weave-python 0.27.0__py3-none-any.whl → 0.28.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (33) hide show
  1. weave/weaveapi/llmx/v1/architecture_pb2.py +74 -0
  2. weave/weaveapi/llmx/v1/architecture_pb2.pyi +1323 -0
  3. weave/weaveapi/llmx/v1/capabilities_pb2.py +88 -0
  4. weave/weaveapi/llmx/v1/capabilities_pb2.pyi +1613 -0
  5. weave/weaveapi/llmx/v1/model_pb2.py +54 -0
  6. weave/weaveapi/{modex → llmx}/v1/model_pb2.pyi +294 -189
  7. weave/weaveapi/llmx/v1/model_pb2_grpc.py +2 -0
  8. weave/weaveapi/llmx/v1/model_pb2_grpc.pyi +20 -0
  9. weave/weaveapi/llmx/v1/pricing_pb2.py +54 -0
  10. weave/weaveapi/llmx/v1/pricing_pb2.pyi +597 -0
  11. weave/weaveapi/llmx/v1/pricing_pb2_grpc.py +2 -0
  12. weave/weaveapi/llmx/v1/pricing_pb2_grpc.pyi +20 -0
  13. weave/weaveapi/llmx/v1/provider_pb2.py +38 -0
  14. weave/weaveapi/{modex → llmx}/v1/provider_pb2.pyi +31 -19
  15. weave/weaveapi/llmx/v1/provider_pb2_grpc.py +2 -0
  16. weave/weaveapi/llmx/v1/provider_pb2_grpc.pyi +20 -0
  17. weave/weaveapi/llmx/v1/service_pb2.py +180 -0
  18. weave/weaveapi/{modex → llmx}/v1/service_pb2.pyi +174 -44
  19. weave/weaveapi/{modex → llmx}/v1/service_pb2_grpc.py +103 -105
  20. weave/weaveapi/llmx/v1/service_pb2_grpc.pyi +266 -0
  21. {weave_python-0.27.0.dist-info → weave_python-0.28.1.dist-info}/METADATA +1 -1
  22. {weave_python-0.27.0.dist-info → weave_python-0.28.1.dist-info}/RECORD +27 -17
  23. weave/weaveapi/modex/v1/model_pb2.py +0 -58
  24. weave/weaveapi/modex/v1/provider_pb2.py +0 -38
  25. weave/weaveapi/modex/v1/service_pb2.py +0 -180
  26. weave/weaveapi/modex/v1/service_pb2_grpc.pyi +0 -268
  27. weave/weavesql/weavedb/models.py +0 -124
  28. weave/weavesql/weavedb/queries.py +0 -306
  29. /weave/weaveapi/{modex/v1/model_pb2_grpc.py → llmx/v1/architecture_pb2_grpc.py} +0 -0
  30. /weave/weaveapi/{modex/v1/model_pb2_grpc.pyi → llmx/v1/architecture_pb2_grpc.pyi} +0 -0
  31. /weave/weaveapi/{modex/v1/provider_pb2_grpc.py → llmx/v1/capabilities_pb2_grpc.py} +0 -0
  32. /weave/weaveapi/{modex/v1/provider_pb2_grpc.pyi → llmx/v1/capabilities_pb2_grpc.pyi} +0 -0
  33. {weave_python-0.27.0.dist-info → weave_python-0.28.1.dist-info}/WHEEL +0 -0
@@ -0,0 +1,1323 @@
1
+ """
2
+ @generated by mypy-protobuf. Do not edit manually!
3
+ isort:skip_file
4
+ """
5
+
6
+ import builtins
7
+ import collections.abc
8
+ import google.protobuf.descriptor
9
+ import google.protobuf.internal.containers
10
+ import google.protobuf.internal.enum_type_wrapper
11
+ import google.protobuf.message
12
+ import sys
13
+ import typing
14
+ import weaveapi.llmx.v1.capabilities_pb2
15
+
16
+ if sys.version_info >= (3, 10):
17
+ import typing as typing_extensions
18
+ else:
19
+ import typing_extensions
20
+
21
+ DESCRIPTOR: google.protobuf.descriptor.FileDescriptor
22
+
23
+ class _BaseArchitecture:
24
+ ValueType = typing.NewType("ValueType", builtins.int)
25
+ V: typing_extensions.TypeAlias = ValueType
26
+
27
+ class _BaseArchitectureEnumTypeWrapper(
28
+ google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[
29
+ _BaseArchitecture.ValueType
30
+ ],
31
+ builtins.type,
32
+ ):
33
+ DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
34
+ BASE_ARCHITECTURE_UNSPECIFIED: _BaseArchitecture.ValueType # 0
35
+ BASE_ARCHITECTURE_TRANSFORMER: _BaseArchitecture.ValueType # 1
36
+ BASE_ARCHITECTURE_MAMBA: _BaseArchitecture.ValueType # 2
37
+ BASE_ARCHITECTURE_HYBRID: _BaseArchitecture.ValueType # 3
38
+ BASE_ARCHITECTURE_RECURRENT_NEURAL_NETWORK: _BaseArchitecture.ValueType # 4
39
+ BASE_ARCHITECTURE_CONVOLUTIONAL_NEURAL_NETWORK: _BaseArchitecture.ValueType # 5
40
+ BASE_ARCHITECTURE_DIFFUSION: _BaseArchitecture.ValueType # 6
41
+ BASE_ARCHITECTURE_GENERATIVE_ADVERSARIAL_NETWORK: _BaseArchitecture.ValueType # 7
42
+
43
+ class BaseArchitecture(_BaseArchitecture, metaclass=_BaseArchitectureEnumTypeWrapper):
44
+ """Base architecture types"""
45
+
46
+ BASE_ARCHITECTURE_UNSPECIFIED: BaseArchitecture.ValueType # 0
47
+ BASE_ARCHITECTURE_TRANSFORMER: BaseArchitecture.ValueType # 1
48
+ BASE_ARCHITECTURE_MAMBA: BaseArchitecture.ValueType # 2
49
+ BASE_ARCHITECTURE_HYBRID: BaseArchitecture.ValueType # 3
50
+ BASE_ARCHITECTURE_RECURRENT_NEURAL_NETWORK: BaseArchitecture.ValueType # 4
51
+ BASE_ARCHITECTURE_CONVOLUTIONAL_NEURAL_NETWORK: BaseArchitecture.ValueType # 5
52
+ BASE_ARCHITECTURE_DIFFUSION: BaseArchitecture.ValueType # 6
53
+ BASE_ARCHITECTURE_GENERATIVE_ADVERSARIAL_NETWORK: BaseArchitecture.ValueType # 7
54
+ global___BaseArchitecture = BaseArchitecture
55
+
56
+ class _ModelArchitecture:
57
+ ValueType = typing.NewType("ValueType", builtins.int)
58
+ V: typing_extensions.TypeAlias = ValueType
59
+
60
+ class _ModelArchitectureEnumTypeWrapper(
61
+ google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[
62
+ _ModelArchitecture.ValueType
63
+ ],
64
+ builtins.type,
65
+ ):
66
+ DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
67
+ MODEL_ARCHITECTURE_UNSPECIFIED: _ModelArchitecture.ValueType # 0
68
+ MODEL_ARCHITECTURE_GPT: _ModelArchitecture.ValueType # 1
69
+ MODEL_ARCHITECTURE_BERT: _ModelArchitecture.ValueType # 2
70
+ MODEL_ARCHITECTURE_T5: _ModelArchitecture.ValueType # 3
71
+ MODEL_ARCHITECTURE_LLAMA: _ModelArchitecture.ValueType # 4
72
+ MODEL_ARCHITECTURE_MISTRAL: _ModelArchitecture.ValueType # 5
73
+ MODEL_ARCHITECTURE_GEMMA: _ModelArchitecture.ValueType # 6
74
+ MODEL_ARCHITECTURE_QWEN: _ModelArchitecture.ValueType # 7
75
+ MODEL_ARCHITECTURE_PHI: _ModelArchitecture.ValueType # 8
76
+ MODEL_ARCHITECTURE_CLAUDE: _ModelArchitecture.ValueType # 9
77
+ MODEL_ARCHITECTURE_COMMAND: _ModelArchitecture.ValueType # 10
78
+ MODEL_ARCHITECTURE_PALM: _ModelArchitecture.ValueType # 11
79
+ MODEL_ARCHITECTURE_FALCON: _ModelArchitecture.ValueType # 12
80
+ MODEL_ARCHITECTURE_STARCODER: _ModelArchitecture.ValueType # 13
81
+ MODEL_ARCHITECTURE_CODEGEN: _ModelArchitecture.ValueType # 14
82
+ MODEL_ARCHITECTURE_DEEPSEEK: _ModelArchitecture.ValueType # 15
83
+ MODEL_ARCHITECTURE_YI: _ModelArchitecture.ValueType # 16
84
+ MODEL_ARCHITECTURE_MIXTRAL: _ModelArchitecture.ValueType # 17
85
+ MODEL_ARCHITECTURE_GEMINI: _ModelArchitecture.ValueType # 18
86
+
87
+ class ModelArchitecture(
88
+ _ModelArchitecture, metaclass=_ModelArchitectureEnumTypeWrapper
89
+ ):
90
+ """Model architecture types"""
91
+
92
+ MODEL_ARCHITECTURE_UNSPECIFIED: ModelArchitecture.ValueType # 0
93
+ MODEL_ARCHITECTURE_GPT: ModelArchitecture.ValueType # 1
94
+ MODEL_ARCHITECTURE_BERT: ModelArchitecture.ValueType # 2
95
+ MODEL_ARCHITECTURE_T5: ModelArchitecture.ValueType # 3
96
+ MODEL_ARCHITECTURE_LLAMA: ModelArchitecture.ValueType # 4
97
+ MODEL_ARCHITECTURE_MISTRAL: ModelArchitecture.ValueType # 5
