weave-python 0.27.0__py3-none-any.whl → 0.28.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- weave/weaveapi/llmx/v1/architecture_pb2.py +74 -0
- weave/weaveapi/llmx/v1/architecture_pb2.pyi +1323 -0
- weave/weaveapi/llmx/v1/capabilities_pb2.py +88 -0
- weave/weaveapi/llmx/v1/capabilities_pb2.pyi +1613 -0
- weave/weaveapi/llmx/v1/model_pb2.py +54 -0
- weave/weaveapi/{modex → llmx}/v1/model_pb2.pyi +294 -189
- weave/weaveapi/llmx/v1/model_pb2_grpc.py +2 -0
- weave/weaveapi/llmx/v1/model_pb2_grpc.pyi +20 -0
- weave/weaveapi/llmx/v1/pricing_pb2.py +54 -0
- weave/weaveapi/llmx/v1/pricing_pb2.pyi +597 -0
- weave/weaveapi/llmx/v1/pricing_pb2_grpc.py +2 -0
- weave/weaveapi/llmx/v1/pricing_pb2_grpc.pyi +20 -0
- weave/weaveapi/llmx/v1/provider_pb2.py +38 -0
- weave/weaveapi/{modex → llmx}/v1/provider_pb2.pyi +31 -19
- weave/weaveapi/llmx/v1/provider_pb2_grpc.py +2 -0
- weave/weaveapi/llmx/v1/provider_pb2_grpc.pyi +20 -0
- weave/weaveapi/llmx/v1/service_pb2.py +180 -0
- weave/weaveapi/{modex → llmx}/v1/service_pb2.pyi +174 -44
- weave/weaveapi/{modex → llmx}/v1/service_pb2_grpc.py +103 -105
- weave/weaveapi/llmx/v1/service_pb2_grpc.pyi +266 -0
- {weave_python-0.27.0.dist-info → weave_python-0.28.1.dist-info}/METADATA +1 -1
- {weave_python-0.27.0.dist-info → weave_python-0.28.1.dist-info}/RECORD +27 -17
- weave/weaveapi/modex/v1/model_pb2.py +0 -58
- weave/weaveapi/modex/v1/provider_pb2.py +0 -38
- weave/weaveapi/modex/v1/service_pb2.py +0 -180
- weave/weaveapi/modex/v1/service_pb2_grpc.pyi +0 -268
- weave/weavesql/weavedb/models.py +0 -124
- weave/weavesql/weavedb/queries.py +0 -306
- /weave/weaveapi/{modex/v1/model_pb2_grpc.py → llmx/v1/architecture_pb2_grpc.py} +0 -0
- /weave/weaveapi/{modex/v1/model_pb2_grpc.pyi → llmx/v1/architecture_pb2_grpc.pyi} +0 -0
- /weave/weaveapi/{modex/v1/provider_pb2_grpc.py → llmx/v1/capabilities_pb2_grpc.py} +0 -0
- /weave/weaveapi/{modex/v1/provider_pb2_grpc.pyi → llmx/v1/capabilities_pb2_grpc.pyi} +0 -0
- {weave_python-0.27.0.dist-info → weave_python-0.28.1.dist-info}/WHEEL +0 -0
|
@@ -0,0 +1,1323 @@
|
|
|
1
|
+
"""
|
|
2
|
+
@generated by mypy-protobuf. Do not edit manually!
|
|
3
|
+
isort:skip_file
|
|
4
|
+
"""
|
|
5
|
+
|
|
6
|
+
import builtins
|
|
7
|
+
import collections.abc
|
|
8
|
+
import google.protobuf.descriptor
|
|
9
|
+
import google.protobuf.internal.containers
|
|
10
|
+
import google.protobuf.internal.enum_type_wrapper
|
|
11
|
+
import google.protobuf.message
|
|
12
|
+
import sys
|
|
13
|
+
import typing
|
|
14
|
+
import weaveapi.llmx.v1.capabilities_pb2
|
|
15
|
+
|
|
16
|
+
if sys.version_info >= (3, 10):
|
|
17
|
+
import typing as typing_extensions
|
|
18
|
+
else:
|
|
19
|
+
import typing_extensions
|
|
20
|
+
|
|
21
|
+
DESCRIPTOR: google.protobuf.descriptor.FileDescriptor
|
|
22
|
+
|
|
23
|
+
class _BaseArchitecture:
|
|
24
|
+
ValueType = typing.NewType("ValueType", builtins.int)
|
|
25
|
+
V: typing_extensions.TypeAlias = ValueType
|
|
26
|
+
|
|
27
|
+
class _BaseArchitectureEnumTypeWrapper(
|
|
28
|
+
google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[
|
|
29
|
+
_BaseArchitecture.ValueType
|
|
30
|
+
],
|
|
31
|
+
builtins.type,
|
|
32
|
+
):
|
|
33
|
+
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
|
34
|
+
BASE_ARCHITECTURE_UNSPECIFIED: _BaseArchitecture.ValueType # 0
|
|
35
|
+
BASE_ARCHITECTURE_TRANSFORMER: _BaseArchitecture.ValueType # 1
|
|
36
|
+
BASE_ARCHITECTURE_MAMBA: _BaseArchitecture.ValueType # 2
|
|
37
|
+
BASE_ARCHITECTURE_HYBRID: _BaseArchitecture.ValueType # 3
|
|
38
|
+
BASE_ARCHITECTURE_RECURRENT_NEURAL_NETWORK: _BaseArchitecture.ValueType # 4
|
|
39
|
+
BASE_ARCHITECTURE_CONVOLUTIONAL_NEURAL_NETWORK: _BaseArchitecture.ValueType # 5
|
|
40
|
+
BASE_ARCHITECTURE_DIFFUSION: _BaseArchitecture.ValueType # 6
|
|
41
|
+
BASE_ARCHITECTURE_GENERATIVE_ADVERSARIAL_NETWORK: _BaseArchitecture.ValueType # 7
|
|
42
|
+
|
|
43
|
+
class BaseArchitecture(_BaseArchitecture, metaclass=_BaseArchitectureEnumTypeWrapper):
|
|
44
|
+
"""Base architecture types"""
|
|
45
|
+
|
|
46
|
+
BASE_ARCHITECTURE_UNSPECIFIED: BaseArchitecture.ValueType # 0
|
|
47
|
+
BASE_ARCHITECTURE_TRANSFORMER: BaseArchitecture.ValueType # 1
|
|
48
|
+
BASE_ARCHITECTURE_MAMBA: BaseArchitecture.ValueType # 2
|
|
49
|
+
BASE_ARCHITECTURE_HYBRID: BaseArchitecture.ValueType # 3
|
|
50
|
+
BASE_ARCHITECTURE_RECURRENT_NEURAL_NETWORK: BaseArchitecture.ValueType # 4
|
|
51
|
+
BASE_ARCHITECTURE_CONVOLUTIONAL_NEURAL_NETWORK: BaseArchitecture.ValueType # 5
|
|
52
|
+
BASE_ARCHITECTURE_DIFFUSION: BaseArchitecture.ValueType # 6
|
|
53
|
+
BASE_ARCHITECTURE_GENERATIVE_ADVERSARIAL_NETWORK: BaseArchitecture.ValueType # 7
|
|
54
|
+
global___BaseArchitecture = BaseArchitecture
|
|
55
|
+
|
|
56
|
+
class _ModelArchitecture:
|
|
57
|
+
ValueType = typing.NewType("ValueType", builtins.int)
|
|
58
|
+
V: typing_extensions.TypeAlias = ValueType
|
|
59
|
+
|
|
60
|
+
class _ModelArchitectureEnumTypeWrapper(
|
|
61
|
+
google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[
|
|
62
|
+
_ModelArchitecture.ValueType
|
|
63
|
+
],
|
|
64
|
+
builtins.type,
|
|
65
|
+
):
|
|
66
|
+
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
|
67
|
+
MODEL_ARCHITECTURE_UNSPECIFIED: _ModelArchitecture.ValueType # 0
|
|
68
|
+
MODEL_ARCHITECTURE_GPT: _ModelArchitecture.ValueType # 1
|
|
69
|
+
MODEL_ARCHITECTURE_BERT: _ModelArchitecture.ValueType # 2
|
|
70
|
+
MODEL_ARCHITECTURE_T5: _ModelArchitecture.ValueType # 3
|
|
71
|
+
MODEL_ARCHITECTURE_LLAMA: _ModelArchitecture.ValueType # 4
|
|
72
|
+
MODEL_ARCHITECTURE_MISTRAL: _ModelArchitecture.ValueType # 5
|
|
73
|
+
MODEL_ARCHITECTURE_GEMMA: _ModelArchitecture.ValueType # 6
|
|
74
|
+
MODEL_ARCHITECTURE_QWEN: _ModelArchitecture.ValueType # 7
|
|
75
|
+
MODEL_ARCHITECTURE_PHI: _ModelArchitecture.ValueType # 8
|
|
76
|
+
MODEL_ARCHITECTURE_CLAUDE: _ModelArchitecture.ValueType # 9
|
|
77
|
+
MODEL_ARCHITECTURE_COMMAND: _ModelArchitecture.ValueType # 10
|
|
78
|
+
MODEL_ARCHITECTURE_PALM: _ModelArchitecture.ValueType # 11
|
|
79
|
+
MODEL_ARCHITECTURE_FALCON: _ModelArchitecture.ValueType # 12
|
|
80
|
+
MODEL_ARCHITECTURE_STARCODER: _ModelArchitecture.ValueType # 13
|
|
81
|
+
MODEL_ARCHITECTURE_CODEGEN: _ModelArchitecture.ValueType # 14
|
|
82
|
+
MODEL_ARCHITECTURE_DEEPSEEK: _ModelArchitecture.ValueType # 15
|
|
83
|
+
MODEL_ARCHITECTURE_YI: _ModelArchitecture.ValueType # 16
|
|
84
|
+
MODEL_ARCHITECTURE_MIXTRAL: _ModelArchitecture.ValueType # 17
|
|
85
|
+
MODEL_ARCHITECTURE_GEMINI: _ModelArchitecture.ValueType # 18
|
|
86
|
+
|
|
87
|
+
class ModelArchitecture(
|
|
88
|
+
_ModelArchitecture, metaclass=_ModelArchitectureEnumTypeWrapper
|
|
89
|
+
):
|
|
90
|
+
"""Model architecture types"""
|
|
91
|
+
|
|
92
|
+
MODEL_ARCHITECTURE_UNSPECIFIED: ModelArchitecture.ValueType # 0
|
|
93
|
+
MODEL_ARCHITECTURE_GPT: ModelArchitecture.ValueType # 1
|
|
94
|
+
MODEL_ARCHITECTURE_BERT: ModelArchitecture.ValueType # 2
|
|
95
|
+
MODEL_ARCHITECTURE_T5: ModelArchitecture.ValueType # 3
|
|
96
|
+
MODEL_ARCHITECTURE_LLAMA: ModelArchitecture.ValueType # 4
|
|
97
|
+
MODEL_ARCHITECTURE_MISTRAL: ModelArchitecture.ValueType # 5
|
|
98
|
+
MODEL_ARCHITECTURE_GEMMA: ModelArchitecture.ValueType # 6
|
|
99
|
+
MODEL_ARCHITECTURE_QWEN: ModelArchitecture.ValueType # 7
|
|
100
|
+
MODEL_ARCHITECTURE_PHI: ModelArchitecture.ValueType # 8
|
|
101
|
+
MODEL_ARCHITECTURE_CLAUDE: ModelArchitecture.ValueType # 9
|
|
102
|
+
MODEL_ARCHITECTURE_COMMAND: ModelArchitecture.ValueType # 10
|
|
103
|
+
MODEL_ARCHITECTURE_PALM: ModelArchitecture.ValueType # 11
|
|
104
|
+
MODEL_ARCHITECTURE_FALCON: ModelArchitecture.ValueType # 12
|
|
105
|
+
MODEL_ARCHITECTURE_STARCODER: ModelArchitecture.ValueType # 13
|
|
106
|
+
MODEL_ARCHITECTURE_CODEGEN: ModelArchitecture.ValueType # 14
|
|
