weave-python 0.28.1__py3-none-any.whl → 0.30.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (105) hide show
  1. weave/weaveapi/auth/v1/service_pb2.py +194 -98
  2. weave/weaveapi/auth/v1/service_pb2.pyi +1288 -1134
  3. weave/weaveapi/auth/v1/service_pb2_grpc.pyi +248 -335
  4. weave/weaveapi/auth/v1/session_pb2.py +14 -6
  5. weave/weaveapi/auth/v1/session_pb2.pyi +109 -89
  6. weave/weaveapi/auth/v1/session_pb2_grpc.pyi +11 -10
  7. weave/weaveapi/auth/v1/usage_pb2.py +18 -14
  8. weave/weaveapi/auth/v1/usage_pb2.pyi +251 -197
  9. weave/weaveapi/auth/v1/usage_pb2_grpc.pyi +11 -10
  10. weave/weaveapi/auth/v1/user_pb2.py +60 -18
  11. weave/weaveapi/auth/v1/user_pb2.pyi +588 -505
  12. weave/weaveapi/auth/v1/user_pb2_grpc.pyi +11 -10
  13. weave/weaveapi/generate/v1/configuration_pb2.py +31 -19
  14. weave/weaveapi/generate/v1/configuration_pb2.pyi +277 -241
  15. weave/weaveapi/generate/v1/configuration_pb2_grpc.pyi +11 -10
  16. weave/weaveapi/generate/v1/generate_pb2.py +32 -6
  17. weave/weaveapi/generate/v1/generate_pb2.pyi +138 -40
  18. weave/weaveapi/generate/v1/generate_pb2_grpc.pyi +11 -10
  19. weave/weaveapi/generate/v1/service_pb2.py +52 -22
  20. weave/weaveapi/generate/v1/service_pb2.pyi +264 -135
  21. weave/weaveapi/generate/v1/service_pb2_grpc.py +47 -0
  22. weave/weaveapi/generate/v1/service_pb2_grpc.pyi +89 -78
  23. weave/weaveapi/llmx/v1/architecture_pb2.py +42 -42
  24. weave/weaveapi/llmx/v1/architecture_pb2.pyi +664 -555
  25. weave/weaveapi/llmx/v1/architecture_pb2_grpc.pyi +11 -10
  26. weave/weaveapi/llmx/v1/capabilities_pb2.py +88 -56
  27. weave/weaveapi/llmx/v1/capabilities_pb2.pyi +967 -852
  28. weave/weaveapi/llmx/v1/capabilities_pb2_grpc.pyi +11 -10
  29. weave/weaveapi/llmx/v1/model_pb2.py +56 -20
  30. weave/weaveapi/llmx/v1/model_pb2.pyi +533 -455
  31. weave/weaveapi/llmx/v1/model_pb2_grpc.pyi +11 -10
  32. weave/weaveapi/llmx/v1/pricing_pb2.py +24 -20
  33. weave/weaveapi/llmx/v1/pricing_pb2.pyi +194 -172
  34. weave/weaveapi/llmx/v1/pricing_pb2_grpc.pyi +11 -10
  35. weave/weaveapi/llmx/v1/provider_pb2.py +6 -6
  36. weave/weaveapi/llmx/v1/provider_pb2.pyi +84 -59
  37. weave/weaveapi/llmx/v1/provider_pb2_grpc.pyi +11 -10
  38. weave/weaveapi/llmx/v1/service_pb2.py +228 -90
  39. weave/weaveapi/llmx/v1/service_pb2.pyi +1651 -1403
  40. weave/weaveapi/llmx/v1/service_pb2_grpc.pyi +160 -203
  41. weave/weaveapi/mcpregistry/v1/server_pb2.py +16 -10
  42. weave/weaveapi/mcpregistry/v1/server_pb2.pyi +143 -121
  43. weave/weaveapi/mcpregistry/v1/server_pb2_grpc.pyi +11 -10
  44. weave/weaveapi/mcpregistry/v1/service_pb2.py +51 -31
  45. weave/weaveapi/mcpregistry/v1/service_pb2.pyi +132 -122
  46. weave/weaveapi/mcpregistry/v1/service_pb2_grpc.pyi +87 -112
  47. weave/weaveapi/payment/v1/invoice_pb2.py +38 -12
  48. weave/weaveapi/payment/v1/invoice_pb2.pyi +352 -291
  49. weave/weaveapi/payment/v1/invoice_pb2_grpc.pyi +11 -10
  50. weave/weaveapi/payment/v1/service_pb2.py +264 -98
  51. weave/weaveapi/payment/v1/service_pb2.pyi +1381 -1242
  52. weave/weaveapi/payment/v1/service_pb2_grpc.pyi +229 -319
  53. weave/weaveapi/payment/v1/subscription_pb2.py +99 -23
  54. weave/weaveapi/payment/v1/subscription_pb2.pyi +727 -611
  55. weave/weaveapi/payment/v1/subscription_pb2_grpc.pyi +11 -10
  56. weave/weaveapi/storage/v1/auth_pb2.py +6 -6
  57. weave/weaveapi/storage/v1/auth_pb2.pyi +42 -29
  58. weave/weaveapi/storage/v1/auth_pb2_grpc.pyi +11 -10
  59. weave/weaveapi/storage/v1/nosql_database_pb2.py +47 -23
  60. weave/weaveapi/storage/v1/nosql_database_pb2.pyi +438 -372
  61. weave/weaveapi/storage/v1/nosql_database_pb2_grpc.pyi +11 -10
  62. weave/weaveapi/storage/v1/object_store_pb2.py +27 -13
  63. weave/weaveapi/storage/v1/object_store_pb2.pyi +203 -187
  64. weave/weaveapi/storage/v1/object_store_pb2_grpc.pyi +11 -10
  65. weave/weaveapi/storage/v1/service_pb2.py +96 -36
  66. weave/weaveapi/storage/v1/service_pb2.pyi +414 -357
  67. weave/weaveapi/storage/v1/service_pb2_grpc.pyi +88 -107
  68. weave/weaveapi/storage/v1/sql_database_pb2.py +39 -23
  69. weave/weaveapi/storage/v1/sql_database_pb2.pyi +481 -400
  70. weave/weaveapi/storage/v1/sql_database_pb2_grpc.pyi +11 -10
  71. weave/weaveapi/storage/v1/storage_pb2.py +20 -6
  72. weave/weaveapi/storage/v1/storage_pb2.pyi +79 -70
  73. weave/weaveapi/storage/v1/storage_pb2_grpc.pyi +11 -10
  74. weave/weaveapi/synthesize/v1/dataset_pb2.py +14 -12
  75. weave/weaveapi/synthesize/v1/dataset_pb2.pyi +158 -128
  76. weave/weaveapi/synthesize/v1/dataset_pb2_grpc.pyi +11 -10
  77. weave/weaveapi/synthesize/v1/inline_data_pb2.py +9 -9
  78. weave/weaveapi/synthesize/v1/inline_data_pb2.pyi +31 -27
  79. weave/weaveapi/synthesize/v1/inline_data_pb2_grpc.pyi +11 -10
  80. weave/weaveapi/synthesize/v1/relationship_pb2.py +19 -11
  81. weave/weaveapi/synthesize/v1/relationship_pb2.pyi +67 -64
  82. weave/weaveapi/synthesize/v1/relationship_pb2_grpc.pyi +11 -10
  83. weave/weaveapi/synthesize/v1/service_pb2.py +42 -24
  84. weave/weaveapi/synthesize/v1/service_pb2.pyi +202 -168
  85. weave/weaveapi/synthesize/v1/service_pb2_grpc.pyi +67 -79
  86. weave/weaveapi/synthesize/v1/training_pb2.py +19 -13
  87. weave/weaveapi/synthesize/v1/training_pb2.pyi +119 -106
  88. weave/weaveapi/synthesize/v1/training_pb2_grpc.pyi +11 -10
  89. weave/weavesql/llmxdb/capabilities.py +487 -0
  90. weave/weavesql/llmxdb/changes.py +297 -0
  91. weave/weavesql/llmxdb/models.py +594 -0
  92. weave/weavesql/llmxdb/providers.py +348 -0
  93. weave/weavesql/llmxdb/scraper_runs.py +287 -0
  94. weave/weavesql/llmxdb/search.py +721 -0
  95. weave/weavesql/weavedb/dataset.py +75 -0
  96. weave/weavesql/weavedb/models.py +135 -0
  97. weave/weavesql/weavedb/relationships.py +72 -0
  98. weave/weavesql/weavedb/storage.py +113 -0
  99. weave/weavesql/weavedb/synthesizer.py +107 -0
  100. weave_python-0.30.3.dist-info/METADATA +52 -0
  101. weave_python-0.30.3.dist-info/RECORD +131 -0
  102. {weave_python-0.28.1.dist-info → weave_python-0.30.3.dist-info}/WHEEL +1 -1
  103. weave_python-0.30.3.dist-info/licenses/LICENSE +120 -0
  104. weave_python-0.28.1.dist-info/METADATA +0 -6
  105. weave_python-0.28.1.dist-info/RECORD +0 -119
@@ -3,34 +3,31 @@
3
3
  isort:skip_file
4
4
  """
5
5
 
6
- import builtins
7
- import collections.abc
8
- import google.protobuf.descriptor
9
- import google.protobuf.internal.containers
10
- import google.protobuf.internal.enum_type_wrapper
11
- import google.protobuf.message
6
+ from collections import abc as _abc
7
+ from google.protobuf import descriptor as _descriptor
8
+ from google.protobuf import message as _message
9
+ from google.protobuf.internal import containers as _containers
10
+ from google.protobuf.internal import enum_type_wrapper as _enum_type_wrapper
11
+ from weaveapi.llmx.v1 import capabilities_pb2 as _capabilities_pb2
12
+ import builtins as _builtins
12
13
  import sys
13
- import typing
14
- import weaveapi.llmx.v1.capabilities_pb2
14
+ import typing as _typing
15
15
 
16
16
  if sys.version_info >= (3, 10):
17
- import typing as typing_extensions
17
+ from typing import TypeAlias as _TypeAlias
18
18
  else:
19
- import typing_extensions
19
+ from typing_extensions import TypeAlias as _TypeAlias
20
20
 
21
- DESCRIPTOR: google.protobuf.descriptor.FileDescriptor
21
+ DESCRIPTOR: _descriptor.FileDescriptor
22
22
 
23
23
  class _BaseArchitecture:
24
- ValueType = typing.NewType("ValueType", builtins.int)
25
- V: typing_extensions.TypeAlias = ValueType
24
+ ValueType = _typing.NewType("ValueType", _builtins.int)
25
+ V: _TypeAlias = ValueType # noqa: Y015
26
26
 
27
27
  class _BaseArchitectureEnumTypeWrapper(
28
- google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[
29
- _BaseArchitecture.ValueType
30
- ],
31
- builtins.type,
28
+ _enum_type_wrapper._EnumTypeWrapper[_BaseArchitecture.ValueType], _builtins.type
32
29
  ):
33
- DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
30
+ DESCRIPTOR: _descriptor.EnumDescriptor
34
31
  BASE_ARCHITECTURE_UNSPECIFIED: _BaseArchitecture.ValueType # 0
35
32
  BASE_ARCHITECTURE_TRANSFORMER: _BaseArchitecture.ValueType # 1
36
33
  BASE_ARCHITECTURE_MAMBA: _BaseArchitecture.ValueType # 2
@@ -51,19 +48,16 @@ BASE_ARCHITECTURE_RECURRENT_NEURAL_NETWORK: BaseArchitecture.ValueType # 4
51
48
  BASE_ARCHITECTURE_CONVOLUTIONAL_NEURAL_NETWORK: BaseArchitecture.ValueType # 5
52
49
  BASE_ARCHITECTURE_DIFFUSION: BaseArchitecture.ValueType # 6
53
50
  BASE_ARCHITECTURE_GENERATIVE_ADVERSARIAL_NETWORK: BaseArchitecture.ValueType # 7
54
- global___BaseArchitecture = BaseArchitecture
51
+ Global___BaseArchitecture: _TypeAlias = BaseArchitecture # noqa: Y015
55
52
 