98
+ MODEL_ARCHITECTURE_GEMMA: ModelArchitecture.ValueType # 6
99
+ MODEL_ARCHITECTURE_QWEN: ModelArchitecture.ValueType # 7
100
+ MODEL_ARCHITECTURE_PHI: ModelArchitecture.ValueType # 8
101
+ MODEL_ARCHITECTURE_CLAUDE: ModelArchitecture.ValueType # 9
102
+ MODEL_ARCHITECTURE_COMMAND: ModelArchitecture.ValueType # 10
103
+ MODEL_ARCHITECTURE_PALM: ModelArchitecture.ValueType # 11
104
+ MODEL_ARCHITECTURE_FALCON: ModelArchitecture.ValueType # 12
105
+ MODEL_ARCHITECTURE_STARCODER: ModelArchitecture.ValueType # 13
106
+ MODEL_ARCHITECTURE_CODEGEN: ModelArchitecture.ValueType # 14
107
+ MODEL_ARCHITECTURE_DEEPSEEK: ModelArchitecture.ValueType # 15
108
+ MODEL_ARCHITECTURE_YI: ModelArchitecture.ValueType # 16
109
+ MODEL_ARCHITECTURE_MIXTRAL: ModelArchitecture.ValueType # 17
110
+ MODEL_ARCHITECTURE_GEMINI: ModelArchitecture.ValueType # 18
111
+ global___ModelArchitecture = ModelArchitecture
112
+
113
+ class _PositionEmbedding:
114
+ ValueType = typing.NewType("ValueType", builtins.int)
115
+ V: typing_extensions.TypeAlias = ValueType
116
+
117
+ class _PositionEmbeddingEnumTypeWrapper(
118
+ google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[
119
+ _PositionEmbedding.ValueType
120
+ ],
121
+ builtins.type,
122
+ ):
123
+ DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
124
+ POSITION_EMBEDDING_UNSPECIFIED: _PositionEmbedding.ValueType # 0
125
+ POSITION_EMBEDDING_ABSOLUTE: _PositionEmbedding.ValueType # 1
126
+ POSITION_EMBEDDING_RELATIVE: _PositionEmbedding.ValueType # 2
127
+ POSITION_EMBEDDING_ROTARY: _PositionEmbedding.ValueType # 3
128
+ POSITION_EMBEDDING_ALIBI: _PositionEmbedding.ValueType # 4
129
+ POSITION_EMBEDDING_LEARNED: _PositionEmbedding.ValueType # 5
130
+ POSITION_EMBEDDING_SINUSOIDAL: _PositionEmbedding.ValueType # 6
131
+
132
+ class PositionEmbedding(
133
+ _PositionEmbedding, metaclass=_PositionEmbeddingEnumTypeWrapper
134
+ ):
135
+ """Position embedding types"""
136
+
137
+ POSITION_EMBEDDING_UNSPECIFIED: PositionEmbedding.ValueType # 0
138
+ POSITION_EMBEDDING_ABSOLUTE: PositionEmbedding.ValueType # 1
139
+ POSITION_EMBEDDING_RELATIVE: PositionEmbedding.ValueType # 2
140
+ POSITION_EMBEDDING_ROTARY: PositionEmbedding.ValueType # 3
141
+ POSITION_EMBEDDING_ALIBI: PositionEmbedding.ValueType # 4
142
+ POSITION_EMBEDDING_LEARNED: PositionEmbedding.ValueType # 5
143
+ POSITION_EMBEDDING_SINUSOIDAL: PositionEmbedding.ValueType # 6
144
+ global___PositionEmbedding = PositionEmbedding
145
+
146
+ class _ActivationFunction:
147
+ ValueType = typing.NewType("ValueType", builtins.int)
148
+ V: typing_extensions.TypeAlias = ValueType
149
+
150
+ class _ActivationFunctionEnumTypeWrapper(
151
+ google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[
152
+ _ActivationFunction.ValueType
153
+ ],
154
+ builtins.type,
155
+ ):
156
+ DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
157
+ ACTIVATION_FUNCTION_UNSPECIFIED: _ActivationFunction.ValueType # 0
158
+ ACTIVATION_FUNCTION_GELU: _ActivationFunction.ValueType # 1
159
+ ACTIVATION_FUNCTION_SWIGLU: _ActivationFunction.ValueType # 2
160
+ ACTIVATION_FUNCTION_RELU: _ActivationFunction.ValueType # 3
161
+ ACTIVATION_FUNCTION_SILU: _ActivationFunction.ValueType # 4
162
+ ACTIVATION_FUNCTION_TANH: _ActivationFunction.ValueType # 5
163
+ ACTIVATION_FUNCTION_SIGMOID: _ActivationFunction.ValueType # 6
164
+ ACTIVATION_FUNCTION_MISH: _ActivationFunction.ValueType # 7
165
+ ACTIVATION_FUNCTION_LEAKY_RELU: _ActivationFunction.ValueType # 8
166
+
167
+ class ActivationFunction(
168
+ _ActivationFunction, metaclass=_ActivationFunctionEnumTypeWrapper
169
+ ):
170
+ """Activation function types"""
171
+
172
+ ACTIVATION_FUNCTION_UNSPECIFIED: ActivationFunction.ValueType # 0
173
+ ACTIVATION_FUNCTION_GELU: ActivationFunction.ValueType # 1
174
+ ACTIVATION_FUNCTION_SWIGLU: ActivationFunction.ValueType # 2
175
+ ACTIVATION_FUNCTION_RELU: ActivationFunction.ValueType # 3
176
+ ACTIVATION_FUNCTION_SILU: ActivationFunction.ValueType # 4
177
+ ACTIVATION_FUNCTION_TANH: ActivationFunction.ValueType # 5
178
+ ACTIVATION_FUNCTION_SIGMOID: ActivationFunction.ValueType # 6
179
+ ACTIVATION_FUNCTION_MISH: ActivationFunction.ValueType # 7
180
+ ACTIVATION_FUNCTION_LEAKY_RELU: ActivationFunction.ValueType # 8
181
+ global___ActivationFunction = ActivationFunction
182
+
183
+ class _TrainingTechnique:
184
+ ValueType = typing.NewType("ValueType", builtins.int)
185
+ V: typing_extensions.TypeAlias = ValueType
186
+
187
+ class _TrainingTechniqueEnumTypeWrapper(
188
+ google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[
189
+ _TrainingTechnique.ValueType
190
+ ],
191
+ builtins.type,
192
+ ):
193
+ DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
194
+ TRAINING_TECHNIQUE_UNSPECIFIED: _TrainingTechnique.ValueType # 0
195
+ TRAINING_TECHNIQUE_SUPERVISED: _TrainingTechnique.ValueType # 1
196
+ TRAINING_TECHNIQUE_REINFORCEMENT_LEARNING_FROM_HUMAN_FEEDBACK: (
197
+ _TrainingTechnique.ValueType
198
+ ) # 2
199
+ TRAINING_TECHNIQUE_CONSTITUTIONAL_AI: _TrainingTechnique.ValueType # 3
200
+ TRAINING_TECHNIQUE_DIRECT_PREFERENCE_OPTIMIZATION: _TrainingTechnique.ValueType # 4
201
+ TRAINING_TECHNIQUE_PROXIMAL_POLICY_OPTIMIZATION: _TrainingTechnique.ValueType # 5
202
+ TRAINING_TECHNIQUE_SUPERVISED_FINE_TUNING: _TrainingTechnique.ValueType # 6
203
+ TRAINING_TECHNIQUE_INSTRUCTION_TUNING: _TrainingTechnique.ValueType # 7
204
+ TRAINING_TECHNIQUE_FEW_SHOT: _TrainingTechnique.ValueType # 8
205
+ TRAINING_TECHNIQUE_CHAIN_OF_THOUGHT: _TrainingTechnique.ValueType # 9
206
+
207
+ class TrainingTechnique(
208
+ _TrainingTechnique, metaclass=_TrainingTechniqueEnumTypeWrapper
209
+ ):
210
+ """Training technique types"""
211
+
212
+ TRAINING_TECHNIQUE_UNSPECIFIED: TrainingTechnique.ValueType # 0
213
+ TRAINING_TECHNIQUE_SUPERVISED: TrainingTechnique.ValueType # 1
214
+ TRAINING_TECHNIQUE_REINFORCEMENT_LEARNING_FROM_HUMAN_FEEDBACK: (
215
+ TrainingTechnique.ValueType
216
+ ) # 2
217
+ TRAINING_TECHNIQUE_CONSTITUTIONAL_AI: TrainingTechnique.ValueType # 3
218
+ TRAINING_TECHNIQUE_DIRECT_PREFERENCE_OPTIMIZATION: TrainingTechnique.ValueType # 4
219
+ TRAINING_TECHNIQUE_PROXIMAL_POLICY_OPTIMIZATION: TrainingTechnique.ValueType # 5
220
+ TRAINING_TECHNIQUE_SUPERVISED_FINE_TUNING: TrainingTechnique.ValueType # 6
221
+ TRAINING_TECHNIQUE_INSTRUCTION_TUNING: TrainingTechnique.ValueType # 7
222
+ TRAINING_TECHNIQUE_FEW_SHOT: TrainingTechnique.ValueType # 8
223
+ TRAINING_TECHNIQUE_CHAIN_OF_THOUGHT: TrainingTechnique.ValueType # 9
224
+ global___TrainingTechnique = TrainingTechnique
225
+
226
+ class _Quantization:
227
+ ValueType = typing.NewType("ValueType", builtins.int)