107
|
+
MODEL_ARCHITECTURE_DEEPSEEK: ModelArchitecture.ValueType # 15
|
|
108
|
+
MODEL_ARCHITECTURE_YI: ModelArchitecture.ValueType # 16
|
|
109
|
+
MODEL_ARCHITECTURE_MIXTRAL: ModelArchitecture.ValueType # 17
|
|
110
|
+
MODEL_ARCHITECTURE_GEMINI: ModelArchitecture.ValueType # 18
|
|
111
|
+
global___ModelArchitecture = ModelArchitecture
|
|
112
|
+
|
|
113
|
+
class _PositionEmbedding:
|
|
114
|
+
ValueType = typing.NewType("ValueType", builtins.int)
|
|
115
|
+
V: typing_extensions.TypeAlias = ValueType
|
|
116
|
+
|
|
117
|
+
class _PositionEmbeddingEnumTypeWrapper(
|
|
118
|
+
google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[
|
|
119
|
+
_PositionEmbedding.ValueType
|
|
120
|
+
],
|
|
121
|
+
builtins.type,
|
|
122
|
+
):
|
|
123
|
+
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
|
124
|
+
POSITION_EMBEDDING_UNSPECIFIED: _PositionEmbedding.ValueType # 0
|
|
125
|
+
POSITION_EMBEDDING_ABSOLUTE: _PositionEmbedding.ValueType # 1
|
|
126
|
+
POSITION_EMBEDDING_RELATIVE: _PositionEmbedding.ValueType # 2
|
|
127
|
+
POSITION_EMBEDDING_ROTARY: _PositionEmbedding.ValueType # 3
|
|
128
|
+
POSITION_EMBEDDING_ALIBI: _PositionEmbedding.ValueType # 4
|
|
129
|
+
POSITION_EMBEDDING_LEARNED: _PositionEmbedding.ValueType # 5
|
|
130
|
+
POSITION_EMBEDDING_SINUSOIDAL: _PositionEmbedding.ValueType # 6
|
|
131
|
+
|
|
132
|
+
class PositionEmbedding(
|
|
133
|
+
_PositionEmbedding, metaclass=_PositionEmbeddingEnumTypeWrapper
|
|
134
|
+
):
|
|
135
|
+
"""Position embedding types"""
|
|
136
|
+
|
|
137
|
+
POSITION_EMBEDDING_UNSPECIFIED: PositionEmbedding.ValueType # 0
|
|
138
|
+
POSITION_EMBEDDING_ABSOLUTE: PositionEmbedding.ValueType # 1
|
|
139
|
+
POSITION_EMBEDDING_RELATIVE: PositionEmbedding.ValueType # 2
|
|
140
|
+
POSITION_EMBEDDING_ROTARY: PositionEmbedding.ValueType # 3
|
|
141
|
+
POSITION_EMBEDDING_ALIBI: PositionEmbedding.ValueType # 4
|
|
142
|
+
POSITION_EMBEDDING_LEARNED: PositionEmbedding.ValueType # 5
|
|
143
|
+
POSITION_EMBEDDING_SINUSOIDAL: PositionEmbedding.ValueType # 6
|
|
144
|
+
global___PositionEmbedding = PositionEmbedding
|
|
145
|
+
|
|
146
|
+
class _ActivationFunction:
|
|
147
|
+
ValueType = typing.NewType("ValueType", builtins.int)
|
|
148
|
+
V: typing_extensions.TypeAlias = ValueType
|
|
149
|
+
|
|
150
|
+
class _ActivationFunctionEnumTypeWrapper(
|
|
151
|
+
google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[
|
|
152
|
+
_ActivationFunction.ValueType
|
|
153
|
+
],
|
|
154
|
+
builtins.type,
|
|
155
|
+
):
|
|
156
|
+
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
|
157
|
+
ACTIVATION_FUNCTION_UNSPECIFIED: _ActivationFunction.ValueType # 0
|
|
158
|
+
ACTIVATION_FUNCTION_GELU: _ActivationFunction.ValueType # 1
|
|
159
|
+
ACTIVATION_FUNCTION_SWIGLU: _ActivationFunction.ValueType # 2
|
|
160
|
+
ACTIVATION_FUNCTION_RELU: _ActivationFunction.ValueType # 3
|
|
161
|
+
ACTIVATION_FUNCTION_SILU: _ActivationFunction.ValueType # 4
|
|
162
|
+
ACTIVATION_FUNCTION_TANH: _ActivationFunction.ValueType # 5
|
|
163
|
+
ACTIVATION_FUNCTION_SIGMOID: _ActivationFunction.ValueType # 6
|
|
164
|
+
ACTIVATION_FUNCTION_MISH: _ActivationFunction.ValueType # 7
|
|
165
|
+
ACTIVATION_FUNCTION_LEAKY_RELU: _ActivationFunction.ValueType # 8
|
|
166
|
+
|
|
167
|
+
class ActivationFunction(
|
|
168
|
+
_ActivationFunction, metaclass=_ActivationFunctionEnumTypeWrapper
|
|
169
|
+
):
|
|
170
|
+
"""Activation function types"""
|
|
171
|
+
|
|
172
|
+
ACTIVATION_FUNCTION_UNSPECIFIED: ActivationFunction.ValueType # 0
|
|
173
|
+
ACTIVATION_FUNCTION_GELU: ActivationFunction.ValueType # 1
|
|
174
|
+
ACTIVATION_FUNCTION_SWIGLU: ActivationFunction.ValueType # 2
|
|
175
|
+
ACTIVATION_FUNCTION_RELU: ActivationFunction.ValueType # 3
|
|
176
|
+
ACTIVATION_FUNCTION_SILU: ActivationFunction.ValueType # 4
|
|
177
|
+
ACTIVATION_FUNCTION_TANH: ActivationFunction.ValueType # 5
|
|
178
|
+
ACTIVATION_FUNCTION_SIGMOID: ActivationFunction.ValueType # 6
|
|
179
|
+
ACTIVATION_FUNCTION_MISH: ActivationFunction.ValueType # 7
|
|
180
|
+
ACTIVATION_FUNCTION_LEAKY_RELU: ActivationFunction.ValueType # 8
|
|
181
|
+
global___ActivationFunction = ActivationFunction
|
|
182
|
+
|
|
183
|
+
class _TrainingTechnique:
|
|
184
|
+
ValueType = typing.NewType("ValueType", builtins.int)
|
|
185
|
+
V: typing_extensions.TypeAlias = ValueType
|
|
186
|
+
|
|
187
|
+
class _TrainingTechniqueEnumTypeWrapper(
|
|
188
|
+
google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[
|
|
189
|
+
_TrainingTechnique.ValueType
|
|
190
|
+
],
|
|
191
|
+
builtins.type,
|
|
192
|
+
):
|
|
193
|
+
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
|
194
|
+
TRAINING_TECHNIQUE_UNSPECIFIED: _TrainingTechnique.ValueType # 0
|
|
195
|
+
TRAINING_TECHNIQUE_SUPERVISED: _TrainingTechnique.ValueType # 1
|
|
196
|
+
TRAINING_TECHNIQUE_REINFORCEMENT_LEARNING_FROM_HUMAN_FEEDBACK: (
|
|
197
|
+
_TrainingTechnique.ValueType
|
|
198
|
+
) # 2
|
|
199
|
+
TRAINING_TECHNIQUE_CONSTITUTIONAL_AI: _TrainingTechnique.ValueType # 3
|
|
200
|
+
TRAINING_TECHNIQUE_DIRECT_PREFERENCE_OPTIMIZATION: _TrainingTechnique.ValueType # 4
|
|
201
|
+
TRAINING_TECHNIQUE_PROXIMAL_POLICY_OPTIMIZATION: _TrainingTechnique.ValueType # 5
|
|
202
|
+
TRAINING_TECHNIQUE_SUPERVISED_FINE_TUNING: _TrainingTechnique.ValueType # 6
|
|
203
|
+
TRAINING_TECHNIQUE_INSTRUCTION_TUNING: _TrainingTechnique.ValueType # 7
|
|
204
|
+
TRAINING_TECHNIQUE_FEW_SHOT: _TrainingTechnique.ValueType # 8
|
|
205
|
+
TRAINING_TECHNIQUE_CHAIN_OF_THOUGHT: _TrainingTechnique.ValueType # 9
|
|
206
|
+
|
|
207
|
+
class TrainingTechnique(
|
|
208
|
+
_TrainingTechnique, metaclass=_TrainingTechniqueEnumTypeWrapper
|
|
209
|
+
):
|
|
210
|
+
"""Training technique types"""
|
|
211
|
+
|
|
212
|
+
TRAINING_TECHNIQUE_UNSPECIFIED: TrainingTechnique.ValueType # 0
|
|
213
|
+
TRAINING_TECHNIQUE_SUPERVISED: TrainingTechnique.ValueType # 1
|
|
214
|
+
TRAINING_TECHNIQUE_REINFORCEMENT_LEARNING_FROM_HUMAN_FEEDBACK: (
|
|
215
|
+
TrainingTechnique.ValueType
|
|
216
|
+
) # 2
|
|
217
|
+
TRAINING_TECHNIQUE_CONSTITUTIONAL_AI: TrainingTechnique.ValueType # 3
|
|
218
|
+
TRAINING_TECHNIQUE_DIRECT_PREFERENCE_OPTIMIZATION: TrainingTechnique.ValueType # 4
|
|
219
|
+
TRAINING_TECHNIQUE_PROXIMAL_POLICY_OPTIMIZATION: TrainingTechnique.ValueType # 5
|
|
220
|
+
TRAINING_TECHNIQUE_SUPERVISED_FINE_TUNING: TrainingTechnique.ValueType # 6
|
|
221
|
+
TRAINING_TECHNIQUE_INSTRUCTION_TUNING: TrainingTechnique.ValueType # 7
|
|
222
|
+
TRAINING_TECHNIQUE_FEW_SHOT: TrainingTechnique.ValueType # 8
|
|
223
|
+
TRAINING_TECHNIQUE_CHAIN_OF_THOUGHT: TrainingTechnique.ValueType # 9
|
|
224
|
+
global___TrainingTechnique = TrainingTechnique
|
|
225
|
+
|
|
226
|
+
class _Quantization:
|
|
227
|
+
ValueType = typing.NewType("ValueType", builtins.int)
|
|
228
|
+
V: typing_extensions.TypeAlias = ValueType
|
|
229
|
+
|
|
230
|
+
class _QuantizationEnumTypeWrapper(
|
|
231
|
+
google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[
|
|
232
|
+
_Quantization.ValueType
|
|
233
|
+
],
|
|
234
|
+
builtins.type,
|
|
235
|
+
):
|
|
236
|
+
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
|
237
|
+
QUANTIZATION_UNSPECIFIED: _Quantization.ValueType # 0
|
|
238
|
+
QUANTIZATION_NONE: _Quantization.ValueType # 1
|
|
239
|
+
QUANTIZATION_INT8: _Quantization.ValueType # 2
|
|
240
|
+
QUANTIZATION_INT4: _Quantization.ValueType # 3
|
|
241
|
+
QUANTIZATION_FP8: _Quantization.ValueType # 4
|
|
242
|
+
QUANTIZATION_GPTQ: _Quantization.ValueType # 5
|
|
243
|
+
QUANTIZATION_AWQ: _Quantization.ValueType # 6
|
|
244
|
+
QUANTIZATION_GGUF: _Quantization.ValueType # 7
|
|
245
|
+
QUANTIZATION_BITSANDBYTES: _Quantization.ValueType # 8
|
|
246
|
+
|
|
247
|
+
class Quantization(_Quantization, metaclass=_QuantizationEnumTypeWrapper):
|
|
248
|
+