56
53
  class _ModelArchitecture:
57
- ValueType = typing.NewType("ValueType", builtins.int)
58
- V: typing_extensions.TypeAlias = ValueType
54
+ ValueType = _typing.NewType("ValueType", _builtins.int)
55
+ V: _TypeAlias = ValueType # noqa: Y015
59
56
 
60
57
  class _ModelArchitectureEnumTypeWrapper(
61
- google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[
62
- _ModelArchitecture.ValueType
63
- ],
64
- builtins.type,
58
+ _enum_type_wrapper._EnumTypeWrapper[_ModelArchitecture.ValueType], _builtins.type
65
59
  ):
66
- DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
60
+ DESCRIPTOR: _descriptor.EnumDescriptor
67
61
  MODEL_ARCHITECTURE_UNSPECIFIED: _ModelArchitecture.ValueType # 0
68
62
  MODEL_ARCHITECTURE_GPT: _ModelArchitecture.ValueType # 1
69
63
  MODEL_ARCHITECTURE_BERT: _ModelArchitecture.ValueType # 2
@@ -108,19 +102,16 @@ MODEL_ARCHITECTURE_DEEPSEEK: ModelArchitecture.ValueType # 15
108
102
  MODEL_ARCHITECTURE_YI: ModelArchitecture.ValueType # 16
109
103
  MODEL_ARCHITECTURE_MIXTRAL: ModelArchitecture.ValueType # 17
110
104
  MODEL_ARCHITECTURE_GEMINI: ModelArchitecture.ValueType # 18
111
- global___ModelArchitecture = ModelArchitecture
105
+ Global___ModelArchitecture: _TypeAlias = ModelArchitecture # noqa: Y015
112
106
 
113
107
  class _PositionEmbedding:
114
- ValueType = typing.NewType("ValueType", builtins.int)
115
- V: typing_extensions.TypeAlias = ValueType
108
+ ValueType = _typing.NewType("ValueType", _builtins.int)
109
+ V: _TypeAlias = ValueType # noqa: Y015
116
110
 
117
111
  class _PositionEmbeddingEnumTypeWrapper(
118
- google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[
119
- _PositionEmbedding.ValueType
120
- ],
121
- builtins.type,
112
+ _enum_type_wrapper._EnumTypeWrapper[_PositionEmbedding.ValueType], _builtins.type
122
113
  ):
123
- DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
114
+ DESCRIPTOR: _descriptor.EnumDescriptor
124
115
  POSITION_EMBEDDING_UNSPECIFIED: _PositionEmbedding.ValueType # 0
125
116
  POSITION_EMBEDDING_ABSOLUTE: _PositionEmbedding.ValueType # 1
126
117
  POSITION_EMBEDDING_RELATIVE: _PositionEmbedding.ValueType # 2
@@ -141,19 +132,16 @@ POSITION_EMBEDDING_ROTARY: PositionEmbedding.ValueType # 3
141
132
  POSITION_EMBEDDING_ALIBI: PositionEmbedding.ValueType # 4
142
133
  POSITION_EMBEDDING_LEARNED: PositionEmbedding.ValueType # 5
143
134
  POSITION_EMBEDDING_SINUSOIDAL: PositionEmbedding.ValueType # 6
144
- global___PositionEmbedding = PositionEmbedding
135
+ Global___PositionEmbedding: _TypeAlias = PositionEmbedding # noqa: Y015
145
136
 
146
137
  class _ActivationFunction:
147
- ValueType = typing.NewType("ValueType", builtins.int)
148
- V: typing_extensions.TypeAlias = ValueType
138
+ ValueType = _typing.NewType("ValueType", _builtins.int)
139
+ V: _TypeAlias = ValueType # noqa: Y015
149
140
 
150
141
  class _ActivationFunctionEnumTypeWrapper(
151
- google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[
152
- _ActivationFunction.ValueType
153
- ],
154
- builtins.type,
142
+ _enum_type_wrapper._EnumTypeWrapper[_ActivationFunction.ValueType], _builtins.type
155
143
  ):
156
- DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
144
+ DESCRIPTOR: _descriptor.EnumDescriptor
157
145
  ACTIVATION_FUNCTION_UNSPECIFIED: _ActivationFunction.ValueType # 0
158
146
  ACTIVATION_FUNCTION_GELU: _ActivationFunction.ValueType # 1
159
147
  ACTIVATION_FUNCTION_SWIGLU: _ActivationFunction.ValueType # 2
@@ -178,19 +166,16 @@ ACTIVATION_FUNCTION_TANH: ActivationFunction.ValueType # 5
178
166
  ACTIVATION_FUNCTION_SIGMOID: ActivationFunction.ValueType # 6
179
167
  ACTIVATION_FUNCTION_MISH: ActivationFunction.ValueType # 7
180
168
  ACTIVATION_FUNCTION_LEAKY_RELU: ActivationFunction.ValueType # 8
181
- global___ActivationFunction = ActivationFunction
169
+ Global___ActivationFunction: _TypeAlias = ActivationFunction # noqa: Y015
182
170
 
183
171
  class _TrainingTechnique:
184
- ValueType = typing.NewType("ValueType", builtins.int)
185
- V: typing_extensions.TypeAlias = ValueType
172
+ ValueType = _typing.NewType("ValueType", _builtins.int)
173
+ V: _TypeAlias = ValueType # noqa: Y015
186
174
 
187
175
  class _TrainingTechniqueEnumTypeWrapper(
188
- google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[
189
- _TrainingTechnique.ValueType
190
- ],
191
- builtins.type,
176
+ _enum_type_wrapper._EnumTypeWrapper[_TrainingTechnique.ValueType], _builtins.type
192
177
  ):
193
- DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
178
+ DESCRIPTOR: _descriptor.EnumDescriptor
194
179
  TRAINING_TECHNIQUE_UNSPECIFIED: _TrainingTechnique.ValueType # 0
195
180
  TRAINING_TECHNIQUE_SUPERVISED: _TrainingTechnique.ValueType # 1
196
181
  TRAINING_TECHNIQUE_REINFORCEMENT_LEARNING_FROM_HUMAN_FEEDBACK: (
@@ -221,19 +206,16 @@ TRAINING_TECHNIQUE_SUPERVISED_FINE_TUNING: TrainingTechnique.ValueType # 6
221
206
  TRAINING_TECHNIQUE_INSTRUCTION_TUNING: TrainingTechnique.ValueType # 7
222
207
  TRAINING_TECHNIQUE_FEW_SHOT: TrainingTechnique.ValueType # 8
223
208
  TRAINING_TECHNIQUE_CHAIN_OF_THOUGHT: TrainingTechnique.ValueType # 9
224
- global___TrainingTechnique = TrainingTechnique
209
+ Global___TrainingTechnique: _TypeAlias = TrainingTechnique # noqa: Y015
225
210
 
226
211
  class _Quantization:
227
- ValueType = typing.NewType("ValueType", builtins.int)
228
- V: typing_extensions.TypeAlias = ValueType
212
+ ValueType = _typing.NewType("ValueType", _builtins.int)
213
+ V: _TypeAlias = ValueType # noqa: Y015
229
214
 
230
215
  class _QuantizationEnumTypeWrapper(
231
- google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[
232
- _Quantization.ValueType
233
- ],
234
- builtins.type,
216
+ _enum_type_wrapper._EnumTypeWrapper[_Quantization.ValueType], _builtins.type
235
217
  ):
236
- DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
218
+ DESCRIPTOR: _descriptor.EnumDescriptor
237
219
  QUANTIZATION_UNSPECIFIED: _Quantization.ValueType # 0
238
220
  QUANTIZATION_NONE: _Quantization.ValueType # 1
239
221
  QUANTIZATION_INT8: _Quantization.ValueType # 2
@@ -256,17 +238,16 @@ QUANTIZATION_GPTQ: Quantization.ValueType # 5
256
238
  QUANTIZATION_AWQ: Quantization.ValueType # 6
257
239
  QUANTIZATION_GGUF: Quantization.ValueType # 7
258
240
  QUANTIZATION_BITSANDBYTES: Quantization.ValueType # 8
259
- global___Quantization = Quantization
241
+ Global___Quantization: _TypeAlias = Quantization # noqa: Y015
260
242
 
261
243
  class _Precision:
262
- ValueType = typing.NewType("ValueType", builtins.int)
263
- V: typing_extensions.TypeAlias = ValueType
244
+ ValueType = _typing.NewType("ValueType", _builtins.int)
245
+ V: _TypeAlias = ValueType # noqa: Y015
264
246
 
265
247
  class _PrecisionEnumTypeWrapper(
266
- google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[_Precision.ValueType],
267
- builtins.type,
248
+ _enum_type_wrapper._EnumTypeWrapper[_Precision.ValueType], _builtins.type
268
249
  ):
269
- DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
250
+ DESCRIPTOR: _descriptor.EnumDescriptor
270
251
  PRECISION_UNSPECIFIED: _Precision.ValueType # 0
271
252
  PRECISION_FP32: _Precision.ValueType # 1
272
253
  PRECISION_FP16: _Precision.ValueType # 2
@@ -283,19 +264,16 @@ PRECISION_FP16: Precision.ValueType # 2
283
264
  PRECISION_BF16: Precision.ValueType # 3
284
265
  PRECISION_INT8: Precision.ValueType # 4
285
266
  PRECISION_MIXED: Precision.ValueType # 5
286
- global___Precision = Precision
267
+ Global___Precision: _TypeAlias = Precision # noqa: Y015
287
268
 
288
269
  class _InferenceFramework:
289
- ValueType = typing.NewType("ValueType", builtins.int)
290
- V: typing_extensions.TypeAlias = ValueType
270
+ ValueType = _typing.NewType("ValueType", _builtins.int)
271
+ V: _TypeAlias = ValueType # noqa: Y015
291
272
 
292
273
  class _InferenceFrameworkEnumTypeWrapper(
293
- google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[
294
- _InferenceFramework.ValueType
295
- ],
296
- builtins.type,
274
+ _enum_type_wrapper._EnumTypeWrapper[_InferenceFramework.ValueType], _builtins.type
297
275
  ):
298
- DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
276
+ DESCRIPTOR: _descriptor.EnumDescriptor
299
277
  INFERENCE_FRAMEWORK_UNSPECIFIED: _InferenceFramework.ValueType # 0
300
278
  INFERENCE_FRAMEWORK_VLLM: _InferenceFramework.ValueType # 1
301
279
  INFERENCE_FRAMEWORK_TGI: _InferenceFramework.ValueType # 2
@@ -324,17 +302,16 @@ INFERENCE_FRAMEWORK_TENSORFLOW_SERVING: InferenceFramework.ValueType # 7
324
302
  INFERENCE_FRAMEWORK_RAY_SERVE: InferenceFramework.ValueType # 8
325
303
  INFERENCE_FRAMEWORK_DEEPSPEED: InferenceFramework.ValueType # 9
326
304
  INFERENCE_FRAMEWORK_FASTERTRANSFORMER: InferenceFramework.ValueType # 10
327
- global___InferenceFramework = InferenceFramework
305
+ Global___InferenceFramework: _TypeAlias = InferenceFramework # noqa: Y015
328
306
 