228
+ V: typing_extensions.TypeAlias = ValueType
229
+
230
+ class _QuantizationEnumTypeWrapper(
231
+ google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[
232
+ _Quantization.ValueType
233
+ ],
234
+ builtins.type,
235
+ ):
236
+ DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
237
+ QUANTIZATION_UNSPECIFIED: _Quantization.ValueType # 0
238
+ QUANTIZATION_NONE: _Quantization.ValueType # 1
239
+ QUANTIZATION_INT8: _Quantization.ValueType # 2
240
+ QUANTIZATION_INT4: _Quantization.ValueType # 3
241
+ QUANTIZATION_FP8: _Quantization.ValueType # 4
242
+ QUANTIZATION_GPTQ: _Quantization.ValueType # 5
243
+ QUANTIZATION_AWQ: _Quantization.ValueType # 6
244
+ QUANTIZATION_GGUF: _Quantization.ValueType # 7
245
+ QUANTIZATION_BITSANDBYTES: _Quantization.ValueType # 8
246
+
247
+ class Quantization(_Quantization, metaclass=_QuantizationEnumTypeWrapper):
248
+ """Quantization types"""
249
+
250
+ QUANTIZATION_UNSPECIFIED: Quantization.ValueType # 0
251
+ QUANTIZATION_NONE: Quantization.ValueType # 1
252
+ QUANTIZATION_INT8: Quantization.ValueType # 2
253
+ QUANTIZATION_INT4: Quantization.ValueType # 3
254
+ QUANTIZATION_FP8: Quantization.ValueType # 4
255
+ QUANTIZATION_GPTQ: Quantization.ValueType # 5
256
+ QUANTIZATION_AWQ: Quantization.ValueType # 6
257
+ QUANTIZATION_GGUF: Quantization.ValueType # 7
258
+ QUANTIZATION_BITSANDBYTES: Quantization.ValueType # 8
259
+ global___Quantization = Quantization
260
+
261
+ class _Precision:
262
+ ValueType = typing.NewType("ValueType", builtins.int)
263
+ V: typing_extensions.TypeAlias = ValueType
264
+
265
+ class _PrecisionEnumTypeWrapper(
266
+ google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[_Precision.ValueType],
267
+ builtins.type,
268
+ ):
269
+ DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
270
+ PRECISION_UNSPECIFIED: _Precision.ValueType # 0
271
+ PRECISION_FP32: _Precision.ValueType # 1
272
+ PRECISION_FP16: _Precision.ValueType # 2
273
+ PRECISION_BF16: _Precision.ValueType # 3
274
+ PRECISION_INT8: _Precision.ValueType # 4
275
+ PRECISION_MIXED: _Precision.ValueType # 5
276
+
277
+ class Precision(_Precision, metaclass=_PrecisionEnumTypeWrapper):
278
+ """Precision types"""
279
+
280
+ PRECISION_UNSPECIFIED: Precision.ValueType # 0
281
+ PRECISION_FP32: Precision.ValueType # 1
282
+ PRECISION_FP16: Precision.ValueType # 2
283
+ PRECISION_BF16: Precision.ValueType # 3
284
+ PRECISION_INT8: Precision.ValueType # 4
285
+ PRECISION_MIXED: Precision.ValueType # 5
286
+ global___Precision = Precision
287
+
288
+ class _InferenceFramework:
289
+ ValueType = typing.NewType("ValueType", builtins.int)
290
+ V: typing_extensions.TypeAlias = ValueType
291
+
292
+ class _InferenceFrameworkEnumTypeWrapper(
293
+ google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[
294
+ _InferenceFramework.ValueType
295
+ ],
296
+ builtins.type,
297
+ ):
298
+ DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
299
+ INFERENCE_FRAMEWORK_UNSPECIFIED: _InferenceFramework.ValueType # 0
300
+ INFERENCE_FRAMEWORK_VLLM: _InferenceFramework.ValueType # 1
301
+ INFERENCE_FRAMEWORK_TGI: _InferenceFramework.ValueType # 2
302
+ INFERENCE_FRAMEWORK_TRITON: _InferenceFramework.ValueType # 3
303
+ INFERENCE_FRAMEWORK_TENSORRT: _InferenceFramework.ValueType # 4
304
+ INFERENCE_FRAMEWORK_ONNX: _InferenceFramework.ValueType # 5
305
+ INFERENCE_FRAMEWORK_TORCHSERVE: _InferenceFramework.ValueType # 6
306
+ INFERENCE_FRAMEWORK_TENSORFLOW_SERVING: _InferenceFramework.ValueType # 7
307
+ INFERENCE_FRAMEWORK_RAY_SERVE: _InferenceFramework.ValueType # 8
308
+ INFERENCE_FRAMEWORK_DEEPSPEED: _InferenceFramework.ValueType # 9
309
+ INFERENCE_FRAMEWORK_FASTERTRANSFORMER: _InferenceFramework.ValueType # 10
310
+
311
+ class InferenceFramework(
312
+ _InferenceFramework, metaclass=_InferenceFrameworkEnumTypeWrapper
313
+ ):
314
+ """Inference framework types"""
315
+
316
+ INFERENCE_FRAMEWORK_UNSPECIFIED: InferenceFramework.ValueType # 0
317
+ INFERENCE_FRAMEWORK_VLLM: InferenceFramework.ValueType # 1
318
+ INFERENCE_FRAMEWORK_TGI: InferenceFramework.ValueType # 2
319
+ INFERENCE_FRAMEWORK_TRITON: InferenceFramework.ValueType # 3
320
+ INFERENCE_FRAMEWORK_TENSORRT: InferenceFramework.ValueType # 4
321
+ INFERENCE_FRAMEWORK_ONNX: InferenceFramework.ValueType # 5
322
+ INFERENCE_FRAMEWORK_TORCHSERVE: InferenceFramework.ValueType # 6
323
+ INFERENCE_FRAMEWORK_TENSORFLOW_SERVING: InferenceFramework.ValueType # 7
324
+ INFERENCE_FRAMEWORK_RAY_SERVE: InferenceFramework.ValueType # 8
325
+ INFERENCE_FRAMEWORK_DEEPSPEED: InferenceFramework.ValueType # 9
326
+ INFERENCE_FRAMEWORK_FASTERTRANSFORMER: InferenceFramework.ValueType # 10
327
+ global___InferenceFramework = InferenceFramework
328
+
329
+ class _ModelFormat:
330
+ ValueType = typing.NewType("ValueType", builtins.int)
331
+ V: typing_extensions.TypeAlias = ValueType
332
+
333
+ class _ModelFormatEnumTypeWrapper(
334
+ google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[_ModelFormat.ValueType],
335
+ builtins.type,
336
+ ):
337
+ DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
338
+ MODEL_FORMAT_UNSPECIFIED: _ModelFormat.ValueType # 0
339
+ MODEL_FORMAT_SAFETENSORS: _ModelFormat.ValueType # 1
340
+ MODEL_FORMAT_GGUF: _ModelFormat.ValueType # 2
341
+ MODEL_FORMAT_ONNX: _ModelFormat.ValueType # 3
342
+ MODEL_FORMAT_PYTORCH: _ModelFormat.ValueType # 4
343
+ MODEL_FORMAT_TENSORFLOW: _ModelFormat.ValueType # 5
344
+ MODEL_FORMAT_JAX: _ModelFormat.ValueType # 6
345
+ MODEL_FORMAT_COREML: _ModelFormat.ValueType # 7
346
+ MODEL_FORMAT_OPENVINO: _ModelFormat.ValueType # 8
347
+ MODEL_FORMAT_TENSORRT: _ModelFormat.ValueType # 9
348
+
349
+ class ModelFormat(_ModelFormat, metaclass=_ModelFormatEnumTypeWrapper):
350
+ """Model format types"""
351
+
352
+ MODEL_FORMAT_UNSPECIFIED: ModelFormat.ValueType # 0
353
+ MODEL_FORMAT_SAFETENSORS: ModelFormat.ValueType # 1
354
+ MODEL_FORMAT_GGUF: ModelFormat.ValueType # 2
355
+ MODEL_FORMAT_ONNX: ModelFormat.ValueType # 3
356
+ MODEL_FORMAT_PYTORCH: ModelFormat.ValueType # 4
357
+ MODEL_FORMAT_TENSORFLOW: ModelFormat.ValueType # 5
358
+ MODEL_FORMAT_JAX: ModelFormat.ValueType # 6
359
+ MODEL_FORMAT_COREML: ModelFormat.ValueType # 7
360
+ MODEL_FORMAT_OPENVINO: ModelFormat.ValueType # 8
361
+ MODEL_FORMAT_TENSORRT: ModelFormat.ValueType # 9
362
+ global___ModelFormat = ModelFormat
363
+
364
+ class _CheckpointFormat:
365
+ ValueType = typing.NewType("ValueType", builtins.int)
366
+ V: typing_extensions.TypeAlias = ValueType
367
+
368
+ class _CheckpointFormatEnumTypeWrapper(
369
+ google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[
370
+ _CheckpointFormat.ValueType
371
+ ],
372