"""Quantization types"""
|
|
249
|
+
|
|
250
|
+
QUANTIZATION_UNSPECIFIED: Quantization.ValueType # 0
|
|
251
|
+
QUANTIZATION_NONE: Quantization.ValueType # 1
|
|
252
|
+
QUANTIZATION_INT8: Quantization.ValueType # 2
|
|
253
|
+
QUANTIZATION_INT4: Quantization.ValueType # 3
|
|
254
|
+
QUANTIZATION_FP8: Quantization.ValueType # 4
|
|
255
|
+
QUANTIZATION_GPTQ: Quantization.ValueType # 5
|
|
256
|
+
QUANTIZATION_AWQ: Quantization.ValueType # 6
|
|
257
|
+
QUANTIZATION_GGUF: Quantization.ValueType # 7
|
|
258
|
+
QUANTIZATION_BITSANDBYTES: Quantization.ValueType # 8
|
|
259
|
+
global___Quantization = Quantization
|
|
260
|
+
|
|
261
|
+
class _Precision:
|
|
262
|
+
ValueType = typing.NewType("ValueType", builtins.int)
|
|
263
|
+
V: typing_extensions.TypeAlias = ValueType
|
|
264
|
+
|
|
265
|
+
class _PrecisionEnumTypeWrapper(
|
|
266
|
+
google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[_Precision.ValueType],
|
|
267
|
+
builtins.type,
|
|
268
|
+
):
|
|
269
|
+
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
|
270
|
+
PRECISION_UNSPECIFIED: _Precision.ValueType # 0
|
|
271
|
+
PRECISION_FP32: _Precision.ValueType # 1
|
|
272
|
+
PRECISION_FP16: _Precision.ValueType # 2
|
|
273
|
+
PRECISION_BF16: _Precision.ValueType # 3
|
|
274
|
+
PRECISION_INT8: _Precision.ValueType # 4
|
|
275
|
+
PRECISION_MIXED: _Precision.ValueType # 5
|
|
276
|
+
|
|
277
|
+
class Precision(_Precision, metaclass=_PrecisionEnumTypeWrapper):
|
|
278
|
+
"""Precision types"""
|
|
279
|
+
|
|
280
|
+
PRECISION_UNSPECIFIED: Precision.ValueType # 0
|
|
281
|
+
PRECISION_FP32: Precision.ValueType # 1
|
|
282
|
+
PRECISION_FP16: Precision.ValueType # 2
|
|
283
|
+
PRECISION_BF16: Precision.ValueType # 3
|
|
284
|
+
PRECISION_INT8: Precision.ValueType # 4
|
|
285
|
+
PRECISION_MIXED: Precision.ValueType # 5
|
|
286
|
+
global___Precision = Precision
|
|
287
|
+
|
|
288
|
+
class _InferenceFramework:
|
|
289
|
+
ValueType = typing.NewType("ValueType", builtins.int)
|
|
290
|
+
V: typing_extensions.TypeAlias = ValueType
|
|
291
|
+
|
|
292
|
+
class _InferenceFrameworkEnumTypeWrapper(
|
|
293
|
+
google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[
|
|
294
|
+
_InferenceFramework.ValueType
|
|
295
|
+
],
|
|
296
|
+
builtins.type,
|
|
297
|
+
):
|
|
298
|
+
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
|
299
|
+
INFERENCE_FRAMEWORK_UNSPECIFIED: _InferenceFramework.ValueType # 0
|
|
300
|
+
INFERENCE_FRAMEWORK_VLLM: _InferenceFramework.ValueType # 1
|
|
301
|
+
INFERENCE_FRAMEWORK_TGI: _InferenceFramework.ValueType # 2
|
|
302
|
+
INFERENCE_FRAMEWORK_TRITON: _InferenceFramework.ValueType # 3
|
|
303
|
+
INFERENCE_FRAMEWORK_TENSORRT: _InferenceFramework.ValueType # 4
|
|
304
|
+
INFERENCE_FRAMEWORK_ONNX: _InferenceFramework.ValueType # 5
|
|
305
|
+
INFERENCE_FRAMEWORK_TORCHSERVE: _InferenceFramework.ValueType # 6
|
|
306
|
+
INFERENCE_FRAMEWORK_TENSORFLOW_SERVING: _InferenceFramework.ValueType # 7
|
|
307
|
+
INFERENCE_FRAMEWORK_RAY_SERVE: _InferenceFramework.ValueType # 8
|
|
308
|
+
INFERENCE_FRAMEWORK_DEEPSPEED: _InferenceFramework.ValueType # 9
|
|
309
|
+
INFERENCE_FRAMEWORK_FASTERTRANSFORMER: _InferenceFramework.ValueType # 10
|
|
310
|
+
|
|
311
|
+
class InferenceFramework(
|
|
312
|
+
_InferenceFramework, metaclass=_InferenceFrameworkEnumTypeWrapper
|
|
313
|
+
):
|
|
314
|
+
"""Inference framework types"""
|
|
315
|
+
|
|
316
|
+
INFERENCE_FRAMEWORK_UNSPECIFIED: InferenceFramework.ValueType # 0
|
|
317
|
+
INFERENCE_FRAMEWORK_VLLM: InferenceFramework.ValueType # 1
|
|
318
|
+
INFERENCE_FRAMEWORK_TGI: InferenceFramework.ValueType # 2
|
|
319
|
+
INFERENCE_FRAMEWORK_TRITON: InferenceFramework.ValueType # 3
|
|
320
|
+
INFERENCE_FRAMEWORK_TENSORRT: InferenceFramework.ValueType # 4
|
|
321
|
+
INFERENCE_FRAMEWORK_ONNX: InferenceFramework.ValueType # 5
|
|
322
|
+
INFERENCE_FRAMEWORK_TORCHSERVE: InferenceFramework.ValueType # 6
|
|
323
|
+
INFERENCE_FRAMEWORK_TENSORFLOW_SERVING: InferenceFramework.ValueType # 7
|
|
324
|
+
INFERENCE_FRAMEWORK_RAY_SERVE: InferenceFramework.ValueType # 8
|
|
325
|
+
INFERENCE_FRAMEWORK_DEEPSPEED: InferenceFramework.ValueType # 9
|
|
326
|
+
INFERENCE_FRAMEWORK_FASTERTRANSFORMER: InferenceFramework.ValueType # 10
|
|
327
|
+
global___InferenceFramework = InferenceFramework
|
|
328
|
+
|
|
329
|
+
class _ModelFormat:
|
|
330
|
+
ValueType = typing.NewType("ValueType", builtins.int)
|
|
331
|
+
V: typing_extensions.TypeAlias = ValueType
|
|
332
|
+
|
|
333
|
+
class _ModelFormatEnumTypeWrapper(
|
|
334
|
+
google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[_ModelFormat.ValueType],
|
|
335
|
+
builtins.type,
|
|
336
|
+
):
|
|
337
|
+
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
|
338
|
+
MODEL_FORMAT_UNSPECIFIED: _ModelFormat.ValueType # 0
|
|
339
|
+
MODEL_FORMAT_SAFETENSORS: _ModelFormat.ValueType # 1
|
|
340
|
+
MODEL_FORMAT_GGUF: _ModelFormat.ValueType # 2
|
|
341
|
+
MODEL_FORMAT_ONNX: _ModelFormat.ValueType # 3
|
|
342
|
+
MODEL_FORMAT_PYTORCH: _ModelFormat.ValueType # 4
|
|
343
|
+
MODEL_FORMAT_TENSORFLOW: _ModelFormat.ValueType # 5
|
|
344
|
+
MODEL_FORMAT_JAX: _ModelFormat.ValueType # 6
|
|
345
|
+
MODEL_FORMAT_COREML: _ModelFormat.ValueType # 7
|
|
346
|
+
MODEL_FORMAT_OPENVINO: _ModelFormat.ValueType # 8
|
|
347
|
+
MODEL_FORMAT_TENSORRT: _ModelFormat.ValueType # 9
|
|
348
|
+
|
|
349
|
+
class ModelFormat(_ModelFormat, metaclass=_ModelFormatEnumTypeWrapper):
|
|
350
|
+
"""Model format types"""
|
|
351
|
+
|
|
352
|
+
MODEL_FORMAT_UNSPECIFIED: ModelFormat.ValueType # 0
|
|
353
|
+
MODEL_FORMAT_SAFETENSORS: ModelFormat.ValueType # 1
|
|
354
|
+
MODEL_FORMAT_GGUF: ModelFormat.ValueType # 2
|
|
355
|
+
MODEL_FORMAT_ONNX: ModelFormat.ValueType # 3
|
|
356
|
+
MODEL_FORMAT_PYTORCH: ModelFormat.ValueType # 4
|
|
357
|
+
MODEL_FORMAT_TENSORFLOW: ModelFormat.ValueType # 5
|
|
358
|
+
MODEL_FORMAT_JAX: ModelFormat.ValueType # 6
|
|
359
|
+
MODEL_FORMAT_COREML: ModelFormat.ValueType # 7
|
|
360
|
+
MODEL_FORMAT_OPENVINO: ModelFormat.ValueType # 8
|
|
361
|
+
MODEL_FORMAT_TENSORRT: ModelFormat.ValueType # 9
|
|
362
|
+
global___ModelFormat = ModelFormat
|
|
363
|
+
|
|
364
|
+
class _CheckpointFormat:
|
|
365
|
+
ValueType = typing.NewType("ValueType", builtins.int)
|
|
366
|
+
V: typing_extensions.TypeAlias = ValueType
|
|
367
|
+
|
|
368
|
+
class _CheckpointFormatEnumTypeWrapper(
|
|
369
|
+
google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[
|
|
370
|
+
_CheckpointFormat.ValueType
|
|
371
|
+
],
|
|
372
|
+
builtins.type,
|
|
373
|
+
):
|
|
374
|
+
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
|
375
|
+
CHECKPOINT_FORMAT_UNSPECIFIED: _CheckpointFormat.ValueType # 0
|
|
376
|
+
CHECKPOINT_FORMAT_PYTORCH: _CheckpointFormat.ValueType # 1
|
|
377
|
+
CHECKPOINT_FORMAT_TENSORFLOW: _CheckpointFormat.ValueType # 2
|
|
378
|
+
CHECKPOINT_FORMAT_SAFETENSORS: _CheckpointFormat.ValueType # 3
|
|
379
|
+
CHECKPOINT_FORMAT_HF: _CheckpointFormat.ValueType # 4
|
|
380
|
+
CHECKPOINT_FORMAT_MEGATRON: _CheckpointFormat.ValueType # 5
|
|
381
|
+
CHECKPOINT_FORMAT_DEEPSPEED: _CheckpointFormat.ValueType # 6
|
|
382
|
+
|
|
383
|
+
class CheckpointFormat(_CheckpointFormat, metaclass=_CheckpointFormatEnumTypeWrapper):
|
|
384
|
+
"""Checkpoint format types"""
|
|
385
|
+
|
|
386
|
+
CHECKPOINT_FORMAT_UNSPECIFIED: CheckpointFormat.ValueType # 0
|
|
387
|
+
CHECKPOINT_FORMAT_PYTORCH: CheckpointFormat.ValueType # 1
|
|
388
|
+
CHECKPOINT_FORMAT_TENSORFLOW: CheckpointFormat.ValueType # 2
|
|
389
|
+
CHECKPOINT_FORMAT_SAFETENSORS: CheckpointFormat.ValueType # 3
|
|
390
|
+
CHECKPOINT_FORMAT_HF: CheckpointFormat.ValueType # 4
|
|
391
|
+
CHECKPOINT_FORMAT_MEGATRON: CheckpointFormat.ValueType # 5
|
|
392
|
+
CHECKPOINT_FORMAT_DEEPSPEED: CheckpointFormat.ValueType # 6
|
