weave-python 0.28.2__py3-none-any.whl → 0.30.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- weave/weaveapi/auth/v1/service_pb2.py +194 -98
- weave/weaveapi/auth/v1/service_pb2.pyi +1288 -1134
- weave/weaveapi/auth/v1/service_pb2_grpc.pyi +248 -335
- weave/weaveapi/auth/v1/session_pb2.py +14 -6
- weave/weaveapi/auth/v1/session_pb2.pyi +109 -89
- weave/weaveapi/auth/v1/session_pb2_grpc.pyi +11 -10
- weave/weaveapi/auth/v1/usage_pb2.py +18 -14
- weave/weaveapi/auth/v1/usage_pb2.pyi +251 -197
- weave/weaveapi/auth/v1/usage_pb2_grpc.pyi +11 -10
- weave/weaveapi/auth/v1/user_pb2.py +60 -18
- weave/weaveapi/auth/v1/user_pb2.pyi +588 -505
- weave/weaveapi/auth/v1/user_pb2_grpc.pyi +11 -10
- weave/weaveapi/generate/v1/configuration_pb2.py +31 -19
- weave/weaveapi/generate/v1/configuration_pb2.pyi +277 -241
- weave/weaveapi/generate/v1/configuration_pb2_grpc.pyi +11 -10
- weave/weaveapi/generate/v1/generate_pb2.py +32 -6
- weave/weaveapi/generate/v1/generate_pb2.pyi +138 -40
- weave/weaveapi/generate/v1/generate_pb2_grpc.pyi +11 -10
- weave/weaveapi/generate/v1/service_pb2.py +52 -22
- weave/weaveapi/generate/v1/service_pb2.pyi +264 -135
- weave/weaveapi/generate/v1/service_pb2_grpc.py +47 -0
- weave/weaveapi/generate/v1/service_pb2_grpc.pyi +89 -78
- weave/weaveapi/llmx/v1/architecture_pb2.py +42 -42
- weave/weaveapi/llmx/v1/architecture_pb2.pyi +664 -555
- weave/weaveapi/llmx/v1/architecture_pb2_grpc.pyi +11 -10
- weave/weaveapi/llmx/v1/capabilities_pb2.py +88 -56
- weave/weaveapi/llmx/v1/capabilities_pb2.pyi +967 -852
- weave/weaveapi/llmx/v1/capabilities_pb2_grpc.pyi +11 -10
- weave/weaveapi/llmx/v1/model_pb2.py +56 -20
- weave/weaveapi/llmx/v1/model_pb2.pyi +533 -455
- weave/weaveapi/llmx/v1/model_pb2_grpc.pyi +11 -10
- weave/weaveapi/llmx/v1/pricing_pb2.py +24 -20
- weave/weaveapi/llmx/v1/pricing_pb2.pyi +194 -172
- weave/weaveapi/llmx/v1/pricing_pb2_grpc.pyi +11 -10
- weave/weaveapi/llmx/v1/provider_pb2.py +6 -6
- weave/weaveapi/llmx/v1/provider_pb2.pyi +84 -59
- weave/weaveapi/llmx/v1/provider_pb2_grpc.pyi +11 -10
- weave/weaveapi/llmx/v1/service_pb2.py +228 -90
- weave/weaveapi/llmx/v1/service_pb2.pyi +1651 -1403
- weave/weaveapi/llmx/v1/service_pb2_grpc.pyi +160 -203
- weave/weaveapi/mcpregistry/v1/server_pb2.py +16 -10
- weave/weaveapi/mcpregistry/v1/server_pb2.pyi +143 -121
- weave/weaveapi/mcpregistry/v1/server_pb2_grpc.pyi +11 -10
- weave/weaveapi/mcpregistry/v1/service_pb2.py +51 -31
- weave/weaveapi/mcpregistry/v1/service_pb2.pyi +132 -122
- weave/weaveapi/mcpregistry/v1/service_pb2_grpc.pyi +87 -112
- weave/weaveapi/payment/v1/invoice_pb2.py +38 -12
- weave/weaveapi/payment/v1/invoice_pb2.pyi +352 -291
- weave/weaveapi/payment/v1/invoice_pb2_grpc.pyi +11 -10
- weave/weaveapi/payment/v1/service_pb2.py +264 -98
- weave/weaveapi/payment/v1/service_pb2.pyi +1381 -1242
- weave/weaveapi/payment/v1/service_pb2_grpc.pyi +229 -319
- weave/weaveapi/payment/v1/subscription_pb2.py +99 -23
- weave/weaveapi/payment/v1/subscription_pb2.pyi +727 -611
- weave/weaveapi/payment/v1/subscription_pb2_grpc.pyi +11 -10
- weave/weaveapi/storage/v1/auth_pb2.py +6 -6
- weave/weaveapi/storage/v1/auth_pb2.pyi +42 -29
- weave/weaveapi/storage/v1/auth_pb2_grpc.pyi +11 -10
- weave/weaveapi/storage/v1/nosql_database_pb2.py +47 -23
- weave/weaveapi/storage/v1/nosql_database_pb2.pyi +438 -372
- weave/weaveapi/storage/v1/nosql_database_pb2_grpc.pyi +11 -10
- weave/weaveapi/storage/v1/object_store_pb2.py +27 -13
- weave/weaveapi/storage/v1/object_store_pb2.pyi +203 -187
- weave/weaveapi/storage/v1/object_store_pb2_grpc.pyi +11 -10
- weave/weaveapi/storage/v1/service_pb2.py +96 -36
- weave/weaveapi/storage/v1/service_pb2.pyi +414 -357
- weave/weaveapi/storage/v1/service_pb2_grpc.pyi +88 -107
- weave/weaveapi/storage/v1/sql_database_pb2.py +39 -23
- weave/weaveapi/storage/v1/sql_database_pb2.pyi +481 -400
- weave/weaveapi/storage/v1/sql_database_pb2_grpc.pyi +11 -10
- weave/weaveapi/storage/v1/storage_pb2.py +20 -6
- weave/weaveapi/storage/v1/storage_pb2.pyi +79 -70
- weave/weaveapi/storage/v1/storage_pb2_grpc.pyi +11 -10
- weave/weaveapi/synthesize/v1/dataset_pb2.py +14 -12
- weave/weaveapi/synthesize/v1/dataset_pb2.pyi +158 -128
- weave/weaveapi/synthesize/v1/dataset_pb2_grpc.pyi +11 -10
- weave/weaveapi/synthesize/v1/inline_data_pb2.py +9 -9
- weave/weaveapi/synthesize/v1/inline_data_pb2.pyi +31 -27
- weave/weaveapi/synthesize/v1/inline_data_pb2_grpc.pyi +11 -10
- weave/weaveapi/synthesize/v1/relationship_pb2.py +19 -11
- weave/weaveapi/synthesize/v1/relationship_pb2.pyi +67 -64
- weave/weaveapi/synthesize/v1/relationship_pb2_grpc.pyi +11 -10
- weave/weaveapi/synthesize/v1/service_pb2.py +42 -24
- weave/weaveapi/synthesize/v1/service_pb2.pyi +202 -168
- weave/weaveapi/synthesize/v1/service_pb2_grpc.pyi +67 -79
- weave/weaveapi/synthesize/v1/training_pb2.py +19 -13
- weave/weaveapi/synthesize/v1/training_pb2.pyi +119 -106
- weave/weaveapi/synthesize/v1/training_pb2_grpc.pyi +11 -10
- weave/weavesql/llmxdb/capabilities.py +487 -0
- weave/weavesql/llmxdb/changes.py +297 -0
- weave/weavesql/llmxdb/models.py +594 -0
- weave/weavesql/llmxdb/providers.py +348 -0
- weave/weavesql/llmxdb/scraper_runs.py +287 -0
- weave/weavesql/llmxdb/search.py +721 -0
- weave/weavesql/weavedb/dataset.py +75 -0
- weave/weavesql/weavedb/models.py +135 -0
- weave/weavesql/weavedb/relationships.py +72 -0
- weave/weavesql/weavedb/storage.py +113 -0
- weave/weavesql/weavedb/synthesizer.py +107 -0
- {weave_python-0.28.2.dist-info → weave_python-0.30.3.dist-info}/METADATA +3 -3
- weave_python-0.30.3.dist-info/RECORD +131 -0
- {weave_python-0.28.2.dist-info → weave_python-0.30.3.dist-info}/WHEEL +1 -1
- weave_python-0.28.2.dist-info/RECORD +0 -120
- {weave_python-0.28.2.dist-info → weave_python-0.30.3.dist-info}/licenses/LICENSE +0 -0
|
@@ -3,34 +3,31 @@
|
|
|
3
3
|
isort:skip_file
|
|
4
4
|
"""
|
|
5
5
|
|
|
6
|
-
import
|
|
7
|
-
import
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
6
|
+
from collections import abc as _abc
|
|
7
|
+
from google.protobuf import descriptor as _descriptor
|
|
8
|
+
from google.protobuf import message as _message
|
|
9
|
+
from google.protobuf.internal import containers as _containers
|
|
10
|
+
from google.protobuf.internal import enum_type_wrapper as _enum_type_wrapper
|
|
11
|
+
from weaveapi.llmx.v1 import capabilities_pb2 as _capabilities_pb2
|
|
12
|
+
import builtins as _builtins
|
|
12
13
|
import sys
|
|
13
|
-
import typing
|
|
14
|
-
import weaveapi.llmx.v1.capabilities_pb2
|
|
14
|
+
import typing as _typing
|
|
15
15
|
|
|
16
16
|
if sys.version_info >= (3, 10):
|
|
17
|
-
|
|
17
|
+
from typing import TypeAlias as _TypeAlias
|
|
18
18
|
else:
|
|
19
|
-
import
|
|
19
|
+
from typing_extensions import TypeAlias as _TypeAlias
|
|
20
20
|
|
|
21
|
-
DESCRIPTOR:
|
|
21
|
+
DESCRIPTOR: _descriptor.FileDescriptor
|
|
22
22
|
|
|
23
23
|
class _BaseArchitecture:
|
|
24
|
-
ValueType =
|
|
25
|
-
V:
|
|
24
|
+
ValueType = _typing.NewType("ValueType", _builtins.int)
|
|
25
|
+
V: _TypeAlias = ValueType # noqa: Y015
|
|
26
26
|
|
|
27
27
|
class _BaseArchitectureEnumTypeWrapper(
|
|
28
|
-
|
|
29
|
-
_BaseArchitecture.ValueType
|
|
30
|
-
],
|
|
31
|
-
builtins.type,
|
|
28
|
+
_enum_type_wrapper._EnumTypeWrapper[_BaseArchitecture.ValueType], _builtins.type
|
|
32
29
|
):
|
|
33
|
-
DESCRIPTOR:
|
|
30
|
+
DESCRIPTOR: _descriptor.EnumDescriptor
|
|
34
31
|
BASE_ARCHITECTURE_UNSPECIFIED: _BaseArchitecture.ValueType # 0
|
|
35
32
|
BASE_ARCHITECTURE_TRANSFORMER: _BaseArchitecture.ValueType # 1
|
|
36
33
|
BASE_ARCHITECTURE_MAMBA: _BaseArchitecture.ValueType # 2
|
|
@@ -51,19 +48,16 @@ BASE_ARCHITECTURE_RECURRENT_NEURAL_NETWORK: BaseArchitecture.ValueType # 4
|
|
|
51
48
|
BASE_ARCHITECTURE_CONVOLUTIONAL_NEURAL_NETWORK: BaseArchitecture.ValueType # 5
|
|
52
49
|
BASE_ARCHITECTURE_DIFFUSION: BaseArchitecture.ValueType # 6
|
|
53
50
|
BASE_ARCHITECTURE_GENERATIVE_ADVERSARIAL_NETWORK: BaseArchitecture.ValueType # 7
|
|
54
|
-
|
|
51
|
+
Global___BaseArchitecture: _TypeAlias = BaseArchitecture # noqa: Y015
|
|
55
52
|
|
|
56
53
|
class _ModelArchitecture:
|
|
57
|
-
ValueType =
|
|
58
|
-
V:
|
|
54
|
+
ValueType = _typing.NewType("ValueType", _builtins.int)
|
|
55
|
+
V: _TypeAlias = ValueType # noqa: Y015
|
|
59
56
|
|
|
60
57
|
class _ModelArchitectureEnumTypeWrapper(
|
|
61
|
-
|
|
62
|
-
_ModelArchitecture.ValueType
|
|
63
|
-
],
|
|
64
|
-
builtins.type,
|
|
58
|
+
_enum_type_wrapper._EnumTypeWrapper[_ModelArchitecture.ValueType], _builtins.type
|
|
65
59
|
):
|
|
66
|
-
DESCRIPTOR:
|
|
60
|
+
DESCRIPTOR: _descriptor.EnumDescriptor
|
|
67
61
|
MODEL_ARCHITECTURE_UNSPECIFIED: _ModelArchitecture.ValueType # 0
|
|
68
62
|
MODEL_ARCHITECTURE_GPT: _ModelArchitecture.ValueType # 1
|
|
69
63
|