+ builtins.type,
373
+ ):
374
+ DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
375
+ CHECKPOINT_FORMAT_UNSPECIFIED: _CheckpointFormat.ValueType # 0
376
+ CHECKPOINT_FORMAT_PYTORCH: _CheckpointFormat.ValueType # 1
377
+ CHECKPOINT_FORMAT_TENSORFLOW: _CheckpointFormat.ValueType # 2
378
+ CHECKPOINT_FORMAT_SAFETENSORS: _CheckpointFormat.ValueType # 3
379
+ CHECKPOINT_FORMAT_HF: _CheckpointFormat.ValueType # 4
380
+ CHECKPOINT_FORMAT_MEGATRON: _CheckpointFormat.ValueType # 5
381
+ CHECKPOINT_FORMAT_DEEPSPEED: _CheckpointFormat.ValueType # 6
382
+
383
+ class CheckpointFormat(_CheckpointFormat, metaclass=_CheckpointFormatEnumTypeWrapper):
384
+ """Checkpoint format types"""
385
+
386
+ CHECKPOINT_FORMAT_UNSPECIFIED: CheckpointFormat.ValueType # 0
387
+ CHECKPOINT_FORMAT_PYTORCH: CheckpointFormat.ValueType # 1
388
+ CHECKPOINT_FORMAT_TENSORFLOW: CheckpointFormat.ValueType # 2
389
+ CHECKPOINT_FORMAT_SAFETENSORS: CheckpointFormat.ValueType # 3
390
+ CHECKPOINT_FORMAT_HF: CheckpointFormat.ValueType # 4
391
+ CHECKPOINT_FORMAT_MEGATRON: CheckpointFormat.ValueType # 5
392
+ CHECKPOINT_FORMAT_DEEPSPEED: CheckpointFormat.ValueType # 6
393
+ global___CheckpointFormat = CheckpointFormat
394
+
395
+ class _GPUType:
396
+ ValueType = typing.NewType("ValueType", builtins.int)
397
+ V: typing_extensions.TypeAlias = ValueType
398
+
399
+ class _GPUTypeEnumTypeWrapper(
400
+ google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[_GPUType.ValueType],
401
+ builtins.type,
402
+ ):
403
+ DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
404
+ GPU_TYPE_UNSPECIFIED: _GPUType.ValueType # 0
405
+ GPU_TYPE_A100: _GPUType.ValueType # 1
406
+ """Datacenter/Enterprise GPUs"""
407
+ GPU_TYPE_H100: _GPUType.ValueType # 2
408
+ GPU_TYPE_V100: _GPUType.ValueType # 3
409
+ GPU_TYPE_T4: _GPUType.ValueType # 4
410
+ GPU_TYPE_L4: _GPUType.ValueType # 5
411
+ GPU_TYPE_L40: _GPUType.ValueType # 6
412
+ GPU_TYPE_A10: _GPUType.ValueType # 7
413
+ GPU_TYPE_A40: _GPUType.ValueType # 8
414
+ GPU_TYPE_RTX_A6000: _GPUType.ValueType # 9
415
+ GPU_TYPE_RTX_A5000: _GPUType.ValueType # 10
416
+ GPU_TYPE_RTX_A4000: _GPUType.ValueType # 11
417
+ GPU_TYPE_RTX_4090: _GPUType.ValueType # 20
418
+ """Consumer GPUs (40 series)"""
419
+ GPU_TYPE_RTX_4080: _GPUType.ValueType # 21
420
+ GPU_TYPE_RTX_4070_TI: _GPUType.ValueType # 22
421
+ GPU_TYPE_RTX_4070: _GPUType.ValueType # 23
422
+ GPU_TYPE_RTX_4060_TI: _GPUType.ValueType # 24
423
+ GPU_TYPE_RTX_4060: _GPUType.ValueType # 25
424
+ GPU_TYPE_RTX_3090_TI: _GPUType.ValueType # 30
425
+ """Consumer GPUs (30 series)"""
426
+ GPU_TYPE_RTX_3090: _GPUType.ValueType # 31
427
+ GPU_TYPE_RTX_3080_TI: _GPUType.ValueType # 32
428
+ GPU_TYPE_RTX_3080: _GPUType.ValueType # 33
429
+ GPU_TYPE_RTX_3070_TI: _GPUType.ValueType # 34
430
+ GPU_TYPE_RTX_3070: _GPUType.ValueType # 35
431
+ GPU_TYPE_RTX_3060_TI: _GPUType.ValueType # 36
432
+ GPU_TYPE_RTX_3060: _GPUType.ValueType # 37
433
+ GPU_TYPE_MI300: _GPUType.ValueType # 50
434
+ """AMD GPUs"""
435
+ GPU_TYPE_MI250: _GPUType.ValueType # 51
436
+ GPU_TYPE_MI210: _GPUType.ValueType # 52
437
+ GPU_TYPE_RX_7900_XTX: _GPUType.ValueType # 53
438
+ GPU_TYPE_RX_7900_XT: _GPUType.ValueType # 54
439
+ GPU_TYPE_RX_6900_XT: _GPUType.ValueType # 55
440
+ GPU_TYPE_M3_MAX: _GPUType.ValueType # 60
441
+ """Apple Silicon (unified memory)"""
442
+ GPU_TYPE_M3_PRO: _GPUType.ValueType # 61
443
+ GPU_TYPE_M3: _GPUType.ValueType # 62
444
+ GPU_TYPE_M2_ULTRA: _GPUType.ValueType # 63
445
+ GPU_TYPE_M2_MAX: _GPUType.ValueType # 64
446
+ GPU_TYPE_M2_PRO: _GPUType.ValueType # 65
447
+ GPU_TYPE_M2: _GPUType.ValueType # 66
448
+ GPU_TYPE_M1_ULTRA: _GPUType.ValueType # 67
449
+ GPU_TYPE_M1_MAX: _GPUType.ValueType # 68
450
+ GPU_TYPE_M1_PRO: _GPUType.ValueType # 69
451
+ GPU_TYPE_M1: _GPUType.ValueType # 70
452
+ GPU_TYPE_RTX_2080_TI: _GPUType.ValueType # 80
453
+ """Older but still relevant"""
454
+ GPU_TYPE_TITAN_RTX: _GPUType.ValueType # 81
455
+ GPU_TYPE_GTX_1080_TI: _GPUType.ValueType # 82
456
+
457
+ class GPUType(_GPUType, metaclass=_GPUTypeEnumTypeWrapper):
458
+ """GPU types"""
459
+
460
+ GPU_TYPE_UNSPECIFIED: GPUType.ValueType # 0
461
+ GPU_TYPE_A100: GPUType.ValueType # 1
462
+ """Datacenter/Enterprise GPUs"""
463
+ GPU_TYPE_H100: GPUType.ValueType # 2
464
+ GPU_TYPE_V100: GPUType.ValueType # 3
465
+ GPU_TYPE_T4: GPUType.ValueType # 4
466
+ GPU_TYPE_L4: GPUType.ValueType # 5
467
+ GPU_TYPE_L40: GPUType.ValueType # 6
468
+ GPU_TYPE_A10: GPUType.ValueType # 7
469
+ GPU_TYPE_A40: GPUType.ValueType # 8
470
+ GPU_TYPE_RTX_A6000: GPUType.ValueType # 9
471
+ GPU_TYPE_RTX_A5000: GPUType.ValueType # 10
472
+ GPU_TYPE_RTX_A4000: GPUType.ValueType # 11
473
+ GPU_TYPE_RTX_4090: GPUType.ValueType # 20
474
+ """Consumer GPUs (40 series)"""
475
+ GPU_TYPE_RTX_4080: GPUType.ValueType # 21
476
+ GPU_TYPE_RTX_4070_TI: GPUType.ValueType # 22
477
+ GPU_TYPE_RTX_4070: GPUType.ValueType # 23
478
+ GPU_TYPE_RTX_4060_TI: GPUType.ValueType # 24
479
+ GPU_TYPE_RTX_4060: GPUType.ValueType # 25
480
+ GPU_TYPE_RTX_3090_TI: GPUType.ValueType # 30
481
+ """Consumer GPUs (30 series)"""
482
+ GPU_TYPE_RTX_3090: GPUType.ValueType # 31
483
+ GPU_TYPE_RTX_3080_TI: GPUType.ValueType # 32
484
+ GPU_TYPE_RTX_3080: GPUType.ValueType # 33
485
+ GPU_TYPE_RTX_3070_TI: GPUType.ValueType # 34
486
+ GPU_TYPE_RTX_3070: GPUType.ValueType # 35
487
+ GPU_TYPE_RTX_3060_TI: GPUType.ValueType # 36
488
+ GPU_TYPE_RTX_3060: GPUType.ValueType # 37
489
+ GPU_TYPE_MI300: GPUType.ValueType # 50
490
+ """AMD GPUs"""
491
+ GPU_TYPE_MI250: GPUType.ValueType # 51
492
+ GPU_TYPE_MI210: GPUType.ValueType # 52
493
+ GPU_TYPE_RX_7900_XTX: GPUType.ValueType # 53
494
+ GPU_TYPE_RX_7900_XT: GPUType.ValueType # 54
495
+ GPU_TYPE_RX_6900_XT: GPUType.ValueType # 55
496
+ GPU_TYPE_M3_MAX: GPUType.ValueType # 60
497
+ """Apple Silicon (unified memory)"""
498
+ GPU_TYPE_M3_PRO: GPUType.ValueType # 61
499
+ GPU_TYPE_M3: GPUType.ValueType # 62
500
+ GPU_TYPE_M2_ULTRA: GPUType.ValueType # 63
501
+ GPU_TYPE_M2_MAX: GPUType.ValueType # 64
502
+ GPU_TYPE_M2_PRO: GPUType.ValueType # 65
503
+ GPU_TYPE_M2: GPUType.ValueType # 66
504
+ GPU_TYPE_M1_ULTRA: GPUType.ValueType # 67
505
+ GPU_TYPE_M1_MAX: GPUType.ValueType # 68
506
+ GPU_TYPE_M1_PRO: GPUType.ValueType # 69
507
+ GPU_TYPE_M1: GPUType.ValueType # 70
508
+ GPU_TYPE_RTX_2080_TI: GPUType.ValueType # 80
509
+ """Older but still relevant"""
510
+ GPU_TYPE_TITAN_RTX: GPUType.ValueType # 81
511
+ GPU_TYPE_GTX_1080_TI: GPUType.ValueType # 82
512
+ global___GPUType = GPUType
513
+
514
+ class _CPUType:
515
+ ValueType = typing.NewType("ValueType", builtins.int)
516
+ V: typing_extensions.TypeAlias = ValueType
517
+
518
