wcgw 5.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- wcgw/__init__.py +4 -0
- wcgw/client/__init__.py +0 -0
- wcgw/client/bash_state/bash_state.py +1426 -0
- wcgw/client/bash_state/parser/__init__.py +7 -0
- wcgw/client/bash_state/parser/bash_statement_parser.py +181 -0
- wcgw/client/common.py +51 -0
- wcgw/client/diff-instructions.txt +73 -0
- wcgw/client/encoder/__init__.py +47 -0
- wcgw/client/file_ops/diff_edit.py +619 -0
- wcgw/client/file_ops/extensions.py +137 -0
- wcgw/client/file_ops/search_replace.py +212 -0
- wcgw/client/mcp_server/Readme.md +3 -0
- wcgw/client/mcp_server/__init__.py +32 -0
- wcgw/client/mcp_server/server.py +184 -0
- wcgw/client/memory.py +103 -0
- wcgw/client/modes.py +240 -0
- wcgw/client/repo_ops/display_tree.py +116 -0
- wcgw/client/repo_ops/file_stats.py +152 -0
- wcgw/client/repo_ops/path_prob.py +58 -0
- wcgw/client/repo_ops/paths_model.vocab +20000 -0
- wcgw/client/repo_ops/paths_tokens.model +80042 -0
- wcgw/client/repo_ops/repo_context.py +289 -0
- wcgw/client/schema_generator.py +63 -0
- wcgw/client/tool_prompts.py +98 -0
- wcgw/client/tools.py +1432 -0
- wcgw/py.typed +0 -0
- wcgw/types_.py +318 -0
- wcgw-5.5.4.dist-info/METADATA +339 -0
- wcgw-5.5.4.dist-info/RECORD +38 -0
- wcgw-5.5.4.dist-info/WHEEL +4 -0
- wcgw-5.5.4.dist-info/entry_points.txt +4 -0
- wcgw-5.5.4.dist-info/licenses/LICENSE +213 -0
- wcgw_cli/__init__.py +1 -0
- wcgw_cli/__main__.py +3 -0
- wcgw_cli/anthropic_client.py +486 -0
- wcgw_cli/cli.py +40 -0
- wcgw_cli/openai_client.py +404 -0
- wcgw_cli/openai_utils.py +67 -0
|
@@ -0,0 +1,404 @@
|
|
|
1
|
+
import base64
|
|
2
|
+
import json
|
|
3
|
+
import mimetypes
|
|
4
|
+
import os
|
|
5
|
+
import subprocess
|
|
6
|
+
import tempfile
|
|
7
|
+
import traceback
|
|
8
|
+
import uuid
|
|
9
|
+
from pathlib import Path
|
|
10
|
+
from typing import DefaultDict, Optional, cast
|
|
11
|
+
|
|
12
|
+
import openai
|
|
13
|
+
import petname # type: ignore[import-untyped]
|
|
14
|
+
import rich
|
|
15
|
+
import tokenizers # type: ignore[import-untyped]
|
|
16
|
+
from dotenv import load_dotenv
|
|
17
|
+
from openai import OpenAI
|
|
18
|
+
from openai.types.chat import (
|
|
19
|
+
ChatCompletionContentPartParam,
|
|
20
|
+
ChatCompletionMessageParam,
|
|
21
|
+
ChatCompletionUserMessageParam,
|
|
22
|
+
)
|
|
23
|
+
from pydantic import BaseModel
|
|
24
|
+
from typer import Typer
|
|
25
|
+
|
|
26
|
+
from wcgw.client.bash_state.bash_state import BashState
|
|
27
|
+
from wcgw.client.common import CostData, History, Models, discard_input
|
|
28
|
+
from wcgw.client.memory import load_memory
|
|
29
|
+
from wcgw.client.tool_prompts import TOOL_PROMPTS
|
|
30
|
+
from wcgw.client.tools import (
|
|
31
|
+
Context,
|
|
32
|
+
ImageData,
|
|
33
|
+
default_enc,
|
|
34
|
+
get_tool_output,
|
|
35
|
+
initialize,
|
|
36
|
+
which_tool,
|
|
37
|
+
which_tool_name,
|
|
38
|
+
)
|
|
39
|
+
|
|
40
|
+
from .openai_utils import get_input_cost, get_output_cost
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
class Config(BaseModel):
|
|
44
|
+
model: Models
|
|
45
|
+
cost_limit: float