MODEL_ARCHITECTURE_BERT: _ModelArchitecture.ValueType # 2
|
|
@@ -108,19 +102,16 @@ MODEL_ARCHITECTURE_DEEPSEEK: ModelArchitecture.ValueType # 15
|
|
|
108
102
|
MODEL_ARCHITECTURE_YI: ModelArchitecture.ValueType # 16
|
|
109
103
|
MODEL_ARCHITECTURE_MIXTRAL: ModelArchitecture.ValueType # 17
|
|
110
104
|
MODEL_ARCHITECTURE_GEMINI: ModelArchitecture.ValueType # 18
|
|
111
|
-
|
|
105
|
+
Global___ModelArchitecture: _TypeAlias = ModelArchitecture # noqa: Y015
|
|
112
106
|
|
|
113
107
|
class _PositionEmbedding:
|
|
114
|
-
ValueType =
|
|
115
|
-
V:
|
|
108
|
+
ValueType = _typing.NewType("ValueType", _builtins.int)
|
|
109
|
+
V: _TypeAlias = ValueType # noqa: Y015
|
|
116
110
|
|
|
117
111
|
class _PositionEmbeddingEnumTypeWrapper(
|
|
118
|
-
|
|
119
|
-
_PositionEmbedding.ValueType
|
|
120
|
-
],
|
|
121
|
-
builtins.type,
|
|
112
|
+
_enum_type_wrapper._EnumTypeWrapper[_PositionEmbedding.ValueType], _builtins.type
|
|
122
113
|
):
|
|
123
|
-
DESCRIPTOR:
|
|
114
|
+
DESCRIPTOR: _descriptor.EnumDescriptor
|
|
124
115
|
POSITION_EMBEDDING_UNSPECIFIED: _PositionEmbedding.ValueType # 0
|
|
125
116
|
POSITION_EMBEDDING_ABSOLUTE: _PositionEmbedding.ValueType # 1
|
|
126
117
|
POSITION_EMBEDDING_RELATIVE: _PositionEmbedding.ValueType # 2
|
|
@@ -141,19 +132,16 @@ POSITION_EMBEDDING_ROTARY: PositionEmbedding.ValueType # 3
|
|
|
141
132
|
POSITION_EMBEDDING_ALIBI: PositionEmbedding.ValueType # 4
|
|
142
133
|
POSITION_EMBEDDING_LEARNED: PositionEmbedding.ValueType # 5
|
|
143
134
|
POSITION_EMBEDDING_SINUSOIDAL: PositionEmbedding.ValueType # 6
|
|
144
|
-
|
|
135
|
+
Global___PositionEmbedding: _TypeAlias = PositionEmbedding # noqa: Y015
|
|
145
136
|
|
|
146
137
|
class _ActivationFunction:
|
|
147
|
-
ValueType =
|
|
148
|
-
V:
|
|
138
|
+
ValueType = _typing.NewType("ValueType", _builtins.int)
|
|
139
|
+
V: _TypeAlias = ValueType # noqa: Y015
|
|
149
140
|
|
|
150
141
|
class _ActivationFunctionEnumTypeWrapper(
|
|
151
|
-
|
|
152
|
-
_ActivationFunction.ValueType
|
|
153
|
-
],
|
|
154
|
-
builtins.type,
|
|
142
|
+
_enum_type_wrapper._EnumTypeWrapper[_ActivationFunction.ValueType], _builtins.type
|
|
155
143
|
):
|
|
156
|
-
DESCRIPTOR:
|
|
144
|
+
DESCRIPTOR: _descriptor.EnumDescriptor
|
|
157
145
|
ACTIVATION_FUNCTION_UNSPECIFIED: _ActivationFunction.ValueType # 0
|
|
158
146
|
ACTIVATION_FUNCTION_GELU: _ActivationFunction.ValueType # 1
|
|
159
147
|
ACTIVATION_FUNCTION_SWIGLU: _ActivationFunction.ValueType # 2
|
|
@@ -178,19 +166,16 @@ ACTIVATION_FUNCTION_TANH: ActivationFunction.ValueType # 5
|
|
|
178
166
|
ACTIVATION_FUNCTION_SIGMOID: ActivationFunction.ValueType # 6
|
|
179
167
|
ACTIVATION_FUNCTION_MISH: ActivationFunction.ValueType # 7
|
|
180
168
|
ACTIVATION_FUNCTION_LEAKY_RELU: ActivationFunction.ValueType # 8
|
|
181
|
-
|
|
169
|
+
Global___ActivationFunction: _TypeAlias = ActivationFunction # noqa: Y015
|
|
182
170
|
|
|
183
171
|
class _TrainingTechnique:
|
|
184
|
-
ValueType =
|
|
185
|
-
V:
|
|
172
|
+
ValueType = _typing.NewType("ValueType", _builtins.int)
|
|
173
|
+
V: _TypeAlias = ValueType # noqa: Y015
|
|
186
174
|
|
|
187
175
|
class _TrainingTechniqueEnumTypeWrapper(
|
|
188
|
-
|
|
189
|
-
_TrainingTechnique.ValueType
|
|
190
|
-
],
|
|
191
|
-
builtins.type,
|
|
176
|
+
_enum_type_wrapper._EnumTypeWrapper[_TrainingTechnique.ValueType], _builtins.type
|
|
192
177
|
):
|
|
193
|
-
DESCRIPTOR:
|
|
178
|
+
DESCRIPTOR: _descriptor.EnumDescriptor
|
|
194
179
|
TRAINING_TECHNIQUE_UNSPECIFIED: _TrainingTechnique.ValueType # 0
|
|
195
180
|
TRAINING_TECHNIQUE_SUPERVISED: _TrainingTechnique.ValueType # 1
|
|
196
181
|
TRAINING_TECHNIQUE_REINFORCEMENT_LEARNING_FROM_HUMAN_FEEDBACK: (
|
|
@@ -221,19 +206,16 @@ TRAINING_TECHNIQUE_SUPERVISED_FINE_TUNING: TrainingTechnique.ValueType # 6
|
|
|
221
206
|
TRAINING_TECHNIQUE_INSTRUCTION_TUNING: TrainingTechnique.ValueType # 7
|
|
222
207
|
TRAINING_TECHNIQUE_FEW_SHOT: TrainingTechnique.ValueType # 8
|
|
223
208
|
TRAINING_TECHNIQUE_CHAIN_OF_THOUGHT: TrainingTechnique.ValueType # 9
|
|
224
|
-
|
|
209
|
+
Global___TrainingTechnique: _TypeAlias = TrainingTechnique # noqa: Y015
|
|
225
210
|
|
|
226
211
|
class _Quantization:
|
|
227
|
-
ValueType =
|
|
228
|
-
V:
|
|
212
|
+
ValueType = _typing.NewType("ValueType", _builtins.int)
|
|
213
|
+
V: _TypeAlias = ValueType # noqa: Y015
|
|
229
214
|
|
|
230
215
|
class _QuantizationEnumTypeWrapper(
|
|
231
|
-
|
|
232
|
-
_Quantization.ValueType
|
|
233
|
-
],
|
|
234
|
-
builtins.type,
|
|
216
|
+
_enum_type_wrapper._EnumTypeWrapper[_Quantization.ValueType], _builtins.type
|
|
235
217
|
):
|
|
236
|
-
DESCRIPTOR:
|
|
218
|
+
DESCRIPTOR: _descriptor.EnumDescriptor
|
|
237
219
|
QUANTIZATION_UNSPECIFIED: _Quantization.ValueType # 0
|
|
238
220
|
QUANTIZATION_NONE: _Quantization.ValueType # 1
|
|
239
221
|
QUANTIZATION_INT8: _Quantization.ValueType # 2
|
|
@@ -256,17 +238,16 @@ QUANTIZATION_GPTQ: Quantization.ValueType # 5
|
|
|
256
238
|
QUANTIZATION_AWQ: Quantization.ValueType # 6
|
|
257
239
|
QUANTIZATION_GGUF: Quantization.ValueType # 7
|
|
258
240
|
QUANTIZATION_BITSANDBYTES: Quantization.ValueType # 8
|
|
259
|
-
|
|
241
|
+
Global___Quantization: _TypeAlias = Quantization # noqa: Y015
|
|
260
242
|
|
|
261
243
|
class _Precision:
|
|
262
|
-
ValueType =
|
|
263
|
-
V:
|
|
244
|
+
ValueType = _typing.NewType("ValueType", _builtins.int)
|
|
245
|
+
V: _TypeAlias = ValueType # noqa: Y015
|
|
264
246
|
|
|
265
247
|
class _PrecisionEnumTypeWrapper(
|
|
266
|
-
|
|
267
|
-
builtins.type,
|
|
248
|
+
_enum_type_wrapper._EnumTypeWrapper[_Precision.ValueType], _builtins.type
|
|
268
249
|
):
|
|
269
|
-
DESCRIPTOR:
|
|
250
|
+
DESCRIPTOR: _descriptor.EnumDescriptor
|
|
270
251
|
PRECISION_UNSPECIFIED: _Precision.ValueType # 0
|
|
271
252
|
PRECISION_FP32: _Precision.ValueType # 1
|
|
272
253
|
PRECISION_FP16: _Precision.ValueType # 2
|
|
@@ -283,19 +264,16 @@ PRECISION_FP16: Precision.ValueType # 2
|
|
|
283
264
|
PRECISION_BF16: Precision.ValueType # 3
|
|
284
265
|
PRECISION_INT8: Precision.ValueType # 4
|
|
285
266
|
PRECISION_MIXED: Precision.ValueType # 5
|
|
286
|
-
|
|
267
|
+
Global___Precision: _TypeAlias = Precision # noqa: Y015
|
|
287
268
|
|
|
288
269
|
class _InferenceFramework:
|
|
289
|
-
ValueType =
|
|
290
|
-
V:
|
|
270
|
+
ValueType = _typing.NewType("ValueType", _builtins.int)
|
|
271
|
+
V: _TypeAlias = ValueType # noqa: Y015
|
|
291
272
|
|
|
292
273
|
class _InferenceFrameworkEnumTypeWrapper(
|
|
293
|
-
|
|
294
|
-
_InferenceFramework.ValueType
|
|
295
|
-
],
|
|
296
|
-
builtins.type,
|
|
274
|
+
_enum_type_wrapper._EnumTypeWrapper[_InferenceFramework.ValueType], _builtins.type
|
|
297
275
|
):
|
|
298
|
-
DESCRIPTOR:
|
|
276
|
+
DESCRIPTOR: _descriptor.EnumDescriptor
|
|
299
277
|
INFERENCE_FRAMEWORK_UNSPECIFIED: _InferenceFramework.ValueType # 0
|
|
300
278
|
INFERENCE_FRAMEWORK_VLLM: _InferenceFramework.ValueType # 1
|
|
301
279
|
INFERENCE_FRAMEWORK_TGI: _InferenceFramework.ValueType # 2
|
|
@@ -324,17 +302,16 @@ INFERENCE_FRAMEWORK_TENSORFLOW_SERVING: InferenceFramework.ValueType # 7
|
|
|
324
302
|
INFERENCE_FRAMEWORK_RAY_SERVE: InferenceFramework.ValueType # 8
|
|
325
303
|
INFERENCE_FRAMEWORK_DEEPSPEED: InferenceFramework.ValueType # 9
|
|
326
304
|
INFERENCE_FRAMEWORK_FASTERTRANSFORMER: InferenceFramework.ValueType # 10
|
|
327
|
-
|
|
305
|
+
Global___InferenceFramework: _TypeAlias = InferenceFramework # noqa: Y015
|
|
328
306
|
|
|
329
307
|
class _ModelFormat:
|
|
330
|
-
ValueType =
|
|
331
|
-
V:
|
|
308
|
+
ValueType = _typing.NewType("ValueType", _builtins.int)
|
|
309
|
+
V: _TypeAlias = ValueType # noqa: Y015
|
|
332
310
|
|
|
333
311
|
class _ModelFormatEnumTypeWrapper(
|
|
334
|
-
|
|
335
|
-
builtins.type,
|
|
312
|
+
_enum_type_wrapper._EnumTypeWrapper[_ModelFormat.ValueType], _builtins.type
|
|
336
313
|
):
|
|
337
|
-
DESCRIPTOR:
|
|
314
|
+
DESCRIPTOR: _descriptor.EnumDescriptor
|
|
338
315
|
MODEL_FORMAT_UNSPECIFIED: _ModelFormat.ValueType # 0
|
|
339
316
|
MODEL_FORMAT_SAFETENSORS: _ModelFormat.ValueType # 1
|
|
340
317
|
MODEL_FORMAT_GGUF: _ModelFormat.ValueType # 2
|
|
@@ -359,19 +336,16 @@ MODEL_FORMAT_JAX: ModelFormat.ValueType # 6
|
|
|
359
336
|
MODEL_FORMAT_COREML: ModelFormat.ValueType # 7
|
|
360
337
|
MODEL_FORMAT_OPENVINO: ModelFormat.ValueType # 8
|
|
361
338
|
MODEL_FORMAT_TENSORRT: ModelFormat.ValueType # 9
|
|
362
|
-
|
|
339
|
+
Global___ModelFormat: _TypeAlias = ModelFormat # noqa: Y015
|
|
363
340
|
|
|
364
341
|
class _CheckpointFormat:
|
|
365
|
-
ValueType =
|
|
366
|
-
V:
|
|
342
|
+
ValueType = _typing.NewType("ValueType", _builtins.int)
|
|
343
|
+
V: _TypeAlias = ValueType # noqa: Y015
|
|
367
344
|
|
|
368
345
|
class _CheckpointFormatEnumTypeWrapper(
|
|
369
|
-
|
|
370
|
-
_CheckpointFormat.ValueType
|
|
371
|
-
],
|
|
372
