
|
42
|
+
error_message += self.CAUSE_MESSAGE_INTRO.format(cause=cause) + self.GITHUB_REFERRAL
|
|
43
|
+
|
|
44
|
+
return error_message
|
|
45
|
+
|
|
46
|
+
@property
|
|
47
|
+
def cause(self):
|
|
48
|
+
return self.CAUSE_MESSAGE
|
|
49
|
+
|
|
50
|
+
class YouTubeRequestFailedError(TranscriptRetrievalError):
|
|
51
|
+
CAUSE_MESSAGE = 'Request to YouTube failed: {reason}'
|
|
52
|
+
|
|
53
|
+
def __init__(self, video_id, http_error):
|
|
54
|
+
self.reason = str(http_error)
|
|
55
|
+
super(YouTubeRequestFailedError, self).__init__(video_id)
|
|
56
|
+
|
|
57
|
+
@property
|
|
58
|
+
def cause(self):
|
|
59
|
+
return self.CAUSE_MESSAGE.format(reason=self.reason)
|
|
60
|
+
|
|
61
|
+
class VideoUnavailableError(TranscriptRetrievalError):
|
|
62
|
+
CAUSE_MESSAGE = 'The video is no longer available'
|
|
63
|
+
|
|
64
|
+
class InvalidVideoIdError(TranscriptRetrievalError):
|
|
65
|
+
CAUSE_MESSAGE = (
|
|
66
|
+
'You provided an invalid video id. Make sure you are using the video id and NOT the url!\n\n'
|
|
67
|
+
'Do NOT run: `YouTubeTranscriptApi.get_transcript("https://www.youtube.com/watch?v=1234")`\n'
|
|
68
|
+
'Instead run: `YouTubeTranscriptApi.get_transcript("1234")`'
|
|
69
|
+
)
|
|
70
|
+
|
|
71
|
+
class TooManyRequestsError(TranscriptRetrievalError):
|
|
72
|
+
CAUSE_MESSAGE = (
|
|
73
|
+
'YouTube is receiving too many requests from this IP and now requires solving a captcha to continue. '
|
|
74
|
+
'One of the following things can be done to work around this:\n\
|
|
75
|
+
- Manually solve the captcha in a browser and export the cookie. '
|
|
76
|
+
'Read here how to use that cookie with '
|
|
77
|
+
'youtube-transcript-api: https://github.com/jdepoix/youtube-transcript-api#cookies\n\
|
|
78
|
+
- Use a different IP address\n\
|
|
79
|
+
- Wait until the ban on your IP has been lifted'
|
|
80
|
+
)
|
|
81
|
+
|
|
82
|
+
class TranscriptsDisabledError(TranscriptRetrievalError):
|
|
83
|
+
CAUSE_MESSAGE = 'Subtitles are disabled for this video'
|
|
84
|
+
|
|
85
|
+
class NoTranscriptAvailableError(TranscriptRetrievalError):
|
|
86
|
+
CAUSE_MESSAGE = 'No transcripts are available for this video'
|
|
87
|
+
|
|
88
|
+
class NotTranslatableError(TranscriptRetrievalError):
|
|
89
|
+
CAUSE_MESSAGE = 'The requested language is not translatable'
|
|
90
|
+
|
|
91
|
+
class TranslationLanguageNotAvailableError(TranscriptRetrievalError):
|
|
92
|
+
CAUSE_MESSAGE = 'The requested translation language is not available'
|
|
93
|
+
|
|
94
|
+
class CookiePathInvalidError(TranscriptRetrievalError):
|
|
95
|
+
CAUSE_MESSAGE = 'The provided cookie file was unable to be loaded'
|
|
96
|
+
|
|
97
|
+
class CookiesInvalidError(TranscriptRetrievalError):
|
|
98
|
+
CAUSE_MESSAGE = 'The cookies provided are not valid (may have expired)'
|
|
99
|
+
|
|
100
|
+
class FailedToCreateConsentCookieError(TranscriptRetrievalError):
|
|
101
|
+
CAUSE_MESSAGE = 'Failed to automatically give consent to saving cookies'
|
|
102
|
+
|
|
103
|
+
class NoTranscriptFoundError(TranscriptRetrievalError):
|
|
104
|
+
CAUSE_MESSAGE = (
|
|
105
|
+
'No transcripts were found for any of the requested language codes: {requested_language_codes}\n\n'
|
|
106
|
+
'{transcript_data}'
|
|
107
|
+
)
|
|
108
|
+
|
|
109
|
+
def __init__(self, video_id, requested_language_codes, transcript_data):
|
|
110
|
+
self._requested_language_codes = requested_language_codes
|
|
111
|
+
self._transcript_data = transcript_data
|
|
112
|
+
super(NoTranscriptFoundError, self).__init__(video_id)
|
|
113
|
+
|
|
114
|
+
@property
|
|
115
|
+
def cause(self):
|
|
116
|
+
return self.CAUSE_MESSAGE.format(
|
|
117
|
+
requested_language_codes=self._requested_language_codes,
|
|
118
|
+
transcript_data=str(self._transcript_data),
|
|
119
|
+
)
|
|
120
|
+
|
|
121
|
+
|
|
122
|
+
|
|
123
|
+
def _raise_http_errors(response, video_id):
|
|
124
|
+
try:
|
|
125
|
+
response.raise_for_status()
|
|
126
|
+
return response
|
|
127
|
+
except HTTPError as error:
|
|
128
|
+
raise YouTubeRequestFailedError(error, video_id)
|
|
129
|
+
|
|
130
|
+
|
|
131
|
+
class TranscriptListFetcher(object):
|
|
132
|
+
def __init__(self, http_client):
|
|
133
|
+
self._http_client = http_client
|
|
134
|
+
|
|
135
|
+
def fetch(self, video_id):
|
|
136
|
+
return TranscriptList.build(
|
|
137
|
+
self._http_client,
|
|
138
|
+
video_id,
|
|
139
|
+
self._extract_captions_json(self._fetch_video_html(video_id), video_id),
|
|
140
|
+
)
|
|
141
|
+
|
|
142
|
+
def _extract_captions_json(self, html, video_id):
|
|
143
|
+
splitted_html = html.split('"captions":')
|
|
144
|
+
|
|
145
|
+
if len(splitted_html) <= 1:
|
|
146
|
+
if video_id.startswith('http://') or video_id.startswith('https://'):
|
|
147
|
+
raise InvalidVideoIdError(video_id)
|
|
148
|
+
if 'class="g-recaptcha"' in html:
|
|
149
|
+
raise TooManyRequestsError(video_id)
|
|
150
|
+
if '"playabilityStatus":' not in html:
|
|
151
|
+
raise VideoUnavailableError(video_id)
|
|
152
|
+
|
|
153
|
+
raise TranscriptsDisabledError(video_id)
|
|
154
|
+
|
|
155
|
+
captions_json = json.loads(
|
|
156
|
+
splitted_html[1].split(',"videoDetails')[0].replace('\n', '')
|
|
157
|
+