329
307
  class _ModelFormat:
330
- ValueType = typing.NewType("ValueType", builtins.int)
331
- V: typing_extensions.TypeAlias = ValueType
308
+ ValueType = _typing.NewType("ValueType", _builtins.int)
309
+ V: _TypeAlias = ValueType # noqa: Y015
332
310
 
333
311
  class _ModelFormatEnumTypeWrapper(
334
- google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[_ModelFormat.ValueType],
335
- builtins.type,
312
+ _enum_type_wrapper._EnumTypeWrapper[_ModelFormat.ValueType], _builtins.type
336
313
  ):
337
- DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
314
+ DESCRIPTOR: _descriptor.EnumDescriptor
338
315
  MODEL_FORMAT_UNSPECIFIED: _ModelFormat.ValueType # 0
339
316
  MODEL_FORMAT_SAFETENSORS: _ModelFormat.ValueType # 1
340
317
  MODEL_FORMAT_GGUF: _ModelFormat.ValueType # 2
@@ -359,19 +336,16 @@ MODEL_FORMAT_JAX: ModelFormat.ValueType # 6
359
336
  MODEL_FORMAT_COREML: ModelFormat.ValueType # 7
360
337
  MODEL_FORMAT_OPENVINO: ModelFormat.ValueType # 8
361
338
  MODEL_FORMAT_TENSORRT: ModelFormat.ValueType # 9
362
- global___ModelFormat = ModelFormat
339
+ Global___ModelFormat: _TypeAlias = ModelFormat # noqa: Y015
363
340
 
364
341
  class _CheckpointFormat:
365
- ValueType = typing.NewType("ValueType", builtins.int)
366
- V: typing_extensions.TypeAlias = ValueType
342
+ ValueType = _typing.NewType("ValueType", _builtins.int)
343
+ V: _TypeAlias = ValueType # noqa: Y015
367
344
 
368
345
  class _CheckpointFormatEnumTypeWrapper(
369
- google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[
370
- _CheckpointFormat.ValueType
371
- ],
372
- builtins.type,
346
+ _enum_type_wrapper._EnumTypeWrapper[_CheckpointFormat.ValueType], _builtins.type
373
347
  ):
374
- DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
348
+ DESCRIPTOR: _descriptor.EnumDescriptor
375
349
  CHECKPOINT_FORMAT_UNSPECIFIED: _CheckpointFormat.ValueType # 0
376
350
  CHECKPOINT_FORMAT_PYTORCH: _CheckpointFormat.ValueType # 1
377
351
  CHECKPOINT_FORMAT_TENSORFLOW: _CheckpointFormat.ValueType # 2
@@ -390,17 +364,16 @@ CHECKPOINT_FORMAT_SAFETENSORS: CheckpointFormat.ValueType # 3
390
364
  CHECKPOINT_FORMAT_HF: CheckpointFormat.ValueType # 4
391
365
  CHECKPOINT_FORMAT_MEGATRON: CheckpointFormat.ValueType # 5
392
366
  CHECKPOINT_FORMAT_DEEPSPEED: CheckpointFormat.ValueType # 6
393
- global___CheckpointFormat = CheckpointFormat
367
+ Global___CheckpointFormat: _TypeAlias = CheckpointFormat # noqa: Y015
394
368
 
395
369
  class _GPUType:
396
- ValueType = typing.NewType("ValueType", builtins.int)
397
- V: typing_extensions.TypeAlias = ValueType
370
+ ValueType = _typing.NewType("ValueType", _builtins.int)
371
+ V: _TypeAlias = ValueType # noqa: Y015
398
372
 
399
373
  class _GPUTypeEnumTypeWrapper(
400
- google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[_GPUType.ValueType],
401
- builtins.type,
374
+ _enum_type_wrapper._EnumTypeWrapper[_GPUType.ValueType], _builtins.type
402
375
  ):
403
- DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
376
+ DESCRIPTOR: _descriptor.EnumDescriptor
404
377
  GPU_TYPE_UNSPECIFIED: _GPUType.ValueType # 0
405
378
  GPU_TYPE_A100: _GPUType.ValueType # 1
406
379
  """Datacenter/Enterprise GPUs"""
@@ -509,17 +482,16 @@ GPU_TYPE_RTX_2080_TI: GPUType.ValueType # 80
509
482
  """Older but still relevant"""
510
483
  GPU_TYPE_TITAN_RTX: GPUType.ValueType # 81
511
484
  GPU_TYPE_GTX_1080_TI: GPUType.ValueType # 82
512
- global___GPUType = GPUType
485
+ Global___GPUType: _TypeAlias = GPUType # noqa: Y015
513
486
 
514
487
  class _CPUType:
515
- ValueType = typing.NewType("ValueType", builtins.int)
516
- V: typing_extensions.TypeAlias = ValueType
488
+ ValueType = _typing.NewType("ValueType", _builtins.int)
489
+ V: _TypeAlias = ValueType # noqa: Y015
517
490
 
518
491
  class _CPUTypeEnumTypeWrapper(
519
- google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[_CPUType.ValueType],
520
- builtins.type,
492
+ _enum_type_wrapper._EnumTypeWrapper[_CPUType.ValueType], _builtins.type
521
493
  ):
522
- DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
494
+ DESCRIPTOR: _descriptor.EnumDescriptor
523
495
  CPU_TYPE_UNSPECIFIED: _CPUType.ValueType # 0
524
496
  CPU_TYPE_X86_64: _CPUType.ValueType # 1
525
497
  CPU_TYPE_ARM64: _CPUType.ValueType # 2
@@ -536,19 +508,16 @@ CPU_TYPE_ARM64: CPUType.ValueType # 2
536
508
  CPU_TYPE_APPLE_SILICON: CPUType.ValueType # 3
537
509
  CPU_TYPE_AMD64: CPUType.ValueType # 4
538
510
  CPU_TYPE_GRAVITON: CPUType.ValueType # 5
539
- global___CPUType = CPUType
511
+ Global___CPUType: _TypeAlias = CPUType # noqa: Y015
540
512
 
541
513
  class _ModerationLevel:
542
- ValueType = typing.NewType("ValueType", builtins.int)
543
- V: typing_extensions.TypeAlias = ValueType
514
+ ValueType = _typing.NewType("ValueType", _builtins.int)
515
+ V: _TypeAlias = ValueType # noqa: Y015
544
516
 
545
517
  class _ModerationLevelEnumTypeWrapper(
546
- google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[
547
- _ModerationLevel.ValueType
548
- ],
549
- builtins.type,
518
+ _enum_type_wrapper._EnumTypeWrapper[_ModerationLevel.ValueType], _builtins.type
550
519
  ):
551
- DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
520
+ DESCRIPTOR: _descriptor.EnumDescriptor
552
521
  MODERATION_LEVEL_UNSPECIFIED: _ModerationLevel.ValueType # 0
553
522
  MODERATION_LEVEL_NONE: _ModerationLevel.ValueType # 1
554
523
  MODERATION_LEVEL_LOW: _ModerationLevel.ValueType # 2
@@ -565,17 +534,16 @@ MODERATION_LEVEL_LOW: ModerationLevel.ValueType # 2
565
534
  MODERATION_LEVEL_MEDIUM: ModerationLevel.ValueType # 3
566
535
  MODERATION_LEVEL_HIGH: ModerationLevel.ValueType # 4
567
536
  MODERATION_LEVEL_STRICT: ModerationLevel.ValueType # 5
568
- global___ModerationLevel = ModerationLevel
537
+ Global___ModerationLevel: _TypeAlias = ModerationLevel # noqa: Y015
569
538
 
570
539
  class _LicenseType:
571
- ValueType = typing.NewType("ValueType", builtins.int)
572
- V: typing_extensions.TypeAlias = ValueType
540
+ ValueType = _typing.NewType("ValueType", _builtins.int)
541
+ V: _TypeAlias = ValueType # noqa: Y015
573
542
 
574
543
  class _LicenseTypeEnumTypeWrapper(
575
- google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[_LicenseType.ValueType],
576
- builtins.type,
544
+ _enum_type_wrapper._EnumTypeWrapper[_LicenseType.ValueType], _builtins.type
577
545
  ):
578
- DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
546
+ DESCRIPTOR: _descriptor.EnumDescriptor
579
547
  LICENSE_TYPE_UNSPECIFIED: _LicenseType.ValueType # 0
580
548
  LICENSE_TYPE_MIT: _LicenseType.ValueType # 1
581
549
  LICENSE_TYPE_APACHE_2_0: _LicenseType.ValueType # 2
@@ -606,224 +574,253 @@ LICENSE_TYPE_CC_BY_NC: LicenseType.ValueType # 9
606
574
  LICENSE_TYPE_CC_BY_SA: LicenseType.ValueType # 10
607
575
  LICENSE_TYPE_LLAMA: LicenseType.ValueType # 11
608
576
  LICENSE_TYPE_OPENAI: LicenseType.ValueType # 12
609
- global___LicenseType = LicenseType
577
+ Global___LicenseType: _TypeAlias = LicenseType # noqa: Y015
610
578
 
611
- @typing.final
612
- class Architecture(google.protobuf.message.Message):
579
+ @_typing.final
580
+ class Architecture(_message.Message):
613
581
  """Architecture describes the technical architecture of an AI model."""
614
582
 