|
|
46
|
+
cost_file: dict[Models, CostData]
|
|
47
|
+
cost_unit: str = "$"
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
def text_from_editor(console: rich.console.Console) -> str:
|
|
51
|
+
# First consume all the input till now
|
|
52
|
+
discard_input()
|
|
53
|
+
console.print("\n---------------------------------------\n# User message")
|
|
54
|
+
data = input()
|
|
55
|
+
if data:
|
|
56
|
+
return data
|
|
57
|
+
editor = os.environ.get("EDITOR", "vim")
|
|
58
|
+
with tempfile.NamedTemporaryFile(suffix=".tmp") as tf:
|
|
59
|
+
subprocess.run([editor, tf.name], check=True)
|
|
60
|
+
with open(tf.name, "r") as f:
|
|
61
|
+
data = f.read()
|
|
62
|
+
console.print(data)
|
|
63
|
+
return data
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
def save_history(history: History, session_id: str) -> None:
|
|
67
|
+
myid = str(history[1]["content"]).replace("/", "_").replace(" ", "_").lower()[:60]
|
|
68
|
+
myid += "_" + session_id
|
|
69
|
+
myid = myid + ".json"
|
|
70
|
+
|
|
71
|
+
mypath = Path(".wcgw") / myid
|
|
72
|
+
mypath.parent.mkdir(parents=True, exist_ok=True)
|
|
73
|
+
with open(mypath, "w") as f:
|
|
74
|
+
json.dump(history, f, indent=3)
|
|
75
|
+
|
|
76
|
+
|
|
77
|
+
def parse_user_message_special(msg: str) -> ChatCompletionUserMessageParam:
|
|
78
|
+
# Search for lines starting with `%` and treat them as special commands
|
|
79
|
+
parts: list[ChatCompletionContentPartParam] = []
|
|
80
|
+
for line in msg.split("\n"):
|
|
81
|
+
if line.startswith("%"):
|
|
82
|
+
args = line[1:].strip().split(" ")
|
|
83
|
+
command = args[0]
|
|
84
|
+
assert command == "image"
|
|
85
|
+
image_path = " ".join(args[1:])
|
|
86
|
+
with open(image_path, "rb") as f:
|
|
87
|
+
image_bytes = f.read()
|
|
88
|
+
image_b64 = base64.b64encode(image_bytes).decode("utf-8")
|
|
89
|
+
image_type = mimetypes.guess_type(image_path)[0]
|
|
90
|
+
dataurl = f"data:{image_type};base64,{image_b64}"
|
|
91
|
+
parts.append(
|
|
92
|
+
{"type": "image_url", "image_url": {"url": dataurl, "detail": "auto"}}
|
|
93
|
+
)
|
|
94
|
+
else:
|
|
95
|
+
if len(parts) > 0 and parts[-1]["type"] == "text":
|
|
96
|
+
parts[-1]["text"] += "\n" + line
|
|
97
|
+
else:
|
|
98
|
+
parts.append({"type": "text", "text": line})
|
|
99
|
+
return {"role": "user", "content": parts}
|
|
100
|
+
|
|
101
|
+
|
|
102
|
+
app = Typer(pretty_exceptions_show_locals=False)
|
|
103
|
+
|
|
104
|
+
|
|
105
|
+
@app.command()
|
|
106
|
+
def loop(
|
|
107
|
+
first_message: Optional[str] = None,
|
|
108
|
+
limit: Optional[float] = None,
|
|
109
|
+
resume: Optional[str] = None,
|
|
110
|
+
) -> tuple[str, float]:
|
|
111
|
+
load_dotenv()
|
|
112
|
+
|
|
113
|
+
session_id = str(uuid.uuid4())[:6]
|
|
114
|
+
|
|
115
|
+
history: History = []
|
|
116
|
+
waiting_for_assistant = False
|
|
117
|
+
|
|
118
|
+
memory = None
|
|
119
|
+
if resume:
|
|
120
|
+
try:
|
|
121
|
+
_, memory, _ = load_memory(
|
|
122
|
+
resume,
|
|
123
|
+
24000, # coding_max_tokens
|
|
124
|
+
8000, # noncoding_max_tokens
|
|
125
|
+
lambda x: default_enc.encoder(x),
|
|
126
|
+