+ class _CPUTypeEnumTypeWrapper(
519
+ google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[_CPUType.ValueType],
520
+ builtins.type,
521
+ ):
522
+ DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
523
+ CPU_TYPE_UNSPECIFIED: _CPUType.ValueType # 0
524
+ CPU_TYPE_X86_64: _CPUType.ValueType # 1
525
+ CPU_TYPE_ARM64: _CPUType.ValueType # 2
526
+ CPU_TYPE_APPLE_SILICON: _CPUType.ValueType # 3
527
+ CPU_TYPE_AMD64: _CPUType.ValueType # 4
528
+ CPU_TYPE_GRAVITON: _CPUType.ValueType # 5
529
+
530
+ class CPUType(_CPUType, metaclass=_CPUTypeEnumTypeWrapper):
531
+ """CPU architecture types"""
532
+
533
+ CPU_TYPE_UNSPECIFIED: CPUType.ValueType # 0
534
+ CPU_TYPE_X86_64: CPUType.ValueType # 1
535
+ CPU_TYPE_ARM64: CPUType.ValueType # 2
536
+ CPU_TYPE_APPLE_SILICON: CPUType.ValueType # 3
537
+ CPU_TYPE_AMD64: CPUType.ValueType # 4
538
+ CPU_TYPE_GRAVITON: CPUType.ValueType # 5
539
+ global___CPUType = CPUType
540
+
541
+ class _ModerationLevel:
542
+ ValueType = typing.NewType("ValueType", builtins.int)
543
+ V: typing_extensions.TypeAlias = ValueType
544
+
545
+ class _ModerationLevelEnumTypeWrapper(
546
+ google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[
547
+ _ModerationLevel.ValueType
548
+ ],
549
+ builtins.type,
550
+ ):
551
+ DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
552
+ MODERATION_LEVEL_UNSPECIFIED: _ModerationLevel.ValueType # 0
553
+ MODERATION_LEVEL_NONE: _ModerationLevel.ValueType # 1
554
+ MODERATION_LEVEL_LOW: _ModerationLevel.ValueType # 2
555
+ MODERATION_LEVEL_MEDIUM: _ModerationLevel.ValueType # 3
556
+ MODERATION_LEVEL_HIGH: _ModerationLevel.ValueType # 4
557
+ MODERATION_LEVEL_STRICT: _ModerationLevel.ValueType # 5
558
+
559
+ class ModerationLevel(_ModerationLevel, metaclass=_ModerationLevelEnumTypeWrapper):
560
+ """Moderation level"""
561
+
562
+ MODERATION_LEVEL_UNSPECIFIED: ModerationLevel.ValueType # 0
563
+ MODERATION_LEVEL_NONE: ModerationLevel.ValueType # 1
564
+ MODERATION_LEVEL_LOW: ModerationLevel.ValueType # 2
565
+ MODERATION_LEVEL_MEDIUM: ModerationLevel.ValueType # 3
566
+ MODERATION_LEVEL_HIGH: ModerationLevel.ValueType # 4
567
+ MODERATION_LEVEL_STRICT: ModerationLevel.ValueType # 5
568
+ global___ModerationLevel = ModerationLevel
569
+
570
+ class _LicenseType:
571
+ ValueType = typing.NewType("ValueType", builtins.int)
572
+ V: typing_extensions.TypeAlias = ValueType
573
+
574
+ class _LicenseTypeEnumTypeWrapper(
575
+ google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[_LicenseType.ValueType],
576
+ builtins.type,
577
+ ):
578
+ DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
579
+ LICENSE_TYPE_UNSPECIFIED: _LicenseType.ValueType # 0
580
+ LICENSE_TYPE_MIT: _LicenseType.ValueType # 1
581
+ LICENSE_TYPE_APACHE_2_0: _LicenseType.ValueType # 2
582
+ LICENSE_TYPE_GPL: _LicenseType.ValueType # 3
583
+ LICENSE_TYPE_BSD: _LicenseType.ValueType # 4
584
+ LICENSE_TYPE_COMMERCIAL: _LicenseType.ValueType # 5
585
+ LICENSE_TYPE_PROPRIETARY: _LicenseType.ValueType # 6
586
+ LICENSE_TYPE_CUSTOM: _LicenseType.ValueType # 7
587
+ LICENSE_TYPE_CC_BY: _LicenseType.ValueType # 8
588
+ LICENSE_TYPE_CC_BY_NC: _LicenseType.ValueType # 9
589
+ LICENSE_TYPE_CC_BY_SA: _LicenseType.ValueType # 10
590
+ LICENSE_TYPE_LLAMA: _LicenseType.ValueType # 11
591
+ LICENSE_TYPE_OPENAI: _LicenseType.ValueType # 12
592
+
593
+ class LicenseType(_LicenseType, metaclass=_LicenseTypeEnumTypeWrapper):
594
+ """License types"""
595
+
596
+ LICENSE_TYPE_UNSPECIFIED: LicenseType.ValueType # 0
597
+ LICENSE_TYPE_MIT: LicenseType.ValueType # 1
598
+ LICENSE_TYPE_APACHE_2_0: LicenseType.ValueType # 2
599
+ LICENSE_TYPE_GPL: LicenseType.ValueType # 3
600
+ LICENSE_TYPE_BSD: LicenseType.ValueType # 4
601
+ LICENSE_TYPE_COMMERCIAL: LicenseType.ValueType # 5
602
+ LICENSE_TYPE_PROPRIETARY: LicenseType.ValueType # 6
603
+ LICENSE_TYPE_CUSTOM: LicenseType.ValueType # 7
604
+ LICENSE_TYPE_CC_BY: LicenseType.ValueType # 8
605
+ LICENSE_TYPE_CC_BY_NC: LicenseType.ValueType # 9
606
+ LICENSE_TYPE_CC_BY_SA: LicenseType.ValueType # 10
607
+ LICENSE_TYPE_LLAMA: LicenseType.ValueType # 11
608
+ LICENSE_TYPE_OPENAI: LicenseType.ValueType # 12
609
+ global___LicenseType = LicenseType
610
+
611
+ @typing.final
612
+ class Architecture(google.protobuf.message.Message):
613
+ """Architecture describes the technical architecture of an AI model."""
614
+
615
+ DESCRIPTOR: google.protobuf.descriptor.Descriptor
616
+
617
+ BASE_ARCHITECTURE_FIELD_NUMBER: builtins.int
618
+ MODEL_ARCHITECTURE_FIELD_NUMBER: builtins.int
619
+ PARAMETER_COUNT_FIELD_NUMBER: builtins.int
620
+ ACTIVE_PARAMETERS_FIELD_NUMBER: builtins.int
621
+ TOTAL_PARAMETERS_FIELD_NUMBER: builtins.int
622
+ LAYER_COUNT_FIELD_NUMBER: builtins.int
623
+ HIDDEN_SIZE_FIELD_NUMBER: builtins.int
624
+ ATTENTION_HEADS_FIELD_NUMBER: builtins.int
625
+ VOCABULARY_SIZE_FIELD_NUMBER: builtins.int
626
+ POSITION_EMBEDDING_FIELD_NUMBER: builtins.int
627
+ ACTIVATION_FUNCTION_FIELD_NUMBER: builtins.int
628
+ IS_MIXTURE_OF_EXPERTS_FIELD_NUMBER: builtins.int
629
+ EXPERT_COUNT_FIELD_NUMBER: builtins.int
630
+ EXPERTS_PER_TOKEN_FIELD_NUMBER: builtins.int
631
+ base_architecture: global___BaseArchitecture.ValueType
632
+ """Fundamental architecture type (Transformer, Mamba, etc.).
633
+ Example: BASE_ARCHITECTURE_TRANSFORMER for GPT models
634
+ """
635
+ model_architecture: global___ModelArchitecture.ValueType
636
+ """Specific model family/variant.
637
+ Example: MODEL_ARCHITECTURE_GPT for GPT-4, MODEL_ARCHITECTURE_LLAMA for LLaMA
638
+ """
639
+ parameter_count: builtins.int
640
+ """Total learnable parameters in billions.
641
+ Example: 175 for GPT-3 (175B parameters)
642
+ """
643
+ active_parameters: builtins.int
644
+ """Parameters activated per forward pass (for MoE models).
645
+ Example: 8B active out of 141B total for Mixtral-8x7B
646
+ """
647
+ total_parameters: builtins.int
648
+ """Total parameters including non-trainable (embeddings, etc.).
649
+ May be slightly higher than parameter_count
650
+ """
651
+ layer_count: builtins.int
652
+ """Number of transformer/attention layers.
653
+ Example: 96 for GPT-3, 32 for 7B models
654
+ """
655
+ hidden_size: builtins.int
656
+ """Hidden dimension size of the model.
657
+ Example: 12288 for GPT-3, 4096 for smaller models
658
+ """
659
+ attention_heads: builtins.int
660
+ """Number of attention heads in multi-head attention.
661
+ Example: 96 for GPT-3, 32 for 7B models
662
+ """
663
+ vocabulary_size: builtins.int
664
+ """Size of the token vocabulary.
665
+ Example: 50257 for GPT-2/3, 32000 for LLaMA
666
+ """
667
+ position_embedding: global___PositionEmbedding.ValueType
668
+ """Type of position encoding used.