|
-
builtins.type,
|
|
346
|
+
_enum_type_wrapper._EnumTypeWrapper[_CheckpointFormat.ValueType], _builtins.type
|
|
373
347
|
):
|
|
374
|
-
DESCRIPTOR:
|
|
348
|
+
DESCRIPTOR: _descriptor.EnumDescriptor
|
|
375
349
|
CHECKPOINT_FORMAT_UNSPECIFIED: _CheckpointFormat.ValueType # 0
|
|
376
350
|
CHECKPOINT_FORMAT_PYTORCH: _CheckpointFormat.ValueType # 1
|
|
377
351
|
CHECKPOINT_FORMAT_TENSORFLOW: _CheckpointFormat.ValueType # 2
|
|
@@ -390,17 +364,16 @@ CHECKPOINT_FORMAT_SAFETENSORS: CheckpointFormat.ValueType # 3
|
|
|
390
364
|
CHECKPOINT_FORMAT_HF: CheckpointFormat.ValueType # 4
|
|
391
365
|
CHECKPOINT_FORMAT_MEGATRON: CheckpointFormat.ValueType # 5
|
|
392
366
|
CHECKPOINT_FORMAT_DEEPSPEED: CheckpointFormat.ValueType # 6
|
|
393
|
-
|
|
367
|
+
Global___CheckpointFormat: _TypeAlias = CheckpointFormat # noqa: Y015
|
|
394
368
|
|
|
395
369
|
class _GPUType:
|
|
396
|
-
ValueType =
|
|
397
|
-
V:
|
|
370
|
+
ValueType = _typing.NewType("ValueType", _builtins.int)
|
|
371
|
+
V: _TypeAlias = ValueType # noqa: Y015
|
|
398
372
|
|
|
399
373
|
class _GPUTypeEnumTypeWrapper(
|
|
400
|
-
|
|
401
|
-
builtins.type,
|
|
374
|
+
_enum_type_wrapper._EnumTypeWrapper[_GPUType.ValueType], _builtins.type
|
|
402
375
|
):
|
|
403
|
-
DESCRIPTOR:
|
|
376
|
+
DESCRIPTOR: _descriptor.EnumDescriptor
|
|
404
377
|
GPU_TYPE_UNSPECIFIED: _GPUType.ValueType # 0
|
|
405
378
|
GPU_TYPE_A100: _GPUType.ValueType # 1
|
|
406
379
|
"""Datacenter/Enterprise GPUs"""
|
|
@@ -509,17 +482,16 @@ GPU_TYPE_RTX_2080_TI: GPUType.ValueType # 80
|
|
|
509
482
|
"""Older but still relevant"""
|
|
510
483
|
GPU_TYPE_TITAN_RTX: GPUType.ValueType # 81
|
|
511
484
|
GPU_TYPE_GTX_1080_TI: GPUType.ValueType # 82
|
|
512
|
-
|
|
485
|
+
Global___GPUType: _TypeAlias = GPUType # noqa: Y015
|
|
513
486
|
|
|
514
487
|
class _CPUType:
|
|
515
|
-
ValueType =
|
|
516
|
-
V:
|
|
488
|
+
ValueType = _typing.NewType("ValueType", _builtins.int)
|
|
489
|
+
V: _TypeAlias = ValueType # noqa: Y015
|
|
517
490
|
|
|
518
491
|
class _CPUTypeEnumTypeWrapper(
|
|
519
|
-
|
|
520
|
-
builtins.type,
|
|
492
|
+
_enum_type_wrapper._EnumTypeWrapper[_CPUType.ValueType], _builtins.type
|
|
521
493
|
):
|
|
522
|
-
DESCRIPTOR:
|
|
494
|
+
DESCRIPTOR: _descriptor.EnumDescriptor
|
|
523
495
|
CPU_TYPE_UNSPECIFIED: _CPUType.ValueType # 0
|
|
524
496
|
CPU_TYPE_X86_64: _CPUType.ValueType # 1
|
|
525
497
|
CPU_TYPE_ARM64: _CPUType.ValueType # 2
|
|
@@ -536,19 +508,16 @@ CPU_TYPE_ARM64: CPUType.ValueType # 2
|
|
|
536
508
|
CPU_TYPE_APPLE_SILICON: CPUType.ValueType # 3
|
|
537
509
|
CPU_TYPE_AMD64: CPUType.ValueType # 4
|
|
538
510
|
CPU_TYPE_GRAVITON: CPUType.ValueType # 5
|
|
539
|
-
|
|
511
|
+
Global___CPUType: _TypeAlias = CPUType # noqa: Y015
|
|
540
512
|
|
|
541
513
|
class _ModerationLevel:
|
|
542
|
-
ValueType =
|
|
543
|
-
V:
|
|
514
|
+
ValueType = _typing.NewType("ValueType", _builtins.int)
|
|
515
|
+
V: _TypeAlias = ValueType # noqa: Y015
|
|
544
516
|
|
|
545
517
|
class _ModerationLevelEnumTypeWrapper(
|
|
546
|
-
|
|
547
|
-
_ModerationLevel.ValueType
|
|
548
|
-
],
|
|
549
|
-
builtins.type,
|
|
518
|
+
_enum_type_wrapper._EnumTypeWrapper[_ModerationLevel.ValueType], _builtins.type
|
|
550
519
|
):
|
|
551
|
-
DESCRIPTOR:
|
|
520
|
+
DESCRIPTOR: _descriptor.EnumDescriptor
|
|
552
521
|
MODERATION_LEVEL_UNSPECIFIED: _ModerationLevel.ValueType # 0
|
|
553
522
|
MODERATION_LEVEL_NONE: _ModerationLevel.ValueType # 1
|
|
554
523
|
MODERATION_LEVEL_LOW: _ModerationLevel.ValueType # 2
|
|
@@ -565,17 +534,16 @@ MODERATION_LEVEL_LOW: ModerationLevel.ValueType # 2
|
|
|
565
534
|
MODERATION_LEVEL_MEDIUM: ModerationLevel.ValueType # 3
|
|
566
535
|
MODERATION_LEVEL_HIGH: ModerationLevel.ValueType # 4
|
|
567
536
|
MODERATION_LEVEL_STRICT: ModerationLevel.ValueType # 5
|
|
568
|
-
|
|
537
|
+
Global___ModerationLevel: _TypeAlias = ModerationLevel # noqa: Y015
|
|
569
538
|
|
|
570
539
|
class _LicenseType:
|
|
571
|
-
ValueType =
|
|
572
|
-
V:
|
|
540
|
+
ValueType = _typing.NewType("ValueType", _builtins.int)
|
|
541
|
+
V: _TypeAlias = ValueType # noqa: Y015
|
|
573
542
|
|
|
574
543
|
class _LicenseTypeEnumTypeWrapper(
|
|
575
|
-
|
|
576
|
-
builtins.type,
|
|
544
|
+
_enum_type_wrapper._EnumTypeWrapper[_LicenseType.ValueType], _builtins.type
|
|
577
545
|
):
|
|
578
|
-
DESCRIPTOR:
|
|
546
|
+
DESCRIPTOR: _descriptor.EnumDescriptor
|
|
579
547
|
LICENSE_TYPE_UNSPECIFIED: _LicenseType.ValueType # 0
|
|
580
548
|
LICENSE_TYPE_MIT: _LicenseType.ValueType # 1
|
|
581
549
|
LICENSE_TYPE_APACHE_2_0: _LicenseType.ValueType # 2
|
|
@@ -606,224 +574,253 @@ LICENSE_TYPE_CC_BY_NC: LicenseType.ValueType # 9
|
|
|
606
574
|
LICENSE_TYPE_CC_BY_SA: LicenseType.ValueType # 10
|
|
607
575
|
LICENSE_TYPE_LLAMA: LicenseType.ValueType # 11
|
|
608
576
|
LICENSE_TYPE_OPENAI: LicenseType.ValueType # 12
|
|
609
|
-
|
|
577
|
+
Global___LicenseType: _TypeAlias = LicenseType # noqa: Y015
|
|
610
578
|
|
|
611
|
-
@
|
|
612
|
-
class Architecture(
|
|
579
|
+
@_typing.final
|
|
580
|
+
class Architecture(_message.Message):
|
|
613
581
|
"""Architecture describes the technical architecture of an AI model."""
|
|
614
582
|
|
|
615
|
-
DESCRIPTOR:
|
|
616
|
-
|
|
617
|
-
BASE_ARCHITECTURE_FIELD_NUMBER:
|
|
618
|
-
MODEL_ARCHITECTURE_FIELD_NUMBER:
|
|
619
|
-
PARAMETER_COUNT_FIELD_NUMBER:
|
|
620
|
-
ACTIVE_PARAMETERS_FIELD_NUMBER:
|
|
621
|
-
TOTAL_PARAMETERS_FIELD_NUMBER:
|
|
622
|
-
LAYER_COUNT_FIELD_NUMBER:
|
|
623
|
-
HIDDEN_SIZE_FIELD_NUMBER:
|
|
624
|
-
ATTENTION_HEADS_FIELD_NUMBER:
|
|
625
|
-
VOCABULARY_SIZE_FIELD_NUMBER:
|
|
626
|
-
POSITION_EMBEDDING_FIELD_NUMBER:
|
|
627
|
-
ACTIVATION_FUNCTION_FIELD_NUMBER:
|
|
628
|
-
IS_MIXTURE_OF_EXPERTS_FIELD_NUMBER:
|
|
629
|
-
EXPERT_COUNT_FIELD_NUMBER:
|
|
630
|
-
EXPERTS_PER_TOKEN_FIELD_NUMBER:
|
|
631
|
-
base_architecture:
|
|
583
|
+
DESCRIPTOR: _descriptor.Descriptor
|
|
584
|
+
|
|
585
|
+
BASE_ARCHITECTURE_FIELD_NUMBER: _builtins.int
|
|
586
|
+
MODEL_ARCHITECTURE_FIELD_NUMBER: _builtins.int
|
|
587
|
+
PARAMETER_COUNT_FIELD_NUMBER: _builtins.int
|
|
588
|
+
ACTIVE_PARAMETERS_FIELD_NUMBER: _builtins.int
|
|
589
|
+
TOTAL_PARAMETERS_FIELD_NUMBER: _builtins.int
|
|
590
|
+
LAYER_COUNT_FIELD_NUMBER: _builtins.int
|
|
591
|
+
HIDDEN_SIZE_FIELD_NUMBER: _builtins.int
|
|
592
|
+
ATTENTION_HEADS_FIELD_NUMBER: _builtins.int
|
|
593
|
+
VOCABULARY_SIZE_FIELD_NUMBER: _builtins.int
|
|
594
|
+
POSITION_EMBEDDING_FIELD_NUMBER: _builtins.int
|
|
595
|
+
ACTIVATION_FUNCTION_FIELD_NUMBER: _builtins.int
|
|
596
|
+
IS_MIXTURE_OF_EXPERTS_FIELD_NUMBER: _builtins.int
|
|
597
|
+
EXPERT_COUNT_FIELD_NUMBER: _builtins.int
|
|
598
|
+
EXPERTS_PER_TOKEN_FIELD_NUMBER: _builtins.int
|
|
599
|
+
base_architecture: Global___BaseArchitecture.ValueType
|
|
632
600
|
"""Fundamental architecture type (Transformer, Mamba, etc.).
|
|
633
601
|
Example: BASE_ARCHITECTURE_TRANSFORMER for GPT models
|
|
634
602
|
"""
|
|
635
|
-
model_architecture:
|
|
603
|
+
model_architecture: Global___ModelArchitecture.ValueType
|
|
636
604
|
"""Specific model family/variant.
|
|
637
605
|
Example: MODEL_ARCHITECTURE_GPT for GPT-4, MODEL_ARCHITECTURE_LLAMA for LLaMA
|
|
638
606
|
"""
|
|
639
|
-
parameter_count:
|
|
607
|
+
parameter_count: _builtins.int
|
|
640
608
|
"""Total learnable parameters in billions.
|
|
641
609
|
Example: 175 for GPT-3 (175B parameters)
|
|
642
610
|
"""
|
|
643
|
-
active_parameters:
|
|
611
|
+
active_parameters: _builtins.int
|
|
644
612
|
"""Parameters activated per forward pass (for MoE models).
|
|
645
613
|
Example: 8B active out of 141B total for Mixtral-8x7B
|
|
646
614
|
"""
|
|
647
|
-
total_parameters:
|
|
615
|
+
total_parameters: _builtins.int
|
|
648
616
|
"""Total parameters including non-trainable (embeddings, etc.).
|
|
649
617
|
May be slightly higher than parameter_count
|
|
650
618
|
"""
|
|
651
|
-
layer_count:
|
|
619
|
+
layer_count: _builtins.int
|
|
652
620
|
"""Number of transformer/attention layers.
|
|
653
621
|
Example: 96 for GPT-3, 32 for 7B models
|
|
654
622
|
"""
|
|
655
|
-
hidden_size:
|
|
623
|
+
hidden_size: _builtins.int
|
|
656
624
|
"""Hidden dimension size of the model.
|
|
657
625
|
Example: 12288 for GPT-3, 4096 for smaller models
|
|
658
626
|
"""
|
|
659
|
-
attention_heads:
|
|
627
|
+
attention_heads: _builtins.int
|
|
660
628
|
"""Number of attention heads in multi-head attention.
|
|
661
629
|
Example: 96 for GPT-3, 32 for 7B models
|
|
662
630
|
"""
|
|
663
|
-
vocabulary_size:
|
|
631
|
+
vocabulary_size: _builtins.int
|
|
664
632
|
"""Size of the token vocabulary.
|
|
665
633
|
Example: 50257 for GPT-2/3, 32000 for LLaMA
|
|
666
634
|
"""
|
|
667
|
-
position_embedding:
|
|
635
|
+
position_embedding: Global___PositionEmbedding.ValueType
|
|
668
636
|
"""Type of position encoding used.