lambda x: default_enc.decoder(x),
|
|
127
|
+
)
|
|
128
|
+
except OSError:
|
|
129
|
+
if resume == "latest":
|
|
130
|
+
resume_path = sorted(Path(".wcgw").iterdir(), key=os.path.getmtime)[-1]
|
|
131
|
+
else:
|
|
132
|
+
resume_path = Path(resume)
|
|
133
|
+
if not resume_path.exists():
|
|
134
|
+
raise FileNotFoundError(f"File {resume} not found")
|
|
135
|
+
with resume_path.open() as f:
|
|
136
|
+
history = json.load(f)
|
|
137
|
+
if len(history) <= 2:
|
|
138
|
+
raise ValueError("Invalid history file")
|
|
139
|
+
first_message = ""
|
|
140
|
+
waiting_for_assistant = history[-1]["role"] != "assistant"
|
|
141
|
+
|
|
142
|
+
my_dir = os.path.dirname(__file__)
|
|
143
|
+
|
|
144
|
+
config = Config(
|
|
145
|
+
model=cast(Models, os.getenv("OPENAI_MODEL", "gpt-4o-2024-08-06").lower()),
|
|
146
|
+
cost_limit=0.1,
|
|
147
|
+
cost_unit="$",
|
|
148
|
+
cost_file={
|
|
149
|
+
"gpt-4o-2024-08-06": CostData(
|
|
150
|
+
cost_per_1m_input_tokens=5, cost_per_1m_output_tokens=15
|
|
151
|
+
),
|
|
152
|
+
},
|
|
153
|
+
)
|
|
154
|
+
|
|
155
|
+
if limit is not None:
|
|
156
|
+
config.cost_limit = limit
|
|
157
|
+
limit = config.cost_limit
|
|
158
|
+
|
|
159
|
+
enc = tokenizers.Tokenizer.from_pretrained("Xenova/gpt-4o")
|
|
160
|
+
|
|
161
|
+
tools = [
|
|
162
|
+
openai.pydantic_function_tool(
|
|
163
|
+
which_tool_name(tool.name), description=tool.description
|
|
164
|
+
)
|
|
165
|
+
for tool in TOOL_PROMPTS
|
|
166
|
+
if tool.name != "Initialize"
|
|
167
|
+
]
|
|
168
|
+
|
|
169
|
+
cost: float = 0
|
|
170
|
+
input_toks = 0
|
|
171
|
+
output_toks = 0
|
|
172
|
+
system_console = rich.console.Console(style="blue", highlight=False, markup=False)
|
|
173
|
+
error_console = rich.console.Console(style="red", highlight=False, markup=False)
|
|
174
|
+
user_console = rich.console.Console(
|
|
175
|
+
style="bright_black", highlight=False, markup=False
|
|
176
|
+
)
|
|
177
|
+
assistant_console = rich.console.Console(
|
|
178
|
+
style="white bold", highlight=False, markup=False
|
|
179
|
+
)
|
|
180
|
+
|
|
181
|
+
with BashState(
|
|
182
|
+
system_console, os.getcwd(), None, None, None, None, True, None
|
|
183
|
+
) as bash_state:
|
|
184
|
+
context = Context(bash_state, system_console)
|
|
185
|
+
system, context, _ = initialize(
|
|
186
|
+
"first_call",
|
|
187
|
+
context,
|
|
188
|
+
os.getcwd(),
|
|
189
|
+
[],
|
|
190
|
+
resume if (memory and resume) else "",
|
|
191
|
+
24000, # coding_max_tokens
|
|
192
|
+
8000, # noncoding_max_tokens
|
|
193
|
+
mode="wcgw",
|
|
194
|
+
thread_id="",
|
|
195
|
+
)
|
|
196
|
+
|
|
197
|
+
if not history:
|
|
198
|
+
history = [{"role": "system", "content": system}]
|
|
199
|
+
else:
|
|
200
|
+
if history[-1]["role"] == "tool":
|
|
201
|
+
waiting_for_assistant = True
|
|
202
|
+
|
|
203
|
+
client = OpenAI()
|
|
204
|
+
|
|
205
|
+
while True:
|
|
206
|
+
if cost > limit:
|
|
207
|
+
system_console.print(
|
|
208
|
+
f"\nCost limit exceeded. Current cost: {cost}, input tokens: {input_toks}, output tokens: {output_toks}"
|
|
209
|
+
)
|
|
210
|
+
break
|
|
211
|
+
|
|
212
|
+