615
- DESCRIPTOR: google.protobuf.descriptor.Descriptor
616
-
617
- BASE_ARCHITECTURE_FIELD_NUMBER: builtins.int
618
- MODEL_ARCHITECTURE_FIELD_NUMBER: builtins.int
619
- PARAMETER_COUNT_FIELD_NUMBER: builtins.int
620
- ACTIVE_PARAMETERS_FIELD_NUMBER: builtins.int
621
- TOTAL_PARAMETERS_FIELD_NUMBER: builtins.int
622
- LAYER_COUNT_FIELD_NUMBER: builtins.int
623
- HIDDEN_SIZE_FIELD_NUMBER: builtins.int
624
- ATTENTION_HEADS_FIELD_NUMBER: builtins.int
625
- VOCABULARY_SIZE_FIELD_NUMBER: builtins.int
626
- POSITION_EMBEDDING_FIELD_NUMBER: builtins.int
627
- ACTIVATION_FUNCTION_FIELD_NUMBER: builtins.int
628
- IS_MIXTURE_OF_EXPERTS_FIELD_NUMBER: builtins.int
629
- EXPERT_COUNT_FIELD_NUMBER: builtins.int
630
- EXPERTS_PER_TOKEN_FIELD_NUMBER: builtins.int
631
- base_architecture: global___BaseArchitecture.ValueType
583
+ DESCRIPTOR: _descriptor.Descriptor
584
+
585
+ BASE_ARCHITECTURE_FIELD_NUMBER: _builtins.int
586
+ MODEL_ARCHITECTURE_FIELD_NUMBER: _builtins.int
587
+ PARAMETER_COUNT_FIELD_NUMBER: _builtins.int
588
+ ACTIVE_PARAMETERS_FIELD_NUMBER: _builtins.int
589
+ TOTAL_PARAMETERS_FIELD_NUMBER: _builtins.int
590
+ LAYER_COUNT_FIELD_NUMBER: _builtins.int
591
+ HIDDEN_SIZE_FIELD_NUMBER: _builtins.int
592
+ ATTENTION_HEADS_FIELD_NUMBER: _builtins.int
593
+ VOCABULARY_SIZE_FIELD_NUMBER: _builtins.int
594
+ POSITION_EMBEDDING_FIELD_NUMBER: _builtins.int
595
+ ACTIVATION_FUNCTION_FIELD_NUMBER: _builtins.int
596
+ IS_MIXTURE_OF_EXPERTS_FIELD_NUMBER: _builtins.int
597
+ EXPERT_COUNT_FIELD_NUMBER: _builtins.int
598
+ EXPERTS_PER_TOKEN_FIELD_NUMBER: _builtins.int
599
+ base_architecture: Global___BaseArchitecture.ValueType
632
600
  """Fundamental architecture type (Transformer, Mamba, etc.).
633
601
  Example: BASE_ARCHITECTURE_TRANSFORMER for GPT models
634
602
  """
635
- model_architecture: global___ModelArchitecture.ValueType
603
+ model_architecture: Global___ModelArchitecture.ValueType
636
604
  """Specific model family/variant.
637
605
  Example: MODEL_ARCHITECTURE_GPT for GPT-4, MODEL_ARCHITECTURE_LLAMA for LLaMA
638
606
  """
639
- parameter_count: builtins.int
607
+ parameter_count: _builtins.int
640
608
  """Total learnable parameters in billions.
641
609
  Example: 175 for GPT-3 (175B parameters)
642
610
  """
643
- active_parameters: builtins.int
611
+ active_parameters: _builtins.int
644
612
  """Parameters activated per forward pass (for MoE models).
645
613
  Example: 8B active out of 141B total for Mixtral-8x7B
646
614
  """
647
- total_parameters: builtins.int
615
+ total_parameters: _builtins.int
648
616
  """Total parameters including non-trainable (embeddings, etc.).
649
617
  May be slightly higher than parameter_count
650
618
  """
651
- layer_count: builtins.int
619
+ layer_count: _builtins.int
652
620
  """Number of transformer/attention layers.
653
621
  Example: 96 for GPT-3, 32 for 7B models
654
622
  """
655
- hidden_size: builtins.int
623
+ hidden_size: _builtins.int
656
624
  """Hidden dimension size of the model.
657
625
  Example: 12288 for GPT-3, 4096 for smaller models
658
626
  """
659
- attention_heads: builtins.int
627
+ attention_heads: _builtins.int
660
628
  """Number of attention heads in multi-head attention.
661
629
  Example: 96 for GPT-3, 32 for 7B models
662
630
  """
663
- vocabulary_size: builtins.int
631
+ vocabulary_size: _builtins.int
664
632
  """Size of the token vocabulary.
665
633
  Example: 50257 for GPT-2/3, 32000 for LLaMA
666
634
  """
667
- position_embedding: global___PositionEmbedding.ValueType
635
+ position_embedding: Global___PositionEmbedding.ValueType
668
636
  """Type of position encoding used.
669
637
  Example: POSITION_EMBEDDING_ROTARY for modern models (RoPE)
670
638
  """
671
- activation_function: global___ActivationFunction.ValueType
639
+ activation_function: Global___ActivationFunction.ValueType
672
640
  """Activation function in feed-forward layers.
673
641
  Example: ACTIVATION_FUNCTION_SWIGLU for LLaMA models
674
642
  """
675
- is_mixture_of_experts: builtins.bool
643
+ is_mixture_of_experts: _builtins.bool
676
644
  """Whether this is a Mixture of Experts model.
677
645
  Example: true for Mixtral, GPT-4 (rumored), false for dense models
678
646
  """
679
- expert_count: builtins.int
647
+ expert_count: _builtins.int
680
648
  """Total number of expert networks (for MoE).
681
649
  Example: 8 for Mixtral-8x7B
682
650
  """
683
- experts_per_token: builtins.int
651
+ experts_per_token: _builtins.int
684
652
  """Number of experts activated per token (for MoE).
685
653
  Example: 2 for Mixtral (2 experts per token out of 8)
686
654
  """
687
655
  def __init__(
688
656
  self,
689
657
  *,
690
- base_architecture: global___BaseArchitecture.ValueType = ...,
691
- model_architecture: global___ModelArchitecture.ValueType = ...,
692
- parameter_count: builtins.int = ...,
693
- active_parameters: builtins.int = ...,
694
- total_parameters: builtins.int = ...,
695
- layer_count: builtins.int = ...,
696
- hidden_size: builtins.int = ...,
697
- attention_heads: builtins.int = ...,
698
- vocabulary_size: builtins.int = ...,
699
- position_embedding: global___PositionEmbedding.ValueType = ...,
700
- activation_function: global___ActivationFunction.ValueType = ...,
701
- is_mixture_of_experts: builtins.bool = ...,
702
- expert_count: builtins.int = ...,
703
- experts_per_token: builtins.int = ...,
704
- ) -> None: ...
705
- def ClearField(
706
- self,
707
- field_name: typing.Literal[
708
- "activation_function",
709
- b"activation_function",
710
- "active_parameters",
711
- b"active_parameters",
712
- "attention_heads",
713
- b"attention_heads",
714
- "base_architecture",
715
- b"base_architecture",
716
- "expert_count",
717
- b"expert_count",
718
- "experts_per_token",
719
- b"experts_per_token",
720
- "hidden_size",
721
- b"hidden_size",
722
- "is_mixture_of_experts",
723
- b"is_mixture_of_experts",
724
- "layer_count",
725
- b"layer_count",
726
- "model_architecture",
727
- b"model_architecture",
728
- "parameter_count",
729
- b"parameter_count",
730
- "position_embedding",
731
- b"position_embedding",
732
- "total_parameters",
733
- b"total_parameters",
734
- "vocabulary_size",
735
- b"vocabulary_size",
736
- ],
658
+ base_architecture: Global___BaseArchitecture.ValueType | None = ...,
659
+ model_architecture: Global___ModelArchitecture.ValueType | None = ...,
660
+ parameter_count: _builtins.int | None = ...,
661
+ active_parameters: _builtins.int | None = ...,
662
+ total_parameters: _builtins.int | None = ...,
663
+ layer_count: _builtins.int | None = ...,
664
+ hidden_size: _builtins.int | None = ...,
665
+ attention_heads: _builtins.int | None = ...,
666
+ vocabulary_size: _builtins.int | None = ...,
667
+ position_embedding: Global___PositionEmbedding.ValueType | None = ...,
668
+ activation_function: Global___ActivationFunction.ValueType | None = ...,
669
+ is_mixture_of_experts: _builtins.bool | None = ...,
670
+ expert_count: _builtins.int | None = ...,
671
+ experts_per_token: _builtins.int | None = ...,
737
672
  ) -> None: ...
738
-
739
- global___Architecture = Architecture
740
-
741
- @typing.final
742
- class Training(google.protobuf.message.Message):
673
+ _HasFieldArgType: _TypeAlias = _typing.Literal[
674
+ "activation_function",
675
+ b"activation_function",
676
+ "active_parameters",
677
+ b"active_parameters",
678
+ "attention_heads",
679
+ b"attention_heads",
680
+ "base_architecture",
681
+ b"base_architecture",
682
+ "expert_count",
683
+ b"expert_count",
684
+ "experts_per_token",
685
+ b"experts_per_token",
686
+ "hidden_size",
687
+ b"hidden_size",
688
+ "is_mixture_of_experts",
689
+ b"is_mixture_of_experts",
690
+ "layer_count",
691
+ b"layer_count",
692
+ "model_architecture",
693
+ b"model_architecture",
694
+ "parameter_count",
695
+ b"parameter_count",
696
+ "position_embedding",
697
+ b"position_embedding",
698
+ "total_parameters",
699
+ b"total_parameters",
700
+ "vocabulary_size",
701
+ b"vocabulary_size",
702
+ ] # noqa: Y015
703
+ def HasField(self, field_name: _HasFieldArgType) -> _builtins.bool: ...
704
+ _ClearFieldArgType: _TypeAlias = _typing.Literal[
705
+ "activation_function",
706
+ b"activation_function",
707
+ "active_parameters",
708
+ b"active_parameters",
709
+ "attention_heads",
710
+ b"attention_heads",
711
+ "base_architecture",
712
+ b"base_architecture",
713
+ "expert_count",
714
+ b"expert_count",
715
+ "experts_per_token",
716
+ b"experts_per_token",
717
+ "hidden_size",
718
+ b"hidden_size",
719
+ "is_mixture_of_experts",
720
+ b"is_mixture_of_experts",
721
+ "layer_count",
722
+ b"layer_count",
723
+ "model_architecture",
724
+ b"model_architecture",
725
+ "parameter_count",
726
+ b"parameter_count",
727
+ "position_embedding",
728
+ b"position_embedding",
729
+ "total_parameters",
730
+ b"total_parameters",
731
+ "vocabulary_size",
732
+ b"vocabulary_size",
733
+ ] # noqa: Y015
734
+ def ClearField(self, field_name: _ClearFieldArgType) -> None: ...
735
+
736
+ Global___Architecture: _TypeAlias = Architecture # noqa: Y015
737
+
738
+ @_typing.final
739
+ class Training(_message.Message):
743
740
  """Training contains information about how the model was trained."""
744
741
 
745
- DESCRIPTOR: google.protobuf.descriptor.Descriptor
746
-
747
- TRAINING_DATA_SIZE_FIELD_NUMBER: builtins.int
748
- TRAINING_DATA_SOURCES_FIELD_NUMBER: builtins.int
749
- DATA_MIXTURE_FIELD_NUMBER: builtins.int
750
- TRAINING_DURATION_FIELD_NUMBER: builtins.int
751
- TRAINING_HARDWARE_FIELD_NUMBER: builtins.int
752
- TRAINING_COST_FIELD_NUMBER: builtins.int
753
- TRAINING_TECHNIQUE_FIELD_NUMBER: builtins.int
754
- BATCH_SIZE_FIELD_NUMBER: builtins.int
755
- LEARNING_RATE_FIELD_NUMBER: builtins.int
756
- TRAINING_STEPS_FIELD_NUMBER: builtins.int
757
- WARMUP_STEPS_FIELD_NUMBER: builtins.int
758
- FINE_TUNING_AVAILABLE_FIELD_NUMBER: builtins.int
759
- MIN_FINE_TUNE_EXAMPLES_FIELD_NUMBER: builtins.int
760
- MAX_FINE_TUNE_EXAMPLES_FIELD_NUMBER: builtins.int
761
- FINE_TUNE_FORMATS_FIELD_NUMBER: builtins.int
762
- training_data_size: builtins.str
742
+ DESCRIPTOR: _descriptor.Descriptor
743
+
744
+ TRAINING_DATA_SIZE_FIELD_NUMBER: _builtins.int
745
+ TRAINING_DATA_SOURCES_FIELD_NUMBER: _builtins.int
746
+ DATA_MIXTURE_FIELD_NUMBER: _builtins.int
747
+ TRAINING_DURATION_FIELD_NUMBER: _builtins.int
748
+ TRAINING_HARDWARE_FIELD_NUMBER: _builtins.int
749
+ TRAINING_COST_FIELD_NUMBER: _builtins.int
750
+ TRAINING_TECHNIQUE_FIELD_NUMBER: _builtins.int
751
+ BATCH_SIZE_FIELD_NUMBER: _builtins.int
752
+ LEARNING_RATE_FIELD_NUMBER: _builtins.int
753
+ TRAINING_STEPS_FIELD_NUMBER: _builtins.int
754
+ WARMUP_STEPS_FIELD_NUMBER: _builtins.int
755
+ FINE_TUNING_AVAILABLE_FIELD_NUMBER: _builtins.int
756
+ MIN_FINE_TUNE_EXAMPLES_FIELD_NUMBER: _builtins.int
757
+ MAX_FINE_TUNE_EXAMPLES_FIELD_NUMBER: _builtins.int
758
+ FINE_TUNE_FORMATS_FIELD_NUMBER: _builtins.int
759
+ training_data_size: _builtins.str
763
760
  """Size of training dataset.
764
761
  Examples: "1T tokens", "45TB text", "100B tokens"
765
762
  """
766
- data_mixture: builtins.str
763
+ data_mixture: _builtins.str
767
764
  """Description of data mixture/proportions.
768
765
  Example: "60% web, 20% books, 10% code, 10% reference"
769
766
  """
770
- training_duration: builtins.str
767
+ training_duration: _builtins.str
771
768
  """Total training time.
772
769
  Examples: "3 months", "6 weeks", "90 days"
773
770
  """
774
- training_hardware: builtins.str
771
+ training_hardware: _builtins.str
775
772
  """Hardware used for training.
776
773
  Examples: "10000 H100 GPUs", "512 A100 80GB", "TPU v4 pods"
777
774
  """
778
- training_cost: builtins.str
775
+ training_cost: _builtins.str
779
776
  """Estimated training cost.
780
777
  Examples: "$100M", "$4.6M", "Not disclosed"
781
778
  """
782
- training_technique: global___TrainingTechnique.ValueType
779
+ training_technique: Global___TrainingTechnique.ValueType
783
780
  """Primary training technique used.
784
781
  Example: TRAINING_TECHNIQUE_REINFORCEMENT_LEARNING_FROM_HUMAN_FEEDBACK
785
782
  """
786
- batch_size: builtins.int
783
+ batch_size: _builtins.int
787
784
  """Training batch size per step.
788
785
  Example: 2048, 4096
789
786
  """
790
- learning_rate: builtins.float
787
+ learning_rate: _builtins.float
791
788
  """Peak learning rate used.
792
789
  Example: 0.0001, 3e-4
793
790
  """
794
- training_steps: builtins.int
791
+ training_steps: _builtins.int
795
792
  """Total number of training steps/iterations.
796
793
  Example: 1000000
797
794
  """
798
- warmup_steps: builtins.int
795
+ warmup_steps: _builtins.int
799
796
  """Number of warmup steps for learning rate schedule.
800
797
  Example: 2000
801
798
  """
802
- fine_tuning_available: builtins.bool
799
+ fine_tuning_available: _builtins.bool
803
800
  """Whether model supports fine-tuning via API.
804
801
  Example: true for GPT-3.5, false for GPT-4
805
802
  """
806
- min_fine_tune_examples: builtins.int
803
+ min_fine_tune_examples: _builtins.int
807
804
  """Minimum training examples required for fine-tuning.
808
805
  Example: 10 for OpenAI models
809
806
  """
810
- max_fine_tune_examples: builtins.int
807
+ max_fine_tune_examples: _builtins.int
811
808
  """Maximum training examples allowed for fine-tuning.
812
809
  Example: 100000 for GPT-3.5
813
810
  """
814
- @property
811
+ @_builtins.property
815
812
  def training_data_sources(
816
813
  self,
817
- ) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[builtins.str]:
814
+ ) -> _containers.RepeatedScalarFieldContainer[_builtins.str]:
818
815
  """List of data sources used for training.
819
816
  Examples: ["Common Crawl", "Wikipedia", "Books", "GitHub", "ArXiv"]
820
817
  """
821
818
 