|
|
669
637
|
Example: POSITION_EMBEDDING_ROTARY for modern models (RoPE)
|
|
670
638
|
"""
|
|
671
|
-
activation_function:
|
|
639
|
+
activation_function: Global___ActivationFunction.ValueType
|
|
672
640
|
"""Activation function in feed-forward layers.
|
|
673
641
|
Example: ACTIVATION_FUNCTION_SWIGLU for LLaMA models
|
|
674
642
|
"""
|
|
675
|
-
is_mixture_of_experts:
|
|
643
|
+
is_mixture_of_experts: _builtins.bool
|
|
676
644
|
"""Whether this is a Mixture of Experts model.
|
|
677
645
|
Example: true for Mixtral, GPT-4 (rumored), false for dense models
|
|
678
646
|
"""
|
|
679
|
-
expert_count:
|
|
647
|
+
expert_count: _builtins.int
|
|
680
648
|
"""Total number of expert networks (for MoE).
|
|
681
649
|
Example: 8 for Mixtral-8x7B
|
|
682
650
|
"""
|
|
683
|
-
experts_per_token:
|
|
651
|
+
experts_per_token: _builtins.int
|
|
684
652
|
"""Number of experts activated per token (for MoE).
|
|
685
653
|
Example: 2 for Mixtral (2 experts per token out of 8)
|
|
686
654
|
"""
|
|
687
655
|
def __init__(
|
|
688
656
|
self,
|
|
689
657
|
*,
|
|
690
|
-
base_architecture:
|
|
691
|
-
model_architecture:
|
|
692
|
-
parameter_count:
|
|
693
|
-
active_parameters:
|
|
694
|
-
total_parameters:
|
|
695
|
-
layer_count:
|
|
696
|
-
hidden_size:
|
|
697
|
-
attention_heads:
|
|
698
|
-
vocabulary_size:
|
|
699
|
-
position_embedding:
|
|
700
|
-
activation_function:
|
|
701
|
-
is_mixture_of_experts:
|
|
702
|
-
expert_count:
|
|
703
|
-
experts_per_token:
|
|
704
|
-
) -> None: ...
|
|
705
|
-
def ClearField(
|
|
706
|
-
self,
|
|
707
|
-
field_name: typing.Literal[
|
|
708
|
-
"activation_function",
|
|
709
|
-
b"activation_function",
|
|
710
|
-
"active_parameters",
|
|
711
|
-
b"active_parameters",
|
|
712
|
-
"attention_heads",
|
|
713
|
-
b"attention_heads",
|
|
714
|
-
"base_architecture",
|
|
715
|
-
b"base_architecture",
|
|
716
|
-
"expert_count",
|
|
717
|
-
b"expert_count",
|
|
718
|
-
"experts_per_token",
|
|
719
|
-
b"experts_per_token",
|
|
720
|
-
"hidden_size",
|
|
721
|
-
b"hidden_size",
|
|
722
|
-
"is_mixture_of_experts",
|
|
723
|
-
b"is_mixture_of_experts",
|
|
724
|
-
"layer_count",
|
|
725
|
-
b"layer_count",
|
|
726
|
-
"model_architecture",
|
|
727
|
-
b"model_architecture",
|
|
728
|
-
"parameter_count",
|
|
729
|
-
b"parameter_count",
|
|
730
|
-
"position_embedding",
|
|
731
|
-
b"position_embedding",
|
|
732
|
-
"total_parameters",
|
|
733
|
-
b"total_parameters",
|
|
734
|
-
"vocabulary_size",
|
|
735
|
-
b"vocabulary_size",
|
|
736
|
-
],
|
|
658
|
+
base_architecture: Global___BaseArchitecture.ValueType | None = ...,
|
|
659
|
+
model_architecture: Global___ModelArchitecture.ValueType | None = ...,
|
|
660
|
+
parameter_count: _builtins.int | None = ...,
|
|
661
|
+
active_parameters: _builtins.int | None = ...,
|
|
662
|
+
total_parameters: _builtins.int | None = ...,
|
|
663
|
+
layer_count: _builtins.int | None = ...,
|
|
664
|
+
hidden_size: _builtins.int | None = ...,
|
|
665
|
+
attention_heads: _builtins.int | None = ...,
|
|
666
|
+
vocabulary_size: _builtins.int | None = ...,
|
|
667
|
+
position_embedding: Global___PositionEmbedding.ValueType | None = ...,
|
|
668
|
+
activation_function: Global___ActivationFunction.ValueType | None = ...,
|
|
669
|
+
is_mixture_of_experts: _builtins.bool | None = ...,
|
|
670
|
+
expert_count: _builtins.int | None = ...,
|
|
671
|
+
experts_per_token: _builtins.int | None = ...,
|
|
737
672
|
) -> None: ...
|
|
738
|
-
|
|
739
|
-
|
|
740
|
-
|
|
741
|
-
|
|
742
|
-
|
|
673
|
+
_HasFieldArgType: _TypeAlias = _typing.Literal[
|
|
674
|
+
"activation_function",
|
|
675
|
+
b"activation_function",
|
|
676
|
+
"active_parameters",
|
|
677
|
+
b"active_parameters",
|
|
678
|
+
"attention_heads",
|
|
679
|
+
b"attention_heads",
|
|
680
|
+
"base_architecture",
|
|
681
|
+
b"base_architecture",
|
|
682
|
+
"expert_count",
|
|
683
|
+
b"expert_count",
|
|
684
|
+
"experts_per_token",
|
|
685
|
+
b"experts_per_token",
|
|
686
|
+
"hidden_size",
|
|
687
|
+
b"hidden_size",
|
|
688
|
+
"is_mixture_of_experts",
|
|
689
|
+
b"is_mixture_of_experts",
|
|
690
|
+
"layer_count",
|
|
691
|
+
b"layer_count",
|
|
692
|
+
"model_architecture",
|
|
693
|
+
b"model_architecture",
|
|
694
|
+
"parameter_count",
|
|
695
|
+
b"parameter_count",
|
|
696
|
+
"position_embedding",
|
|
697
|
+
b"position_embedding",
|
|
698
|
+
"total_parameters",
|
|
699
|
+
b"total_parameters",
|
|
700
|
+
"vocabulary_size",
|
|
701
|
+
b"vocabulary_size",
|
|
702
|
+
] # noqa: Y015
|
|
703
|
+
def HasField(self, field_name: _HasFieldArgType) -> _builtins.bool: ...
|
|
704
|
+
_ClearFieldArgType: _TypeAlias = _typing.Literal[
|
|
705
|
+
"activation_function",
|
|
706
|
+
b"activation_function",
|
|
707
|
+
"active_parameters",
|
|
708
|
+
b"active_parameters",
|
|
709
|
+
"attention_heads",
|
|
710
|
+
b"attention_heads",
|
|
711
|
+
"base_architecture",
|
|
712
|
+
b"base_architecture",
|
|
713
|
+
"expert_count",
|
|
714
|
+
b"expert_count",
|
|
715
|
+
"experts_per_token",
|
|
716
|
+
b"experts_per_token",
|
|
717
|
+
"hidden_size",
|
|
718
|
+
b"hidden_size",
|
|
719
|
+
"is_mixture_of_experts",
|
|
720
|
+
b"is_mixture_of_experts",
|
|
721
|
+
"layer_count",
|
|
722
|
+
b"layer_count",
|
|
723
|
+
"model_architecture",
|
|
724
|
+
b"model_architecture",
|
|
725
|
+
"parameter_count",
|
|
726
|
+
b"parameter_count",
|
|
727
|
+
"position_embedding",
|
|
728
|
+
b"position_embedding",
|
|
729
|
+
"total_parameters",
|
|
730
|
+
b"total_parameters",
|
|
731
|
+
"vocabulary_size",
|
|
732
|
+
b"vocabulary_size",
|
|
733
|
+
] # noqa: Y015
|
|
734
|
+
def ClearField(self, field_name: _ClearFieldArgType) -> None: ...
|
|
735
|
+
|
|
736
|
+
Global___Architecture: _TypeAlias = Architecture # noqa: Y015
|
|
737
|
+
|
|
738
|
+
@_typing.final
|
|
739
|
+
class Training(_message.Message):
|
|
743
740
|
"""Training contains information about how the model was trained."""
|
|
744
741
|
|
|
745
|
-
DESCRIPTOR:
|
|
746
|
-
|
|
747
|
-
TRAINING_DATA_SIZE_FIELD_NUMBER:
|
|
748
|
-
TRAINING_DATA_SOURCES_FIELD_NUMBER:
|
|
749
|
-
DATA_MIXTURE_FIELD_NUMBER:
|
|
750
|
-
TRAINING_DURATION_FIELD_NUMBER:
|
|
751
|
-
TRAINING_HARDWARE_FIELD_NUMBER:
|
|
752
|
-
TRAINING_COST_FIELD_NUMBER:
|
|
753
|
-
TRAINING_TECHNIQUE_FIELD_NUMBER:
|
|
754
|
-
BATCH_SIZE_FIELD_NUMBER:
|
|
755
|
-
LEARNING_RATE_FIELD_NUMBER:
|
|
756
|
-
TRAINING_STEPS_FIELD_NUMBER:
|
|
757
|
-
WARMUP_STEPS_FIELD_NUMBER:
|
|
758
|
-
FINE_TUNING_AVAILABLE_FIELD_NUMBER:
|
|
759
|
-
MIN_FINE_TUNE_EXAMPLES_FIELD_NUMBER:
|
|
760
|
-
MAX_FINE_TUNE_EXAMPLES_FIELD_NUMBER:
|
|
761
|
-
FINE_TUNE_FORMATS_FIELD_NUMBER:
|
|
762
|
-
training_data_size:
|
|
742
|
+
DESCRIPTOR: _descriptor.Descriptor
|
|
743
|
+
|
|
744
|
+
TRAINING_DATA_SIZE_FIELD_NUMBER: _builtins.int
|
|
745
|
+
TRAINING_DATA_SOURCES_FIELD_NUMBER: _builtins.int
|
|
746
|
+
DATA_MIXTURE_FIELD_NUMBER: _builtins.int
|
|
747
|
+
TRAINING_DURATION_FIELD_NUMBER: _builtins.int
|
|
748
|
+
TRAINING_HARDWARE_FIELD_NUMBER: _builtins.int
|
|
749
|
+
TRAINING_COST_FIELD_NUMBER: _builtins.int
|
|
750
|
+
TRAINING_TECHNIQUE_FIELD_NUMBER: _builtins.int
|
|
751
|
+
BATCH_SIZE_FIELD_NUMBER: _builtins.int
|
|
752
|
+
LEARNING_RATE_FIELD_NUMBER: _builtins.int
|
|
753
|
+
TRAINING_STEPS_FIELD_NUMBER: _builtins.int
|
|
754
|
+
WARMUP_STEPS_FIELD_NUMBER: _builtins.int
|
|
755
|
+
FINE_TUNING_AVAILABLE_FIELD_NUMBER: _builtins.int
|
|
756
|
+
MIN_FINE_TUNE_EXAMPLES_FIELD_NUMBER: _builtins.int
|
|
757
|
+
MAX_FINE_TUNE_EXAMPLES_FIELD_NUMBER: _builtins.int
|
|
758
|
+
FINE_TUNE_FORMATS_FIELD_NUMBER: _builtins.int
|
|
759
|
+
training_data_size: _builtins.str
|
|
763
760
|
"""Size of training dataset.
|
|
764
761
|
Examples: "1T tokens", "45TB text", "100B tokens"
|
|
765
762
|
"""
|
|
766
|
-
data_mixture:
|
|
763
|
+
data_mixture: _builtins.str
|
|
767
764
|
"""Description of data mixture/proportions.
|
|
768
765
|
Example: "60% web, 20% books, 10% code, 10% reference"
|
|
769
766
|
"""
|
|
770
|
-
training_duration:
|
|
767
|
+
training_duration: _builtins.str
|
|
771
768
|
"""Total training time.
|
|
772
769
|
Examples: "3 months", "6 weeks", "90 days"
|
|
773
770
|
"""
|
|
774
|
-
training_hardware:
|
|
771
|
+
training_hardware: _builtins.str
|
|
775
772
|
"""Hardware used for training.
|
|
776
773
|
Examples: "10000 H100 GPUs", "512 A100 80GB", "TPU v4 pods"
|
|
777
774
|
"""
|
|
778
|
-
training_cost:
|
|
775
|
+
training_cost: _builtins.str
|
|
779
776
|
"""Estimated training cost.
|
|
780
777
|
Examples: "$100M", "$4.6M", "Not disclosed"
|
|
781
778
|
"""
|
|
782
|
-
training_technique:
|
|
779
|
+
training_technique: Global___TrainingTechnique.ValueType
|
|
783
780
|
"""Primary training technique used.
|
|
784
781
|
Example: TRAINING_TECHNIQUE_REINFORCEMENT_LEARNING_FROM_HUMAN_FEEDBACK
|
|
785
782
|
"""
|
|
786
|
-
batch_size:
|
|
783
|
+
batch_size: _builtins.int
|
|
787
784
|
"""Training batch size per step.
|
|
788
785
|
Example: 2048, 4096
|
|
789
786
|
"""
|
|
790
|
-
learning_rate:
|
|
787
|
+
learning_rate: _builtins.float
|
|
791
788
|
"""Peak learning rate used.