669
+ Example: POSITION_EMBEDDING_ROTARY for modern models (RoPE)
670
+ """
671
+ activation_function: global___ActivationFunction.ValueType
672
+ """Activation function in feed-forward layers.
673
+ Example: ACTIVATION_FUNCTION_SWIGLU for LLaMA models
674
+ """
675
+ is_mixture_of_experts: builtins.bool
676
+ """Whether this is a Mixture of Experts model.
677
+ Example: true for Mixtral, GPT-4 (rumored), false for dense models
678
+ """
679
+ expert_count: builtins.int
680
+ """Total number of expert networks (for MoE).
681
+ Example: 8 for Mixtral-8x7B
682
+ """
683
+ experts_per_token: builtins.int
684
+ """Number of experts activated per token (for MoE).
685
+ Example: 2 for Mixtral (2 experts per token out of 8)
686
+ """
687
+ def __init__(
688
+ self,
689
+ *,
690
+ base_architecture: global___BaseArchitecture.ValueType = ...,
691
+ model_architecture: global___ModelArchitecture.ValueType = ...,
692
+ parameter_count: builtins.int = ...,
693
+ active_parameters: builtins.int = ...,
694
+ total_parameters: builtins.int = ...,
695
+ layer_count: builtins.int = ...,
696
+ hidden_size: builtins.int = ...,
697
+ attention_heads: builtins.int = ...,
698
+ vocabulary_size: builtins.int = ...,
699
+ position_embedding: global___PositionEmbedding.ValueType = ...,
700
+ activation_function: global___ActivationFunction.ValueType = ...,
701
+ is_mixture_of_experts: builtins.bool = ...,
702
+ expert_count: builtins.int = ...,
703
+ experts_per_token: builtins.int = ...,
704
+ ) -> None: ...
705
+ def ClearField(
706
+ self,
707
+ field_name: typing.Literal[
708
+ "activation_function",
709
+ b"activation_function",
710
+ "active_parameters",
711
+ b"active_parameters",
712
+ "attention_heads",
713
+ b"attention_heads",
714
+ "base_architecture",
715
+ b"base_architecture",
716
+ "expert_count",
717
+ b"expert_count",
718
+ "experts_per_token",
719
+ b"experts_per_token",
720
+ "hidden_size",
721
+ b"hidden_size",
722
+ "is_mixture_of_experts",
723
+ b"is_mixture_of_experts",
724
+ "layer_count",
725
+ b"layer_count",
726
+ "model_architecture",
727
+ b"model_architecture",
728
+ "parameter_count",
729
+ b"parameter_count",
730
+ "position_embedding",
731
+ b"position_embedding",
732
+ "total_parameters",
733
+ b"total_parameters",
734
+ "vocabulary_size",
735
+ b"vocabulary_size",
736
+ ],
737
+ ) -> None: ...
738
+
739
+ global___Architecture = Architecture
740
+
741
+ @typing.final
742
+ class Training(google.protobuf.message.Message):
743
+ """Training contains information about how the model was trained."""
744
+
745
+ DESCRIPTOR: google.protobuf.descriptor.Descriptor
746
+
747
+ TRAINING_DATA_SIZE_FIELD_NUMBER: builtins.int
748
+ TRAINING_DATA_SOURCES_FIELD_NUMBER: builtins.int
749
+ DATA_MIXTURE_FIELD_NUMBER: builtins.int
750
+ TRAINING_DURATION_FIELD_NUMBER: builtins.int
751
+ TRAINING_HARDWARE_FIELD_NUMBER: builtins.int
752
+ TRAINING_COST_FIELD_NUMBER: builtins.int
753
+ TRAINING_TECHNIQUE_FIELD_NUMBER: builtins.int
754
+ BATCH_SIZE_FIELD_NUMBER: builtins.int
755
+ LEARNING_RATE_FIELD_NUMBER: builtins.int
756
+ TRAINING_STEPS_FIELD_NUMBER: builtins.int
757
+ WARMUP_STEPS_FIELD_NUMBER: builtins.int
758
+ FINE_TUNING_AVAILABLE_FIELD_NUMBER: builtins.int
759
+ MIN_FINE_TUNE_EXAMPLES_FIELD_NUMBER: builtins.int
760
+ MAX_FINE_TUNE_EXAMPLES_FIELD_NUMBER: builtins.int
761
+ FINE_TUNE_FORMATS_FIELD_NUMBER: builtins.int
762
+ training_data_size: builtins.str
763
+ """Size of training dataset.
764
+ Examples: "1T tokens", "45TB text", "100B tokens"
765
+ """
766
+ data_mixture: builtins.str
767
+ """Description of data mixture/proportions.
768
+ Example: "60% web, 20% books, 10% code, 10% reference"
769
+ """
770
+ training_duration: builtins.str
771
+ """Total training time.
772
+ Examples: "3 months", "6 weeks", "90 days"
773
+ """
774
+ training_hardware: builtins.str
775
+ """Hardware used for training.
776
+ Examples: "10000 H100 GPUs", "512 A100 80GB", "TPU v4 pods"
777
+ """
778
+ training_cost: builtins.str
779
+ """Estimated training cost.
780
+ Examples: "$100M", "$4.6M", "Not disclosed"
781
+ """
782
+ training_technique: global___TrainingTechnique.ValueType
783
+ """Primary training technique used.
784
+ Example: TRAINING_TECHNIQUE_REINFORCEMENT_LEARNING_FROM_HUMAN_FEEDBACK
785
+ """
786
+ batch_size: builtins.int
787
+ """Training batch size per step.
788
+ Example: 2048, 4096
789
+ """
790
+ learning_rate: builtins.float
791
+ """Peak learning rate used.
792
+ Example: 0.0001, 3e-4
793
+ """
794
+ training_steps: builtins.int
795
+ """Total number of training steps/iterations.
796
+ Example: 1000000
797
+ """
798
+ warmup_steps: builtins.int
799
+ """Number of warmup steps for learning rate schedule.
800
+ Example: 2000
801
+ """
802
+ fine_tuning_available: builtins.bool
803
+ """Whether model supports fine-tuning via API.
804
+ Example: true for GPT-3.5, false for GPT-4
805
+ """
806
+ min_fine_tune_examples: builtins.int
807
+ """Minimum training examples required for fine-tuning.
808
+ Example: 10 for OpenAI models
809
+ """
810
+ max_fine_tune_examples: builtins.int
811
+ """Maximum training examples allowed for fine-tuning.
812
+ Example: 100000 for GPT-3.5
813
+ """
814
+ @property
815
+ def training_data_sources(
816
+ self,
817
+ ) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[builtins.str]:
818
+ """List of data sources used for training.
819
+ Examples: ["Common Crawl", "Wikipedia", "Books", "GitHub", "ArXiv"]
820
+ """
821
+
822
+ @property
823
+ def fine_tune_formats(
824
+ self,
825
+ ) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[
826
+ weaveapi.llmx.v1.capabilities_pb2.DataFormat.ValueType
827
+ ]:
828
+ """Supported data formats for fine-tuning.
829
+ Example: [DATA_FORMAT_JSONL, DATA_FORMAT_CSV]
830
+ """
831
+
832
+ def __init__(
833
+ self,
834
+ *,
835
+ training_data_size: builtins.str = ...,
836
+ training_data_sources: collections.abc.Iterable[builtins.str] | None = ...,
837
+ data_mixture: builtins.str = ...,
838
+ training_duration: builtins.str = ...,
839
+ training_hardware: builtins.str = ...,
840
+ training_cost: builtins.str = ...,
841
+ training_technique: global___TrainingTechnique.ValueType = ...,
842
+ batch_size: builtins.int = ...,
843
+ learning_rate: builtins.float = ...,
844
+ training_steps: builtins.int = ...,
845
+ warmup_steps: builtins.int = ...,
846
+ fine_tuning_available: builtins.bool = ...,
847
+ min_fine_tune_examples: builtins.int = ...,
848
+ max_fine_tune_examples: builtins.int = ...,
849
+ fine_tune_formats: collections.abc.Iterable[
850
+ weaveapi.llmx.v1.capabilities_pb2.DataFormat.ValueType
851
+ ]
852
+ | None = ...,
853
+ ) -> None: ...
854
+ def ClearField(
855
+ self,
856
+ field_name: typing.Literal[
857
+ "batch_size",
858
+ b"batch_size",
859
+ "data_mixture",
860
+ b"data_mixture",
861
+ "fine_tune_formats",
862
+ b"fine_tune_formats",
863
+ "fine_tuning_available",
864
+ b"fine_tuning_available",
865
+ "learning_rate",
866
+ b"learning_rate",
867
+ "max_fine_tune_examples",
868
+ b"max_fine_tune_examples",
869
+ "min_fine_tune_examples",
870
+ b"min_fine_tune_examples",
871
+ "training_cost",
872
+ b"training_cost",
873
+ "training_data_size",
874
+ b"training_data_size",
875
+ "training_data_sources",
876
+ b"training_data_sources",
877
+ "training_duration",
878
+ b"training_duration",
879
+ "training_hardware",
880
+ b"training_hardware",
881
+ "training_steps",
882
+ b"training_steps",
883
+ "training_technique",
884
+ b"training_technique",
885
+ "warmup_steps",
886
+ b"warmup_steps",
887
+ ],
888
+ ) -> None: ...
889
+
890
+ global___Training = Training
891
+
892
+ @typing.final
893
+ class TechnicalSpecs(google.protobuf.message.Message):
894
+ """TechnicalSpecs contains hardware and software requirements for running the model."""