822
- @property
819
+ @_builtins.property
823
820
  def fine_tune_formats(
824
821
  self,
825
- ) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[
826
- weaveapi.llmx.v1.capabilities_pb2.DataFormat.ValueType
822
+ ) -> _containers.RepeatedScalarFieldContainer[
823
+ _capabilities_pb2.DataFormat.ValueType
827
824
  ]:
828
825
  """Supported data formats for fine-tuning.
829
826
  Example: [DATA_FORMAT_JSONL, DATA_FORMAT_CSV]
@@ -832,187 +829,212 @@ class Training(google.protobuf.message.Message):
832
829
  def __init__(
833
830
  self,
834
831
  *,
835
- training_data_size: builtins.str = ...,
836
- training_data_sources: collections.abc.Iterable[builtins.str] | None = ...,
837
- data_mixture: builtins.str = ...,
838
- training_duration: builtins.str = ...,
839
- training_hardware: builtins.str = ...,
840
- training_cost: builtins.str = ...,
841
- training_technique: global___TrainingTechnique.ValueType = ...,
842
- batch_size: builtins.int = ...,
843
- learning_rate: builtins.float = ...,
844
- training_steps: builtins.int = ...,
845
- warmup_steps: builtins.int = ...,
846
- fine_tuning_available: builtins.bool = ...,
847
- min_fine_tune_examples: builtins.int = ...,
848
- max_fine_tune_examples: builtins.int = ...,
849
- fine_tune_formats: collections.abc.Iterable[
850
- weaveapi.llmx.v1.capabilities_pb2.DataFormat.ValueType
851
- ]
832
+ training_data_size: _builtins.str | None = ...,
833
+ training_data_sources: _abc.Iterable[_builtins.str] | None = ...,
834
+ data_mixture: _builtins.str | None = ...,
835
+ training_duration: _builtins.str | None = ...,
836
+ training_hardware: _builtins.str | None = ...,
837
+ training_cost: _builtins.str | None = ...,
838
+ training_technique: Global___TrainingTechnique.ValueType | None = ...,
839
+ batch_size: _builtins.int | None = ...,
840
+ learning_rate: _builtins.float | None = ...,
841
+ training_steps: _builtins.int | None = ...,
842
+ warmup_steps: _builtins.int | None = ...,
843
+ fine_tuning_available: _builtins.bool | None = ...,
844
+ min_fine_tune_examples: _builtins.int | None = ...,
845
+ max_fine_tune_examples: _builtins.int | None = ...,
846
+ fine_tune_formats: _abc.Iterable[_capabilities_pb2.DataFormat.ValueType]
852
847
  | None = ...,
853
848
  ) -> None: ...
854
- def ClearField(
855
- self,
856
- field_name: typing.Literal[
857
- "batch_size",
858
- b"batch_size",
859
- "data_mixture",
860
- b"data_mixture",
861
- "fine_tune_formats",
862
- b"fine_tune_formats",
863
- "fine_tuning_available",
864
- b"fine_tuning_available",
865
- "learning_rate",
866
- b"learning_rate",
867
- "max_fine_tune_examples",
868
- b"max_fine_tune_examples",
869
- "min_fine_tune_examples",
870
- b"min_fine_tune_examples",
871
- "training_cost",
872
- b"training_cost",
873
- "training_data_size",
874
- b"training_data_size",
875
- "training_data_sources",
876
- b"training_data_sources",
877
- "training_duration",
878
- b"training_duration",
879
- "training_hardware",
880
- b"training_hardware",
881
- "training_steps",
882
- b"training_steps",
883
- "training_technique",
884
- b"training_technique",
885
- "warmup_steps",
886
- b"warmup_steps",
887
- ],
888
- ) -> None: ...
889
-
890
- global___Training = Training
891
-
892
- @typing.final
893
- class TechnicalSpecs(google.protobuf.message.Message):
849
+ _HasFieldArgType: _TypeAlias = _typing.Literal[
850
+ "batch_size",
851
+ b"batch_size",
852
+ "data_mixture",
853
+ b"data_mixture",
854
+ "fine_tune_formats",
855
+ b"fine_tune_formats",
856
+ "fine_tuning_available",
857
+ b"fine_tuning_available",
858
+ "learning_rate",
859
+ b"learning_rate",
860
+ "max_fine_tune_examples",
861
+ b"max_fine_tune_examples",
862
+ "min_fine_tune_examples",
863
+ b"min_fine_tune_examples",
864
+ "training_cost",
865
+ b"training_cost",
866
+ "training_data_size",
867
+ b"training_data_size",
868
+ "training_data_sources",
869
+ b"training_data_sources",
870
+ "training_duration",
871
+ b"training_duration",
872
+ "training_hardware",
873
+ b"training_hardware",
874
+ "training_steps",
875
+ b"training_steps",
876
+ "training_technique",
877
+ b"training_technique",
878
+ "warmup_steps",
879
+ b"warmup_steps",
880
+ ] # noqa: Y015
881
+ def HasField(self, field_name: _HasFieldArgType) -> _builtins.bool: ...
882
+ _ClearFieldArgType: _TypeAlias = _typing.Literal[
883
+ "batch_size",
884
+ b"batch_size",
885
+ "data_mixture",
886
+ b"data_mixture",
887
+ "fine_tune_formats",
888
+ b"fine_tune_formats",
889
+ "fine_tuning_available",
890
+ b"fine_tuning_available",
891
+ "learning_rate",
892
+ b"learning_rate",
893
+ "max_fine_tune_examples",
894
+ b"max_fine_tune_examples",
895
+ "min_fine_tune_examples",
896
+ b"min_fine_tune_examples",
897
+ "training_cost",
898
+ b"training_cost",
899
+ "training_data_size",
900
+ b"training_data_size",
901
+ "training_data_sources",
902
+ b"training_data_sources",
903
+ "training_duration",
904
+ b"training_duration",
905
+ "training_hardware",
906
+ b"training_hardware",
907
+ "training_steps",
908
+ b"training_steps",
909
+ "training_technique",
910
+ b"training_technique",
911
+ "warmup_steps",
912
+ b"warmup_steps",
913
+ ] # noqa: Y015
914
+ def ClearField(self, field_name: _ClearFieldArgType) -> None: ...
915
+
916
+ Global___Training: _TypeAlias = Training # noqa: Y015
917
+
918
+ @_typing.final
919
+ class TechnicalSpecs(_message.Message):
894
920
  """TechnicalSpecs contains hardware and software requirements for running the model."""
895
921
 