).get('playerCaptionsTracklistRenderer')
|
|
158
|
+
if captions_json is None:
|
|
159
|
+
raise TranscriptsDisabledError(video_id)
|
|
160
|
+
|
|
161
|
+
if 'captionTracks' not in captions_json:
|
|
162
|
+
raise TranscriptsDisabledError(video_id)
|
|
163
|
+
|
|
164
|
+
return captions_json
|
|
165
|
+
|
|
166
|
+
def _create_consent_cookie(self, html, video_id):
|
|
167
|
+
match = re.search('name="v" value="(.*?)"', html)
|
|
168
|
+
if match is None:
|
|
169
|
+
raise FailedToCreateConsentCookieError(video_id)
|
|
170
|
+
self._http_client.cookies.set('CONSENT', 'YES+' + match.group(1), domain='.youtube.com')
|
|
171
|
+
|
|
172
|
+
def _fetch_video_html(self, video_id):
|
|
173
|
+
html = self._fetch_html(video_id)
|
|
174
|
+
if 'action="https://consent.youtube.com/s"' in html:
|
|
175
|
+
self._create_consent_cookie(html, video_id)
|
|
176
|
+
html = self._fetch_html(video_id)
|
|
177
|
+
if 'action="https://consent.youtube.com/s"' in html:
|
|
178
|
+
raise FailedToCreateConsentCookieError(video_id)
|
|
179
|
+
return html
|
|
180
|
+
|
|
181
|
+
def _fetch_html(self, video_id):
|
|
182
|
+
response = self._http_client.get(WATCH_URL.format(video_id=video_id), headers={'Accept-Language': 'en-US'})
|
|
183
|
+
return unescape(_raise_http_errors(response, video_id).text)
|
|
184
|
+
|
|
185
|
+
|
|
186
|
+
class TranscriptList(object):
|
|
187
|
+
"""
|
|
188
|
+
This object represents a list of transcripts. It can be iterated over to list all transcripts which are available
|
|
189
|
+
for a given YouTube video. Also it provides functionality to search for a transcript in a given language.
|
|
190
|
+
"""
|
|
191
|
+
|
|
192
|
+
def __init__(self, video_id, manually_created_transcripts, generated_transcripts, translation_languages):
|
|
193
|
+
"""
|
|
194
|
+
The constructor is only for internal use. Use the static build method instead.
|
|
195
|
+
|
|
196
|
+
:param video_id: the id of the video this TranscriptList is for
|
|
197
|
+
:type video_id: str
|
|
198
|
+
:param manually_created_transcripts: dict mapping language codes to the manually created transcripts
|
|
199
|
+
:type manually_created_transcripts: dict[str, Transcript]
|
|
200
|
+
:param generated_transcripts: dict mapping language codes to the generated transcripts
|
|
201
|
+
:type generated_transcripts: dict[str, Transcript]
|
|
202
|
+
:param translation_languages: list of languages which can be used for translatable languages
|
|
203
|
+
:type translation_languages: list[dict[str, str]]
|
|
204
|
+
"""
|
|
205
|
+
self.video_id = video_id
|
|
206
|
+
self._manually_created_transcripts = manually_created_transcripts
|
|
207
|
+
self._generated_transcripts = generated_transcripts
|
|
208
|
+
self._translation_languages = translation_languages
|
|
209
|
+
|
|
210
|
+
@staticmethod
|
|
211
|
+
def build(http_client, video_id, captions_json):
|
|
212
|
+
"""
|
|
213
|
+
Factory method for TranscriptList.
|
|
214
|
+
|
|
215
|
+
:param http_client: http client which is used to make the transcript retrieving http calls
|
|
216
|
+
:type http_client: requests.Session
|
|
217
|
+
:param video_id: the id of the video this TranscriptList is for
|
|
218
|
+
:type video_id: str
|
|
219
|
+
:param captions_json: the JSON parsed from the YouTube pages static HTML
|
|
220
|
+
:type captions_json: dict
|
|
221
|
+
:return: the created TranscriptList
|
|
222
|
+
:rtype TranscriptList:
|
|
223
|
+
"""
|
|
224
|
+
translation_languages = [
|
|
225
|
+
{
|
|
226
|
+
'language': translation_language['languageName']['simpleText'],
|
|
227
|
+
'language_code': translation_language['languageCode'],
|
|
228
|
+
} for translation_language in captions_json.get('translationLanguages', [])
|
|
229
|
+
]
|
|
230
|
+
|
|
231
|
+
manually_created_transcripts = {}
|
|
232
|
+
generated_transcripts = {}
|
|
233
|
+
|
|
234
|
+
for caption in captions_json['captionTracks']:
|
|
235
|
+
if caption.get('kind', '') == 'asr':
|
|
236
|
+
transcript_dict = generated_transcripts
|
|
237
|
+
else:
|
|
238
|
+
transcript_dict = manually_created_transcripts
|
|
239
|
+
|
|
240
|
+
transcript_dict[caption['languageCode']] = Transcript(
|
|
241
|
+
http_client,
|
|
242
|
+
video_id,
|
|
243
|
+
caption['baseUrl'],
|
|
244
|
+
caption['name']['simpleText'],
|
|
245
|
+
caption['languageCode'],
|
|
246
|
+
caption.get('kind', '') == 'asr',
|
|
247
|
+
translation_languages if caption.get('isTranslatable', False) else [],
|
|
248
|
+
)
|
|
249
|
+
|
|
250
|
+
return TranscriptList(
|
|
251
|
+
video_id,
|
|
252
|
+
manually_created_transcripts,
|
|
253
|
+
generated_transcripts,
|
|
254
|
+
translation_languages,
|
|
255
|
+
)
|
|
256
|
+
|
|
257
|
+
def __iter__(self):
|
|
258
|
+
return iter(list(self._manually_created_transcripts.values()) + list(self._generated_transcripts.values()))
|
|
259
|
+
|
|
260
|
+
def find_transcript(self, language_codes):
|
|
261
|
+
"""
|
|
262
|
+
Finds a transcript for a given language code. Manually created transcripts are returned first and only if none
|
|
263
|
+
are found, generated transcripts are used. If you only want generated transcripts use
|
|
264
|
+
`find_manually_created_transcript` instead.