895
+
896
+ DESCRIPTOR: google.protobuf.descriptor.Descriptor
897
+
898
+ MIN_MEMORY_GB_FIELD_NUMBER: builtins.int
899
+ RECOMMENDED_MEMORY_GB_FIELD_NUMBER: builtins.int
900
+ MIN_GPU_MEMORY_GB_FIELD_NUMBER: builtins.int
901
+ STORAGE_GB_FIELD_NUMBER: builtins.int
902
+ QUANTIZATION_FIELD_NUMBER: builtins.int
903
+ PRECISION_FIELD_NUMBER: builtins.int
904
+ OPTIMIZATION_LEVEL_FIELD_NUMBER: builtins.int
905
+ SUPPORTED_GPUS_FIELD_NUMBER: builtins.int
906
+ REQUIRES_CUDA_FIELD_NUMBER: builtins.int
907
+ CUDA_VERSION_FIELD_NUMBER: builtins.int
908
+ INFERENCE_FRAMEWORK_FIELD_NUMBER: builtins.int
909
+ MODEL_FORMAT_FIELD_NUMBER: builtins.int
910
+ MODEL_SIZE_GB_FIELD_NUMBER: builtins.int
911
+ CHECKPOINT_FORMAT_FIELD_NUMBER: builtins.int
912
+ NUMBER_OF_FILES_FIELD_NUMBER: builtins.int
913
+ SUPPORTED_CPUS_FIELD_NUMBER: builtins.int
914
+ SERVING_FRAMEWORK_FIELD_NUMBER: builtins.int
915
+ CONTAINER_IMAGE_FIELD_NUMBER: builtins.int
916
+ MINIMUM_GPU_FIELD_NUMBER: builtins.int
917
+ MINIMUM_GPU_MEMORY_GB_FIELD_NUMBER: builtins.int
918
+ CPU_COMPATIBLE_FIELD_NUMBER: builtins.int
919
+ RECOMMENDED_GPU_MEMORY_GB_FIELD_NUMBER: builtins.int
920
+ min_memory_gb: builtins.int
921
+ """Minimum system RAM required in GB.
922
+ Example: 32 for 7B models, 64 for 13B models
923
+ """
924
+ recommended_memory_gb: builtins.int
925
+ """Recommended system RAM for optimal performance in GB.
926
+ Example: 64 for 7B models, 128 for 13B models
927
+ """
928
+ min_gpu_memory_gb: builtins.int
929
+ """Minimum GPU VRAM required in GB.
930
+ Example: 24 for 7B fp16, 48 for 13B fp16
931
+ """
932
+ storage_gb: builtins.int
933
+ """Disk storage required for model files in GB.
934
+ Example: 15 for 7B models, 30 for 13B models
935
+ """
936
+ quantization: global___Quantization.ValueType
937
+ """Quantization method if applicable.
938
+ Example: QUANTIZATION_INT8 for 8-bit quantized models
939
+ """
940
+ precision: global___Precision.ValueType
941
+ """Numerical precision used.
942
+ Example: PRECISION_FP16 for half-precision inference
943
+ """
944
+ optimization_level: builtins.str
945
+ """Optimization level/profile.
946
+ Examples: "O3", "fast", "balanced", "memory-optimized"
947
+ """
948
+ requires_cuda: builtins.bool
949
+ """Whether CUDA is required for GPU inference.
950
+ Example: true for NVIDIA GPUs, false for CPU-only
951
+ """
952
+ cuda_version: builtins.str
953
+ """Minimum CUDA version required.
954
+ Examples: "11.8", "12.0"
955
+ """
956
+ inference_framework: global___InferenceFramework.ValueType
957
+ """Recommended inference framework.
958
+ Example: INFERENCE_FRAMEWORK_VLLM for high-throughput serving
959
+ """
960
+ model_format: global___ModelFormat.ValueType
961
+ """Format of distributed model files.
962
+ Example: MODEL_FORMAT_SAFETENSORS for HuggingFace models
963
+ """
964
+ model_size_gb: builtins.float
965
+ """Total size of model files in GB.
966
+ Example: 13.5 for 7B model in fp16
967
+ """
968
+ checkpoint_format: global___CheckpointFormat.ValueType
969
+ """Format of model checkpoint files.
970
+ Example: CHECKPOINT_FORMAT_PYTORCH for .pt files
971
+ """
972
+ number_of_files: builtins.int
973
+ """Number of model shard files.
974
+ Example: 2 for models split across multiple files
975
+ """
976
+ serving_framework: builtins.str
977
+ """Serving framework/stack.
978
+ Examples: "TGI", "vLLM", "llama.cpp"
979
+ """
980
+ container_image: builtins.str
981
+ """Pre-built container image if available.
982
+ Example: "nvcr.io/nvidia/pytorch:23.10-py3"
983
+ """
984
+ minimum_gpu: global___GPUType.ValueType
985
+ """Minimum GPU for reasonable performance.
986
+ Example: GPU_TYPE_RTX_3090 for 7B models
987
+ """
988
+ minimum_gpu_memory_gb: builtins.int
989
+ """Minimum GPU memory for basic inference in GB.
990
+ Example: 16 for 7B int8 models
991
+ """
992
+ cpu_compatible: builtins.bool
993
+ """Whether model can run on CPU (even if slowly).
994
+ Example: true for smaller quantized models
995
+ """
996
+ recommended_gpu_memory_gb: builtins.int
997
+ """Recommended GPU memory for good performance in GB.
998
+ Example: 24 for 7B fp16 with reasonable batch size
999
+ """
1000
+ @property
1001
+ def supported_gpus(
1002
+ self,
1003
+ ) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[
1004
+ global___GPUType.ValueType
1005
+ ]:
1006
+ """List of compatible GPU types.
1007
+ Example: [GPU_TYPE_A100, GPU_TYPE_H100, GPU_TYPE_RTX_4090]
1008
+ """
1009
+
1010
+ @property
1011
+ def supported_cpus(
1012
+ self,
1013
+ ) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[
1014
+ global___CPUType.ValueType
1015
+ ]:
1016
+ """List of compatible CPU architectures.
1017
+ Example: [CPU_TYPE_X86_64, CPU_TYPE_ARM64]
1018
+ """
1019
+
1020
+ def __init__(
1021
+ self,
1022
+ *,
1023
+ min_memory_gb: builtins.int = ...,
1024
+ recommended_memory_gb: builtins.int = ...,
1025
+ min_gpu_memory_gb: builtins.int = ...,
1026
+ storage_gb: builtins.int = ...,
1027
+ quantization: global___Quantization.ValueType = ...,
1028
+ precision: global___Precision.ValueType = ...,
1029
+ optimization_level: builtins.str = ...,
1030
+ supported_gpus: collections.abc.Iterable[global___GPUType.ValueType]
1031
+ | None = ...,
1032
+ requires_cuda: builtins.bool = ...,
1033
+ cuda_version: builtins.str = ...,
1034
+ inference_framework: global___InferenceFramework.ValueType = ...,
1035
+ model_format: global___ModelFormat.ValueType = ...,
1036
+ model_size_gb: builtins.float = ...,
1037
+ checkpoint_format: global___CheckpointFormat.ValueType = ...,
1038
+ number_of_files: builtins.int = ...,
1039
+ supported_cpus: collections.abc.Iterable[global___CPUType.ValueType]
1040
+ | None = ...,
1041
+ serving_framework: builtins.str = ...,
1042
+ container_image: builtins.str = ...,
1043
+ minimum_gpu: global___GPUType.ValueType = ...,
1044
+ minimum_gpu_memory_gb: builtins.int = ...,
1045
+ cpu_compatible: builtins.bool = ...,
1046
+ recommended_gpu_memory_gb: builtins.int = ...,
1047
+ ) -> None: ...
1048
+ def ClearField(
1049
+ self,
1050
+ field_name: typing.Literal[
1051
+ "checkpoint_format",
1052
+ b"checkpoint_format",
1053
+ "container_image",
1054
+ b"container_image",
1055
+ "cpu_compatible",
1056
+ b"cpu_compatible",
1057
+ "cuda_version",
1058
+ b"cuda_version",
1059
+ "inference_framework",
1060
+ b"inference_framework",
1061
+ "min_gpu_memory_gb",
1062
+ b"min_gpu_memory_gb",
1063
+ "min_memory_gb",
1064
+ b"min_memory_gb",
1065
+ "minimum_gpu",
1066
+ b"minimum_gpu",
1067
+ "minimum_gpu_memory_gb",
1068
+ b"minimum_gpu_memory_gb",
1069
+ "model_format",
1070
+ b"model_format",
1071
+ "model_size_gb",
1072
+ b"model_size_gb",
1073
+ "number_of_files",
1074
+ b"number_of_files",
1075
+ "optimization_level",
1076
+ b"optimization_level",
1077
+ "precision",
1078
+ b"precision",
1079
+ "quantization",
1080
+ b"quantization",
1081
+ "recommended_gpu_memory_gb",
1082
+ b"recommended_gpu_memory_gb",
1083
+ "recommended_memory_gb",
1084
+ b"recommended_memory_gb",
1085
+ "requires_cuda",
1086
+ b"requires_cuda",
1087
+ "serving_framework",
1088
+ b"serving_framework",
1089
+ "storage_gb",
1090
+ b"storage_gb",
1091
+ "supported_cpus",
1092
+ b"supported_cpus",
1093
+ "supported_gpus",
1094
+ b"supported_gpus",
1095
+ ],
1096
+ ) -> None: ...
1097
+
1098
+ global___TechnicalSpecs = TechnicalSpecs
1099
+
1100
+ @typing.final
1101
+ class Safety(google.protobuf.message.Message):
1102
+ """Safety contains safety, moderation, and compliance features."""