|
393
|
+
global___CheckpointFormat = CheckpointFormat
|
|
394
|
+
|
|
395
|
+
class _GPUType:
|
|
396
|
+
ValueType = typing.NewType("ValueType", builtins.int)
|
|
397
|
+
V: typing_extensions.TypeAlias = ValueType
|
|
398
|
+
|
|
399
|
+
class _GPUTypeEnumTypeWrapper(
|
|
400
|
+
google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[_GPUType.ValueType],
|
|
401
|
+
builtins.type,
|
|
402
|
+
):
|
|
403
|
+
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
|
404
|
+
GPU_TYPE_UNSPECIFIED: _GPUType.ValueType # 0
|
|
405
|
+
GPU_TYPE_A100: _GPUType.ValueType # 1
|
|
406
|
+
"""Datacenter/Enterprise GPUs"""
|
|
407
|
+
GPU_TYPE_H100: _GPUType.ValueType # 2
|
|
408
|
+
GPU_TYPE_V100: _GPUType.ValueType # 3
|
|
409
|
+
GPU_TYPE_T4: _GPUType.ValueType # 4
|
|
410
|
+
GPU_TYPE_L4: _GPUType.ValueType # 5
|
|
411
|
+
GPU_TYPE_L40: _GPUType.ValueType # 6
|
|
412
|
+
GPU_TYPE_A10: _GPUType.ValueType # 7
|
|
413
|
+
GPU_TYPE_A40: _GPUType.ValueType # 8
|
|
414
|
+
GPU_TYPE_RTX_A6000: _GPUType.ValueType # 9
|
|
415
|
+
GPU_TYPE_RTX_A5000: _GPUType.ValueType # 10
|
|
416
|
+
GPU_TYPE_RTX_A4000: _GPUType.ValueType # 11
|
|
417
|
+
GPU_TYPE_RTX_4090: _GPUType.ValueType # 20
|
|
418
|
+
"""Consumer GPUs (40 series)"""
|
|
419
|
+
GPU_TYPE_RTX_4080: _GPUType.ValueType # 21
|
|
420
|
+
GPU_TYPE_RTX_4070_TI: _GPUType.ValueType # 22
|
|
421
|
+
GPU_TYPE_RTX_4070: _GPUType.ValueType # 23
|
|
422
|
+
GPU_TYPE_RTX_4060_TI: _GPUType.ValueType # 24
|
|
423
|
+
GPU_TYPE_RTX_4060: _GPUType.ValueType # 25
|
|
424
|
+
GPU_TYPE_RTX_3090_TI: _GPUType.ValueType # 30
|
|
425
|
+
"""Consumer GPUs (30 series)"""
|
|
426
|
+
GPU_TYPE_RTX_3090: _GPUType.ValueType # 31
|
|
427
|
+
GPU_TYPE_RTX_3080_TI: _GPUType.ValueType # 32
|
|
428
|
+
GPU_TYPE_RTX_3080: _GPUType.ValueType # 33
|
|
429
|
+
GPU_TYPE_RTX_3070_TI: _GPUType.ValueType # 34
|
|
430
|
+
GPU_TYPE_RTX_3070: _GPUType.ValueType # 35
|
|
431
|
+
GPU_TYPE_RTX_3060_TI: _GPUType.ValueType # 36
|
|
432
|
+
GPU_TYPE_RTX_3060: _GPUType.ValueType # 37
|
|
433
|
+
GPU_TYPE_MI300: _GPUType.ValueType # 50
|
|
434
|
+
"""AMD GPUs"""
|
|
435
|
+
GPU_TYPE_MI250: _GPUType.ValueType # 51
|
|
436
|
+
GPU_TYPE_MI210: _GPUType.ValueType # 52
|
|
437
|
+
GPU_TYPE_RX_7900_XTX: _GPUType.ValueType # 53
|
|
438
|
+
GPU_TYPE_RX_7900_XT: _GPUType.ValueType # 54
|
|
439
|
+
GPU_TYPE_RX_6900_XT: _GPUType.ValueType # 55
|
|
440
|
+
GPU_TYPE_M3_MAX: _GPUType.ValueType # 60
|
|
441
|
+
"""Apple Silicon (unified memory)"""
|
|
442
|
+
GPU_TYPE_M3_PRO: _GPUType.ValueType # 61
|
|
443
|
+
GPU_TYPE_M3: _GPUType.ValueType # 62
|
|
444
|
+
GPU_TYPE_M2_ULTRA: _GPUType.ValueType # 63
|
|
445
|
+
GPU_TYPE_M2_MAX: _GPUType.ValueType # 64
|
|
446
|
+
GPU_TYPE_M2_PRO: _GPUType.ValueType # 65
|
|
447
|
+
GPU_TYPE_M2: _GPUType.ValueType # 66
|
|
448
|
+
GPU_TYPE_M1_ULTRA: _GPUType.ValueType # 67
|
|
449
|
+
GPU_TYPE_M1_MAX: _GPUType.ValueType # 68
|
|
450
|
+
GPU_TYPE_M1_PRO: _GPUType.ValueType # 69
|
|
451
|
+
GPU_TYPE_M1: _GPUType.ValueType # 70
|
|
452
|
+
GPU_TYPE_RTX_2080_TI: _GPUType.ValueType # 80
|
|
453
|
+
"""Older but still relevant"""
|
|
454
|
+
GPU_TYPE_TITAN_RTX: _GPUType.ValueType # 81
|
|
455
|
+
GPU_TYPE_GTX_1080_TI: _GPUType.ValueType # 82
|
|
456
|
+
|
|
457
|
+
class GPUType(_GPUType, metaclass=_GPUTypeEnumTypeWrapper):
|
|
458
|
+
"""GPU types"""
|
|
459
|
+
|
|
460
|
+
GPU_TYPE_UNSPECIFIED: GPUType.ValueType # 0
|
|
461
|
+
GPU_TYPE_A100: GPUType.ValueType # 1
|
|
462
|
+
"""Datacenter/Enterprise GPUs"""
|
|
463
|
+
GPU_TYPE_H100: GPUType.ValueType # 2
|
|
464
|
+
GPU_TYPE_V100: GPUType.ValueType # 3
|
|
465
|
+
GPU_TYPE_T4: GPUType.ValueType # 4
|
|
466
|
+
GPU_TYPE_L4: GPUType.ValueType # 5
|
|
467
|
+
GPU_TYPE_L40: GPUType.ValueType # 6
|
|
468
|
+
GPU_TYPE_A10: GPUType.ValueType # 7
|
|
469
|
+
GPU_TYPE_A40: GPUType.ValueType # 8
|
|
470
|
+
GPU_TYPE_RTX_A6000: GPUType.ValueType # 9
|
|
471
|
+
GPU_TYPE_RTX_A5000: GPUType.ValueType # 10
|
|
472
|
+
GPU_TYPE_RTX_A4000: GPUType.ValueType # 11
|
|
473
|
+
GPU_TYPE_RTX_4090: GPUType.ValueType # 20
|
|
474
|
+
"""Consumer GPUs (40 series)"""
|
|
475
|
+
GPU_TYPE_RTX_4080: GPUType.ValueType # 21
|
|
476
|
+
GPU_TYPE_RTX_4070_TI: GPUType.ValueType # 22
|
|
477
|
+
GPU_TYPE_RTX_4070: GPUType.ValueType # 23
|
|
478
|
+
GPU_TYPE_RTX_4060_TI: GPUType.ValueType # 24
|
|
479
|
+
GPU_TYPE_RTX_4060: GPUType.ValueType # 25
|
|
480
|
+
GPU_TYPE_RTX_3090_TI: GPUType.ValueType # 30
|
|
481
|
+
"""Consumer GPUs (30 series)"""
|
|
482
|
+
GPU_TYPE_RTX_3090: GPUType.ValueType # 31
|
|
483
|
+
GPU_TYPE_RTX_3080_TI: GPUType.ValueType # 32
|
|
484
|
+
GPU_TYPE_RTX_3080: GPUType.ValueType # 33
|
|
485
|
+
GPU_TYPE_RTX_3070_TI: GPUType.ValueType # 34
|
|
486
|
+
GPU_TYPE_RTX_3070: GPUType.ValueType # 35
|
|
487
|
+
GPU_TYPE_RTX_3060_TI: GPUType.ValueType # 36
|
|
488
|
+
GPU_TYPE_RTX_3060: GPUType.ValueType # 37
|
|
489
|
+
GPU_TYPE_MI300: GPUType.ValueType # 50
|
|
490
|
+
"""AMD GPUs"""
|
|
491
|
+
GPU_TYPE_MI250: GPUType.ValueType # 51
|
|
492
|
+
GPU_TYPE_MI210: GPUType.ValueType # 52
|
|
493
|
+
GPU_TYPE_RX_7900_XTX: GPUType.ValueType # 53
|
|
494
|
+
GPU_TYPE_RX_7900_XT: GPUType.ValueType # 54
|
|
495
|
+
GPU_TYPE_RX_6900_XT: GPUType.ValueType # 55
|
|
496
|
+
GPU_TYPE_M3_MAX: GPUType.ValueType # 60
|
|
497
|
+
"""Apple Silicon (unified memory)"""
|
|
498
|
+
GPU_TYPE_M3_PRO: GPUType.ValueType # 61
|
|
499
|
+
GPU_TYPE_M3: GPUType.ValueType # 62
|
|
500
|
+
GPU_TYPE_M2_ULTRA: GPUType.ValueType # 63
|
|
501
|
+
GPU_TYPE_M2_MAX: GPUType.ValueType # 64
|
|
502
|
+
GPU_TYPE_M2_PRO: GPUType.ValueType # 65
|
|
503
|
+
GPU_TYPE_M2: GPUType.ValueType # 66
|
|
504
|
+
GPU_TYPE_M1_ULTRA: GPUType.ValueType # 67
|
|
505
|
+
GPU_TYPE_M1_MAX: GPUType.ValueType # 68
|
|
506
|
+
GPU_TYPE_M1_PRO: GPUType.ValueType # 69
|
|
507
|
+
GPU_TYPE_M1: GPUType.ValueType # 70
|
|
508
|
+
GPU_TYPE_RTX_2080_TI: GPUType.ValueType # 80
|
|
509
|
+
"""Older but still relevant"""
|
|
510
|
+
GPU_TYPE_TITAN_RTX: GPUType.ValueType # 81
|
|
511
|
+
GPU_TYPE_GTX_1080_TI: GPUType.ValueType # 82
|
|
512
|
+
global___GPUType = GPUType
|
|
513
|
+
|
|
514
|
+
class _CPUType:
|
|
515
|
+
ValueType = typing.NewType("ValueType", builtins.int)
|
|
516
|
+
V: typing_extensions.TypeAlias = ValueType
|
|
517
|
+
|
|
518
|
+
class _CPUTypeEnumTypeWrapper(
|
|
519
|
+
google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[_CPUType.ValueType],
|
|
520
|
+
builtins.type,
|
|
521
|
+
):
|
|
522
|
+
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
|
523
|
+
CPU_TYPE_UNSPECIFIED: _CPUType.ValueType # 0
|
|
524
|
+
CPU_TYPE_X86_64: _CPUType.ValueType # 1
|
|
525
|
+
CPU_TYPE_ARM64: _CPUType.ValueType # 2
|
|
526
|
+
CPU_TYPE_APPLE_SILICON: _CPUType.ValueType # 3
|
|
527
|
+
CPU_TYPE_AMD64: _CPUType.ValueType # 4
|
|
528
|
+
CPU_TYPE_GRAVITON: _CPUType.ValueType # 5
|
|
529
|
+
|
|
530
|
+
class CPUType(_CPUType, metaclass=_CPUTypeEnumTypeWrapper):
|
|
531
|
+
"""CPU architecture types"""
|
|
532
|
+
|
|
533
|
+
CPU_TYPE_UNSPECIFIED: CPUType.ValueType # 0
|
|
534
|
+
CPU_TYPE_X86_64: CPUType.ValueType # 1
|
|
535
|
+
CPU_TYPE_ARM64: CPUType.ValueType # 2
|
|
536
|
+
CPU_TYPE_APPLE_SILICON: CPUType.ValueType # 3
|
|
537
|
+
CPU_TYPE_AMD64: CPUType.ValueType # 4
|
|
538
|
+
CPU_TYPE_GRAVITON: CPUType.ValueType # 5
|
|
539
|
+
global___CPUType = CPUType
|
|
540
|
+
|
|
541
|
+
class _ModerationLevel:
|
|
542
|
+
ValueType = typing.NewType("ValueType", builtins.int)
|
|
543
|
+
V: typing_extensions.TypeAlias = ValueType
|
|
544
|
+
|
|
545
|
+
class _ModerationLevelEnumTypeWrapper(
|
|
546
|
+
google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[
|
|
547
|
+
_ModerationLevel.ValueType
|
|
548
|
+
],
|
|
549
|
+
builtins.type,
|
|
550
|
+
):
|
|
551
|
+
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
|
552