|
|
265
|
+
|
|
266
|
+
:param language_codes: A list of language codes in a descending priority. For example, if this is set to
|
|
267
|
+
['de', 'en'] it will first try to fetch the german transcript (de) and then fetch the english transcript (en) if
|
|
268
|
+
it fails to do so.
|
|
269
|
+
:type languages: list[str]
|
|
270
|
+
:return: the found Transcript
|
|
271
|
+
:rtype Transcript:
|
|
272
|
+
:raises: NoTranscriptFound
|
|
273
|
+
"""
|
|
274
|
+
return self._find_transcript(language_codes, [self._manually_created_transcripts, self._generated_transcripts])
|
|
275
|
+
|
|
276
|
+
def find_generated_transcript(self, language_codes):
|
|
277
|
+
"""
|
|
278
|
+
Finds an automatically generated transcript for a given language code.
|
|
279
|
+
|
|
280
|
+
:param language_codes: A list of language codes in a descending priority. For example, if this is set to
|
|
281
|
+
['de', 'en'] it will first try to fetch the german transcript (de) and then fetch the english transcript (en) if
|
|
282
|
+
it fails to do so.
|
|
283
|
+
:type languages: list[str]
|
|
284
|
+
:return: the found Transcript
|
|
285
|
+
:rtype Transcript:
|
|
286
|
+
:raises: NoTranscriptFound
|
|
287
|
+
"""
|
|
288
|
+
return self._find_transcript(language_codes, [self._generated_transcripts])
|
|
289
|
+
|
|
290
|
+
def find_manually_created_transcript(self, language_codes):
|
|
291
|
+
"""
|
|
292
|
+
Finds a manually created transcript for a given language code.
|
|
293
|
+
|
|
294
|
+
:param language_codes: A list of language codes in a descending priority. For example, if this is set to
|
|
295
|
+
['de', 'en'] it will first try to fetch the german transcript (de) and then fetch the english transcript (en) if
|
|
296
|
+
it fails to do so.
|
|
297
|
+
:type languages: list[str]
|
|
298
|
+
:return: the found Transcript
|
|
299
|
+
:rtype Transcript:
|
|
300
|
+
:raises: NoTranscriptFound
|
|
301
|
+
"""
|
|
302
|
+
return self._find_transcript(language_codes, [self._manually_created_transcripts])
|
|
303
|
+
|
|
304
|
+
def _find_transcript(self, language_codes, transcript_dicts):
|
|
305
|
+
for language_code in language_codes:
|
|
306
|
+
for transcript_dict in transcript_dicts:
|
|
307
|
+
if language_code in transcript_dict:
|
|
308
|
+
return transcript_dict[language_code]
|
|
309
|
+
|
|
310
|
+
raise NoTranscriptFoundError(
|
|
311
|
+
self.video_id,
|
|
312
|
+
language_codes,
|
|
313
|
+
self
|
|
314
|
+
)
|
|
315
|
+
|
|
316
|
+
def __str__(self):
|
|
317
|
+
return (
|
|
318
|
+
'For this video ({video_id}) transcripts are available in the following languages:\n\n'
|
|
319
|
+
'(MANUALLY CREATED)\n'
|
|
320
|
+
'{available_manually_created_transcript_languages}\n\n'
|
|
321
|
+
'(GENERATED)\n'
|
|
322
|
+
'{available_generated_transcripts}\n\n'
|
|
323
|
+
'(TRANSLATION LANGUAGES)\n'
|
|
324
|
+
'{available_translation_languages}'
|
|
325
|
+
).format(
|
|
326
|
+
video_id=self.video_id,
|
|
327
|
+
available_manually_created_transcript_languages=self._get_language_description(
|
|
328
|
+
str(transcript) for transcript in self._manually_created_transcripts.values()
|
|
329
|
+
),
|
|
330
|
+
available_generated_transcripts=self._get_language_description(
|
|
331
|
+
str(transcript) for transcript in self._generated_transcripts.values()
|
|
332
|
+
),
|
|
333
|
+
available_translation_languages=self._get_language_description(
|
|
334
|
+
'{language_code} ("{language}")'.format(
|
|
335
|
+
language=translation_language['language'],
|
|
336
|
+
language_code=translation_language['language_code'],
|
|
337
|
+
) for translation_language in self._translation_languages
|
|
338
|
+
)
|
|
339
|
+
)
|
|
340
|
+
|
|
341
|
+
def _get_language_description(self, transcript_strings):
|
|
342
|
+
description = '\n'.join(' - {transcript}'.format(transcript=transcript) for transcript in transcript_strings)
|
|
343
|
+
return description if description else 'None'
|
|
344
|
+
|
|
345
|
+
|
|
346
|
+
class Transcript(object):
|
|
347
|
+
def __init__(self, http_client, video_id, url, language, language_code, is_generated, translation_languages):
|
|
348
|
+
"""
|
|
349
|
+
You probably don't want to initialize this directly. Usually you'll access Transcript objects using a
|
|
350
|
+
TranscriptList.
|
|
351
|
+
|
|
352
|
+
:param http_client: http client which is used to make the transcript retrieving http calls
|
|
353
|
+
:type http_client: requests.Session
|
|
354
|
+
:param video_id: the id of the video this TranscriptList is for
|
|
355
|
+
:type video_id: str
|
|
356
|
+
:param url: the url which needs to be called to fetch the transcript
|
|
357
|
+
:param language: the name of the language this transcript uses
|
|
358
|
+
:param language_code:
|
|
359
|
+
:param is_generated:
|
|
360
|
+
:param translation_languages:
|
|
361
|
+
"""
|
|
362
|
+
self._http_client = http_client
|
|
363
|
+
self.video_id = video_id
|
|
364
|
+
self._url = url
|
|
365
|
+
self.language = language
|
|
366
|
+
self.language_code = language_code
|
|
367
|
+
self.is_generated = is_generated
|
|
368
|
+
self.translation_languages = translation_languages
|
|
369
|
+
self._translation_languages_dict = {
|
|
370
|
+
translation_language['language_code']: translation_language['language']
|
|
371
|
+
for translation_language in translation_languages
|
|
372
|
+
}
|
|
373
|
+
|
|
374
|
+
def fetch(self, preserve_formatting=False):
|
|
375
|
+
"""
|
|
376
|
+
Loads the actual transcript data.