if not waiting_for_assistant:
|
|
213
|
+
if first_message:
|
|
214
|
+
msg = first_message
|
|
215
|
+
first_message = ""
|
|
216
|
+
else:
|
|
217
|
+
msg = text_from_editor(user_console)
|
|
218
|
+
|
|
219
|
+
history.append(parse_user_message_special(msg))
|
|
220
|
+
else:
|
|
221
|
+
waiting_for_assistant = False
|
|
222
|
+
|
|
223
|
+
cost_, input_toks_ = get_input_cost(
|
|
224
|
+
config.cost_file[config.model], enc, history
|
|
225
|
+
)
|
|
226
|
+
cost += cost_
|
|
227
|
+
input_toks += input_toks_
|
|
228
|
+
|
|
229
|
+
stream = client.chat.completions.create(
|
|
230
|
+
messages=history,
|
|
231
|
+
model=config.model,
|
|
232
|
+
stream=True,
|
|
233
|
+
tools=tools,
|
|
234
|
+
)
|
|
235
|
+
|
|
236
|
+
system_console.print(
|
|
237
|
+
"\n---------------------------------------\n# Assistant response",
|
|
238
|
+
style="bold",
|
|
239
|
+
)
|
|
240
|
+
tool_call_args_by_id = DefaultDict[str, DefaultDict[int, str]](
|
|
241
|
+
lambda: DefaultDict(str)
|
|
242
|
+
)
|
|
243
|
+
_histories: History = []
|
|
244
|
+
item: ChatCompletionMessageParam
|
|
245
|
+
full_response: str = ""
|
|
246
|
+
image_histories: History = []
|
|
247
|
+
try:
|
|
248
|
+
for chunk in stream:
|
|
249
|
+
if chunk.choices[0].finish_reason == "tool_calls":
|
|
250
|
+
assert tool_call_args_by_id
|
|
251
|
+
item = {
|
|
252
|
+
"role": "assistant",
|
|
253
|
+
"content": full_response,
|
|
254
|
+
"tool_calls": [
|
|
255
|
+
{
|
|
256
|
+
"id": tool_call_id + str(toolindex),
|
|
257
|
+
"type": "function",
|
|
258
|
+
"function": {
|
|
259
|
+
"arguments": tool_args,
|
|
260
|
+
"name": type(which_tool(tool_args)).__name__,
|
|
261
|
+
},
|
|
262
|
+
}
|
|
263
|
+
for tool_call_id, toolcallargs in tool_call_args_by_id.items()
|
|
264
|
+
for toolindex, tool_args in toolcallargs.items()
|
|
265
|
+
],
|
|
266
|
+
}
|
|
267
|
+
cost_, output_toks_ = get_output_cost(
|
|
268
|
+
config.cost_file[config.model], enc, item
|
|
269
|
+
)
|
|
270
|
+
cost += cost_
|
|
271
|
+
system_console.print(
|
|
272
|
+
f"\n---------------------------------------\n# Assistant invoked tools: {[which_tool(tool['function']['arguments']) for tool in item['tool_calls']]}"
|
|
273
|
+
)
|
|
274
|
+
system_console.print(
|
|
275
|
+
f"\nTotal cost: {config.cost_unit}{cost:.3f}"
|
|
276
|
+
)
|
|
277
|
+
output_toks += output_toks_
|
|
278
|
+
|
|
279
|
+
_histories.append(item)
|
|
280
|
+
for tool_call_id, toolcallargs in tool_call_args_by_id.items():
|
|
281
|
+
for toolindex, tool_args in toolcallargs.items():
|
|
282
|
+
try:
|
|
283
|
+
output_or_dones, cost_ = get_tool_output(
|
|
284
|
+
context,
|
|
285
|
+
json.loads(tool_args),
|
|
286
|
+
enc,
|
|
287
|
+
limit - cost,
|
|
288
|
+
loop,
|
|
289
|
+
24000, # coding_max_tokens
|
|
290
|
+
8000, # noncoding_max_tokens
|
|
291
|
+
)
|
|
292
|
+
output_or_done = output_or_dones[0]
|
|
293
|
+
except Exception as e:
|
|
294
|
+
output_or_done = (
|
|
295
|
+
f"GOT EXCEPTION while calling tool. Error: {e}"
|
|
296
|
+
)
|
|
297
|
+
tb = traceback.format_exc()
|
|
298
|
+
error_console.print(output_or_done + "\n" + tb)
|
|
299
|
+