896
- DESCRIPTOR: google.protobuf.descriptor.Descriptor
897
-
898
- MIN_MEMORY_GB_FIELD_NUMBER: builtins.int
899
- RECOMMENDED_MEMORY_GB_FIELD_NUMBER: builtins.int
900
- MIN_GPU_MEMORY_GB_FIELD_NUMBER: builtins.int
901
- STORAGE_GB_FIELD_NUMBER: builtins.int
902
- QUANTIZATION_FIELD_NUMBER: builtins.int
903
- PRECISION_FIELD_NUMBER: builtins.int
904
- OPTIMIZATION_LEVEL_FIELD_NUMBER: builtins.int
905
- SUPPORTED_GPUS_FIELD_NUMBER: builtins.int
906
- REQUIRES_CUDA_FIELD_NUMBER: builtins.int
907
- CUDA_VERSION_FIELD_NUMBER: builtins.int
908
- INFERENCE_FRAMEWORK_FIELD_NUMBER: builtins.int
909
- MODEL_FORMAT_FIELD_NUMBER: builtins.int
910
- MODEL_SIZE_GB_FIELD_NUMBER: builtins.int
911
- CHECKPOINT_FORMAT_FIELD_NUMBER: builtins.int
912
- NUMBER_OF_FILES_FIELD_NUMBER: builtins.int
913
- SUPPORTED_CPUS_FIELD_NUMBER: builtins.int
914
- SERVING_FRAMEWORK_FIELD_NUMBER: builtins.int
915
- CONTAINER_IMAGE_FIELD_NUMBER: builtins.int
916
- MINIMUM_GPU_FIELD_NUMBER: builtins.int
917
- MINIMUM_GPU_MEMORY_GB_FIELD_NUMBER: builtins.int
918
- CPU_COMPATIBLE_FIELD_NUMBER: builtins.int
919
- RECOMMENDED_GPU_MEMORY_GB_FIELD_NUMBER: builtins.int
920
- min_memory_gb: builtins.int
922
+ DESCRIPTOR: _descriptor.Descriptor
923
+
924
+ MIN_MEMORY_GB_FIELD_NUMBER: _builtins.int
925
+ RECOMMENDED_MEMORY_GB_FIELD_NUMBER: _builtins.int
926
+ MIN_GPU_MEMORY_GB_FIELD_NUMBER: _builtins.int
927
+ STORAGE_GB_FIELD_NUMBER: _builtins.int
928
+ QUANTIZATION_FIELD_NUMBER: _builtins.int
929
+ PRECISION_FIELD_NUMBER: _builtins.int
930
+ OPTIMIZATION_LEVEL_FIELD_NUMBER: _builtins.int
931
+ SUPPORTED_GPUS_FIELD_NUMBER: _builtins.int
932
+ REQUIRES_CUDA_FIELD_NUMBER: _builtins.int
933
+ CUDA_VERSION_FIELD_NUMBER: _builtins.int
934
+ INFERENCE_FRAMEWORK_FIELD_NUMBER: _builtins.int
935
+ MODEL_FORMAT_FIELD_NUMBER: _builtins.int
936
+ MODEL_SIZE_GB_FIELD_NUMBER: _builtins.int
937
+ CHECKPOINT_FORMAT_FIELD_NUMBER: _builtins.int
938
+ NUMBER_OF_FILES_FIELD_NUMBER: _builtins.int
939
+ SUPPORTED_CPUS_FIELD_NUMBER: _builtins.int
940
+ SERVING_FRAMEWORK_FIELD_NUMBER: _builtins.int
941
+ CONTAINER_IMAGE_FIELD_NUMBER: _builtins.int
942
+ MINIMUM_GPU_FIELD_NUMBER: _builtins.int
943
+ MINIMUM_GPU_MEMORY_GB_FIELD_NUMBER: _builtins.int
944
+ CPU_COMPATIBLE_FIELD_NUMBER: _builtins.int
945
+ RECOMMENDED_GPU_MEMORY_GB_FIELD_NUMBER: _builtins.int
946
+ min_memory_gb: _builtins.int
921
947
  """Minimum system RAM required in GB.
922
948
  Example: 32 for 7B models, 64 for 13B models
923
949
  """
924
- recommended_memory_gb: builtins.int
950
+ recommended_memory_gb: _builtins.int
925
951
  """Recommended system RAM for optimal performance in GB.
926
952
  Example: 64 for 7B models, 128 for 13B models
927
953
  """
928
- min_gpu_memory_gb: builtins.int
954
+ min_gpu_memory_gb: _builtins.int
929
955
  """Minimum GPU VRAM required in GB.
930
956
  Example: 24 for 7B fp16, 48 for 13B fp16
931
957
  """
932
- storage_gb: builtins.int
958
+ storage_gb: _builtins.int
933
959
  """Disk storage required for model files in GB.
934
960
  Example: 15 for 7B models, 30 for 13B models
935
961
  """
936
- quantization: global___Quantization.ValueType
962
+ quantization: Global___Quantization.ValueType
937
963
  """Quantization method if applicable.
938
964
  Example: QUANTIZATION_INT8 for 8-bit quantized models
939
965
  """
940
- precision: global___Precision.ValueType
966
+ precision: Global___Precision.ValueType
941
967
  """Numerical precision used.
942
968
  Example: PRECISION_FP16 for half-precision inference
943
969
  """
944
- optimization_level: builtins.str
970
+ optimization_level: _builtins.str
945
971
  """Optimization level/profile.
946
972
  Examples: "O3", "fast", "balanced", "memory-optimized"
947
973
  """
948
- requires_cuda: builtins.bool
974
+ requires_cuda: _builtins.bool
949
975
  """Whether CUDA is required for GPU inference.
950
976
  Example: true for NVIDIA GPUs, false for CPU-only
951
977
  """
952
- cuda_version: builtins.str
978
+ cuda_version: _builtins.str
953
979
  """Minimum CUDA version required.
954
980
  Examples: "11.8", "12.0"
955
981
  """
956
- inference_framework: global___InferenceFramework.ValueType
982
+ inference_framework: Global___InferenceFramework.ValueType
957
983
  """Recommended inference framework.
958
984
  Example: INFERENCE_FRAMEWORK_VLLM for high-throughput serving
959
985
  """
960
- model_format: global___ModelFormat.ValueType
986
+ model_format: Global___ModelFormat.ValueType
961
987
  """Format of distributed model files.
962
988
  Example: MODEL_FORMAT_SAFETENSORS for HuggingFace models
963
989
  """
964
- model_size_gb: builtins.float
990
+ model_size_gb: _builtins.float
965
991
  """Total size of model files in GB.
966
992
  Example: 13.5 for 7B model in fp16
967
993
  """
968
- checkpoint_format: global___CheckpointFormat.ValueType
994
+ checkpoint_format: Global___CheckpointFormat.ValueType
969
995
  """Format of model checkpoint files.
970
996
  Example: CHECKPOINT_FORMAT_PYTORCH for .pt files
971
997
  """
972
- number_of_files: builtins.int
998
+ number_of_files: _builtins.int
973
999
  """Number of model shard files.
974
1000
  Example: 2 for models split across multiple files
975
1001
  """
976
- serving_framework: builtins.str
1002
+ serving_framework: _builtins.str
977
1003
  """Serving framework/stack.
978
1004
  Examples: "TGI", "vLLM", "llama.cpp"
979
1005
  """
980
- container_image: builtins.str
1006
+ container_image: _builtins.str
981
1007
  """Pre-built container image if available.
982
1008
  Example: "nvcr.io/nvidia/pytorch:23.10-py3"
983
1009
  """
984
- minimum_gpu: global___GPUType.ValueType
1010
+ minimum_gpu: Global___GPUType.ValueType
985
1011
  """Minimum GPU for reasonable performance.
986
1012
  Example: GPU_TYPE_RTX_3090 for 7B models
987
1013
  """
988
- minimum_gpu_memory_gb: builtins.int
1014
+ minimum_gpu_memory_gb: _builtins.int
989
1015
  """Minimum GPU memory for basic inference in GB.
990
1016
  Example: 16 for 7B int8 models
991
1017
  """
992
- cpu_compatible: builtins.bool
1018
+ cpu_compatible: _builtins.bool
993
1019
  """Whether model can run on CPU (even if slowly).
994
1020
  Example: true for smaller quantized models
995
1021
  """
996
- recommended_gpu_memory_gb: builtins.int
1022
+ recommended_gpu_memory_gb: _builtins.int
997
1023
  """Recommended GPU memory for good performance in GB.
998
1024
  Example: 24 for 7B fp16 with reasonable batch size
999
1025
  """
1000
- @property
1026
+ @_builtins.property
1001
1027
  def supported_gpus(
1002
1028
  self,
1003
- ) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[
1004
- global___GPUType.ValueType
1005
- ]:
1029
+ ) -> _containers.RepeatedScalarFieldContainer[Global___GPUType.ValueType]:
1006
1030
  """List of compatible GPU types.
1007
1031
  Example: [GPU_TYPE_A100, GPU_TYPE_H100, GPU_TYPE_RTX_4090]
1008
1032
  """
1009
1033
 
1010
- @property
1034
+ @_builtins.property
1011
1035
  def supported_cpus(
1012
1036
  self,
1013
- ) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[
1014
- global___CPUType.ValueType
1015
- ]:
1037
+ ) -> _containers.RepeatedScalarFieldContainer[Global___CPUType.ValueType]:
1016
1038
  """List of compatible CPU architectures.
1017
1039
  Example: [CPU_TYPE_X86_64, CPU_TYPE_ARM64]
1018
1040
  """
@@ -1020,158 +1042,199 @@ class TechnicalSpecs(google.protobuf.message.Message):
1020
1042
  def __init__(
1021
1043
  self,
1022
1044
  *,
1023
- min_memory_gb: builtins.int = ...,
1024
- recommended_memory_gb: builtins.int = ...,
1025
- min_gpu_memory_gb: builtins.int = ...,
1026
- storage_gb: builtins.int = ...,
1027
- quantization: global___Quantization.ValueType = ...,
1028
- precision: global___Precision.ValueType = ...,
1029
- optimization_level: builtins.str = ...,
1030
- supported_gpus: collections.abc.Iterable[global___GPUType.ValueType]
1031
- | None = ...,
1032
- requires_cuda: builtins.bool = ...,
1033
- cuda_version: builtins.str = ...,
1034
- inference_framework: global___InferenceFramework.ValueType = ...,
1035
- model_format: global___ModelFormat.ValueType = ...,
1036
- model_size_gb: builtins.float = ...,
1037
- checkpoint_format: global___CheckpointFormat.ValueType = ...,
1038
- number_of_files: builtins.int = ...,
1039
- supported_cpus: collections.abc.Iterable[global___CPUType.ValueType]
1040
- | None = ...,
1041
- serving_framework: builtins.str = ...,
1042
- container_image: builtins.str = ...,
1043
- minimum_gpu: global___GPUType.ValueType = ...,
1044
- minimum_gpu_memory_gb: builtins.int = ...,
1045
- cpu_compatible: builtins.bool = ...,
1046
- recommended_gpu_memory_gb: builtins.int = ...,
1045
+ min_memory_gb: _builtins.int | None = ...,
1046
+ recommended_memory_gb: _builtins.int | None = ...,
1047
+ min_gpu_memory_gb: _builtins.int | None = ...,
1048
+ storage_gb: _builtins.int | None = ...,
1049
+ quantization: Global___Quantization.ValueType | None = ...,
1050
+ precision: Global___Precision.ValueType | None = ...,
1051
+ optimization_level: _builtins.str | None = ...,
1052
+ supported_gpus: _abc.Iterable[Global___GPUType.ValueType] | None = ...,
1053
+ requires_cuda: _builtins.bool | None = ...,
1054
+ cuda_version: _builtins.str | None = ...,
1055
+ inference_framework: Global___InferenceFramework.ValueType | None = ...,
1056
+ model_format: Global___ModelFormat.ValueType | None = ...,
1057
+ model_size_gb: _builtins.float | None = ...,
1058
+ checkpoint_format: Global___CheckpointFormat.ValueType | None = ...,
1059
+ number_of_files: _builtins.int | None = ...,
1060
+ supported_cpus: _abc.Iterable[Global___CPUType.ValueType] | None = ...,
1061
+ serving_framework: _builtins.str | None = ...,
1062
+ container_image: _builtins.str | None = ...,
1063
+ minimum_gpu: Global___GPUType.ValueType | None = ...,
1064
+ minimum_gpu_memory_gb: _builtins.int | None = ...,
1065
+ cpu_compatible: _builtins.bool | None = ...,
1066
+ recommended_gpu_memory_gb: _builtins.int | None = ...,
1047
1067
  ) -> None: ...
1048
- def ClearField(
1049
- self,
1050
- field_name: typing.Literal[
1051
- "checkpoint_format",
1052
- b"checkpoint_format",
1053
- "container_image",
1054
- b"container_image",
1055
- "cpu_compatible",
1056
- b"cpu_compatible",
1057
- "cuda_version",
1058
- b"cuda_version",
1059
- "inference_framework",
1060
- b"inference_framework",
1061
- "min_gpu_memory_gb",
1062
- b"min_gpu_memory_gb",
1063
- "min_memory_gb",
1064
- b"min_memory_gb",
1065
- "minimum_gpu",
1066
- b"minimum_gpu",
1067
- "minimum_gpu_memory_gb",
1068
- b"minimum_gpu_memory_gb",
1069
- "model_format",
1070
- b"model_format",
1071
- "model_size_gb",
1072
- b"model_size_gb",
1073
- "number_of_files",
1074
- b"number_of_files",
1075
- "optimization_level",
1076
- b"optimization_level",
1077
- "precision",
1078
- b"precision",
1079
- "quantization",
1080
- b"quantization",
1081
- "recommended_gpu_memory_gb",
1082
- b"recommended_gpu_memory_gb",
1083
- "recommended_memory_gb",
1084
- b"recommended_memory_gb",
1085
- "requires_cuda",
1086
- b"requires_cuda",
1087
- "serving_framework",
1088
- b"serving_framework",
1089
- "storage_gb",
1090
- b"storage_gb",
1091
- "supported_cpus",
1092
- b"supported_cpus",
1093
- "supported_gpus",
1094
- b"supported_gpus",
1095
- ],
1096
- ) -> None: ...
1097
-
1098
- global___TechnicalSpecs = TechnicalSpecs
1099
-
1100
- @typing.final
1101
- class Safety(google.protobuf.message.Message):
1068
+ _HasFieldArgType: _TypeAlias = _typing.Literal[
1069
+ "checkpoint_format",
1070
+ b"checkpoint_format",
1071
+ "container_image",
1072
+ b"container_image",
1073
+ "cpu_compatible",
1074
+ b"cpu_compatible",
1075
+ "cuda_version",
1076
+ b"cuda_version",
1077
+ "inference_framework",
1078
+ b"inference_framework",
1079
+ "min_gpu_memory_gb",
1080
+ b"min_gpu_memory_gb",
1081
+ "min_memory_gb",
1082
+ b"min_memory_gb",
1083
+ "minimum_gpu",
1084
+ b"minimum_gpu",
1085
+ "minimum_gpu_memory_gb",
1086
+ b"minimum_gpu_memory_gb",
1087
+ "model_format",
1088
+ b"model_format",
1089
+ "model_size_gb",
1090
+ b"model_size_gb",
1091
+ "number_of_files",
1092
+ b"number_of_files",
1093
+ "optimization_level",
1094
+ b"optimization_level",
1095
+ "precision",
1096
+ b"precision",
1097
+ "quantization",
1098
+ b"quantization",
1099
+ "recommended_gpu_memory_gb",
1100
+ b"recommended_gpu_memory_gb",
1101
+ "recommended_memory_gb",
1102
+ b"recommended_memory_gb",
1103
+ "requires_cuda",
1104
+ b"requires_cuda",
1105
+ "serving_framework",
1106
+ b"serving_framework",
1107
+ "storage_gb",
1108
+ b"storage_gb",
1109
+ "supported_cpus",
1110
+ b"supported_cpus",
1111
+ "supported_gpus",
1112
+ b"supported_gpus",
1113
+ ] # noqa: Y015
1114
+ def HasField(self, field_name: _HasFieldArgType) -> _builtins.bool: ...
1115
+ _ClearFieldArgType: _TypeAlias = _typing.Literal[
1116
+ "checkpoint_format",
1117
+ b"checkpoint_format",
1118
+ "container_image",
1119
+ b"container_image",
1120
+ "cpu_compatible",
1121
+ b"cpu_compatible",
1122
+ "cuda_version",
1123
+ b"cuda_version",
1124
+ "inference_framework",
1125
+ b"inference_framework",
1126
+ "min_gpu_memory_gb",
1127
+ b"min_gpu_memory_gb",
1128
+ "min_memory_gb",
1129
+ b"min_memory_gb",
1130
+ "minimum_gpu",
1131
+ b"minimum_gpu",
1132
+ "minimum_gpu_memory_gb",
1133
+ b"minimum_gpu_memory_gb",
1134
+ "model_format",
1135
+ b"model_format",
1136
+ "model_size_gb",
1137
+ b"model_size_gb",
1138
+ "number_of_files",
1139
+ b"number_of_files",
1140
+ "optimization_level",
1141
+ b"optimization_level",
1142
+ "precision",
1143
+ b"precision",
1144
+ "quantization",
1145
+ b"quantization",
1146
+ "recommended_gpu_memory_gb",
1147
+ b"recommended_gpu_memory_gb",
1148
+ "recommended_memory_gb",
1149
+ b"recommended_memory_gb",
1150
+ "requires_cuda",
1151
+ b"requires_cuda",
1152
+ "serving_framework",
1153
+ b"serving_framework",
1154
+ "storage_gb",
1155
+ b"storage_gb",
1156
+ "supported_cpus",
1157
+ b"supported_cpus",
1158
+ "supported_gpus",
1159
+ b"supported_gpus",
1160
+ ] # noqa: Y015
1161
+ def ClearField(self, field_name: _ClearFieldArgType) -> None: ...
1162
+
1163
+ Global___TechnicalSpecs: _TypeAlias = TechnicalSpecs # noqa: Y015
1164
+
1165
+ @_typing.final
1166
+ class Safety(_message.Message):
1102
1167
  """Safety contains safety, moderation, and compliance features."""
1103
1168
 