|
|
377
|
+
:param preserve_formatting: whether to keep select HTML text formatting
|
|
378
|
+
:type preserve_formatting: bool
|
|
379
|
+
:return: a list of dictionaries containing the 'text', 'start' and 'duration' keys
|
|
380
|
+
:rtype [{'text': str, 'start': float, 'end': float}]:
|
|
381
|
+
"""
|
|
382
|
+
response = self._http_client.get(self._url, headers={'Accept-Language': 'en-US'})
|
|
383
|
+
return _TranscriptParser(preserve_formatting=preserve_formatting).parse(
|
|
384
|
+
_raise_http_errors(response, self.video_id).text,
|
|
385
|
+
)
|
|
386
|
+
|
|
387
|
+
def __str__(self):
|
|
388
|
+
return '{language_code} ("{language}"){translation_description}'.format(
|
|
389
|
+
language=self.language,
|
|
390
|
+
language_code=self.language_code,
|
|
391
|
+
translation_description='[TRANSLATABLE]' if self.is_translatable else ''
|
|
392
|
+
)
|
|
393
|
+
|
|
394
|
+
@property
|
|
395
|
+
def is_translatable(self):
|
|
396
|
+
return len(self.translation_languages) > 0
|
|
397
|
+
|
|
398
|
+
def translate(self, language_code):
|
|
399
|
+
if not self.is_translatable:
|
|
400
|
+
raise NotTranslatableError(self.video_id)
|
|
401
|
+
|
|
402
|
+
if language_code not in self._translation_languages_dict:
|
|
403
|
+
raise TranslationLanguageNotAvailableError(self.video_id)
|
|
404
|
+
|
|
405
|
+
return Transcript(
|
|
406
|
+
self._http_client,
|
|
407
|
+
self.video_id,
|
|
408
|
+
'{url}&tlang={language_code}'.format(url=self._url, language_code=language_code),
|
|
409
|
+
self._translation_languages_dict[language_code],
|
|
410
|
+
language_code,
|
|
411
|
+
True,
|
|
412
|
+
[],
|
|
413
|
+
)
|
|
414
|
+
|
|
415
|
+
|
|
416
|
+
class _TranscriptParser(object):
|
|
417
|
+
_FORMATTING_TAGS = [
|
|
418
|
+
'strong', # important
|
|
419
|
+
'em', # emphasized
|
|
420
|
+
'b', # bold
|
|
421
|
+
'i', # italic
|
|
422
|
+
'mark', # marked
|
|
423
|
+
'small', # smaller
|
|
424
|
+
'del', # deleted
|
|
425
|
+
'ins', # inserted
|
|
426
|
+
'sub', # subscript
|
|
427
|
+
'sup', # superscript
|
|
428
|
+
]
|
|
429
|
+
|
|
430
|
+
def __init__(self, preserve_formatting=False):
|
|
431
|
+
self._html_regex = self._get_html_regex(preserve_formatting)
|
|
432
|
+
|
|
433
|
+
def _get_html_regex(self, preserve_formatting):
|
|
434
|
+
if preserve_formatting:
|
|
435
|
+
formats_regex = '|'.join(self._FORMATTING_TAGS)
|
|
436
|
+
formats_regex = r'<\/?(?!\/?(' + formats_regex + r')\b).*?\b>'
|
|
437
|
+
html_regex = re.compile(formats_regex, re.IGNORECASE)
|
|
438
|
+
else:
|
|
439
|
+
html_regex = re.compile(r'<[^>]*>', re.IGNORECASE)
|
|
440
|
+
return html_regex
|
|
441
|
+
|
|
442
|
+
def parse(self, plain_data):
|
|
443
|
+
return [
|
|
444
|
+
{
|
|
445
|
+
'text': re.sub(self._html_regex, '', unescape(xml_element.text)),
|
|
446
|
+
'start': float(xml_element.attrib['start']),
|
|
447
|
+
'duration': float(xml_element.attrib.get('dur', '0.0')),
|
|
448
|
+
}
|
|
449
|
+
for xml_element in ElementTree.fromstring(plain_data)
|
|
450
|
+
if xml_element.text is not None
|
|
451
|
+
]
|
|
452
|
+
|
|
453
|
+
WATCH_URL = 'https://www.youtube.com/watch?v={video_id}'
|
|
454
|
+
|
|
455
|
+
class transcriber(object):
|
|
456
|
+
@classmethod
|
|
457
|
+
def list_transcripts(cls, video_id, proxies=None, cookies=None):
|
|
458
|
+
with requests.Session() as http_client:
|
|
459
|
+
if cookies:
|
|
460
|
+
http_client.cookies = cls._load_cookies(cookies, video_id)
|
|
461
|
+
http_client.proxies = proxies if proxies else {}
|
|
462
|
+
return TranscriptListFetcher(http_client).fetch(video_id)
|
|
463
|
+
|
|
464
|
+
@classmethod
|
|
465
|
+
def get_transcripts(cls, video_ids, languages=('en',), continue_after_error=False, proxies=None,
|
|
466
|
+
cookies=None, preserve_formatting=False):
|
|
467
|
+
|
|
468
|
+
assert isinstance(video_ids, list), "`video_ids` must be a list of strings"
|
|
469
|
+
|
|
470
|
+
data = {}
|
|
471
|
+
unretrievable_videos = []
|
|
472
|
+
|
|
473
|
+
for video_id in video_ids:
|
|
474
|
+
try:
|
|
475
|
+
data[video_id] = cls.get_transcript(video_id, languages, proxies, cookies, preserve_formatting)
|
|
476
|
+
except Exception as exception:
|
|
477
|
+
if not continue_after_error:
|
|
478
|
+
raise exception
|
|
479
|
+
|
|
480
|
+
unretrievable_videos.append(video_id)
|
|
481
|
+
|
|
482
|
+
return data, unretrievable_videos
|
|
483
|
+
|
|
484
|
+
@classmethod
|
|
485
|
+
def get_transcript(cls, video_id, languages=('en',), proxies=None, cookies=None, preserve_formatting=False):
|
|
486
|
+
assert isinstance(video_id, str), "`video_id` must be a string"
|
|
487
|
+
return cls.list_transcripts(video_id, proxies, cookies).find_transcript(languages).fetch(preserve_formatting=preserve_formatting)
|
|
488
|
+
|
|
489
|
+
@classmethod
|
|
490
|
+
def _load_cookies(cls, cookies, video_id):
|
|
491
|
+
try:
|
|
492
|
+
cookie_jar = cookiejar.MozillaCookieJar()
|
|
493
|
+
cookie_jar.load(cookies)
|
|
494
|
+
if not cookie_jar:
|
|
495
|
+
raise CookiesInvalidError(video_id)
|
|
496
|
+
return cookie_jar
|
|
497
|
+
except:
|
|
498
|
+
raise CookiePathInvalidError(video_id)