|
|
792
789
|
Example: 0.0001, 3e-4
|
|
793
790
|
"""
|
|
794
|
-
training_steps:
|
|
791
|
+
training_steps: _builtins.int
|
|
795
792
|
"""Total number of training steps/iterations.
|
|
796
793
|
Example: 1000000
|
|
797
794
|
"""
|
|
798
|
-
warmup_steps:
|
|
795
|
+
warmup_steps: _builtins.int
|
|
799
796
|
"""Number of warmup steps for learning rate schedule.
|
|
800
797
|
Example: 2000
|
|
801
798
|
"""
|
|
802
|
-
fine_tuning_available:
|
|
799
|
+
fine_tuning_available: _builtins.bool
|
|
803
800
|
"""Whether model supports fine-tuning via API.
|
|
804
801
|
Example: true for GPT-3.5, false for GPT-4
|
|
805
802
|
"""
|
|
806
|
-
min_fine_tune_examples:
|
|
803
|
+
min_fine_tune_examples: _builtins.int
|
|
807
804
|
"""Minimum training examples required for fine-tuning.
|
|
808
805
|
Example: 10 for OpenAI models
|
|
809
806
|
"""
|
|
810
|
-
max_fine_tune_examples:
|
|
807
|
+
max_fine_tune_examples: _builtins.int
|
|
811
808
|
"""Maximum training examples allowed for fine-tuning.
|
|
812
809
|
Example: 100000 for GPT-3.5
|
|
813
810
|
"""
|
|
814
|
-
@property
|
|
811
|
+
@_builtins.property
|
|
815
812
|
def training_data_sources(
|
|
816
813
|
self,
|
|
817
|
-
) ->
|
|
814
|
+
) -> _containers.RepeatedScalarFieldContainer[_builtins.str]:
|
|
818
815
|
"""List of data sources used for training.
|
|
819
816
|
Examples: ["Common Crawl", "Wikipedia", "Books", "GitHub", "ArXiv"]
|
|
820
817
|
"""
|
|
821
818
|
|
|
822
|
-
@property
|
|
819
|
+
@_builtins.property
|
|
823
820
|
def fine_tune_formats(
|
|
824
821
|
self,
|
|
825
|
-
) ->
|
|
826
|
-
|
|
822
|
+
) -> _containers.RepeatedScalarFieldContainer[
|
|
823
|
+
_capabilities_pb2.DataFormat.ValueType
|
|
827
824
|
]:
|
|
828
825
|
"""Supported data formats for fine-tuning.
|
|
829
826
|
Example: [DATA_FORMAT_JSONL, DATA_FORMAT_CSV]
|
|
@@ -832,187 +829,212 @@ class Training(google.protobuf.message.Message):
|
|
|
832
829
|
def __init__(
|
|
833
830
|
self,
|
|
834
831
|
*,
|
|
835
|
-
training_data_size:
|
|
836
|
-
training_data_sources:
|
|
837
|
-
data_mixture:
|
|
838
|
-
training_duration:
|
|
839
|
-
training_hardware:
|
|
840
|
-
training_cost:
|
|
841
|
-
training_technique:
|
|
842
|
-
batch_size:
|
|
843
|
-
learning_rate:
|
|
844
|
-
training_steps:
|
|
845
|
-
warmup_steps:
|
|
846
|
-
fine_tuning_available:
|
|
847
|
-
min_fine_tune_examples:
|
|
848
|
-
max_fine_tune_examples:
|
|
849
|
-
fine_tune_formats:
|
|
850
|
-
weaveapi.llmx.v1.capabilities_pb2.DataFormat.ValueType
|
|
851
|
-
]
|
|
832
|
+
training_data_size: _builtins.str | None = ...,
|
|
833
|
+
training_data_sources: _abc.Iterable[_builtins.str] | None = ...,
|
|
834
|
+
data_mixture: _builtins.str | None = ...,
|
|
835
|
+
training_duration: _builtins.str | None = ...,
|
|
836
|
+
training_hardware: _builtins.str | None = ...,
|
|
837
|
+
training_cost: _builtins.str | None = ...,
|
|
838
|
+
training_technique: Global___TrainingTechnique.ValueType | None = ...,
|
|
839
|
+
batch_size: _builtins.int | None = ...,
|
|
840
|
+
learning_rate: _builtins.float | None = ...,
|
|
841
|
+
training_steps: _builtins.int | None = ...,
|
|
842
|
+
warmup_steps: _builtins.int | None = ...,
|
|
843
|
+
fine_tuning_available: _builtins.bool | None = ...,
|
|
844
|
+
min_fine_tune_examples: _builtins.int | None = ...,
|
|
845
|
+
max_fine_tune_examples: _builtins.int | None = ...,
|
|
846
|
+
fine_tune_formats: _abc.Iterable[_capabilities_pb2.DataFormat.ValueType]
|
|
852
847
|
| None = ...,
|
|
853
848
|
) -> None: ...
|
|
854
|
-
|
|
855
|
-
|
|
856
|
-
|
|
857
|
-
|
|
858
|
-
|
|
859
|
-
|
|
860
|
-
|
|
861
|
-
|
|
862
|
-
|
|
863
|
-
|
|
864
|
-
|
|
865
|
-
|
|
866
|
-
|
|
867
|
-
|
|
868
|
-
|
|
869
|
-
|
|
870
|
-
|
|
871
|
-
|
|
872
|
-
|
|
873
|
-
|
|
874
|
-
|
|
875
|
-
|
|
876
|
-
|
|
877
|
-
|
|
878
|
-
|
|
879
|
-
|
|
880
|
-
|
|
881
|
-
|
|
882
|
-
|
|
883
|
-
|
|
884
|
-
|
|
885
|
-
|
|
886
|
-
|
|
887
|
-
|
|
888
|
-
|
|
889
|
-
|
|
890
|
-
|
|
891
|
-
|
|
892
|
-
|
|
893
|
-
|
|
849
|
+
_HasFieldArgType: _TypeAlias = _typing.Literal[
|
|
850
|
+
"batch_size",
|
|
851
|
+
b"batch_size",
|
|
852
|
+
"data_mixture",
|
|
853
|
+
b"data_mixture",
|
|
854
|
+
"fine_tune_formats",
|
|
855
|
+
b"fine_tune_formats",
|
|
856
|
+
"fine_tuning_available",
|
|
857
|
+
b"fine_tuning_available",
|
|
858
|
+
"learning_rate",
|
|
859
|
+
b"learning_rate",
|
|
860
|
+
"max_fine_tune_examples",
|
|
861
|
+
b"max_fine_tune_examples",
|
|
862
|
+
"min_fine_tune_examples",
|
|
863
|
+
b"min_fine_tune_examples",
|
|
864
|
+
"training_cost",
|
|
865
|
+
b"training_cost",
|
|
866
|
+
"training_data_size",
|
|
867
|
+
b"training_data_size",
|
|
868
|
+
"training_data_sources",
|
|
869
|
+
b"training_data_sources",
|
|
870
|
+
"training_duration",
|
|
871
|
+
b"training_duration",
|
|
872
|
+
"training_hardware",
|
|
873
|
+
b"training_hardware",
|
|
874
|
+
"training_steps",
|
|
875
|
+
b"training_steps",
|
|
876
|
+
"training_technique",
|
|
877
|
+
b"training_technique",
|
|
878
|
+
"warmup_steps",
|
|
879
|
+
b"warmup_steps",
|
|
880
|
+
] # noqa: Y015
|
|
881
|
+
def HasField(self, field_name: _HasFieldArgType) -> _builtins.bool: ...
|
|
882
|
+
_ClearFieldArgType: _TypeAlias = _typing.Literal[
|
|
883
|
+
"batch_size",
|
|
884
|
+
b"batch_size",
|
|
885
|
+
"data_mixture",
|
|
886
|
+
b"data_mixture",
|
|
887
|
+
"fine_tune_formats",
|
|
888
|
+
b"fine_tune_formats",
|
|
889
|
+
"fine_tuning_available",
|
|
890
|
+
b"fine_tuning_available",
|
|
891
|
+
"learning_rate",
|
|
892
|
+
b"learning_rate",
|
|
893
|
+
"max_fine_tune_examples",
|
|
894
|
+
b"max_fine_tune_examples",
|
|
895
|
+
"min_fine_tune_examples",
|
|
896
|
+
b"min_fine_tune_examples",
|
|
897
|
+
"training_cost",
|
|
898
|
+
b"training_cost",
|
|
899
|
+
"training_data_size",
|
|
900
|
+
b"training_data_size",
|
|
901
|
+
"training_data_sources",
|
|
902
|
+
b"training_data_sources",
|
|
903
|
+
"training_duration",
|
|
904
|
+
b"training_duration",
|
|
905
|
+
"training_hardware",
|
|
906
|
+
b"training_hardware",
|
|
907
|
+
"training_steps",
|
|
908
|
+
b"training_steps",
|
|
909
|
+
"training_technique",
|
|
910
|
+
b"training_technique",
|
|
911
|
+
"warmup_steps",
|
|
912
|
+
b"warmup_steps",
|
|
913
|
+
] # noqa: Y015
|
|
914
|
+
def ClearField(self, field_name: _ClearFieldArgType) -> None: ...
|
|
915
|
+
|
|
916
|
+
Global___Training: _TypeAlias = Training # noqa: Y015
|
|
917
|
+
|
|
918
|
+
@_typing.final
|
|
919
|
+
class TechnicalSpecs(_message.Message):
|
|
894
920
|
"""TechnicalSpecs contains hardware and software requirements for running the model."""
|
|
895
921
|
|
|
896
|
-
DESCRIPTOR:
|
|
897
|
-
|
|
898
|
-
MIN_MEMORY_GB_FIELD_NUMBER:
|
|
899
|
-
RECOMMENDED_MEMORY_GB_FIELD_NUMBER:
|
|
900
|
-
MIN_GPU_MEMORY_GB_FIELD_NUMBER:
|
|
901
|
-
STORAGE_GB_FIELD_NUMBER:
|
|
902
|
-
QUANTIZATION_FIELD_NUMBER:
|
|
903
|
-
PRECISION_FIELD_NUMBER:
|
|
904
|
-
OPTIMIZATION_LEVEL_FIELD_NUMBER:
|
|
905
|
-
SUPPORTED_GPUS_FIELD_NUMBER:
|
|
906
|
-
REQUIRES_CUDA_FIELD_NUMBER:
|
|
907
|
-
CUDA_VERSION_FIELD_NUMBER:
|
|
908
|
-
INFERENCE_FRAMEWORK_FIELD_NUMBER:
|
|
909
|
-
MODEL_FORMAT_FIELD_NUMBER:
|
|
910
|
-
MODEL_SIZE_GB_FIELD_NUMBER:
|
|
911
|
-
CHECKPOINT_FORMAT_FIELD_NUMBER:
|
|
912
|
-
NUMBER_OF_FILES_FIELD_NUMBER:
|
|
913
|
-
SUPPORTED_CPUS_FIELD_NUMBER:
|
|
914
|
-
SERVING_FRAMEWORK_FIELD_NUMBER:
|
|
915
|
-
CONTAINER_IMAGE_FIELD_NUMBER:
|
|
916
|
-
MINIMUM_GPU_FIELD_NUMBER:
|
|
917
|
-
MINIMUM_GPU_MEMORY_GB_FIELD_NUMBER:
|
|
918
|
-
CPU_COMPATIBLE_FIELD_NUMBER:
|
|
919
|
-
RECOMMENDED_GPU_MEMORY_GB_FIELD_NUMBER:
|
|
920
|
-
min_memory_gb:
|
|
922
|
+
DESCRIPTOR: _descriptor.Descriptor
|
|
923
|
+
|
|
924
|
+
MIN_MEMORY_GB_FIELD_NUMBER: _builtins.int
|
|
925
|
+
RECOMMENDED_MEMORY_GB_FIELD_NUMBER: _builtins.int
|
|
926
|
+
MIN_GPU_MEMORY_GB_FIELD_NUMBER: _builtins.int
|
|
927
|
+
STORAGE_GB_FIELD_NUMBER: _builtins.int
|
|
928
|
+
QUANTIZATION_FIELD_NUMBER: _builtins.int
|
|
929
|
+
PRECISION_FIELD_NUMBER: _builtins.int
|
|
930
|
+
OPTIMIZATION_LEVEL_FIELD_NUMBER: _builtins.int
|
|
931
|
+
SUPPORTED_GPUS_FIELD_NUMBER: _builtins.int
|
|
932
|
+
REQUIRES_CUDA_FIELD_NUMBER: _builtins.int
|
|
933
|
+
CUDA_VERSION_FIELD_NUMBER: _builtins.int
|
|
934
|
+
INFERENCE_FRAMEWORK_FIELD_NUMBER: _builtins.int
|
|
935
|
+
MODEL_FORMAT_FIELD_NUMBER: _builtins.int
|
|
936
|
+
MODEL_SIZE_GB_FIELD_NUMBER: _builtins.int
|
|
937
|
+
CHECKPOINT_FORMAT_FIELD_NUMBER: _builtins.int
|
|
938
|
+
NUMBER_OF_FILES_FIELD_NUMBER: _builtins.int
|
|
939
|
+
SUPPORTED_CPUS_FIELD_NUMBER: _builtins.int
|
|
940
|
+
SERVING_FRAMEWORK_FIELD_NUMBER: _builtins.int
|
|
941
|
+
CONTAINER_IMAGE_FIELD_NUMBER: _builtins.int
|
|
942
|
+
MINIMUM_GPU_FIELD_NUMBER: _builtins.int
|
|
943
|
+
MINIMUM_GPU_MEMORY_GB_FIELD_NUMBER: _builtins.int
|
|
944
|
+
CPU_COMPATIBLE_FIELD_NUMBER: _builtins.int
|
|
945
|
+
RECOMMENDED_GPU_MEMORY_GB_FIELD_NUMBER: _builtins.int
|
|
946
|
+
min_memory_gb: _builtins.int
|
|
921
947
|
"""Minimum system RAM required in GB.