1104
- DESCRIPTOR: google.protobuf.descriptor.Descriptor
1105
-
1106
- MODERATION_LEVEL_FIELD_NUMBER: builtins.int
1107
- CONTENT_FILTERING_FIELD_NUMBER: builtins.int
1108
- SAFETY_FILTERS_FIELD_NUMBER: builtins.int
1109
- BIAS_RATING_FIELD_NUMBER: builtins.int
1110
- TOXICITY_SCORE_FIELD_NUMBER: builtins.int
1111
- GDPR_COMPLIANT_FIELD_NUMBER: builtins.int
1112
- HIPAA_COMPLIANT_FIELD_NUMBER: builtins.int
1113
- SOC2_COMPLIANT_FIELD_NUMBER: builtins.int
1114
- ISO_CERTIFIED_FIELD_NUMBER: builtins.int
1115
- REFUSAL_CAPABILITY_FIELD_NUMBER: builtins.int
1116
- WATERMARK_OUTPUT_FIELD_NUMBER: builtins.int
1117
- BUILT_IN_GUARDRAILS_FIELD_NUMBER: builtins.int
1118
- CUSTOM_GUARDRAILS_FIELD_NUMBER: builtins.int
1119
- moderation_level: global___ModerationLevel.ValueType
1169
+ DESCRIPTOR: _descriptor.Descriptor
1170
+
1171
+ MODERATION_LEVEL_FIELD_NUMBER: _builtins.int
1172
+ CONTENT_FILTERING_FIELD_NUMBER: _builtins.int
1173
+ SAFETY_FILTERS_FIELD_NUMBER: _builtins.int
1174
+ BIAS_RATING_FIELD_NUMBER: _builtins.int
1175
+ TOXICITY_SCORE_FIELD_NUMBER: _builtins.int
1176
+ GDPR_COMPLIANT_FIELD_NUMBER: _builtins.int
1177
+ HIPAA_COMPLIANT_FIELD_NUMBER: _builtins.int
1178
+ SOC2_COMPLIANT_FIELD_NUMBER: _builtins.int
1179
+ ISO_CERTIFIED_FIELD_NUMBER: _builtins.int
1180
+ REFUSAL_CAPABILITY_FIELD_NUMBER: _builtins.int
1181
+ WATERMARK_OUTPUT_FIELD_NUMBER: _builtins.int
1182
+ BUILT_IN_GUARDRAILS_FIELD_NUMBER: _builtins.int
1183
+ CUSTOM_GUARDRAILS_FIELD_NUMBER: _builtins.int
1184
+ moderation_level: Global___ModerationLevel.ValueType
1120
1185
  """Built-in content moderation strictness.
1121
1186
  Example: MODERATION_LEVEL_HIGH for family-friendly models
1122
1187
  """
1123
- content_filtering: builtins.bool
1188
+ content_filtering: _builtins.bool
1124
1189
  """Whether automatic content filtering is enabled.
1125
1190
  Example: true for models that block harmful content
1126
1191
  """
1127
- bias_rating: builtins.str
1192
+ bias_rating: _builtins.str
1128
1193
  """Bias assessment rating.
1129
1194
  Examples: "Low", "Medium", "High", "Evaluated"
1130
1195
  """
1131
- toxicity_score: builtins.float
1196
+ toxicity_score: _builtins.float
1132
1197
  """Toxicity score from evaluations (0-1).
1133
1198
  Example: 0.02 for well-aligned models (lower is better)
1134
1199
  """
1135
- gdpr_compliant: builtins.bool
1200
+ gdpr_compliant: _builtins.bool
1136
1201
  """GDPR (General Data Protection Regulation) compliance.
1137
1202
  Example: true for models that don't retain user data
1138
1203
  """
1139
- hipaa_compliant: builtins.bool
1204
+ hipaa_compliant: _builtins.bool
1140
1205
  """HIPAA (Health Insurance Portability and Accountability Act) compliance.
1141
1206
  Example: true for medical-safe models
1142
1207
  """
1143
- soc2_compliant: builtins.bool
1208
+ soc2_compliant: _builtins.bool
1144
1209
  """SOC 2 (Service Organization Control 2) compliance.
1145
1210
  Example: true for enterprise-grade security
1146
1211
  """
1147
- iso_certified: builtins.bool
1212
+ iso_certified: _builtins.bool
1148
1213
  """ISO certification status.
1149
1214
  Example: true for ISO 27001 certified services
1150
1215
  """
1151
- refusal_capability: builtins.bool
1216
+ refusal_capability: _builtins.bool
1152
1217
  """Can refuse harmful or inappropriate requests.
1153
1218
  Example: true for models trained to decline harmful tasks
1154
1219
  """
1155
- watermark_output: builtins.bool
1220
+ watermark_output: _builtins.bool
1156
1221
  """Whether outputs include watermarking.
1157
1222
  Example: true for models with detectible AI signatures
1158
1223
  """
1159
- custom_guardrails: builtins.bool
1224
+ custom_guardrails: _builtins.bool
1160
1225
  """Supports custom safety guardrails.
1161
1226
  Example: true if users can add their own safety rules
1162
1227
  """
1163
- @property
1164
- def safety_filters(
1165
- self,
1166
- ) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[builtins.str]:
1228
+ @_builtins.property
1229
+ def safety_filters(self) -> _containers.RepeatedScalarFieldContainer[_builtins.str]:
1167
1230
  """List of active safety filters.
1168
1231
  Examples: ["violence", "sexual", "hate", "self-harm", "illegal"]
1169
1232
  """
1170
1233
 