|
webscout/version.py
CHANGED
|
@@ -1,2 +1,2 @@
|
|
|
1
|
-
__version__ = "1.2.
|
|
1
|
+
__version__ = "1.2.7"
|
|
2
2
|
|
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: webscout
|
|
3
|
-
Version: 1.2.
|
|
4
|
-
Summary: Search for words, documents, images, videos, news, maps and text translation using the Google, DuckDuckGo.com, yep.com, phind.com, you.com, etc Also containes AI models
|
|
3
|
+
Version: 1.2.6
|
|
4
|
+
Summary: Search for words, documents, images, videos, news, maps and text translation using the Google, DuckDuckGo.com, yep.com, phind.com, you.com, etc Also containes AI models and now can transcribe yt videos
|
|
5
5
|
Author: OEvortex
|
|
6
6
|
Author-email: helpingai5@gmail.com
|
|
7
7
|
License: HelpingAI Simplified Universal License
|
|
@@ -45,7 +45,6 @@ Requires-Dist: sse-starlette
|
|
|
45
45
|
Requires-Dist: termcolor
|
|
46
46
|
Requires-Dist: tiktoken
|
|
47
47
|
Requires-Dist: tldextract
|
|
48
|
-
Requires-Dist: gpt4all
|
|
49
48
|
Requires-Dist: orjson
|
|
50
49
|
Provides-Extra: dev
|
|
51
50
|
Requires-Dist: ruff >=0.1.6 ; extra == 'dev'
|
|
@@ -57,8 +56,7 @@ Requires-Dist: pytest >=7.4.2 ; extra == 'dev'
|
|
|
57
56
|
<a href="#"><img alt="Python version" src="https://img.shields.io/pypi/pyversions/webscout"/></a>
|
|
58
57
|
<a href="https://pepy.tech/project/webscout"><img alt="Downloads" src="https://static.pepy.tech/badge/webscout"></a>
|
|
59
58
|
|
|
60
|
-
Search for words, documents, images, videos, news, maps and text translation using the Google, DuckDuckGo.com, yep.com, phind.com, you.com, etc Also containes AI models
|
|
61
|
-
Also containes AI models that you can use
|
|
59
|
+
Search for words, documents, images, videos, news, maps and text translation using the Google, DuckDuckGo.com, yep.com, phind.com, you.com, etc Also containes AI models and now can transcribe yt videos
|
|
62
60
|
|
|
63
61
|
|
|
64
62
|
## Table of Contents
|
|
@@ -69,6 +67,7 @@ Also containes AI models that you can use
|
|
|
69
67
|
- [CLI version of webscout.AI](#cli-version-of-webscoutai)
|
|
70
68
|
- [CLI to use LLM](#cli-to-use-llm)
|
|
71
69
|
- [Regions](#regions)
|
|
70
|
+
- [Transcriber](#transcriber)
|
|
72
71
|
- [DeepWEBS: Advanced Web Searches](#deepwebs-advanced-web-searches)
|
|
73
72
|
- [Activating DeepWEBS](#activating-deepwebs)
|
|
74
73
|
- [Point to remember before using `DeepWEBS`](#point-to-remember-before-using-deepwebs)
|
|
@@ -94,7 +93,7 @@ Also containes AI models that you can use
|
|
|
94
93
|
- [6. `BlackBox` - Search/chat With BlackBox](#6-blackbox---searchchat-with-blackbox)
|
|
95
94
|
- [7. `PERPLEXITY` - Search With PERPLEXITY](#7-perplexity---search-with-perplexity)
|
|
96
95
|
- [8. `OpenGPT` - chat With OPENGPT](#8-opengpt---chat-with-opengpt)
|
|
97
|
-
- [9. `
|
|
96
|
+
- [9. `KOBOLDIA` -](#9-koboldia--)
|
|
98
97
|
- [usage of special .LLM file from webscout (webscout.LLM)](#usage-of-special-llm-file-from-webscout-webscoutllm)
|
|
99
98
|
- [`LLM`](#llm)
|
|
100
99
|
|
|
@@ -219,7 +218,55 @@ ___
|
|
|
219
218
|
[Go To TOP](#TOP)
|
|
220
219
|
|
|
221
220
|
|
|
221
|
+
## Transcriber
|
|
222
|
+
The transcriber function in webscout is a handy tool that transcribes YouTube videos. Here's an example code demonstrating its usage:
|
|
223
|
+
```python
|
|
224
|
+
import sys
|
|
225
|
+
from webscout import transcriber
|
|
226
|
+
|
|
227
|
+
def extract_transcript(video_id):
|
|
228
|
+
"""Extracts the transcript from a YouTube video."""
|
|
229
|
+
try:
|
|
230
|
+
transcript_list = transcriber.list_transcripts(video_id)
|
|
231
|
+
for transcript in transcript_list:
|
|
232
|
+
transcript_text_list = transcript.fetch()
|
|
233
|
+
lang = transcript.language
|
|
234
|
+
transcript_text = ""
|
|
235
|
+
if transcript.language_code == 'en':
|
|
236
|
+
for line in transcript_text_list:
|
|
237
|
+
transcript_text += " " + line["text"]
|
|
238
|
+
return transcript_text
|
|
239
|
+
elif transcript.is_translatable:
|
|
240
|
+
english_transcript_list = transcript.translate('en').fetch()
|
|
241
|
+
for line in english_transcript_list:
|
|
242
|
+
transcript_text += " " + line["text"]
|
|
243
|
+
return transcript_text
|
|
244
|
+
print("Transcript extraction failed. Please check the video URL.")