|
|
922
948
|
Example: 32 for 7B models, 64 for 13B models
|
|
923
949
|
"""
|
|
924
|
-
recommended_memory_gb:
|
|
950
|
+
recommended_memory_gb: _builtins.int
|
|
925
951
|
"""Recommended system RAM for optimal performance in GB.
|
|
926
952
|
Example: 64 for 7B models, 128 for 13B models
|
|
927
953
|
"""
|
|
928
|
-
min_gpu_memory_gb:
|
|
954
|
+
min_gpu_memory_gb: _builtins.int
|
|
929
955
|
"""Minimum GPU VRAM required in GB.
|
|
930
956
|
Example: 24 for 7B fp16, 48 for 13B fp16
|
|
931
957
|
"""
|
|
932
|
-
storage_gb:
|
|
958
|
+
storage_gb: _builtins.int
|
|
933
959
|
"""Disk storage required for model files in GB.
|
|
934
960
|
Example: 15 for 7B models, 30 for 13B models
|
|
935
961
|
"""
|
|
936
|
-
quantization:
|
|
962
|
+
quantization: Global___Quantization.ValueType
|
|
937
963
|
"""Quantization method if applicable.
|
|
938
964
|
Example: QUANTIZATION_INT8 for 8-bit quantized models
|
|
939
965
|
"""
|
|
940
|
-
precision:
|
|
966
|
+
precision: Global___Precision.ValueType
|
|
941
967
|
"""Numerical precision used.
|
|
942
968
|
Example: PRECISION_FP16 for half-precision inference
|
|
943
969
|
"""
|
|
944
|
-
optimization_level:
|
|
970
|
+
optimization_level: _builtins.str
|
|
945
971
|
"""Optimization level/profile.
|
|
946
972
|
Examples: "O3", "fast", "balanced", "memory-optimized"
|
|
947
973
|
"""
|
|
948
|
-
requires_cuda:
|
|
974
|
+
requires_cuda: _builtins.bool
|
|
949
975
|
"""Whether CUDA is required for GPU inference.
|
|
950
976
|
Example: true for NVIDIA GPUs, false for CPU-only
|
|
951
977
|
"""
|
|
952
|
-
cuda_version:
|
|
978
|
+
cuda_version: _builtins.str
|
|
953
979
|
"""Minimum CUDA version required.
|
|
954
980
|
Examples: "11.8", "12.0"
|
|
955
981
|
"""
|
|
956
|
-
inference_framework:
|
|
982
|
+
inference_framework: Global___InferenceFramework.ValueType
|
|
957
983
|
"""Recommended inference framework.
|
|
958
984
|
Example: INFERENCE_FRAMEWORK_VLLM for high-throughput serving
|
|
959
985
|
"""
|
|
960
|
-
model_format:
|
|
986
|
+
model_format: Global___ModelFormat.ValueType
|
|
961
987
|
"""Format of distributed model files.
|
|
962
988
|
Example: MODEL_FORMAT_SAFETENSORS for HuggingFace models
|
|
963
989
|
"""
|
|
964
|
-
model_size_gb:
|
|
990
|
+
model_size_gb: _builtins.float
|
|
965
991
|
"""Total size of model files in GB.
|
|
966
992
|
Example: 13.5 for 7B model in fp16
|
|
967
993
|
"""
|
|
968
|
-
checkpoint_format:
|
|
994
|
+
checkpoint_format: Global___CheckpointFormat.ValueType
|
|
969
995
|
"""Format of model checkpoint files.
|
|
970
996
|
Example: CHECKPOINT_FORMAT_PYTORCH for .pt files
|
|
971
997
|
"""
|
|
972
|
-
number_of_files:
|
|
998
|
+
number_of_files: _builtins.int
|
|
973
999
|
"""Number of model shard files.
|
|
974
1000
|
Example: 2 for models split across multiple files
|
|
975
1001
|
"""
|
|
976
|
-
serving_framework:
|
|
1002
|
+
serving_framework: _builtins.str
|
|
977
1003
|
"""Serving framework/stack.
|
|
978
1004
|
Examples: "TGI", "vLLM", "llama.cpp"
|
|
979
1005
|
"""
|
|
980
|
-
container_image:
|
|
1006
|
+
container_image: _builtins.str
|
|
981
1007
|
"""Pre-built container image if available.
|
|
982
1008
|
Example: "nvcr.io/nvidia/pytorch:23.10-py3"
|
|
983
1009
|
"""
|
|
984
|
-
minimum_gpu:
|
|
1010
|
+
minimum_gpu: Global___GPUType.ValueType
|
|
985
1011
|
"""Minimum GPU for reasonable performance.
|
|
986
1012
|
Example: GPU_TYPE_RTX_3090 for 7B models
|
|
987
1013
|
"""
|
|
988
|
-
minimum_gpu_memory_gb:
|
|
1014
|
+
minimum_gpu_memory_gb: _builtins.int
|
|
989
1015
|
"""Minimum GPU memory for basic inference in GB.
|
|
990
1016
|
Example: 16 for 7B int8 models
|
|
991
1017
|
"""
|
|
992
|
-
cpu_compatible:
|
|
1018
|
+
cpu_compatible: _builtins.bool
|
|
993
1019
|
"""Whether model can run on CPU (even if slowly).
|
|
994
1020
|
Example: true for smaller quantized models
|
|
995
1021
|
"""
|
|
996
|
-
recommended_gpu_memory_gb:
|
|
1022
|
+
recommended_gpu_memory_gb: _builtins.int
|
|
997
1023
|
"""Recommended GPU memory for good performance in GB.
|
|
998
1024
|
Example: 24 for 7B fp16 with reasonable batch size
|
|
999
1025
|
"""
|
|
1000
|
-
@property
|
|
1026
|
+
@_builtins.property
|
|
1001
1027
|
def supported_gpus(
|
|
1002
1028
|
self,
|
|
1003
|
-
) ->
|
|
1004
|
-
global___GPUType.ValueType
|
|
1005
|
-
]:
|
|
1029
|
+
) -> _containers.RepeatedScalarFieldContainer[Global___GPUType.ValueType]:
|
|
1006
1030
|
"""List of compatible GPU types.
|
|
1007
1031
|
Example: [GPU_TYPE_A100, GPU_TYPE_H100, GPU_TYPE_RTX_4090]
|
|
1008
1032
|
"""
|
|
1009
1033
|
|
|
1010
|
-
@property
|
|
1034
|
+
@_builtins.property
|
|
1011
1035
|
def supported_cpus(
|
|
1012
1036
|
self,
|
|
1013
|
-
) ->
|
|
1014
|
-
global___CPUType.ValueType
|
|
1015
|
-
]:
|
|
1037
|
+
) -> _containers.RepeatedScalarFieldContainer[Global___CPUType.ValueType]:
|
|
1016
1038
|
"""List of compatible CPU architectures.
|
|
1017
1039
|
Example: [CPU_TYPE_X86_64, CPU_TYPE_ARM64]
|
|
1018
1040
|
"""
|
|
@@ -1020,158 +1042,199 @@ class TechnicalSpecs(google.protobuf.message.Message):
|
|
|
1020
1042
|
def __init__(
|
|
1021
1043
|
self,
|
|
1022
1044
|
*,
|
|
1023
|
-
min_memory_gb:
|
|
1024
|
-
recommended_memory_gb:
|
|
1025
|
-
min_gpu_memory_gb:
|
|
1026
|
-
storage_gb:
|
|
1027
|
-
quantization:
|
|
1028
|
-
precision:
|
|
1029
|
-
optimization_level:
|
|
1030
|
-
supported_gpus:
|
|
1031
|
-
| None = ...,
|
|
1032
|
-
|
|
1033
|
-
|
|
1034
|
-
|
|
1035
|
-
|
|
1036
|
-
|
|
1037
|
-
|
|
1038
|
-
|
|
1039
|
-
|
|
1040
|
-
| None = ...,
|
|
1041
|
-
|
|
1042
|
-
|
|
1043
|
-
|
|
1044
|
-
|
|
1045
|
-
cpu_compatible: builtins.bool = ...,
|
|
1046
|
-
recommended_gpu_memory_gb: builtins.int = ...,
|
|
1045
|
+
min_memory_gb: _builtins.int | None = ...,
|
|
1046
|
+
recommended_memory_gb: _builtins.int | None = ...,
|
|
1047
|
+
min_gpu_memory_gb: _builtins.int | None = ...,
|
|
1048
|
+
storage_gb: _builtins.int | None = ...,
|
|
1049
|
+
quantization: Global___Quantization.ValueType | None = ...,
|
|
1050
|
+
precision: Global___Precision.ValueType | None = ...,
|
|
1051
|
+
optimization_level: _builtins.str | None = ...,
|
|
1052
|
+
supported_gpus: _abc.Iterable[Global___GPUType.ValueType] | None = ...,
|
|
1053
|
+
requires_cuda: _builtins.bool | None = ...,
|
|
1054
|
+
cuda_version: _builtins.str | None = ...,
|
|
1055
|
+
inference_framework: Global___InferenceFramework.ValueType | None = ...,
|
|
1056
|
+
model_format: Global___ModelFormat.ValueType | None = ...,
|
|
1057
|
+
model_size_gb: _builtins.float | None = ...,
|
|
1058
|
+
checkpoint_format: Global___CheckpointFormat.ValueType | None = ...,
|
|
1059
|
+
number_of_files: _builtins.int | None = ...,
|
|
1060
|
+
supported_cpus: _abc.Iterable[Global___CPUType.ValueType] | None = ...,
|
|
1061
|
+
serving_framework: _builtins.str | None = ...,
|
|
1062
|
+
container_image: _builtins.str | None = ...,
|
|
1063
|
+
minimum_gpu: Global___GPUType.ValueType | None = ...,
|
|
1064
|
+
minimum_gpu_memory_gb: _builtins.int | None = ...,
|
|
1065
|
+
cpu_compatible: _builtins.bool | None = ...,
|
|
1066
|
+
recommended_gpu_memory_gb: _builtins.int | None = ...,
|
|
1047
1067
|
) -> None: ...
|
|
1048
|
-
|
|
1049
|
-
|
|
1050
|
-
|
|
1051
|
-
|
|
1052
|
-
|
|
1053
|
-
|
|
1054
|
-
|
|
1055
|
-
|
|
1056
|
-
|
|
1057
|
-
|
|
1058
|
-
|
|
1059
|
-
|
|
1060
|
-
|
|
1061
|
-
|
|
1062
|
-
|
|
1063
|
-
|
|
1064
|
-
|
|
1065
|
-
|
|
1066
|
-
|
|
1067
|
-
|
|
1068
|
-
|
|
1069
|
-
|
|
1070
|
-
|
|
1071
|
-
|
|
1072
|
-
|
|
1073
|
-
|
|
1074
|
-
|
|
1075
|
-
|
|
1076
|
-
|
|
1077
|
-
|
|
1078
|
-
|
|
1079
|
-
|
|
1080
|
-
|
|
1081
|
-
|
|
1082
|
-
|
|
1083
|
-
|
|
1084
|
-
|
|
1085
|
-
|
|
1086
|
-
|
|
1087
|
-
|
|
1088
|
-
|
|
1089
|
-
|
|
1090
|
-
|
|
1091
|
-
|
|
1092
|
-
|
|
1093
|
-
|
|
1094
|
-
|
|
1095
|
-
|
|
1096
|
-
|
|
1097
|
-
|
|
1098
|
-
|
|
1099
|
-
|
|
1100
|
-
|
|
1101
|
-
|
|
1068
|
+
_HasFieldArgType: _TypeAlias = _typing.Literal[
|
|
1069
|
+
"checkpoint_format",
|
|
1070
|
+
b"checkpoint_format",
|
|
1071
|
+
"container_image",
|
|
1072
|
+
b"container_image",
|
|
1073
|
+
"cpu_compatible",
|
|
1074
|
+
b"cpu_compatible",
|
|
1075
|
+
"cuda_version",
|
|
1076
|
+
b"cuda_version",
|
|
1077
|
+
"inference_framework",
|
|
1078
|
+
b"inference_framework",
|
|
1079
|
+
"min_gpu_memory_gb",
|
|
1080
|
+
b"min_gpu_memory_gb",
|
|
1081
|
+
"min_memory_gb",
|
|
1082
|
+
b"min_memory_gb",
|
|
1083
|
+
"minimum_gpu",
|
|
1084
|
+
b"minimum_gpu",
|
|
1085
|
+
"minimum_gpu_memory_gb",
|
|
1086
|
+
b"minimum_gpu_memory_gb",
|
|
1087
|
+
"model_format",
|
|
1088
|
+
b"model_format",
|
|
1089
|
+
"model_size_gb",
|
|
1090
|
+
b"model_size_gb",
|
|
1091
|
+
"number_of_files",
|
|
1092
|
+
b"number_of_files",
|
|
1093
|
+
"optimization_level",
|
|
1094
|
+
b"optimization_level",
|
|
1095
|
+
"precision",
|
|
1096
|
+
b"precision",
|
|
1097
|
+
"quantization",
|
|
1098
|
+
b"quantization",
|
|
1099
|
+
"recommended_gpu_memory_gb",
|
|
1100
|
+
b"recommended_gpu_memory_gb",
|
|
1101
|
+
"recommended_memory_gb",
|
|
1102
|
+
b"recommended_memory_gb",
|
|
1103
|
+
"requires_cuda",
|
|
1104
|
+
b"requires_cuda",
|
|
1105
|
+
"serving_framework",
|
|
1106
|
+
b"serving_framework",
|
|
1107
|
+
"storage_gb",
|
|
1108
|
+
b"storage_gb",
|
|
1109
|
+
"supported_cpus",
|
|
1110
|
+
b"supported_cpus",
|
|
1111
|
+
"supported_gpus",
|
|
1112
|
+
b"supported_gpus",
|
|
1113
|
+
] # noqa: Y015
|
|
1114
|
+
def HasField(self, field_name: _HasFieldArgType) -> _builtins.bool: ...