cost_ = 0
|
|
300
|
+
cost += cost_
|
|
301
|
+
system_console.print(
|
|
302
|
+
f"\nTotal cost: {config.cost_unit}{cost:.3f}"
|
|
303
|
+
)
|
|
304
|
+
|
|
305
|
+
output = output_or_done
|
|
306
|
+
|
|
307
|
+
if isinstance(output, ImageData):
|
|
308
|
+
randomId = petname.Generate(2, "-")
|
|
309
|
+
if not image_histories:
|
|
310
|
+
image_histories.extend(
|
|
311
|
+
[
|
|
312
|
+
{
|
|
313
|
+
"role": "assistant",
|
|
314
|
+
"content": f"Share images with ids: {randomId}",
|
|
315
|
+
},
|
|
316
|
+
{
|
|
317
|
+
"role": "user",
|
|
318
|
+
"content": [
|
|
319
|
+
{
|
|
320
|
+
"type": "image_url",
|
|
321
|
+
"image_url": {
|
|
322
|
+
"url": output.dataurl,
|
|
323
|
+
"detail": "auto",
|
|
324
|
+
},
|
|
325
|
+
}
|
|
326
|
+
],
|
|
327
|
+
},
|
|
328
|
+
]
|
|
329
|
+
)
|
|
330
|
+
else:
|
|
331
|
+
image_histories[0]["content"] += ", " + randomId
|
|
332
|
+
second_content = image_histories[1]["content"]
|
|
333
|
+
assert isinstance(second_content, list)
|
|
334
|
+
second_content.append(
|
|
335
|
+
{
|
|
336
|
+
"type": "image_url",
|
|
337
|
+
"image_url": {
|
|
338
|
+
"url": output.dataurl,
|
|
339
|
+
"detail": "auto",
|
|
340
|
+
},
|
|
341
|
+
}
|
|
342
|
+
)
|
|
343
|
+
|
|
344
|
+
item = {
|
|
345
|
+
"role": "tool",
|
|
346
|
+
"content": f"Ask user for image id: {randomId}",
|
|
347
|
+
"tool_call_id": tool_call_id + str(toolindex),
|
|
348
|
+
}
|
|
349
|
+
else:
|
|
350
|
+
item = {
|
|
351
|
+
"role": "tool",
|
|
352
|
+
"content": str(output),
|
|
353
|
+
"tool_call_id": tool_call_id + str(toolindex),
|
|
354
|
+
}
|
|
355
|
+
cost_, output_toks_ = get_output_cost(
|
|
356
|
+
config.cost_file[config.model], enc, item
|
|
357
|
+
)
|
|
358
|
+
cost += cost_
|
|
359
|
+
output_toks += output_toks_
|
|
360
|
+
|
|
361
|
+
_histories.append(item)
|
|
362
|
+
waiting_for_assistant = True
|
|
363
|
+
break
|
|
364
|
+
elif chunk.choices[0].finish_reason:
|
|
365
|
+
assistant_console.print("")
|
|
366
|
+
item = {
|
|
367
|
+
"role": "assistant",
|
|
368
|
+
"content": full_response,
|
|
369
|
+
}
|
|
370
|
+
cost_, output_toks_ = get_output_cost(
|
|
371
|
+
config.cost_file[config.model], enc, item
|
|
372
|
+
)
|
|
373
|
+
cost += cost_
|
|
374
|
+
output_toks += output_toks_
|
|
375
|
+
|
|
376
|
+
system_console.print(
|
|
377
|
+
f"\nTotal cost: {config.cost_unit}{cost:.3f}"
|
|
378
|
+
)
|
|
379
|
+
_histories.append(item)
|
|
380
|
+
break
|
|
381
|
+
|
|
382
|
+
if chunk.choices[0].delta.tool_calls:
|
|
383
|
+
tool_call = chunk.choices[0].delta.tool_calls[0]
|
|
384
|
+
if tool_call.function and tool_call.function.arguments:
|
|
385
|
+
tool_call_args_by_id[tool_call.id or ""][
|
|
386
|
+
tool_call.index
|
|
387
|
+
] += tool_call.function.arguments
|
|
388
|
+
|
|
389
|
+
chunk_str = chunk.choices[0].delta.content or ""
|
|
390
|
+
assistant_console.print(chunk_str, end="")
|
|
391
|
+
full_response += chunk_str
|
|
392
|
+
except KeyboardInterrupt:
|
|
393
|
+
waiting_for_assistant = False
|
|
394
|
+
input("Interrupted...enter to redo the current turn")
|
|
395
|
+
else:
|
|
396
|
+
history.extend(_histories)