|
+
MODERATION_LEVEL_UNSPECIFIED: _ModerationLevel.ValueType # 0
|
|
553
|
+
MODERATION_LEVEL_NONE: _ModerationLevel.ValueType # 1
|
|
554
|
+
MODERATION_LEVEL_LOW: _ModerationLevel.ValueType # 2
|
|
555
|
+
MODERATION_LEVEL_MEDIUM: _ModerationLevel.ValueType # 3
|
|
556
|
+
MODERATION_LEVEL_HIGH: _ModerationLevel.ValueType # 4
|
|
557
|
+
MODERATION_LEVEL_STRICT: _ModerationLevel.ValueType # 5
|
|
558
|
+
|
|
559
|
+
class ModerationLevel(_ModerationLevel, metaclass=_ModerationLevelEnumTypeWrapper):
|
|
560
|
+
"""Moderation level"""
|
|
561
|
+
|
|
562
|
+
MODERATION_LEVEL_UNSPECIFIED: ModerationLevel.ValueType # 0
|
|
563
|
+
MODERATION_LEVEL_NONE: ModerationLevel.ValueType # 1
|
|
564
|
+
MODERATION_LEVEL_LOW: ModerationLevel.ValueType # 2
|
|
565
|
+
MODERATION_LEVEL_MEDIUM: ModerationLevel.ValueType # 3
|
|
566
|
+
MODERATION_LEVEL_HIGH: ModerationLevel.ValueType # 4
|
|
567
|
+
MODERATION_LEVEL_STRICT: ModerationLevel.ValueType # 5
|
|
568
|
+
global___ModerationLevel = ModerationLevel
|
|
569
|
+
|
|
570
|
+
class _LicenseType:
|
|
571
|
+
ValueType = typing.NewType("ValueType", builtins.int)
|
|
572
|
+
V: typing_extensions.TypeAlias = ValueType
|
|
573
|
+
|
|
574
|
+
class _LicenseTypeEnumTypeWrapper(
|
|
575
|
+
google.protobuf.internal.enum_type_wrapper._EnumTypeWrapper[_LicenseType.ValueType],
|
|
576
|
+
builtins.type,
|
|
577
|
+
):
|
|
578
|
+
DESCRIPTOR: google.protobuf.descriptor.EnumDescriptor
|
|
579
|
+
LICENSE_TYPE_UNSPECIFIED: _LicenseType.ValueType # 0
|
|
580
|
+
LICENSE_TYPE_MIT: _LicenseType.ValueType # 1
|
|
581
|
+
LICENSE_TYPE_APACHE_2_0: _LicenseType.ValueType # 2
|
|
582
|
+
LICENSE_TYPE_GPL: _LicenseType.ValueType # 3
|
|
583
|
+
LICENSE_TYPE_BSD: _LicenseType.ValueType # 4
|
|
584
|
+
LICENSE_TYPE_COMMERCIAL: _LicenseType.ValueType # 5
|
|
585
|
+
LICENSE_TYPE_PROPRIETARY: _LicenseType.ValueType # 6
|
|
586
|
+
LICENSE_TYPE_CUSTOM: _LicenseType.ValueType # 7
|
|
587
|
+
LICENSE_TYPE_CC_BY: _LicenseType.ValueType # 8
|
|
588
|
+
LICENSE_TYPE_CC_BY_NC: _LicenseType.ValueType # 9
|
|
589
|
+
LICENSE_TYPE_CC_BY_SA: _LicenseType.ValueType # 10
|
|
590
|
+
LICENSE_TYPE_LLAMA: _LicenseType.ValueType # 11
|
|
591
|
+
LICENSE_TYPE_OPENAI: _LicenseType.ValueType # 12
|
|
592
|
+
|
|
593
|
+
class LicenseType(_LicenseType, metaclass=_LicenseTypeEnumTypeWrapper):
|
|
594
|
+
"""License types"""
|
|
595
|
+
|
|
596
|
+
LICENSE_TYPE_UNSPECIFIED: LicenseType.ValueType # 0
|
|
597
|
+
LICENSE_TYPE_MIT: LicenseType.ValueType # 1
|
|
598
|
+
LICENSE_TYPE_APACHE_2_0: LicenseType.ValueType # 2
|
|
599
|
+
LICENSE_TYPE_GPL: LicenseType.ValueType # 3
|
|
600
|
+
LICENSE_TYPE_BSD: LicenseType.ValueType # 4
|
|
601
|
+
LICENSE_TYPE_COMMERCIAL: LicenseType.ValueType # 5
|
|
602
|
+
LICENSE_TYPE_PROPRIETARY: LicenseType.ValueType # 6
|
|
603
|
+
LICENSE_TYPE_CUSTOM: LicenseType.ValueType # 7
|
|
604
|
+
LICENSE_TYPE_CC_BY: LicenseType.ValueType # 8
|
|
605
|
+
LICENSE_TYPE_CC_BY_NC: LicenseType.ValueType # 9
|
|
606
|
+
LICENSE_TYPE_CC_BY_SA: LicenseType.ValueType # 10
|
|
607
|
+
LICENSE_TYPE_LLAMA: LicenseType.ValueType # 11
|
|
608
|
+
LICENSE_TYPE_OPENAI: LicenseType.ValueType # 12
|
|
609
|
+
global___LicenseType = LicenseType
|
|
610
|
+
|
|
611
|
+
@typing.final
|
|
612
|
+
class Architecture(google.protobuf.message.Message):
|
|
613
|
+
"""Architecture describes the technical architecture of an AI model."""
|
|
614
|
+
|
|
615
|
+
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
|
616
|
+
|
|
617
|
+
BASE_ARCHITECTURE_FIELD_NUMBER: builtins.int
|
|
618
|
+
MODEL_ARCHITECTURE_FIELD_NUMBER: builtins.int
|
|
619
|
+
PARAMETER_COUNT_FIELD_NUMBER: builtins.int
|
|
620
|
+
ACTIVE_PARAMETERS_FIELD_NUMBER: builtins.int
|
|
621
|
+
TOTAL_PARAMETERS_FIELD_NUMBER: builtins.int
|
|
622
|
+
LAYER_COUNT_FIELD_NUMBER: builtins.int
|
|
623
|
+
HIDDEN_SIZE_FIELD_NUMBER: builtins.int
|
|
624
|
+
ATTENTION_HEADS_FIELD_NUMBER: builtins.int
|
|
625
|
+
VOCABULARY_SIZE_FIELD_NUMBER: builtins.int
|
|
626
|
+
POSITION_EMBEDDING_FIELD_NUMBER: builtins.int
|
|
627
|
+
ACTIVATION_FUNCTION_FIELD_NUMBER: builtins.int
|
|
628
|
+
IS_MIXTURE_OF_EXPERTS_FIELD_NUMBER: builtins.int
|
|
629
|
+
EXPERT_COUNT_FIELD_NUMBER: builtins.int
|
|
630
|
+
EXPERTS_PER_TOKEN_FIELD_NUMBER: builtins.int
|
|
631
|
+
base_architecture: global___BaseArchitecture.ValueType
|
|
632
|
+
"""Fundamental architecture type (Transformer, Mamba, etc.).
|
|
633
|
+
Example: BASE_ARCHITECTURE_TRANSFORMER for GPT models
|
|
634
|
+
"""
|
|
635
|
+
model_architecture: global___ModelArchitecture.ValueType
|
|
636
|
+
"""Specific model family/variant.
|
|
637
|
+
Example: MODEL_ARCHITECTURE_GPT for GPT-4, MODEL_ARCHITECTURE_LLAMA for LLaMA
|
|
638
|
+
"""
|
|
639
|
+
parameter_count: builtins.int
|
|
640
|
+
"""Total learnable parameters in billions.
|
|
641
|
+
Example: 175 for GPT-3 (175B parameters)
|
|
642
|
+
"""
|
|
643
|
+
active_parameters: builtins.int
|
|
644
|
+
"""Parameters activated per forward pass (for MoE models).
|
|
645
|
+
Example: 8B active out of 141B total for Mixtral-8x7B
|
|
646
|
+
"""
|
|
647
|
+
total_parameters: builtins.int
|
|
648
|
+
"""Total parameters including non-trainable (embeddings, etc.).
|
|
649
|
+
May be slightly higher than parameter_count
|
|
650
|
+
"""
|
|
651
|
+
layer_count: builtins.int
|
|
652
|
+
"""Number of transformer/attention layers.
|
|
653
|
+
Example: 96 for GPT-3, 32 for 7B models
|
|
654
|
+
"""
|
|
655
|
+
hidden_size: builtins.int
|
|
656
|
+
"""Hidden dimension size of the model.
|
|
657
|
+
Example: 12288 for GPT-3, 4096 for smaller models
|
|
658
|
+
"""
|
|
659
|
+
attention_heads: builtins.int
|
|
660
|
+
"""Number of attention heads in multi-head attention.
|
|
661
|
+
Example: 96 for GPT-3, 32 for 7B models
|
|
662
|
+
"""
|
|
663
|
+
vocabulary_size: builtins.int
|
|
664
|
+
"""Size of the token vocabulary.
|
|
665
|
+
Example: 50257 for GPT-2/3, 32000 for LLaMA
|
|
666
|
+
"""
|
|
667
|
+
position_embedding: global___PositionEmbedding.ValueType
|
|
668
|
+
"""Type of position encoding used.
|
|
669
|
+
Example: POSITION_EMBEDDING_ROTARY for modern models (RoPE)
|
|
670
|
+
"""
|
|
671
|
+
activation_function: global___ActivationFunction.ValueType
|
|
672
|
+
"""Activation function in feed-forward layers.
|
|
673
|
+
Example: ACTIVATION_FUNCTION_SWIGLU for LLaMA models
|
|
674
|
+
"""
|
|
675
|
+
is_mixture_of_experts: builtins.bool
|
|
676
|
+
"""Whether this is a Mixture of Experts model.
|
|
677
|
+
Example: true for Mixtral, GPT-4 (rumored), false for dense models
|
|
678
|
+
"""
|
|
679
|
+
expert_count: builtins.int
|
|
680
|
+
"""Total number of expert networks (for MoE).
|
|
681
|
+
Example: 8 for Mixtral-8x7B
|
|
682
|
+
"""
|
|
683
|
+
experts_per_token: builtins.int
|
|
684
|
+
"""Number of experts activated per token (for MoE).
|
|
685
|
+
Example: 2 for Mixtral (2 experts per token out of 8)
|
|
686
|
+
"""
|
|
687
|
+
def __init__(
|
|
688
|
+
self,
|
|
689
|
+
*,
|
|
690
|
+
base_architecture: global___BaseArchitecture.ValueType = ...,
|
|
691
|
+
model_architecture: global___ModelArchitecture.ValueType = ...,
|
|
692
|
+
parameter_count: builtins.int = ...,
|
|
693
|
+
active_parameters: builtins.int = ...,
|
|
694
|
+
total_parameters: builtins.int = ...,
|
|
695
|
+
layer_count: builtins.int = ...,
|
|
696
|
+
hidden_size: builtins.int = ...,
|
|
697
|
+
attention_heads: builtins.int = ...,
|
|
698
|
+
vocabulary_size: builtins.int = ...,
|
|
699
|
+
position_embedding: global___PositionEmbedding.ValueType = ...,
|
|
700
|
+
activation_function: global___ActivationFunction.ValueType = ...,
|
|
701
|
+
is_mixture_of_experts: builtins.bool = ...,
|
|
702
|
+
expert_count: builtins.int = ...,
|
|
703
|
+
experts_per_token: builtins.int = ...,
|
|
704
|
+
) -> None: ...