|
|
1115
|
+
_ClearFieldArgType: _TypeAlias = _typing.Literal[
|
|
1116
|
+
"checkpoint_format",
|
|
1117
|
+
b"checkpoint_format",
|
|
1118
|
+
"container_image",
|
|
1119
|
+
b"container_image",
|
|
1120
|
+
"cpu_compatible",
|
|
1121
|
+
b"cpu_compatible",
|
|
1122
|
+
"cuda_version",
|
|
1123
|
+
b"cuda_version",
|
|
1124
|
+
"inference_framework",
|
|
1125
|
+
b"inference_framework",
|
|
1126
|
+
"min_gpu_memory_gb",
|
|
1127
|
+
b"min_gpu_memory_gb",
|
|
1128
|
+
"min_memory_gb",
|
|
1129
|
+
b"min_memory_gb",
|
|
1130
|
+
"minimum_gpu",
|
|
1131
|
+
b"minimum_gpu",
|
|
1132
|
+
"minimum_gpu_memory_gb",
|
|
1133
|
+
b"minimum_gpu_memory_gb",
|
|
1134
|
+
"model_format",
|
|
1135
|
+
b"model_format",
|
|
1136
|
+
"model_size_gb",
|
|
1137
|
+
b"model_size_gb",
|
|
1138
|
+
"number_of_files",
|
|
1139
|
+
b"number_of_files",
|
|
1140
|
+
"optimization_level",
|
|
1141
|
+
b"optimization_level",
|
|
1142
|
+
"precision",
|
|
1143
|
+
b"precision",
|
|
1144
|
+
"quantization",
|
|
1145
|
+
b"quantization",
|
|
1146
|
+
"recommended_gpu_memory_gb",
|
|
1147
|
+
b"recommended_gpu_memory_gb",
|
|
1148
|
+
"recommended_memory_gb",
|
|
1149
|
+
b"recommended_memory_gb",
|
|
1150
|
+
"requires_cuda",
|
|
1151
|
+
b"requires_cuda",
|
|
1152
|
+
"serving_framework",
|
|
1153
|
+
b"serving_framework",
|
|
1154
|
+
"storage_gb",
|
|
1155
|
+
b"storage_gb",
|
|
1156
|
+
"supported_cpus",
|
|
1157
|
+
b"supported_cpus",
|
|
1158
|
+
"supported_gpus",
|
|
1159
|
+
b"supported_gpus",
|
|
1160
|
+
] # noqa: Y015
|
|
1161
|
+
def ClearField(self, field_name: _ClearFieldArgType) -> None: ...
|
|
1162
|
+
|
|
1163
|
+
Global___TechnicalSpecs: _TypeAlias = TechnicalSpecs # noqa: Y015
|
|
1164
|
+
|
|
1165
|
+
@_typing.final
|
|
1166
|
+
class Safety(_message.Message):
|
|
1102
1167
|
"""Safety contains safety, moderation, and compliance features."""
|
|
1103
1168
|
|
|
1104
|
-
DESCRIPTOR:
|
|
1105
|
-
|
|
1106
|
-
MODERATION_LEVEL_FIELD_NUMBER:
|
|
1107
|
-
CONTENT_FILTERING_FIELD_NUMBER:
|
|
1108
|
-
SAFETY_FILTERS_FIELD_NUMBER:
|
|
1109
|
-
BIAS_RATING_FIELD_NUMBER:
|
|
1110
|
-
TOXICITY_SCORE_FIELD_NUMBER:
|
|
1111
|
-
GDPR_COMPLIANT_FIELD_NUMBER:
|
|
1112
|
-
HIPAA_COMPLIANT_FIELD_NUMBER:
|
|
1113
|
-
SOC2_COMPLIANT_FIELD_NUMBER:
|
|
1114
|
-
ISO_CERTIFIED_FIELD_NUMBER:
|
|
1115
|
-
REFUSAL_CAPABILITY_FIELD_NUMBER:
|
|
1116
|
-
WATERMARK_OUTPUT_FIELD_NUMBER:
|
|
1117
|
-
BUILT_IN_GUARDRAILS_FIELD_NUMBER:
|
|
1118
|
-
CUSTOM_GUARDRAILS_FIELD_NUMBER:
|
|
1119
|
-
moderation_level:
|
|
1169
|
+
DESCRIPTOR: _descriptor.Descriptor
|
|
1170
|
+
|
|
1171
|
+
MODERATION_LEVEL_FIELD_NUMBER: _builtins.int
|
|
1172
|
+
CONTENT_FILTERING_FIELD_NUMBER: _builtins.int
|
|
1173
|
+
SAFETY_FILTERS_FIELD_NUMBER: _builtins.int
|
|
1174
|
+
BIAS_RATING_FIELD_NUMBER: _builtins.int
|
|
1175
|
+
TOXICITY_SCORE_FIELD_NUMBER: _builtins.int
|
|
1176
|
+
GDPR_COMPLIANT_FIELD_NUMBER: _builtins.int
|
|
1177
|
+
HIPAA_COMPLIANT_FIELD_NUMBER: _builtins.int
|
|
1178
|
+
SOC2_COMPLIANT_FIELD_NUMBER: _builtins.int
|
|
1179
|
+
ISO_CERTIFIED_FIELD_NUMBER: _builtins.int
|
|
1180
|
+
REFUSAL_CAPABILITY_FIELD_NUMBER: _builtins.int
|
|
1181
|
+
WATERMARK_OUTPUT_FIELD_NUMBER: _builtins.int
|
|
1182
|
+
BUILT_IN_GUARDRAILS_FIELD_NUMBER: _builtins.int
|
|
1183
|
+
CUSTOM_GUARDRAILS_FIELD_NUMBER: _builtins.int
|
|
1184
|
+
moderation_level: Global___ModerationLevel.ValueType
|
|
1120
1185
|
"""Built-in content moderation strictness.
|
|
1121
1186
|
Example: MODERATION_LEVEL_HIGH for family-friendly models
|
|
1122
1187
|
"""
|
|
1123
|
-
content_filtering:
|
|
1188
|
+
content_filtering: _builtins.bool
|
|
1124
1189
|
"""Whether automatic content filtering is enabled.
|
|
1125
1190
|
Example: true for models that block harmful content
|
|
1126
1191
|
"""
|
|
1127
|
-
bias_rating:
|
|
1192
|
+
bias_rating: _builtins.str
|
|
1128
1193
|
"""Bias assessment rating.
|
|
1129
1194
|
Examples: "Low", "Medium", "High", "Evaluated"
|
|
1130
1195
|
"""
|
|
1131
|
-
toxicity_score:
|
|
1196
|
+
toxicity_score: _builtins.float
|
|
1132
1197
|
"""Toxicity score from evaluations (0-1).
|
|
1133
1198
|
Example: 0.02 for well-aligned models (lower is better)
|
|
1134
1199
|
"""
|
|
1135
|
-
gdpr_compliant:
|
|
1200
|
+
gdpr_compliant: _builtins.bool
|
|
1136
1201
|
"""GDPR (General Data Protection Regulation) compliance.
|
|
1137
1202
|
Example: true for models that don't retain user data
|
|
1138
1203
|
"""
|
|
1139
|
-
hipaa_compliant:
|
|
1204
|
+
hipaa_compliant: _builtins.bool
|
|
1140
1205
|
"""HIPAA (Health Insurance Portability and Accountability Act) compliance.
|
|
1141
1206
|
Example: true for medical-safe models
|
|
1142
1207
|
"""
|
|
1143
|
-
soc2_compliant:
|
|
1208
|
+
soc2_compliant: _builtins.bool
|
|
1144
1209
|
"""SOC 2 (Service Organization Control 2) compliance.
|
|
1145
1210
|
Example: true for enterprise-grade security
|
|
1146
1211
|
"""
|
|
1147
|
-
iso_certified:
|
|
1212
|
+
iso_certified: _builtins.bool
|
|
1148
1213
|
"""ISO certification status.
|
|
1149
1214
|
Example: true for ISO 27001 certified services
|
|
1150
1215
|
"""
|
|
1151
|
-
refusal_capability:
|
|
1216
|
+
refusal_capability: _builtins.bool
|
|
1152
1217
|
"""Can refuse harmful or inappropriate requests.
|
|
1153
1218
|
Example: true for models trained to decline harmful tasks
|
|
1154
1219
|
"""
|
|
1155
|
-
watermark_output:
|
|
1220
|
+
watermark_output: _builtins.bool
|
|
1156
1221
|
"""Whether outputs include watermarking.
|
|
1157
1222
|
Example: true for models with detectible AI signatures
|
|
1158
1223
|
"""
|
|
1159
|
-
custom_guardrails:
|
|
1224
|
+
custom_guardrails: _builtins.bool
|
|
1160
1225
|
"""Supports custom safety guardrails.
|
|
1161
1226
|
Example: true if users can add their own safety rules
|
|
1162
1227
|
"""
|
|
1163
|
-
@property
|
|
1164
|
-
def safety_filters(
|
|
1165
|
-
self,
|
|
1166
|
-
) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[builtins.str]:
|
|
1228
|
+
@_builtins.property
|
|
1229
|
+
def safety_filters(self) -> _containers.RepeatedScalarFieldContainer[_builtins.str]:
|
|
1167
1230
|
"""List of active safety filters.
|
|
1168
1231
|
Examples: ["violence", "sexual", "hate", "self-harm", "illegal"]
|
|
1169
1232
|
"""
|
|
1170
1233
|
|
|
1171
|
-
@property
|
|
1234
|
+
@_builtins.property
|
|
1172
1235
|
def built_in_guardrails(
|
|
1173
1236
|
self,
|
|
1174
|
-
) ->
|
|
1237
|
+
) -> _containers.RepeatedScalarFieldContainer[_builtins.str]:
|
|
1175
1238
|
"""Built-in safety guardrails.
|
|
1176
1239
|
Examples: ["constitutional-ai", "harmlessness", "helpfulness"]
|
|
1177
1240
|
"""
|
|
@@ -1179,105 +1242,132 @@ class Safety(google.protobuf.message.Message):
|
|
|
1179
1242
|
def __init__(
|
|
1180
1243
|
self,
|
|
1181
1244
|
*,
|
|
1182
|
-
moderation_level:
|
|
1183
|
-
content_filtering:
|
|
1184
|
-
safety_filters:
|
|
1185
|
-
bias_rating:
|
|
1186
|
-
toxicity_score:
|
|
1187
|
-
gdpr_compliant:
|
|
1188
|
-
hipaa_compliant:
|
|
1189
|
-
soc2_compliant:
|
|
1190
|
-
iso_certified:
|
|
1191
|
-
refusal_capability:
|
|
1192
|
-
watermark_output:
|
|
1193
|
-
built_in_guardrails:
|
|
1194
|
-
custom_guardrails:
|
|
1195
|
-
) -> None: ...
|
|
1196
|
-
def ClearField(
|
|
1197
|
-
self,
|
|
1198
|
-
field_name: typing.Literal[
|
|
1199
|
-
"bias_rating",
|
|
1200
|
-
b"bias_rating",
|
|
1201
|
-
"built_in_guardrails",
|
|
1202
|
-
b"built_in_guardrails",
|
|
1203
|
-
"content_filtering",
|
|
1204
|
-
b"content_filtering",
|
|
1205
|
-
"custom_guardrails",
|
|
1206
|
-
b"custom_guardrails",
|
|
1207
|
-
"gdpr_compliant",
|
|
1208
|
-
b"gdpr_compliant",
|
|
1209
|
-
"hipaa_compliant",
|
|
1210
|
-
b"hipaa_compliant",
|
|
1211
|
-
"iso_certified",
|
|
1212
|
-
b"iso_certified",
|
|
1213
|
-
"moderation_level",
|
|
1214
|
-
b"moderation_level",
|
|
1215
|
-
"refusal_capability",
|
|
1216
|
-
b"refusal_capability",
|
|
1217
|
-
"safety_filters",
|
|
1218
|
-
b"safety_filters",
|
|
1219
|
-
"soc2_compliant",
|
|
1220
|
-
b"soc2_compliant",
|
|
1221
|
-
"toxicity_score",
|
|
1222
|
-
b"toxicity_score",
|
|
1223
|
-
"watermark_output",
|
|
1224
|
-
b"watermark_output",
|
|
1225
|
-
],
|
|
1245
|
+
moderation_level: Global___ModerationLevel.ValueType | None = ...,
|
|
1246
|
+
content_filtering: _builtins.bool | None = ...,
|
|
1247
|
+
safety_filters: _abc.Iterable[_builtins.str] | None = ...,
|
|
1248
|
+
bias_rating: _builtins.str | None = ...,
|
|
1249
|
+
toxicity_score: _builtins.float | None = ...,
|
|
1250
|
+
gdpr_compliant: _builtins.bool | None = ...,
|
|
1251
|
+
hipaa_compliant: _builtins.bool | None = ...,
|
|
1252
|
+
soc2_compliant: _builtins.bool | None = ...,
|
|
1253
|
+
iso_certified: _builtins.bool | None = ...,
|
|
1254
|
+
refusal_capability: _builtins.bool | None = ...,
|
|
1255
|
+
watermark_output: _builtins.bool | None = ...,
|
|
1256
|
+
built_in_guardrails: _abc.Iterable[_builtins.str] | None = ...,
|
|
1257
|
+
custom_guardrails: _builtins.bool | None = ...,
|
|
1226
1258
|
) -> None: ...