|
|
245
|
+
except Exception as e:
|
|
246
|
+
print(f"Error: {e}")
|
|
222
247
|
|
|
248
|
+
def main():
|
|
249
|
+
video_url = input("Enter the video link: ")
|
|
250
|
+
|
|
251
|
+
if video_url:
|
|
252
|
+
video_id = video_url.split("=")[1]
|
|
253
|
+
print("Video URL:", video_url)
|
|
254
|
+
submit = input("Press 'Enter' to get the transcript or type 'exit' to quit: ")
|
|
255
|
+
if submit == '':
|
|
256
|
+
print("Extracting Transcript...")
|
|
257
|
+
transcript = extract_transcript(video_id)
|
|
258
|
+
print('Transcript:')
|
|
259
|
+
print(transcript)
|
|
260
|
+
print("__________________________________________________________________________________")
|
|
261
|
+
elif submit.lower() == 'exit':
|
|
262
|
+
print("Exiting...")
|
|
263
|
+
sys.exit()
|
|
264
|
+
else:
|
|
265
|
+
print("Invalid input. Please try again.")
|
|
266
|
+
|
|
267
|
+
if __name__ == "__main__":
|
|
268
|
+
main()
|
|
269
|
+
```
|
|
223
270
|
## DeepWEBS: Advanced Web Searches
|
|
224
271
|
|
|
225
272
|
`DeepWEBS` is a standalone feature designed to perform advanced web searches with enhanced capabilities. It is particularly powerful in extracting relevant information directly from webpages and Search engine, focusing exclusively on text (web) searches. Unlike the `WEBS` , which provides a broader range of search functionalities, `DeepWEBS` is specifically tailored for in-depth web searches.
|
|
@@ -608,36 +655,23 @@ prompt = "tell me about india"
|
|
|
608
655
|
response_str = opengpt.chat(prompt)
|
|
609
656
|
print(response_str)
|
|
610
657
|
```
|
|
611
|
-
### 9. `
|
|
658
|
+
### 9. `KOBOLDIA` -
|
|
612
659
|
```python
|
|
613
|
-
from webscout import
|
|
660
|
+
from webscout.AI import KOBOLDAI
|
|
614
661
|
|
|
615
|
-
#
|
|
616
|
-
|
|
617
|
-
model="path/to/your/model/file", # Replace with the actual path to your model file
|
|
618
|
-
is_conversation=True,
|
|
619
|
-
max_tokens=800,
|
|
620
|
-
temperature=0.7,
|
|
621
|
-
presence_penalty=0,
|
|
622
|
-
frequency_penalty=1.18,
|
|
623
|
-
top_p=0.4,
|
|
624
|
-
intro="Hello, how can I assist you today?",
|
|
625
|
-
filepath="path/to/conversation/history/file", # Optional, for conversation history
|
|
626
|
-
update_file=True,
|
|
627
|
-
history_offset=10250,
|
|
628
|
-
act=None # Optional, for using an awesome prompt as intro
|
|
629
|
-
)
|
|
662
|
+
# Instantiate the KOBOLDAI class with default parameters
|
|
663
|
+
koboldai = KOBOLDAI()
|
|
630
664
|
|
|
631
|
-
#
|
|
632
|
-
|
|
633
|
-
|
|
634
|
-
|
|
635
|
-
|
|
636
|
-
|
|
637
|
-
|
|
665
|
+
# Define a prompt to send to the AI
|
|
666
|
+
prompt = "What is the capital of France?"
|
|
667
|
+
|
|
668
|
+
# Use the 'ask' method to get a response from the AI
|
|
669
|
+
response = koboldai.ask(prompt)
|
|
670
|
+
|
|
671
|
+
# Extract and print the message from the response
|
|
672
|
+
message = koboldai.get_message(response)
|
|
673
|
+
print(message)
|
|
638
674
|
|
|
639
|
-
# Print the generated response
|
|
640
|
-
print(response)
|
|
641
675
|
```
|
|
642
676
|
|
|
643
677
|
## usage of special .LLM file from webscout (webscout.LLM)
|
|
@@ -10,25 +10,25 @@ DeepWEBS/networks/webpage_fetcher.py,sha256=d5paDTB3wa_w6YWmLV7RkpAj8Lh8ztuUuyfe
|
|
|
10
10
|
DeepWEBS/utilsdw/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
11
11
|
DeepWEBS/utilsdw/enver.py,sha256=vstxg_5P3Rwo1en6oPcuc2SBiATJqxi4C7meGmw5w0M,1754
|
|
12
12
|
DeepWEBS/utilsdw/logger.py,sha256=Z0nFUcEGyU8r28yKiIyvEtO26xxpmJgbvNToTfwZecc,8174
|
|
13
|
-
webscout/AI.py,sha256=
|
|
13
|
+
webscout/AI.py,sha256=WYi-JbbiXtQM14juJ-WgsahgQEEb7U82YElDX9TfHAI,57985
|
|
14
14
|
webscout/AIbase.py,sha256=vQi2ougu5bG-QdmoYmxCQsOg7KTEgG7EF6nZh5qqUGw,2343
|
|
15
|
-
webscout/AIutel.py,sha256=
|
|
15
|
+
webscout/AIutel.py,sha256=fNN4mmjXcxjJGq2CVJP1MU2oQ78p8OyExQBjVif6e-k,24123
|
|
16
16
|
webscout/DWEBS.py,sha256=QT-7-dUgWhQ_H7EVZD53AVyXxyskoPMKCkFIpzkN56Q,7332
|
|
17
17
|
webscout/HelpingAI.py,sha256=YeZw0zYVHMcBFFPNdd3_Ghpm9ebt_EScQjHO_IIs4lg,8103
|
|
18
18
|
webscout/LLM.py,sha256=XByJPiATLA_57FBWKw18Xx_PGRCPOj-GJE96aQH1k2Y,3309
|
|
19
|
-
webscout/__init__.py,sha256=
|
|
19
|
+
webscout/__init__.py,sha256=qp-sVvWjKW-GRuvompu1arfDtARPr_G40ttfJk68dDo,547
|
|
20
20
|
webscout/__main__.py,sha256=ZtTRgsRjUi2JOvYFLF1ZCh55Sdoz94I-BS-TlJC7WDU,126
|
|
21
21
|
webscout/cli.py,sha256=F888fdrFUQgczMBN4yMOSf6Nh-IbvkqpPhDsbnA2FtQ,17059
|
|
22
22
|
webscout/exceptions.py,sha256=4AOO5wexeL96nvUS-badcckcwrPS7UpZyAgB9vknHZE,276
|
|
23
23
|
webscout/models.py,sha256=5iQIdtedT18YuTZ3npoG7kLMwcrKwhQ7928dl_7qZW0,692
|
|
24
|
-
webscout/
|
|
24
|
+
webscout/transcriber.py,sha256=LMYD1B3y48Gc_DFoDsv1K177yzBJEt40F2MfX9L2f9k,20232
|
|
25
25
|
webscout/utils.py,sha256=c_98M4oqpb54pUun3fpGGlCerFD6ZHUbghyp5b7Mwgo,2605
|
|
26
|
-
webscout/version.py,sha256=
|
|
26
|
+
webscout/version.py,sha256=ew1ocUjDA6hjEFVQgKG7KIx8DxAerG_0lxIzujjDBsc,25
|
|
27
27
|
webscout/webscout_search.py,sha256=3_lli-hDb8_kCGwscK29xuUcOS833ROgpNhDzrxh0dk,3085
|
|
28
28
|
webscout/webscout_search_async.py,sha256=Y5frH0k3hLqBCR-8dn7a_b7EvxdYxn6wHiKl3jWosE0,40670
|
|
29
|
-
webscout-1.2.