|
|
705
|
+
def ClearField(
|
|
706
|
+
self,
|
|
707
|
+
field_name: typing.Literal[
|
|
708
|
+
"activation_function",
|
|
709
|
+
b"activation_function",
|
|
710
|
+
"active_parameters",
|
|
711
|
+
b"active_parameters",
|
|
712
|
+
"attention_heads",
|
|
713
|
+
b"attention_heads",
|
|
714
|
+
"base_architecture",
|
|
715
|
+
b"base_architecture",
|
|
716
|
+
"expert_count",
|
|
717
|
+
b"expert_count",
|
|
718
|
+
"experts_per_token",
|
|
719
|
+
b"experts_per_token",
|
|
720
|
+
"hidden_size",
|
|
721
|
+
b"hidden_size",
|
|
722
|
+
"is_mixture_of_experts",
|
|
723
|
+
b"is_mixture_of_experts",
|
|
724
|
+
"layer_count",
|
|
725
|
+
b"layer_count",
|
|
726
|
+
"model_architecture",
|
|
727
|
+
b"model_architecture",
|
|
728
|
+
"parameter_count",
|
|
729
|
+
b"parameter_count",
|
|
730
|
+
"position_embedding",
|
|
731
|
+
b"position_embedding",
|
|
732
|
+
"total_parameters",
|
|
733
|
+
b"total_parameters",
|
|
734
|
+
"vocabulary_size",
|
|
735
|
+
b"vocabulary_size",
|
|
736
|
+
],
|
|
737
|
+
) -> None: ...
|
|
738
|
+
|
|
739
|
+
global___Architecture = Architecture
|
|
740
|
+
|
|
741
|
+
@typing.final
|
|
742
|
+
class Training(google.protobuf.message.Message):
|
|
743
|
+
"""Training contains information about how the model was trained."""
|
|
744
|
+
|
|
745
|
+
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
|
746
|
+
|
|
747
|
+
TRAINING_DATA_SIZE_FIELD_NUMBER: builtins.int
|
|
748
|
+
TRAINING_DATA_SOURCES_FIELD_NUMBER: builtins.int
|
|
749
|
+
DATA_MIXTURE_FIELD_NUMBER: builtins.int
|
|
750
|
+
TRAINING_DURATION_FIELD_NUMBER: builtins.int
|
|
751
|
+
TRAINING_HARDWARE_FIELD_NUMBER: builtins.int
|
|
752
|
+
TRAINING_COST_FIELD_NUMBER: builtins.int
|
|
753
|
+
TRAINING_TECHNIQUE_FIELD_NUMBER: builtins.int
|
|
754
|
+
BATCH_SIZE_FIELD_NUMBER: builtins.int
|
|
755
|
+
LEARNING_RATE_FIELD_NUMBER: builtins.int
|
|
756
|
+
TRAINING_STEPS_FIELD_NUMBER: builtins.int
|
|
757
|
+
WARMUP_STEPS_FIELD_NUMBER: builtins.int
|
|
758
|
+
FINE_TUNING_AVAILABLE_FIELD_NUMBER: builtins.int
|
|
759
|
+
MIN_FINE_TUNE_EXAMPLES_FIELD_NUMBER: builtins.int
|
|
760
|
+
MAX_FINE_TUNE_EXAMPLES_FIELD_NUMBER: builtins.int
|
|
761
|
+
FINE_TUNE_FORMATS_FIELD_NUMBER: builtins.int
|
|
762
|
+
training_data_size: builtins.str
|
|
763
|
+
"""Size of training dataset.
|
|
764
|
+
Examples: "1T tokens", "45TB text", "100B tokens"
|
|
765
|
+
"""
|
|
766
|
+
data_mixture: builtins.str
|
|
767
|
+
"""Description of data mixture/proportions.
|
|
768
|
+
Example: "60% web, 20% books, 10% code, 10% reference"
|
|
769
|
+
"""
|
|
770
|
+
training_duration: builtins.str
|
|
771
|
+
"""Total training time.
|
|
772
|
+
Examples: "3 months", "6 weeks", "90 days"
|
|
773
|
+
"""
|
|
774
|
+
training_hardware: builtins.str
|
|
775
|
+
"""Hardware used for training.
|
|
776
|
+
Examples: "10000 H100 GPUs", "512 A100 80GB", "TPU v4 pods"
|
|
777
|
+
"""
|
|
778
|
+
training_cost: builtins.str
|
|
779
|
+
"""Estimated training cost.
|
|
780
|
+
Examples: "$100M", "$4.6M", "Not disclosed"
|
|
781
|
+
"""
|
|
782
|
+
training_technique: global___TrainingTechnique.ValueType
|
|
783
|
+
"""Primary training technique used.
|
|
784
|
+
Example: TRAINING_TECHNIQUE_REINFORCEMENT_LEARNING_FROM_HUMAN_FEEDBACK
|
|
785
|
+
"""
|
|
786
|
+
batch_size: builtins.int
|
|
787
|
+
"""Training batch size per step.
|
|
788
|
+
Example: 2048, 4096
|
|
789
|
+
"""
|
|
790
|
+
learning_rate: builtins.float
|
|
791
|
+
"""Peak learning rate used.
|
|
792
|
+
Example: 0.0001, 3e-4
|
|
793
|
+
"""
|
|
794
|
+
training_steps: builtins.int
|
|
795
|
+
"""Total number of training steps/iterations.
|
|
796
|
+
Example: 1000000
|
|
797
|
+
"""
|
|
798
|
+
warmup_steps: builtins.int
|
|
799
|
+
"""Number of warmup steps for learning rate schedule.
|
|
800
|
+
Example: 2000
|
|
801
|
+
"""
|
|
802
|
+
fine_tuning_available: builtins.bool
|
|
803
|
+
"""Whether model supports fine-tuning via API.
|
|
804
|
+
Example: true for GPT-3.5, false for GPT-4
|
|
805
|
+
"""
|
|
806
|
+
min_fine_tune_examples: builtins.int
|
|
807
|
+
"""Minimum training examples required for fine-tuning.
|
|
808
|
+
Example: 10 for OpenAI models
|
|
809
|
+
"""
|
|
810
|
+
max_fine_tune_examples: builtins.int
|
|
811
|
+
"""Maximum training examples allowed for fine-tuning.
|
|
812
|
+
Example: 100000 for GPT-3.5
|
|
813
|
+
"""
|
|
814
|
+
@property
|
|
815
|
+
def training_data_sources(
|
|
816
|
+
self,
|
|
817
|
+
) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[builtins.str]:
|
|
818
|
+
"""List of data sources used for training.
|
|
819
|
+
Examples: ["Common Crawl", "Wikipedia", "Books", "GitHub", "ArXiv"]
|
|
820
|
+
"""
|
|
821
|
+
|
|
822
|
+
@property
|
|
823
|
+
def fine_tune_formats(
|
|
824
|
+
self,
|
|
825
|
+
) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[
|
|
826
|
+
weaveapi.llmx.v1.capabilities_pb2.DataFormat.ValueType
|
|
827
|
+
]:
|
|
828
|
+
"""Supported data formats for fine-tuning.
|
|
829
|
+
Example: [DATA_FORMAT_JSONL, DATA_FORMAT_CSV]
|
|
830
|
+
"""
|
|
831
|
+
|
|
832
|
+
def __init__(
|
|
833
|
+
self,
|
|
834
|
+
*,
|
|
835
|
+
training_data_size: builtins.str = ...,
|
|
836
|
+
training_data_sources: collections.abc.Iterable[builtins.str] | None = ...,
|
|
837
|
+
data_mixture: builtins.str = ...,
|
|
838
|
+
training_duration: builtins.str = ...,
|
|
839
|
+
training_hardware: builtins.str = ...,
|
|
840
|
+
training_cost: builtins.str = ...,
|
|
841
|
+
training_technique: global___TrainingTechnique.ValueType = ...,
|
|
842
|
+
batch_size: builtins.int = ...,
|
|
843
|
+
learning_rate: builtins.float = ...,
|
|
844
|
+
training_steps: builtins.int = ...,
|
|
845
|
+
warmup_steps: builtins.int = ...,
|
|
846
|
+
fine_tuning_available: builtins.bool = ...,
|
|
847
|
+
min_fine_tune_examples: builtins.int = ...,
|
|
848
|
+
max_fine_tune_examples: builtins.int = ...,
|
|
849
|
+
fine_tune_formats: collections.abc.Iterable[
|
|
850
|
+
weaveapi.llmx.v1.capabilities_pb2.DataFormat.ValueType
|
|
851
|
+
]
|
|
852
|
+
| None = ...,
|
|
853
|
+
) -> None: ...
|
|
854
|
+
def ClearField(
|
|
855
|
+
self,
|
|
856
|
+
field_name: typing.Literal[
|
|
857
|
+
"batch_size",
|
|
858
|
+
b"batch_size",
|
|
859
|
+
"data_mixture",
|
|
860
|
+
b"data_mixture",
|
|
861
|
+
"fine_tune_formats",
|
|
862
|
+
b"fine_tune_formats",
|
|
863
|
+
"fine_tuning_available",
|
|
864
|
+
b"fine_tuning_available",
|
|
865
|
+
"learning_rate",
|
|
866
|
+
b"learning_rate",
|
|
867
|
+
"max_fine_tune_examples",
|
|
868
|
+
b"max_fine_tune_examples",
|
|
869
|
+
"min_fine_tune_examples",
|
|
870
|
+
b"min_fine_tune_examples",
|
|
871
|
+
"training_cost",
|
|
872
|
+
b"training_cost",
|
|
873
|
+
"training_data_size",
|
|
874
|
+
b"training_data_size",
|
|
875
|
+
"training_data_sources",
|
|
876
|
+
b"training_data_sources",
|
|
877
|
+
"training_duration",
|
|
878
|
+
b"training_duration",
|
|
879
|
+
"training_hardware",
|
|
880
|
+
b"training_hardware",
|
|
881
|
+
"training_steps",
|
|
882
|
+
b"training_steps",
|
|
883
|
+
"training_technique",
|
|
884
|
+
b"training_technique",
|
|
885
|
+
"warmup_steps",
|
|
886
|
+
b"warmup_steps",
|
|
887
|
+
],
|
|
888
|
+
) -> None: ...
|
|
889
|
+
|
|
890
|
+
global___Training = Training
|
|
891
|
+
|
|
892
|
+
@typing.final
|
|
893
|
+
class TechnicalSpecs(google.protobuf.message.Message):
|
|
894
|
+
"""TechnicalSpecs contains hardware and software requirements for running the model."""
|
|
895
|
+
|
|
896
|
+
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
|
897
|
+
|
|
898
|
+
MIN_MEMORY_GB_FIELD_NUMBER: builtins.int
|
|
899
|
+
RECOMMENDED_MEMORY_GB_FIELD_NUMBER: builtins.int
|
|
900
|
+
MIN_GPU_MEMORY_GB_FIELD_NUMBER: builtins.int
|
|
901
|
+
STORAGE_GB_FIELD_NUMBER: builtins.int
|
|
902
|
+
QUANTIZATION_FIELD_NUMBER: builtins.int
|
|
903
|
+
PRECISION_FIELD_NUMBER: builtins.int
|
|
904
|
+
OPTIMIZATION_LEVEL_FIELD_NUMBER: builtins.int
|
|
905
|
+
SUPPORTED_GPUS_FIELD_NUMBER: builtins.int
|
|
906
|
+
REQUIRES_CUDA_FIELD_NUMBER: builtins.int
|
|
907
|
+
CUDA_VERSION_FIELD_NUMBER: builtins.int
|
|
908
|
+
INFERENCE_FRAMEWORK_FIELD_NUMBER: builtins.int
|
|
909
|
+
MODEL_FORMAT_FIELD_NUMBER: builtins.int
|
|
910
|
+
MODEL_SIZE_GB_FIELD_NUMBER: builtins.int
|
|
911
|
+
CHECKPOINT_FORMAT_FIELD_NUMBER: builtins.int
|
|
912
|
+
NUMBER_OF_FILES_FIELD_NUMBER: builtins.int
|
|
913
|
+
SUPPORTED_CPUS_FIELD_NUMBER: builtins.int
|
|
914
|
+
SERVING_FRAMEWORK_FIELD_NUMBER: builtins.int
|
|
915
|
+
CONTAINER_IMAGE_FIELD_NUMBER: builtins.int
|
|
916
|
+
MINIMUM_GPU_FIELD_NUMBER: builtins.int
|
|
917
|
+
MINIMUM_GPU_MEMORY_GB_FIELD_NUMBER: builtins.int
|
|
918
|
+
CPU_COMPATIBLE_FIELD_NUMBER: builtins.int
|
|
919
|
+
RECOMMENDED_GPU_MEMORY_GB_FIELD_NUMBER: builtins.int
|
|
920
|
+
min_memory_gb: builtins.int
|
|
921
|
+
"""Minimum system RAM required in GB.