|
|
1227
|
-
|
|
1228
|
-
|
|
1229
|
-
|
|
1230
|
-
|
|
1231
|
-
|
|
1259
|
+
_HasFieldArgType: _TypeAlias = _typing.Literal[
|
|
1260
|
+
"bias_rating",
|
|
1261
|
+
b"bias_rating",
|
|
1262
|
+
"built_in_guardrails",
|
|
1263
|
+
b"built_in_guardrails",
|
|
1264
|
+
"content_filtering",
|
|
1265
|
+
b"content_filtering",
|
|
1266
|
+
"custom_guardrails",
|
|
1267
|
+
b"custom_guardrails",
|
|
1268
|
+
"gdpr_compliant",
|
|
1269
|
+
b"gdpr_compliant",
|
|
1270
|
+
"hipaa_compliant",
|
|
1271
|
+
b"hipaa_compliant",
|
|
1272
|
+
"iso_certified",
|
|
1273
|
+
b"iso_certified",
|
|
1274
|
+
"moderation_level",
|
|
1275
|
+
b"moderation_level",
|
|
1276
|
+
"refusal_capability",
|
|
1277
|
+
b"refusal_capability",
|
|
1278
|
+
"safety_filters",
|
|
1279
|
+
b"safety_filters",
|
|
1280
|
+
"soc2_compliant",
|
|
1281
|
+
b"soc2_compliant",
|
|
1282
|
+
"toxicity_score",
|
|
1283
|
+
b"toxicity_score",
|
|
1284
|
+
"watermark_output",
|
|
1285
|
+
b"watermark_output",
|
|
1286
|
+
] # noqa: Y015
|
|
1287
|
+
def HasField(self, field_name: _HasFieldArgType) -> _builtins.bool: ...
|
|
1288
|
+
_ClearFieldArgType: _TypeAlias = _typing.Literal[
|
|
1289
|
+
"bias_rating",
|
|
1290
|
+
b"bias_rating",
|
|
1291
|
+
"built_in_guardrails",
|
|
1292
|
+
b"built_in_guardrails",
|
|
1293
|
+
"content_filtering",
|
|
1294
|
+
b"content_filtering",
|
|
1295
|
+
"custom_guardrails",
|
|
1296
|
+
b"custom_guardrails",
|
|
1297
|
+
"gdpr_compliant",
|
|
1298
|
+
b"gdpr_compliant",
|
|
1299
|
+
"hipaa_compliant",
|
|
1300
|
+
b"hipaa_compliant",
|
|
1301
|
+
"iso_certified",
|
|
1302
|
+
b"iso_certified",
|
|
1303
|
+
"moderation_level",
|
|
1304
|
+
b"moderation_level",
|
|
1305
|
+
"refusal_capability",
|
|
1306
|
+
b"refusal_capability",
|
|
1307
|
+
"safety_filters",
|
|
1308
|
+
b"safety_filters",
|
|
1309
|
+
"soc2_compliant",
|
|
1310
|
+
b"soc2_compliant",
|
|
1311
|
+
"toxicity_score",
|
|
1312
|
+
b"toxicity_score",
|
|
1313
|
+
"watermark_output",
|
|
1314
|
+
b"watermark_output",
|
|
1315
|
+
] # noqa: Y015
|
|
1316
|
+
def ClearField(self, field_name: _ClearFieldArgType) -> None: ...
|
|
1317
|
+
|
|
1318
|
+
Global___Safety: _TypeAlias = Safety # noqa: Y015
|
|
1319
|
+
|
|
1320
|
+
@_typing.final
|
|
1321
|
+
class Licensing(_message.Message):
|
|
1232
1322
|
"""Licensing contains license and usage terms for the model."""
|
|
1233
1323
|
|
|
1234
|
-
DESCRIPTOR:
|
|
1235
|
-
|
|
1236
|
-
LICENSE_TYPE_FIELD_NUMBER:
|
|
1237
|
-
LICENSE_URL_FIELD_NUMBER:
|
|
1238
|
-
IS_OPEN_SOURCE_FIELD_NUMBER:
|
|
1239
|
-
IS_OPEN_WEIGHTS_FIELD_NUMBER:
|
|
1240
|
-
COMMERCIAL_USE_FIELD_NUMBER:
|
|
1241
|
-
RESEARCH_USE_FIELD_NUMBER:
|
|
1242
|
-
ATTRIBUTION_REQUIRED_FIELD_NUMBER:
|
|
1243
|
-
SHARE_ALIKE_REQUIRED_FIELD_NUMBER:
|
|
1244
|
-
USAGE_RESTRICTIONS_FIELD_NUMBER:
|
|
1245
|
-
license_type:
|
|
1324
|
+
DESCRIPTOR: _descriptor.Descriptor
|
|
1325
|
+
|
|
1326
|
+
LICENSE_TYPE_FIELD_NUMBER: _builtins.int
|
|
1327
|
+
LICENSE_URL_FIELD_NUMBER: _builtins.int
|
|
1328
|
+
IS_OPEN_SOURCE_FIELD_NUMBER: _builtins.int
|
|
1329
|
+
IS_OPEN_WEIGHTS_FIELD_NUMBER: _builtins.int
|
|
1330
|
+
COMMERCIAL_USE_FIELD_NUMBER: _builtins.int
|
|
1331
|
+
RESEARCH_USE_FIELD_NUMBER: _builtins.int
|
|
1332
|
+
ATTRIBUTION_REQUIRED_FIELD_NUMBER: _builtins.int
|
|
1333
|
+
SHARE_ALIKE_REQUIRED_FIELD_NUMBER: _builtins.int
|
|
1334
|
+
USAGE_RESTRICTIONS_FIELD_NUMBER: _builtins.int
|
|
1335
|
+
license_type: Global___LicenseType.ValueType
|
|
1246
1336
|
"""Type of license governing model use.
|
|
1247
1337
|
Example: LICENSE_TYPE_APACHE_2_0, LICENSE_TYPE_PROPRIETARY
|
|
1248
1338
|
"""
|
|
1249
|
-
license_url:
|
|
1339
|
+
license_url: _builtins.str
|
|
1250
1340
|
"""URL to full license text.
|
|
1251
1341
|
Example: "https://github.com/meta-llama/llama/blob/main/LICENSE"
|
|
1252
1342
|
"""
|
|
1253
|
-
is_open_source:
|
|
1343
|
+
is_open_source: _builtins.bool
|
|
1254
1344
|
"""Whether source code is openly available.
|
|
1255
1345
|
Example: true for research papers with code
|
|
1256
1346
|
"""
|
|
1257
|
-
is_open_weights:
|
|
1347
|
+
is_open_weights: _builtins.bool
|
|
1258
1348
|
"""Whether model weights are publicly downloadable.
|
|
1259
1349
|
Example: true for LLaMA, Mistral; false for GPT-4
|
|
1260
1350
|
"""
|
|
1261
|
-
commercial_use:
|
|
1351
|
+
commercial_use: _builtins.bool
|
|
1262
1352
|
"""Allowed for commercial/business use.
|
|
1263
1353
|
Example: true for Apache/MIT licensed models
|
|
1264
1354
|
"""
|
|
1265
|
-
research_use:
|
|
1355
|
+
research_use: _builtins.bool
|
|
1266
1356
|
"""Allowed for research purposes.
|
|
1267
1357
|
Example: true for most models, even proprietary ones
|
|
1268
1358
|
"""
|
|
1269
|
-
attribution_required:
|
|
1359
|
+
attribution_required: _builtins.bool
|
|
1270
1360
|
"""Must attribute/cite when using.
|
|
1271
1361
|
Example: true for CC-BY licenses
|
|
1272
1362
|
"""
|
|
1273
|
-
share_alike_required:
|
|
1363
|
+
share_alike_required: _builtins.bool
|
|
1274
1364
|
"""Derivatives must use same license.
|
|
1275
1365
|
Example: true for GPL, CC-BY-SA licenses
|
|
1276
1366
|
"""
|
|
1277
|
-
@property
|
|
1367
|
+
@_builtins.property
|
|
1278
1368
|
def usage_restrictions(
|
|
1279
1369
|
self,
|
|
1280
|
-
) ->
|
|
1370
|
+
) -> _containers.RepeatedScalarFieldContainer[_builtins.str]:
|
|
1281
1371
|
"""Specific usage restrictions or conditions.
|
|
1282
1372
|
Examples: ["No use for surveillance", "Monthly active user limits",
|
|
1283
1373
|
"No competitive use against provider"]
|
|
@@ -1286,38 +1376,57 @@ class Licensing(google.protobuf.message.Message):
|
|
|
1286
1376
|
def __init__(
|
|
1287
1377
|
self,
|
|
1288
1378
|
*,
|
|
1289
|
-
license_type:
|
|
1290
|
-
license_url:
|
|
1291
|
-
is_open_source:
|
|
1292
|
-
is_open_weights:
|
|
1293
|
-
commercial_use:
|
|
1294
|
-
research_use:
|
|
1295
|
-
attribution_required:
|
|
1296
|
-
share_alike_required:
|
|
1297
|
-
usage_restrictions:
|
|
1379
|
+
license_type: Global___LicenseType.ValueType | None = ...,
|
|
1380
|
+
license_url: _builtins.str | None = ...,
|
|
1381
|
+
is_open_source: _builtins.bool | None = ...,
|
|
1382
|
+
is_open_weights: _builtins.bool | None = ...,
|
|
1383
|
+
commercial_use: _builtins.bool | None = ...,
|
|
1384
|
+
research_use: _builtins.bool | None = ...,
|
|
1385
|
+
attribution_required: _builtins.bool | None = ...,
|
|
1386
|
+
share_alike_required: _builtins.bool | None = ...,
|
|
1387
|
+
usage_restrictions: _abc.Iterable[_builtins.str] | None = ...,
|
|
1298
1388
|
) -> None: ...
|
|
1299
|
-
|
|
1300
|
-
|
|
1301
|
-
|
|
1302
|
-
|
|
1303
|
-
|
|
1304
|
-
|
|
1305
|
-
|
|
1306
|
-
|
|
1307
|
-
|
|
1308
|
-
|
|
1309
|
-
|
|
1310
|
-
|
|
1311
|
-
|
|
1312
|
-
|
|
1313
|
-
|
|
1314
|
-
|
|
1315
|
-
|
|
1316
|
-
|
|
1317
|
-
|
|
1318
|
-
|
|
1319
|
-
|
|
1320
|
-
|
|
1321
|
-
|
|
1322
|
-
|
|
1323
|
-
|
|
1389
|
+
_HasFieldArgType: _TypeAlias = _typing.Literal[
|
|
1390
|
+
"attribution_required",
|
|
1391
|
+
b"attribution_required",
|
|
1392
|
+
"commercial_use",
|
|
1393
|
+
b"commercial_use",
|
|
1394
|
+
"is_open_source",
|
|
1395
|
+
b"is_open_source",
|
|
1396
|
+
"is_open_weights",
|
|
1397
|
+
b"is_open_weights",
|
|
1398
|
+
"license_type",
|
|
1399
|
+
b"license_type",
|
|
1400
|
+
"license_url",
|
|
1401
|
+
b"license_url",
|
|
1402
|
+
"research_use",
|
|
1403
|
+
b"research_use",
|
|
1404
|
+
"share_alike_required",
|
|
1405
|
+
b"share_alike_required",
|
|
1406
|
+
"usage_restrictions",
|
|
1407
|
+
b"usage_restrictions",
|
|
1408
|
+
] # noqa: Y015
|
|
1409
|
+
def HasField(self, field_name: _HasFieldArgType) -> _builtins.bool: ...
|
|
1410
|
+
_ClearFieldArgType: _TypeAlias = _typing.Literal[
|
|
1411
|
+
"attribution_required",
|
|
1412
|
+
b"attribution_required",
|
|
1413
|
+
"commercial_use",
|
|
1414
|
+
b"commercial_use",
|
|
1415
|
+
"is_open_source",
|
|
1416
|
+
b"is_open_source",
|
|
1417
|
+
"is_open_weights",
|
|
1418
|
+
b"is_open_weights",
|
|
1419
|
+
"license_type",
|
|
1420
|
+
b"license_type",
|
|
1421
|
+
"license_url",
|
|
1422
|
+
b"license_url",
|
|
1423
|
+
"research_use",
|
|
1424
|
+
b"research_use",
|
|
1425
|
+
"share_alike_required",
|
|
1426
|
+
b"share_alike_required",
|
|
1427
|
+
"usage_restrictions",
|
|
1428
|
+
b"usage_restrictions",
|
|
1429
|
+
] # noqa: Y015
|
|
1430
|
+
def ClearField(self, field_name: _ClearFieldArgType) -> None: ...
|
|
1431
|
+
|
|
1432
|
+
Global___Licensing: _TypeAlias = Licensing # noqa: Y015
|