|
|
397
|
+
history.extend(image_histories)
|
|
398
|
+
save_history(history, session_id)
|
|
399
|
+
|
|
400
|
+
return "Couldn't finish the task", cost
|
|
401
|
+
|
|
402
|
+
|
|
403
|
+
if __name__ == "__main__":
|
|
404
|
+
app()
|
wcgw_cli/openai_utils.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
1
|
+
from typing import cast
|
|
2
|
+
|
|
3
|
+
from openai.types.chat import (
|
|
4
|
+
ChatCompletionAssistantMessageParam,
|
|
5
|
+
ChatCompletionMessage,
|
|
6
|
+
ChatCompletionMessageParam,
|
|
7
|
+
ParsedChatCompletionMessage,
|
|
8
|
+
)
|
|
9
|
+
from tokenizers import Tokenizer # type: ignore[import-untyped]
|
|
10
|
+
|
|
11
|
+
from wcgw.client.common import CostData, History
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
def get_input_cost(
|
|
15
|
+
cost_map: CostData, enc: Tokenizer, history: History
|
|
16
|
+
) -> tuple[float, int]:
|
|
17
|
+
input_tokens = 0
|
|
18
|
+
for msg in history:
|
|
19
|
+
content = msg["content"]
|
|
20
|
+
refusal = msg.get("refusal")
|
|
21
|
+
if isinstance(content, list):
|
|
22
|
+
for part in content:
|
|
23
|
+
if "text" in part:
|
|
24
|
+
input_tokens += len(enc.encode(part["text"]))
|
|
25
|
+
elif content is None:
|
|
26
|
+
if refusal is None:
|
|
27
|
+
raise ValueError("Expected content or refusal to be present")
|
|
28
|
+
input_tokens += len(enc.encode(str(refusal)))
|
|
29
|
+
elif not isinstance(content, str):
|
|
30
|
+
raise ValueError(f"Expected content to be string, got {type(content)}")
|
|
31
|
+
else:
|
|
32
|
+
input_tokens += len(enc.encode(content))
|
|
33
|
+
cost = input_tokens * cost_map.cost_per_1m_input_tokens / 1_000_000
|
|
34
|
+
return cost, input_tokens
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
def get_output_cost(
|
|
38
|
+
cost_map: CostData,
|
|
39
|
+
enc: Tokenizer,
|
|
40
|
+
item: ChatCompletionMessage | ChatCompletionMessageParam,
|
|
41
|
+
) -> tuple[float, int]:
|
|
42
|
+
if isinstance(item, ChatCompletionMessage):
|
|
43
|
+
content = item.content
|
|
44
|
+
if not isinstance(content, str):
|
|
45
|
+
raise ValueError(f"Expected content to be string, got {type(content)}")
|
|
46
|
+
else:
|
|
47
|
+
if not isinstance(item["content"], str):
|
|
48
|
+
raise ValueError(
|
|
49
|
+
f"Expected content to be string, got {type(item['content'])}"
|
|
50
|
+
)
|
|
51
|
+
content = item["content"]
|
|
52
|
+
if item["role"] == "tool":
|
|
53
|
+
return 0, 0
|
|
54
|
+
output_tokens = len(enc.encode(content))
|
|
55
|
+
|
|
56
|
+
if "tool_calls" in item:
|
|
57
|
+
item = cast(ChatCompletionAssistantMessageParam, item)
|
|
58
|
+
toolcalls = item["tool_calls"]
|
|
59
|
+
for tool_call in toolcalls or []:
|
|
60
|
+
output_tokens += len(enc.encode(tool_call["function"]["arguments"]))
|
|
61
|
+
elif isinstance(item, ParsedChatCompletionMessage):
|
|
62
|
+
if item.tool_calls:
|
|
63
|
+
for tool_callf in item.tool_calls:
|
|
64
|
+
output_tokens += len(enc.encode(tool_callf.function.arguments))
|
|
65
|
+
|
|
66
|
+
cost = output_tokens * cost_map.cost_per_1m_output_tokens / 1_000_000
|
|
67
|
+
return cost, output_tokens
|