|
|
30
|
-
webscout-1.2.
|
|
31
|
-
webscout-1.2.
|
|
32
|
-
webscout-1.2.
|
|
33
|
-
webscout-1.2.
|
|
34
|
-
webscout-1.2.
|
|
29
|
+
webscout-1.2.6.dist-info/LICENSE.md,sha256=mRVwJuT4SXC5O93BFdsfWBjlXjGn2Np90Zm5SocUzM0,3150
|
|
30
|
+
webscout-1.2.6.dist-info/METADATA,sha256=zhXnNwF8vdiaqOLj2mrq-T_vPutgA5A8P7q05etlJ_o,24261
|
|
31
|
+
webscout-1.2.6.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
|
|
32
|
+
webscout-1.2.6.dist-info/entry_points.txt,sha256=8-93eRslYrzTHs5E-6yFRJrve00C9q-SkXJD113jzRY,197
|
|
33
|
+
webscout-1.2.6.dist-info/top_level.txt,sha256=OD5YKy6Y3hldL7SmuxsiEDxAG4LgdSSWwzYk22MF9fk,18
|
|
34
|
+
webscout-1.2.6.dist-info/RECORD,,
|
webscout/offlineAI.py
DELETED
|
@@ -1,206 +0,0 @@
|
|
|
1
|
-
from webscout.AIutel import Optimizers
|
|
2
|
-
from webscout.AIutel import Conversation
|
|
3
|
-
from webscout.AIutel import AwesomePrompts
|
|
4
|
-
from webscout.AIbase import Provider
|
|
5
|
-
from gpt4all import GPT4All
|
|
6
|
-
from gpt4all.gpt4all import empty_chat_session
|
|
7
|
-
from gpt4all.gpt4all import append_extension_if_missing
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
import logging
|
|
11
|
-
|
|
12
|
-
my_logger = logging.getLogger("gpt4all")
|
|
13
|
-
my_logger.setLevel(logging.CRITICAL)
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
class GPT4ALL(Provider):
|
|
17
|
-
def __init__(
|
|
18
|
-
self,
|
|
19
|
-
model: str,
|
|
20
|
-
is_conversation: bool = True,
|
|
21
|
-
max_tokens: int = 800,
|
|
22
|
-
temperature: float = 0.7,
|
|
23
|
-
presence_penalty: int = 0,
|
|
24
|
-
frequency_penalty: int = 1.18,
|
|
25
|
-
top_p: float = 0.4,
|
|
26
|
-
intro: str = None,
|
|
27
|
-
filepath: str = None,
|
|
28
|
-
update_file: bool = True,
|
|
29
|
-
history_offset: int = 10250,
|
|
30
|
-
act: str = None,
|
|
31
|
-
):
|
|
32
|
-
"""Instantiates GPT4ALL
|
|
33
|
-
|
|
34
|
-
Args:
|
|
35
|
-
model (str, optional): Path to LLM model (.gguf or .bin).
|
|
36
|
-
is_conversation (bool, optional): Flag for chatting conversationally. Defaults to True.
|
|
37
|
-
max_tokens (int, optional): Maximum number of tokens to be generated upon completion. Defaults to 800.
|
|
38
|
-
temperature (float, optional): Charge of the generated text's randomness. Defaults to 0.7.
|
|
39
|
-
presence_penalty (int, optional): Chances of topic being repeated. Defaults to 0.
|
|
40
|
-
frequency_penalty (int, optional): Chances of word being repeated. Defaults to 1.18.
|
|
41
|
-
top_p (float, optional): Sampling threshold during inference time. Defaults to 0.4.
|
|
42
|
-
intro (str, optional): Conversation introductory prompt. Defaults to None.
|
|
43
|
-
filepath (str, optional): Path to file containing conversation history. Defaults to None.
|
|
44
|
-
update_file (bool, optional): Add new prompts and responses to the file. Defaults to True.
|
|
45
|
-
history_offset (int, optional): Limit conversation history to this number of last texts. Defaults to 10250.
|
|
46
|
-
act (str|int, optional): Awesome prompt key or index. (Used as intro). Defaults to None.