1103
+
1104
+ DESCRIPTOR: google.protobuf.descriptor.Descriptor
1105
+
1106
+ MODERATION_LEVEL_FIELD_NUMBER: builtins.int
1107
+ CONTENT_FILTERING_FIELD_NUMBER: builtins.int
1108
+ SAFETY_FILTERS_FIELD_NUMBER: builtins.int
1109
+ BIAS_RATING_FIELD_NUMBER: builtins.int
1110
+ TOXICITY_SCORE_FIELD_NUMBER: builtins.int
1111
+ GDPR_COMPLIANT_FIELD_NUMBER: builtins.int
1112
+ HIPAA_COMPLIANT_FIELD_NUMBER: builtins.int
1113
+ SOC2_COMPLIANT_FIELD_NUMBER: builtins.int
1114
+ ISO_CERTIFIED_FIELD_NUMBER: builtins.int
1115
+ REFUSAL_CAPABILITY_FIELD_NUMBER: builtins.int
1116
+ WATERMARK_OUTPUT_FIELD_NUMBER: builtins.int
1117
+ BUILT_IN_GUARDRAILS_FIELD_NUMBER: builtins.int
1118
+ CUSTOM_GUARDRAILS_FIELD_NUMBER: builtins.int
1119
+ moderation_level: global___ModerationLevel.ValueType
1120
+ """Built-in content moderation strictness.
1121
+ Example: MODERATION_LEVEL_HIGH for family-friendly models
1122
+ """
1123
+ content_filtering: builtins.bool
1124
+ """Whether automatic content filtering is enabled.
1125
+ Example: true for models that block harmful content
1126
+ """
1127
+ bias_rating: builtins.str
1128
+ """Bias assessment rating.
1129
+ Examples: "Low", "Medium", "High", "Evaluated"
1130
+ """
1131
+ toxicity_score: builtins.float
1132
+ """Toxicity score from evaluations (0-1).
1133
+ Example: 0.02 for well-aligned models (lower is better)
1134
+ """
1135
+ gdpr_compliant: builtins.bool
1136
+ """GDPR (General Data Protection Regulation) compliance.
1137
+ Example: true for models that don't retain user data
1138
+ """
1139
+ hipaa_compliant: builtins.bool
1140
+ """HIPAA (Health Insurance Portability and Accountability Act) compliance.
1141
+ Example: true for medical-safe models
1142
+ """
1143
+ soc2_compliant: builtins.bool
1144
+ """SOC 2 (Service Organization Control 2) compliance.
1145
+ Example: true for enterprise-grade security
1146
+ """
1147
+ iso_certified: builtins.bool
1148
+ """ISO certification status.
1149
+ Example: true for ISO 27001 certified services
1150
+ """
1151
+ refusal_capability: builtins.bool
1152
+ """Can refuse harmful or inappropriate requests.
1153
+ Example: true for models trained to decline harmful tasks
1154
+ """
1155
+ watermark_output: builtins.bool
1156
+ """Whether outputs include watermarking.
1157
+ Example: true for models with detectible AI signatures
1158
+ """
1159
+ custom_guardrails: builtins.bool
1160
+ """Supports custom safety guardrails.
1161
+ Example: true if users can add their own safety rules
1162
+ """
1163
+ @property
1164
+ def safety_filters(
1165
+ self,
1166
+ ) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[builtins.str]:
1167
+ """List of active safety filters.
1168
+ Examples: ["violence", "sexual", "hate", "self-harm", "illegal"]
1169
+ """
1170
+
1171
+ @property
1172
+ def built_in_guardrails(
1173
+ self,
1174
+ ) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[builtins.str]:
1175
+ """Built-in safety guardrails.
1176
+ Examples: ["constitutional-ai", "harmlessness", "helpfulness"]
1177
+ """
1178
+
1179
+ def __init__(
1180
+ self,
1181
+ *,
1182
+ moderation_level: global___ModerationLevel.ValueType = ...,
1183
+ content_filtering: builtins.bool = ...,
1184
+ safety_filters: collections.abc.Iterable[builtins.str] | None = ...,
1185
+ bias_rating: builtins.str = ...,
1186
+ toxicity_score: builtins.float = ...,
1187
+ gdpr_compliant: builtins.bool = ...,
1188
+ hipaa_compliant: builtins.bool = ...,
1189
+ soc2_compliant: builtins.bool = ...,
1190
+ iso_certified: builtins.bool = ...,
1191
+ refusal_capability: builtins.bool = ...,
1192
+ watermark_output: builtins.bool = ...,
1193
+ built_in_guardrails: collections.abc.Iterable[builtins.str] | None = ...,
1194
+ custom_guardrails: builtins.bool = ...,
1195
+ ) -> None: ...
1196
+ def ClearField(
1197
+ self,
1198
+ field_name: typing.Literal[
1199
+ "bias_rating",
1200
+ b"bias_rating",
1201
+ "built_in_guardrails",
1202
+ b"built_in_guardrails",
1203
+ "content_filtering",
1204
+ b"content_filtering",
1205
+ "custom_guardrails",
1206
+ b"custom_guardrails",
1207
+ "gdpr_compliant",
1208
+ b"gdpr_compliant",
1209
+ "hipaa_compliant",
1210
+ b"hipaa_compliant",
1211
+ "iso_certified",
1212
+ b"iso_certified",
1213
+ "moderation_level",
1214
+ b"moderation_level",
1215
+ "refusal_capability",
1216
+ b"refusal_capability",
1217
+ "safety_filters",
1218
+ b"safety_filters",
1219
+ "soc2_compliant",
1220
+ b"soc2_compliant",
1221
+ "toxicity_score",
1222
+ b"toxicity_score",
1223
+ "watermark_output",
1224
+ b"watermark_output",
1225
+ ],
1226
+ ) -> None: ...
1227
+
1228
+ global___Safety = Safety
1229
+
1230
+ @typing.final
1231
+ class Licensing(google.protobuf.message.Message):
1232
+ """Licensing contains license and usage terms for the model."""
1233
+
1234
+ DESCRIPTOR: google.protobuf.descriptor.Descriptor
1235
+
1236
+ LICENSE_TYPE_FIELD_NUMBER: builtins.int
1237
+ LICENSE_URL_FIELD_NUMBER: builtins.int
1238
+ IS_OPEN_SOURCE_FIELD_NUMBER: builtins.int
1239
+ IS_OPEN_WEIGHTS_FIELD_NUMBER: builtins.int
1240
+ COMMERCIAL_USE_FIELD_NUMBER: builtins.int
1241
+ RESEARCH_USE_FIELD_NUMBER: builtins.int
1242
+ ATTRIBUTION_REQUIRED_FIELD_NUMBER: builtins.int
1243
+ SHARE_ALIKE_REQUIRED_FIELD_NUMBER: builtins.int
1244
+ USAGE_RESTRICTIONS_FIELD_NUMBER: builtins.int
1245
+ license_type: global___LicenseType.ValueType
1246
+ """Type of license governing model use.
1247
+ Example: LICENSE_TYPE_APACHE_2_0, LICENSE_TYPE_PROPRIETARY
1248
+ """
1249
+ license_url: builtins.str
1250
+ """URL to full license text.
1251
+ Example: "https://github.com/meta-llama/llama/blob/main/LICENSE"
1252
+ """
1253
+ is_open_source: builtins.bool
1254
+ """Whether source code is openly available.
1255
+ Example: true for research papers with code
1256
+ """
1257
+ is_open_weights: builtins.bool
1258
+ """Whether model weights are publicly downloadable.
1259
+ Example: true for LLaMA, Mistral; false for GPT-4
1260
+ """
1261
+ commercial_use: builtins.bool
1262
+ """Allowed for commercial/business use.
1263
+ Example: true for Apache/MIT licensed models
1264
+ """
1265
+ research_use: builtins.bool
1266
+ """Allowed for research purposes.
1267
+ Example: true for most models, even proprietary ones
1268
+ """
1269
+ attribution_required: builtins.bool
1270
+ """Must attribute/cite when using.
1271
+ Example: true for CC-BY licenses
1272
+ """
1273
+ share_alike_required: builtins.bool
1274
+ """Derivatives must use same license.
1275
+ Example: true for GPL, CC-BY-SA licenses
1276
+ """
1277
+ @property
1278
+ def usage_restrictions(
1279
+ self,
1280
+ ) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[builtins.str]:
1281
+ """Specific usage restrictions or conditions.
1282
+ Examples: ["No use for surveillance", "Monthly active user limits",
1283
+ "No competitive use against provider"]
1284
+ """
1285
+
1286
+ def __init__(
1287
+ self,
1288
+ *,
1289
+ license_type: global___LicenseType.ValueType = ...,
1290
+ license_url: builtins.str = ...,
1291
+ is_open_source: builtins.bool = ...,
1292
+ is_open_weights: builtins.bool = ...,
1293
+ commercial_use: builtins.bool = ...,
1294
+ research_use: builtins.bool = ...,
1295
+ attribution_required: builtins.bool = ...,
1296
+ share_alike_required: builtins.bool = ...,
1297
+ usage_restrictions: collections.abc.Iterable[builtins.str] | None = ...,
1298
+ ) -> None: ...
1299
+ def ClearField(
1300
+ self,
1301
+ field_name: typing.Literal[
1302
+ "attribution_required",
1303
+ b"attribution_required",
1304
+ "commercial_use",
1305
+ b"commercial_use",
1306
+ "is_open_source",
1307
+ b"is_open_source",
1308
+ "is_open_weights",
1309
+ b"is_open_weights",
1310
+ "license_type",
1311
+ b"license_type",
1312
+ "license_url",
1313
+ b"license_url",
1314
+ "research_use",
1315
+ b"research_use",
1316
+ "share_alike_required",
1317
+ b"share_alike_required",
1318
+ "usage_restrictions",
1319
+ b"usage_restrictions",
1320
+ ],
1321
+ ) -> None: ...
1322
+
1323
+ global___Licensing = Licensing