|
|
922
|
+
Example: 32 for 7B models, 64 for 13B models
|
|
923
|
+
"""
|
|
924
|
+
recommended_memory_gb: builtins.int
|
|
925
|
+
"""Recommended system RAM for optimal performance in GB.
|
|
926
|
+
Example: 64 for 7B models, 128 for 13B models
|
|
927
|
+
"""
|
|
928
|
+
min_gpu_memory_gb: builtins.int
|
|
929
|
+
"""Minimum GPU VRAM required in GB.
|
|
930
|
+
Example: 24 for 7B fp16, 48 for 13B fp16
|
|
931
|
+
"""
|
|
932
|
+
storage_gb: builtins.int
|
|
933
|
+
"""Disk storage required for model files in GB.
|
|
934
|
+
Example: 15 for 7B models, 30 for 13B models
|
|
935
|
+
"""
|
|
936
|
+
quantization: global___Quantization.ValueType
|
|
937
|
+
"""Quantization method if applicable.
|
|
938
|
+
Example: QUANTIZATION_INT8 for 8-bit quantized models
|
|
939
|
+
"""
|
|
940
|
+
precision: global___Precision.ValueType
|
|
941
|
+
"""Numerical precision used.
|
|
942
|
+
Example: PRECISION_FP16 for half-precision inference
|
|
943
|
+
"""
|
|
944
|
+
optimization_level: builtins.str
|
|
945
|
+
"""Optimization level/profile.
|
|
946
|
+
Examples: "O3", "fast", "balanced", "memory-optimized"
|
|
947
|
+
"""
|
|
948
|
+
requires_cuda: builtins.bool
|
|
949
|
+
"""Whether CUDA is required for GPU inference.
|
|
950
|
+
Example: true for NVIDIA GPUs, false for CPU-only
|
|
951
|
+
"""
|
|
952
|
+
cuda_version: builtins.str
|
|
953
|
+
"""Minimum CUDA version required.
|
|
954
|
+
Examples: "11.8", "12.0"
|
|
955
|
+
"""
|
|
956
|
+
inference_framework: global___InferenceFramework.ValueType
|
|
957
|
+
"""Recommended inference framework.
|
|
958
|
+
Example: INFERENCE_FRAMEWORK_VLLM for high-throughput serving
|
|
959
|
+
"""
|
|
960
|
+
model_format: global___ModelFormat.ValueType
|
|
961
|
+
"""Format of distributed model files.
|
|
962
|
+
Example: MODEL_FORMAT_SAFETENSORS for HuggingFace models
|
|
963
|
+
"""
|
|
964
|
+
model_size_gb: builtins.float
|
|
965
|
+
"""Total size of model files in GB.
|
|
966
|
+
Example: 13.5 for 7B model in fp16
|
|
967
|
+
"""
|
|
968
|
+
checkpoint_format: global___CheckpointFormat.ValueType
|
|
969
|
+
"""Format of model checkpoint files.
|
|
970
|
+
Example: CHECKPOINT_FORMAT_PYTORCH for .pt files
|
|
971
|
+
"""
|
|
972
|
+
number_of_files: builtins.int
|
|
973
|
+
"""Number of model shard files.
|
|
974
|
+
Example: 2 for models split across multiple files
|
|
975
|
+
"""
|
|
976
|
+
serving_framework: builtins.str
|
|
977
|
+
"""Serving framework/stack.
|
|
978
|
+
Examples: "TGI", "vLLM", "llama.cpp"
|
|
979
|
+
"""
|
|
980
|
+
container_image: builtins.str
|
|
981
|
+
"""Pre-built container image if available.
|
|
982
|
+
Example: "nvcr.io/nvidia/pytorch:23.10-py3"
|
|
983
|
+
"""
|
|
984
|
+
minimum_gpu: global___GPUType.ValueType
|
|
985
|
+
"""Minimum GPU for reasonable performance.
|
|
986
|
+
Example: GPU_TYPE_RTX_3090 for 7B models
|
|
987
|
+
"""
|
|
988
|
+
minimum_gpu_memory_gb: builtins.int
|
|
989
|
+
"""Minimum GPU memory for basic inference in GB.
|
|
990
|
+
Example: 16 for 7B int8 models
|
|
991
|
+
"""
|
|
992
|
+
cpu_compatible: builtins.bool
|
|
993
|
+
"""Whether model can run on CPU (even if slowly).
|
|
994
|
+
Example: true for smaller quantized models
|
|
995
|
+
"""
|
|
996
|
+
recommended_gpu_memory_gb: builtins.int
|
|
997
|
+
"""Recommended GPU memory for good performance in GB.
|
|
998
|
+
Example: 24 for 7B fp16 with reasonable batch size
|
|
999
|
+
"""
|
|
1000
|
+
@property
|
|
1001
|
+
def supported_gpus(
|
|
1002
|
+
self,
|
|
1003
|
+
) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[
|
|
1004
|
+
global___GPUType.ValueType
|
|
1005
|
+
]:
|
|
1006
|
+
"""List of compatible GPU types.
|
|
1007
|
+
Example: [GPU_TYPE_A100, GPU_TYPE_H100, GPU_TYPE_RTX_4090]
|
|
1008
|
+
"""
|
|
1009
|
+
|
|
1010
|
+
@property
|
|
1011
|
+
def supported_cpus(
|
|
1012
|
+
self,
|
|
1013
|
+
) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[
|
|
1014
|
+
global___CPUType.ValueType
|
|
1015
|
+
]:
|
|
1016
|
+
"""List of compatible CPU architectures.
|
|
1017
|
+
Example: [CPU_TYPE_X86_64, CPU_TYPE_ARM64]
|
|
1018
|
+
"""
|
|
1019
|
+
|
|
1020
|
+
def __init__(
|
|
1021
|
+
self,
|
|
1022
|
+
*,
|
|
1023
|
+
min_memory_gb: builtins.int = ...,
|
|
1024
|
+
recommended_memory_gb: builtins.int = ...,
|
|
1025
|
+
min_gpu_memory_gb: builtins.int = ...,
|
|
1026
|
+
storage_gb: builtins.int = ...,
|
|
1027
|
+
quantization: global___Quantization.ValueType = ...,
|
|
1028
|
+
precision: global___Precision.ValueType = ...,
|
|
1029
|
+
optimization_level: builtins.str = ...,
|
|
1030
|
+
supported_gpus: collections.abc.Iterable[global___GPUType.ValueType]
|
|
1031
|
+
| None = ...,
|
|
1032
|
+
requires_cuda: builtins.bool = ...,
|
|
1033
|
+
cuda_version: builtins.str = ...,
|
|
1034
|
+
inference_framework: global___InferenceFramework.ValueType = ...,
|
|
1035
|
+
model_format: global___ModelFormat.ValueType = ...,
|
|
1036
|
+
model_size_gb: builtins.float = ...,
|
|
1037
|
+
checkpoint_format: global___CheckpointFormat.ValueType = ...,
|
|
1038
|
+
number_of_files: builtins.int = ...,
|
|
1039
|
+
supported_cpus: collections.abc.Iterable[global___CPUType.ValueType]
|
|
1040
|
+
| None = ...,
|
|
1041
|
+
serving_framework: builtins.str = ...,
|
|
1042
|
+
container_image: builtins.str = ...,
|
|
1043
|
+
minimum_gpu: global___GPUType.ValueType = ...,
|
|
1044
|
+
minimum_gpu_memory_gb: builtins.int = ...,
|
|
1045
|
+
cpu_compatible: builtins.bool = ...,
|
|
1046
|
+
recommended_gpu_memory_gb: builtins.int = ...,
|
|
1047
|
+
) -> None: ...
|
|
1048
|
+
def ClearField(
|
|
1049
|
+
self,
|
|
1050
|
+
field_name: typing.Literal[
|
|
1051
|
+
"checkpoint_format",
|
|
1052
|
+
b"checkpoint_format",
|
|
1053
|
+
"container_image",
|
|
1054
|
+
b"container_image",
|
|
1055
|
+
"cpu_compatible",
|
|
1056
|
+
b"cpu_compatible",
|
|
1057
|
+
"cuda_version",
|
|
1058
|
+
b"cuda_version",
|
|
1059
|
+
"inference_framework",
|
|
1060
|
+
b"inference_framework",
|
|
1061
|
+
"min_gpu_memory_gb",
|
|
1062
|
+
b"min_gpu_memory_gb",
|
|
1063
|
+
"min_memory_gb",
|
|
1064
|
+
b"min_memory_gb",
|
|
1065
|
+
"minimum_gpu",
|
|
1066
|
+
b"minimum_gpu",
|
|
1067
|
+
"minimum_gpu_memory_gb",
|
|
1068
|
+
b"minimum_gpu_memory_gb",
|
|
1069
|
+
"model_format",
|
|
1070
|
+
b"model_format",
|
|
1071
|
+
"model_size_gb",
|
|
1072
|
+
b"model_size_gb",
|
|
1073
|
+
"number_of_files",
|
|
1074
|
+
b"number_of_files",
|
|
1075
|
+
"optimization_level",
|
|
1076
|
+
b"optimization_level",
|
|
1077
|
+
"precision",
|
|
1078
|
+
b"precision",
|
|
1079
|
+
"quantization",
|
|
1080
|
+
b"quantization",
|
|
1081
|
+
"recommended_gpu_memory_gb",
|
|
1082
|
+
b"recommended_gpu_memory_gb",
|
|
1083
|
+
"recommended_memory_gb",
|
|
1084
|
+
b"recommended_memory_gb",
|
|
1085
|
+
"requires_cuda",
|
|
1086
|
+
b"requires_cuda",
|
|
1087
|
+
"serving_framework",
|
|
1088
|
+
b"serving_framework",
|
|
1089
|
+
"storage_gb",
|
|
1090
|
+
b"storage_gb",
|
|
1091
|
+
"supported_cpus",
|
|
1092
|
+
b"supported_cpus",
|
|
1093
|
+
"supported_gpus",
|
|
1094
|
+
b"supported_gpus",
|
|
1095
|
+
],
|
|
1096
|
+
) -> None: ...
|
|
1097
|
+
|
|
1098
|
+
global___TechnicalSpecs = TechnicalSpecs
|
|
1099
|
+
|
|
1100
|
+
@typing.final
|
|
1101
|
+
class Safety(google.protobuf.message.Message):
|
|
1102
|
+
"""Safety contains safety, moderation, and compliance features."""
|
|
1103
|
+
|
|
1104
|
+
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
|
1105
|
+
|
|
1106
|
+
MODERATION_LEVEL_FIELD_NUMBER: builtins.int
|
|
1107
|
+
CONTENT_FILTERING_FIELD_NUMBER: builtins.int
|
|
1108
|
+
SAFETY_FILTERS_FIELD_NUMBER: builtins.int
|
|
1109
|
+
BIAS_RATING_FIELD_NUMBER: builtins.int
|
|
1110
|
+
TOXICITY_SCORE_FIELD_NUMBER: builtins.int
|
|
1111
|
+
GDPR_COMPLIANT_FIELD_NUMBER: builtins.int
|
|
1112
|
+
HIPAA_COMPLIANT_FIELD_NUMBER: builtins.int
|
|
1113
|
+
SOC2_COMPLIANT_FIELD_NUMBER: builtins.int
|
|
1114
|
+
ISO_CERTIFIED_FIELD_NUMBER: builtins.int
|
|
1115
|
+
REFUSAL_CAPABILITY_FIELD_NUMBER: builtins.int
|
|
1116
|
+
WATERMARK_OUTPUT_FIELD_NUMBER: builtins.int
|
|
1117
|
+
BUILT_IN_GUARDRAILS_FIELD_NUMBER: builtins.int
|
|
1118
|
+
CUSTOM_GUARDRAILS_FIELD_NUMBER: builtins.int
|
|
1119
|
+
moderation_level: global___ModerationLevel.ValueType
|
|
1120
|
+
"""Built-in content moderation strictness.