1171
- @property
1234
+ @_builtins.property
1172
1235
  def built_in_guardrails(
1173
1236
  self,
1174
- ) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[builtins.str]:
1237
+ ) -> _containers.RepeatedScalarFieldContainer[_builtins.str]:
1175
1238
  """Built-in safety guardrails.
1176
1239
  Examples: ["constitutional-ai", "harmlessness", "helpfulness"]
1177
1240
  """
@@ -1179,105 +1242,132 @@ class Safety(google.protobuf.message.Message):
1179
1242
  def __init__(
1180
1243
  self,
1181
1244
  *,
1182
- moderation_level: global___ModerationLevel.ValueType = ...,
1183
- content_filtering: builtins.bool = ...,
1184
- safety_filters: collections.abc.Iterable[builtins.str] | None = ...,
1185
- bias_rating: builtins.str = ...,
1186
- toxicity_score: builtins.float = ...,
1187
- gdpr_compliant: builtins.bool = ...,
1188
- hipaa_compliant: builtins.bool = ...,
1189
- soc2_compliant: builtins.bool = ...,
1190
- iso_certified: builtins.bool = ...,
1191
- refusal_capability: builtins.bool = ...,
1192
- watermark_output: builtins.bool = ...,
1193
- built_in_guardrails: collections.abc.Iterable[builtins.str] | None = ...,
1194
- custom_guardrails: builtins.bool = ...,
1195
- ) -> None: ...
1196
- def ClearField(
1197
- self,
1198
- field_name: typing.Literal[
1199
- "bias_rating",
1200
- b"bias_rating",
1201
- "built_in_guardrails",
1202
- b"built_in_guardrails",
1203
- "content_filtering",
1204
- b"content_filtering",
1205
- "custom_guardrails",
1206
- b"custom_guardrails",
1207
- "gdpr_compliant",
1208
- b"gdpr_compliant",
1209
- "hipaa_compliant",
1210
- b"hipaa_compliant",
1211
- "iso_certified",
1212
- b"iso_certified",
1213
- "moderation_level",
1214
- b"moderation_level",
1215
- "refusal_capability",
1216
- b"refusal_capability",
1217
- "safety_filters",
1218
- b"safety_filters",
1219
- "soc2_compliant",
1220
- b"soc2_compliant",
1221
- "toxicity_score",
1222
- b"toxicity_score",
1223
- "watermark_output",
1224
- b"watermark_output",
1225
- ],
1245
+ moderation_level: Global___ModerationLevel.ValueType | None = ...,
1246
+ content_filtering: _builtins.bool | None = ...,
1247
+ safety_filters: _abc.Iterable[_builtins.str] | None = ...,
1248
+ bias_rating: _builtins.str | None = ...,
1249
+ toxicity_score: _builtins.float | None = ...,
1250
+ gdpr_compliant: _builtins.bool | None = ...,
1251
+ hipaa_compliant: _builtins.bool | None = ...,
1252
+ soc2_compliant: _builtins.bool | None = ...,
1253
+ iso_certified: _builtins.bool | None = ...,
1254
+ refusal_capability: _builtins.bool | None = ...,
1255
+ watermark_output: _builtins.bool | None = ...,
1256
+ built_in_guardrails: _abc.Iterable[_builtins.str] | None = ...,
1257
+ custom_guardrails: _builtins.bool | None = ...,
1226
1258
  ) -> None: ...
1227
-
1228
- global___Safety = Safety
1229
-
1230
- @typing.final
1231
- class Licensing(google.protobuf.message.Message):
1259
+ _HasFieldArgType: _TypeAlias = _typing.Literal[
1260
+ "bias_rating",
1261
+ b"bias_rating",
1262
+ "built_in_guardrails",
1263
+ b"built_in_guardrails",
1264
+ "content_filtering",
1265
+ b"content_filtering",
1266
+ "custom_guardrails",
1267
+ b"custom_guardrails",
1268
+ "gdpr_compliant",
1269
+ b"gdpr_compliant",
1270
+ "hipaa_compliant",
1271
+ b"hipaa_compliant",
1272
+ "iso_certified",
1273
+ b"iso_certified",
1274
+ "moderation_level",
1275
+ b"moderation_level",
1276
+ "refusal_capability",
1277
+ b"refusal_capability",
1278
+ "safety_filters",
1279
+ b"safety_filters",
1280
+ "soc2_compliant",
1281
+ b"soc2_compliant",
1282
+ "toxicity_score",
1283
+ b"toxicity_score",
1284
+ "watermark_output",
1285
+ b"watermark_output",
1286
+ ] # noqa: Y015
1287
+ def HasField(self, field_name: _HasFieldArgType) -> _builtins.bool: ...
1288
+ _ClearFieldArgType: _TypeAlias = _typing.Literal[
1289
+ "bias_rating",
1290
+ b"bias_rating",
1291
+ "built_in_guardrails",
1292
+ b"built_in_guardrails",
1293
+ "content_filtering",
1294
+ b"content_filtering",
1295
+ "custom_guardrails",
1296
+ b"custom_guardrails",
1297
+ "gdpr_compliant",
1298
+ b"gdpr_compliant",
1299
+ "hipaa_compliant",
1300
+ b"hipaa_compliant",
1301
+ "iso_certified",
1302
+ b"iso_certified",
1303
+ "moderation_level",
1304
+ b"moderation_level",
1305
+ "refusal_capability",
1306
+ b"refusal_capability",
1307
+ "safety_filters",
1308
+ b"safety_filters",
1309
+ "soc2_compliant",
1310
+ b"soc2_compliant",
1311
+ "toxicity_score",
1312
+ b"toxicity_score",
1313
+ "watermark_output",
1314
+ b"watermark_output",
1315
+ ] # noqa: Y015
1316
+ def ClearField(self, field_name: _ClearFieldArgType) -> None: ...
1317
+
1318
+ Global___Safety: _TypeAlias = Safety # noqa: Y015
1319
+
1320
+ @_typing.final
1321
+ class Licensing(_message.Message):
1232
1322
  """Licensing contains license and usage terms for the model."""
1233
1323
 
1234
- DESCRIPTOR: google.protobuf.descriptor.Descriptor
1235
-
1236
- LICENSE_TYPE_FIELD_NUMBER: builtins.int
1237
- LICENSE_URL_FIELD_NUMBER: builtins.int
1238
- IS_OPEN_SOURCE_FIELD_NUMBER: builtins.int
1239
- IS_OPEN_WEIGHTS_FIELD_NUMBER: builtins.int
1240
- COMMERCIAL_USE_FIELD_NUMBER: builtins.int
1241
- RESEARCH_USE_FIELD_NUMBER: builtins.int
1242
- ATTRIBUTION_REQUIRED_FIELD_NUMBER: builtins.int
1243
- SHARE_ALIKE_REQUIRED_FIELD_NUMBER: builtins.int
1244
- USAGE_RESTRICTIONS_FIELD_NUMBER: builtins.int
1245
- license_type: global___LicenseType.ValueType
1324
+ DESCRIPTOR: _descriptor.Descriptor
1325
+
1326
+ LICENSE_TYPE_FIELD_NUMBER: _builtins.int
1327
+ LICENSE_URL_FIELD_NUMBER: _builtins.int
1328
+ IS_OPEN_SOURCE_FIELD_NUMBER: _builtins.int
1329
+ IS_OPEN_WEIGHTS_FIELD_NUMBER: _builtins.int
1330
+ COMMERCIAL_USE_FIELD_NUMBER: _builtins.int
1331
+ RESEARCH_USE_FIELD_NUMBER: _builtins.int
1332
+ ATTRIBUTION_REQUIRED_FIELD_NUMBER: _builtins.int
1333
+ SHARE_ALIKE_REQUIRED_FIELD_NUMBER: _builtins.int
1334
+ USAGE_RESTRICTIONS_FIELD_NUMBER: _builtins.int
1335
+ license_type: Global___LicenseType.ValueType
1246
1336
  """Type of license governing model use.
1247
1337
  Example: LICENSE_TYPE_APACHE_2_0, LICENSE_TYPE_PROPRIETARY
1248
1338
  """
1249
- license_url: builtins.str
1339
+ license_url: _builtins.str
1250
1340
  """URL to full license text.
1251
1341
  Example: "https://github.com/meta-llama/llama/blob/main/LICENSE"
1252
1342
  """
1253
- is_open_source: builtins.bool
1343
+ is_open_source: _builtins.bool
1254
1344
  """Whether source code is openly available.
1255
1345
  Example: true for research papers with code
1256
1346
  """
1257
- is_open_weights: builtins.bool
1347
+ is_open_weights: _builtins.bool
1258
1348
  """Whether model weights are publicly downloadable.
1259
1349
  Example: true for LLaMA, Mistral; false for GPT-4
1260
1350
  """
1261
- commercial_use: builtins.bool
1351
+ commercial_use: _builtins.bool
1262
1352
  """Allowed for commercial/business use.
1263
1353
  Example: true for Apache/MIT licensed models
1264
1354
  """
1265
- research_use: builtins.bool
1355
+ research_use: _builtins.bool
1266
1356
  """Allowed for research purposes.
1267
1357
  Example: true for most models, even proprietary ones
1268
1358
  """
1269
- attribution_required: builtins.bool
1359
+ attribution_required: _builtins.bool
1270
1360
  """Must attribute/cite when using.
1271
1361
  Example: true for CC-BY licenses
1272
1362
  """
1273
- share_alike_required: builtins.bool
1363
+ share_alike_required: _builtins.bool
1274
1364
  """Derivatives must use same license.
1275
1365
  Example: true for GPL, CC-BY-SA licenses
1276
1366
  """
1277
- @property
1367
+ @_builtins.property
1278
1368
  def usage_restrictions(
1279
1369
  self,
1280
- ) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[builtins.str]:
1370
+ ) -> _containers.RepeatedScalarFieldContainer[_builtins.str]:
1281
1371
  """Specific usage restrictions or conditions.
1282
1372
  Examples: ["No use for surveillance", "Monthly active user limits",
1283
1373
  "No competitive use against provider"]
@@ -1286,38 +1376,57 @@ class Licensing(google.protobuf.message.Message):
1286
1376
  def __init__(
1287
1377
  self,
1288
1378
  *,
1289
- license_type: global___LicenseType.ValueType = ...,
1290
- license_url: builtins.str = ...,
1291
- is_open_source: builtins.bool = ...,
1292
- is_open_weights: builtins.bool = ...,
1293
- commercial_use: builtins.bool = ...,
1294
- research_use: builtins.bool = ...,
1295
- attribution_required: builtins.bool = ...,
1296
- share_alike_required: builtins.bool = ...,
1297
- usage_restrictions: collections.abc.Iterable[builtins.str] | None = ...,
1379
+ license_type: Global___LicenseType.ValueType | None = ...,
1380
+ license_url: _builtins.str | None = ...,
1381
+ is_open_source: _builtins.bool | None = ...,
1382
+ is_open_weights: _builtins.bool | None = ...,
1383
+ commercial_use: _builtins.bool | None = ...,
1384
+ research_use: _builtins.bool | None = ...,
1385
+ attribution_required: _builtins.bool | None = ...,
1386
+ share_alike_required: _builtins.bool | None = ...,
1387
+ usage_restrictions: _abc.Iterable[_builtins.str] | None = ...,
1298
1388
  ) -> None: ...
1299
- def ClearField(
1300
- self,
1301
- field_name: typing.Literal[
1302
- "attribution_required",
1303
- b"attribution_required",
1304
- "commercial_use",
1305
- b"commercial_use",
1306
- "is_open_source",
1307
- b"is_open_source",
1308
- "is_open_weights",
1309
- b"is_open_weights",
1310
- "license_type",
1311
- b"license_type",
1312
- "license_url",
1313
- b"license_url",
1314
- "research_use",
1315
- b"research_use",
1316
- "share_alike_required",
1317
- b"share_alike_required",
1318
- "usage_restrictions",
1319
- b"usage_restrictions",
1320
- ],
1321
- ) -> None: ...
1322
-
1323
- global___Licensing = Licensing
1389
+ _HasFieldArgType: _TypeAlias = _typing.Literal[
1390
+ "attribution_required",
1391
+ b"attribution_required",
1392
+ "commercial_use",
1393
+ b"commercial_use",
1394
+ "is_open_source",
1395
+ b"is_open_source",
1396
+ "is_open_weights",
1397
+ b"is_open_weights",
1398
+ "license_type",
1399
+ b"license_type",
1400
+ "license_url",
1401
+ b"license_url",
1402
+ "research_use",
1403
+ b"research_use",
1404
+ "share_alike_required",
1405
+ b"share_alike_required",
1406
+ "usage_restrictions",
1407
+ b"usage_restrictions",
1408
+ ] # noqa: Y015
1409
+ def HasField(self, field_name: _HasFieldArgType) -> _builtins.bool: ...
1410
+ _ClearFieldArgType: _TypeAlias = _typing.Literal[
1411
+ "attribution_required",
1412
+ b"attribution_required",
1413
+ "commercial_use",
1414
+ b"commercial_use",
1415
+ "is_open_source",
1416
+ b"is_open_source",
1417
+ "is_open_weights",
1418
+ b"is_open_weights",
1419
+ "license_type",
1420
+ b"license_type",
1421
+ "license_url",
1422
+ b"license_url",
1423
+ "research_use",
1424
+ b"research_use",
1425
+ "share_alike_required",
1426
+ b"share_alike_required",
1427
+ "usage_restrictions",
1428
+ b"usage_restrictions",
1429
+ ] # noqa: Y015
1430
+ def ClearField(self, field_name: _ClearFieldArgType) -> None: ...
1431
+
1432
+ Global___Licensing: _TypeAlias = Licensing # noqa: Y015