|
|
47
|
-
"""
|
|
48
|
-
self.is_conversation = is_conversation
|
|
49
|
-
self.max_tokens_to_sample = max_tokens
|
|
50
|
-
self.model = model
|
|
51
|
-
self.temperature = temperature
|
|
52
|
-
self.presence_penalty = presence_penalty
|
|
53
|
-
self.frequency_penalty = frequency_penalty
|
|
54
|
-
self.top_p = top_p
|
|
55
|
-
self.last_response = {}
|
|
56
|
-
|
|
57
|
-
self.__available_optimizers = (
|
|
58
|
-
method
|
|
59
|
-
for method in dir(Optimizers)
|
|
60
|
-
if callable(getattr(Optimizers, method)) and not method.startswith("__")
|
|
61
|
-
)
|
|
62
|
-
Conversation.intro = (
|
|
63
|
-
AwesomePrompts().get_act(
|
|
64
|
-
act, raise_not_found=True, default=None, case_insensitive=True
|
|
65
|
-
)
|
|
66
|
-
if act
|
|
67
|
-
else intro or Conversation.intro
|
|
68
|
-
)
|
|
69
|
-
self.conversation = Conversation(
|
|
70
|
-
is_conversation, self.max_tokens_to_sample, filepath, update_file
|
|
71
|
-
)
|
|
72
|
-
self.conversation.history_offset = history_offset
|
|
73
|
-
|
|
74
|
-
def get_model_name_path():
|
|
75
|
-
import os
|
|
76
|
-
from pathlib import Path
|
|
77
|
-
|
|
78
|
-
initial_model_path = Path(append_extension_if_missing(model))
|
|
79
|
-
if initial_model_path.exists:
|
|
80
|
-
if not initial_model_path.is_absolute():
|
|
81
|
-
initial_model_path = Path(os.getcwd()) / initial_model_path
|
|
82
|
-
return os.path.split(initial_model_path.as_posix())
|
|
83
|
-
else:
|
|
84
|
-
raise FileNotFoundError(
|
|
85
|
-
"File does not exist " + initial_model_path.as_posix()
|
|
86
|
-
)
|
|
87
|
-
|
|
88
|
-
model_dir, model_name = get_model_name_path()
|
|
89
|
-
|
|
90
|
-
self.gpt4all = GPT4All(
|
|
91
|
-
model_name=model_name,
|
|
92
|
-
model_path=model_dir,
|
|
93
|
-
allow_download=False,
|
|
94
|
-
verbose=False,
|
|
95
|
-
)
|
|
96
|
-
|
|
97
|
-
def ask(
|
|
98
|
-
self,
|
|
99
|
-
prompt: str,
|
|
100
|
-
stream: bool = False,
|
|
101
|
-
raw: bool = False,
|
|
102
|
-
optimizer: str = None,
|
|
103
|
-
conversationally: bool = False,
|
|
104
|
-
) -> dict:
|
|
105
|
-
"""Chat with AI
|
|
106
|
-
|
|
107
|
-
Args:
|
|
108
|
-
prompt (str): Prompt to be send.
|
|
109
|
-
stream (bool, optional): Flag for streaming response. Defaults to False.
|
|
110
|
-
raw (bool, optional): Stream back raw response as received. Defaults to False.
|
|
111
|
-
optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
|
|
112
|
-
conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
|
|
113
|
-
Returns:
|
|
114
|
-
dict : {}
|
|
115
|
-
```json
|
|
116
|
-
{
|
|
117
|
-
"text" : "How may I help you today?"
|
|
118
|
-
}
|
|
119
|
-
```
|
|
120
|
-
"""
|
|
121
|
-
conversation_prompt = self.conversation.gen_complete_prompt(prompt)
|
|
122
|
-
if optimizer:
|
|
123
|
-
if optimizer in self.__available_optimizers:
|
|
124
|
-
conversation_prompt = getattr(Optimizers, optimizer)(
|
|
125
|
-
conversation_prompt if conversationally else prompt
|
|
126
|
-
)
|
|
127
|
-
else:
|
|
128
|
-
raise Exception(
|
|
129
|
-
f"Optimizer is not one of {self.__available_optimizers}"
|
|
130
|
-
)
|
|
131
|
-
|
|
132
|
-
def for_stream():
|
|
133
|
-
response = self.gpt4all.generate(
|
|
134
|
-
prompt=conversation_prompt,
|
|
135
|
-
max_tokens=self.max_tokens_to_sample,
|
|
136
|
-
temp=self.temperature,
|
|
137
|
-
top_p=self.top_p,
|
|
138
|
-
repeat_penalty=self.frequency_penalty,
|
|
139
|
-
streaming=True,
|
|
140
|
-
)
|
|
141
|
-
|
|
142
|
-
message_load: str = ""
|
|
143
|
-
for token in response:
|
|
144
|
-
message_load += token
|
|
145
|
-
resp: dict = dict(text=message_load)
|
|
146
|
-
yield token if raw else resp
|
|
147
|
-
self.last_response.update(resp)
|
|
148
|
-
|
|
149
|
-
self.conversation.update_chat_history(
|
|
150
|
-
prompt, self.get_message(self.last_response)
|
|
151
|
-
)
|
|
152
|
-
self.gpt4all.current_chat_session = empty_chat_session()
|
|
153
|
-
|
|
154
|
-
def for_non_stream():
|
|
155
|
-
for _ in for_stream():
|
|
156
|
-
pass
|
|
157
|
-
return self.last_response
|
|
158
|
-
|
|
159
|
-
return for_stream() if stream else for_non_stream()
|
|
160
|
-
|
|
161
|
-
def chat(
|
|
162
|
-
self,
|
|
163
|
-
prompt: str,
|
|
164
|
-
stream: bool = False,
|
|
165
|
-
optimizer: str = None,
|
|
166
|
-
conversationally: bool = False,
|
|
167
|
-
) -> str:
|
|
168
|
-
"""Generate response `str`
|
|
169
|
-
Args:
|
|
170
|
-
prompt (str): Prompt to be send.
|
|
171
|
-
stream (bool, optional): Flag for streaming response. Defaults to False.
|
|
172
|
-
optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
|
|
173
|
-
conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
|
|
174
|
-
Returns:
|
|
175
|
-
str: Response generated
|
|
176
|
-
"""
|
|
177
|
-
|
|
178
|
-
def for_stream():
|
|
179
|
-
for response in self.ask(
|
|
180
|
-
prompt, True, optimizer=optimizer, conversationally=conversationally
|
|
181
|
-
):
|
|
182
|
-
yield self.get_message(response)
|
|
183
|
-
|
|
184
|
-
def for_non_stream():
|
|
185
|
-
return self.get_message(
|
|
186
|
-
self.ask(
|
|
187
|
-
prompt,
|
|
188
|
-
False,
|
|
189
|
-
optimizer=optimizer,
|
|
190
|
-
conversationally=conversationally,
|
|
191
|
-
)
|
|
192
|
-
)
|
|
193
|
-
|
|
194
|
-
return for_stream() if stream else for_non_stream()
|
|
195
|
-
|
|
196
|
-
def get_message(self, response: dict) -> str:
|
|
197
|
-
"""Retrieves message only from response
|
|
198
|
-
|
|
199
|
-
Args:
|
|
200
|
-
response (str): Response generated by `self.ask`
|
|
201
|
-
|
|
202
|
-
Returns:
|
|
203
|
-
str: Message extracted
|
|
204
|
-
"""
|
|
205
|
-
assert isinstance(response, dict), "Response should be of dict data-type only"
|
|
206
|
-
return response["text"]
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|