|
|
1121
|
+
Example: MODERATION_LEVEL_HIGH for family-friendly models
|
|
1122
|
+
"""
|
|
1123
|
+
content_filtering: builtins.bool
|
|
1124
|
+
"""Whether automatic content filtering is enabled.
|
|
1125
|
+
Example: true for models that block harmful content
|
|
1126
|
+
"""
|
|
1127
|
+
bias_rating: builtins.str
|
|
1128
|
+
"""Bias assessment rating.
|
|
1129
|
+
Examples: "Low", "Medium", "High", "Evaluated"
|
|
1130
|
+
"""
|
|
1131
|
+
toxicity_score: builtins.float
|
|
1132
|
+
"""Toxicity score from evaluations (0-1).
|
|
1133
|
+
Example: 0.02 for well-aligned models (lower is better)
|
|
1134
|
+
"""
|
|
1135
|
+
gdpr_compliant: builtins.bool
|
|
1136
|
+
"""GDPR (General Data Protection Regulation) compliance.
|
|
1137
|
+
Example: true for models that don't retain user data
|
|
1138
|
+
"""
|
|
1139
|
+
hipaa_compliant: builtins.bool
|
|
1140
|
+
"""HIPAA (Health Insurance Portability and Accountability Act) compliance.
|
|
1141
|
+
Example: true for medical-safe models
|
|
1142
|
+
"""
|
|
1143
|
+
soc2_compliant: builtins.bool
|
|
1144
|
+
"""SOC 2 (Service Organization Control 2) compliance.
|
|
1145
|
+
Example: true for enterprise-grade security
|
|
1146
|
+
"""
|
|
1147
|
+
iso_certified: builtins.bool
|
|
1148
|
+
"""ISO certification status.
|
|
1149
|
+
Example: true for ISO 27001 certified services
|
|
1150
|
+
"""
|
|
1151
|
+
refusal_capability: builtins.bool
|
|
1152
|
+
"""Can refuse harmful or inappropriate requests.
|
|
1153
|
+
Example: true for models trained to decline harmful tasks
|
|
1154
|
+
"""
|
|
1155
|
+
watermark_output: builtins.bool
|
|
1156
|
+
"""Whether outputs include watermarking.
|
|
1157
|
+
Example: true for models with detectible AI signatures
|
|
1158
|
+
"""
|
|
1159
|
+
custom_guardrails: builtins.bool
|
|
1160
|
+
"""Supports custom safety guardrails.
|
|
1161
|
+
Example: true if users can add their own safety rules
|
|
1162
|
+
"""
|
|
1163
|
+
@property
|
|
1164
|
+
def safety_filters(
|
|
1165
|
+
self,
|
|
1166
|
+
) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[builtins.str]:
|
|
1167
|
+
"""List of active safety filters.
|
|
1168
|
+
Examples: ["violence", "sexual", "hate", "self-harm", "illegal"]
|
|
1169
|
+
"""
|
|
1170
|
+
|
|
1171
|
+
@property
|
|
1172
|
+
def built_in_guardrails(
|
|
1173
|
+
self,
|
|
1174
|
+
) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[builtins.str]:
|
|
1175
|
+
"""Built-in safety guardrails.
|
|
1176
|
+
Examples: ["constitutional-ai", "harmlessness", "helpfulness"]
|
|
1177
|
+
"""
|
|
1178
|
+
|
|
1179
|
+
def __init__(
|
|
1180
|
+
self,
|
|
1181
|
+
*,
|
|
1182
|
+
moderation_level: global___ModerationLevel.ValueType = ...,
|
|
1183
|
+
content_filtering: builtins.bool = ...,
|
|
1184
|
+
safety_filters: collections.abc.Iterable[builtins.str] | None = ...,
|
|
1185
|
+
bias_rating: builtins.str = ...,
|
|
1186
|
+
toxicity_score: builtins.float = ...,
|
|
1187
|
+
gdpr_compliant: builtins.bool = ...,
|
|
1188
|
+
hipaa_compliant: builtins.bool = ...,
|
|
1189
|
+
soc2_compliant: builtins.bool = ...,
|
|
1190
|
+
iso_certified: builtins.bool = ...,
|
|
1191
|
+
refusal_capability: builtins.bool = ...,
|
|
1192
|
+
watermark_output: builtins.bool = ...,
|
|
1193
|
+
built_in_guardrails: collections.abc.Iterable[builtins.str] | None = ...,
|
|
1194
|
+
custom_guardrails: builtins.bool = ...,
|
|
1195
|
+
) -> None: ...
|
|
1196
|
+
def ClearField(
|
|
1197
|
+
self,
|
|
1198
|
+
field_name: typing.Literal[
|
|
1199
|
+
"bias_rating",
|
|
1200
|
+
b"bias_rating",
|
|
1201
|
+
"built_in_guardrails",
|
|
1202
|
+
b"built_in_guardrails",
|
|
1203
|
+
"content_filtering",
|
|
1204
|
+
b"content_filtering",
|
|
1205
|
+
"custom_guardrails",
|
|
1206
|
+
b"custom_guardrails",
|
|
1207
|
+
"gdpr_compliant",
|
|
1208
|
+
b"gdpr_compliant",
|
|
1209
|
+
"hipaa_compliant",
|
|
1210
|
+
b"hipaa_compliant",
|
|
1211
|
+
"iso_certified",
|
|
1212
|
+
b"iso_certified",
|
|
1213
|
+
"moderation_level",
|
|
1214
|
+
b"moderation_level",
|
|
1215
|
+
"refusal_capability",
|
|
1216
|
+
b"refusal_capability",
|
|
1217
|
+
"safety_filters",
|
|
1218
|
+
b"safety_filters",
|
|
1219
|
+
"soc2_compliant",
|
|
1220
|
+
b"soc2_compliant",
|
|
1221
|
+
"toxicity_score",
|
|
1222
|
+
b"toxicity_score",
|
|
1223
|
+
"watermark_output",
|
|
1224
|
+
b"watermark_output",
|
|
1225
|
+
],
|
|
1226
|
+
) -> None: ...
|
|
1227
|
+
|
|
1228
|
+
global___Safety = Safety
|
|
1229
|
+
|
|
1230
|
+
@typing.final
|
|
1231
|
+
class Licensing(google.protobuf.message.Message):
|
|
1232
|
+
"""Licensing contains license and usage terms for the model."""
|
|
1233
|
+
|
|
1234
|
+
DESCRIPTOR: google.protobuf.descriptor.Descriptor
|
|
1235
|
+
|
|
1236
|
+
LICENSE_TYPE_FIELD_NUMBER: builtins.int
|
|
1237
|
+
LICENSE_URL_FIELD_NUMBER: builtins.int
|
|
1238
|
+
IS_OPEN_SOURCE_FIELD_NUMBER: builtins.int
|
|
1239
|
+
IS_OPEN_WEIGHTS_FIELD_NUMBER: builtins.int
|
|
1240
|
+
COMMERCIAL_USE_FIELD_NUMBER: builtins.int
|
|
1241
|
+
RESEARCH_USE_FIELD_NUMBER: builtins.int
|
|
1242
|
+
ATTRIBUTION_REQUIRED_FIELD_NUMBER: builtins.int
|
|
1243
|
+
SHARE_ALIKE_REQUIRED_FIELD_NUMBER: builtins.int
|
|
1244
|
+
USAGE_RESTRICTIONS_FIELD_NUMBER: builtins.int
|
|
1245
|
+
license_type: global___LicenseType.ValueType
|
|
1246
|
+
"""Type of license governing model use.
|
|
1247
|
+
Example: LICENSE_TYPE_APACHE_2_0, LICENSE_TYPE_PROPRIETARY
|
|
1248
|
+
"""
|
|
1249
|
+
license_url: builtins.str
|
|
1250
|
+
"""URL to full license text.
|
|
1251
|
+
Example: "https://github.com/meta-llama/llama/blob/main/LICENSE"
|
|
1252
|
+
"""
|
|
1253
|
+
is_open_source: builtins.bool
|
|
1254
|
+
"""Whether source code is openly available.
|
|
1255
|
+
Example: true for research papers with code
|
|
1256
|
+
"""
|
|
1257
|
+
is_open_weights: builtins.bool
|
|
1258
|
+
"""Whether model weights are publicly downloadable.
|
|
1259
|
+
Example: true for LLaMA, Mistral; false for GPT-4
|
|
1260
|
+
"""
|
|
1261
|
+
commercial_use: builtins.bool
|
|
1262
|
+
"""Allowed for commercial/business use.
|
|
1263
|
+
Example: true for Apache/MIT licensed models
|
|
1264
|
+
"""
|
|
1265
|
+
research_use: builtins.bool
|
|
1266
|
+
"""Allowed for research purposes.
|
|
1267
|
+
Example: true for most models, even proprietary ones
|
|
1268
|
+
"""
|
|
1269
|
+
attribution_required: builtins.bool
|
|
1270
|
+
"""Must attribute/cite when using.
|
|
1271
|
+
Example: true for CC-BY licenses
|
|
1272
|
+
"""
|
|
1273
|
+
share_alike_required: builtins.bool
|
|
1274
|
+
"""Derivatives must use same license.
|
|
1275
|
+
Example: true for GPL, CC-BY-SA licenses
|
|
1276
|
+
"""
|
|
1277
|
+
@property
|
|
1278
|
+
def usage_restrictions(
|
|
1279
|
+
self,
|
|
1280
|
+
) -> google.protobuf.internal.containers.RepeatedScalarFieldContainer[builtins.str]:
|
|
1281
|
+
"""Specific usage restrictions or conditions.
|
|
1282
|
+
Examples: ["No use for surveillance", "Monthly active user limits",
|
|
1283
|
+
"No competitive use against provider"]
|
|
1284
|
+
"""
|
|
1285
|
+
|
|
1286
|
+
def __init__(
|
|
1287
|
+
self,
|
|
1288
|
+
*,
|
|
1289
|
+
license_type: global___LicenseType.ValueType = ...,
|
|
1290
|
+
license_url: builtins.str = ...,
|
|
1291
|
+
is_open_source: builtins.bool = ...,
|
|
1292
|
+
is_open_weights: builtins.bool = ...,
|
|
1293
|
+
commercial_use: builtins.bool = ...,
|
|
1294
|
+
research_use: builtins.bool = ...,
|
|
1295
|
+
attribution_required: builtins.bool = ...,
|
|
1296
|
+
share_alike_required: builtins.bool = ...,
|
|
1297
|
+
usage_restrictions: collections.abc.Iterable[builtins.str] | None = ...,
|
|
1298
|
+
) -> None: ...
|
|
1299
|
+
def ClearField(
|
|
1300
|
+
self,
|
|
1301
|
+
field_name: typing.Literal[
|
|
1302
|
+
"attribution_required",
|
|
1303
|
+
b"attribution_required",
|
|
1304
|
+
"commercial_use",
|
|
1305
|
+
b"commercial_use",
|
|
1306
|
+
"is_open_source",
|
|
1307
|
+
b"is_open_source",
|
|
1308
|
+
"is_open_weights",
|
|
1309
|
+
b"is_open_weights",
|
|
1310
|
+
"license_type",
|
|
1311
|
+
b"license_type",
|
|
1312
|
+
"license_url",
|
|
1313
|
+
b"license_url",
|
|
1314
|
+
"research_use",
|
|
1315
|
+
b"research_use",
|
|
1316
|
+
"share_alike_required",
|
|
1317
|
+
b"share_alike_required",
|
|
1318
|
+
"usage_restrictions",
|
|
1319
|
+
b"usage_restrictions",
|
|
1320
|
+
],
|
|
1321
|
+
) -> None: ...
|
|
1322
|
+
|
|
1323
|
+
global___Licensing = Licensing
|