wbfdm 1.50.8__py2.py3-none-any.whl → 1.50.9__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of wbfdm might be problematic. Click here for more details.

@@ -57,29 +57,31 @@ def run_company_extraction_llm(title: str, description: str, *args) -> list[dict
57
57
  SystemMessage(
58
58
  content="You will be parsed a news article, please provide the name of the publicly listed companies mentioned in the article, along with their ISIN, ticker, RIC, sentiment, and analysis."
59
59
  ),
60
- HumanMessage(content=f"Title: {title}, Description: {description}"),
60
+ HumanMessage(content="Title: {title}, Description: {description}"),
61
61
  ],
62
62
  output_model=CompaniesModel,
63
+ query={"title": title, "description": description},
63
64
  )
64
- instrument_ct = ContentType.objects.get_for_model(Instrument)
65
- for company in res.get("companies", []):
66
- instrument = InstrumentLookup(Instrument).lookup(
67
- only_security=True,
68
- name=company.name,
69
- isin=company.isin,
70
- ticker=company.ticker,
71
- refinitiv_identifier_code=company.refinitiv_identifier_code,
72
- )
73
- if instrument is not None:
74
- relationships.append(
75
- {
76
- "content_type_id": instrument_ct.id,
77
- "object_id": instrument.get_root().id,
78
- "sentiment": company.sentiment,
79
- "analysis": company.analysis,
80
- "content_object_repr": str(instrument),
81
- }
65
+ if isinstance(res, CompaniesModel):
66
+ instrument_ct = ContentType.objects.get_for_model(Instrument)
67
+ for company in res.companies:
68
+ instrument = InstrumentLookup(Instrument).lookup(
69
+ only_security=True,
70
+ name=company.name,
71
+ isin=company.isin,
72
+ ticker=company.ticker,
73
+ refinitiv_identifier_code=company.refinitiv_identifier_code,
82
74
  )
75
+ if instrument is not None:
76
+ relationships.append(
77
+ {
78
+ "content_type_id": instrument_ct.id,
79
+ "object_id": instrument.get_root().id,
80
+ "sentiment": company.sentiment,
81
+ "analysis": company.analysis,
82
+ "content_object_repr": str(instrument),
83
+ }
84
+ )
83
85
  except tuple(APIStatusErrors) as e: # for APIStatusError, we let celery retry it
84
86
  raise e
85
87
  except Exception as e: # otherwise we log the error and silently fail
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: wbfdm
3
- Version: 1.50.8
3
+ Version: 1.50.9
4
4
  Summary: The workbench module ensures rapid access to diverse financial data (market, fundamental, forecasts, ESG), with features for storing instruments, classifying them, and conducting financial analysis.
5
5
  Author-email: Christopher Wittlinger <c.wittlinger@stainly.com>
6
6
  Requires-Dist: roman==4.*
@@ -237,7 +237,7 @@ wbfdm/models/instruments/private_equities.py,sha256=uzwZi8IkmCKAHVTxnuFya9tehx7k
237
237
  wbfdm/models/instruments/querysets.py,sha256=c9fbHVvIRyaFU7jm_CM90lfIVzB8beOD8YII9-FqdT4,7191
238
238
  wbfdm/models/instruments/utils.py,sha256=88jnWINSSC0OwH-mCEOPLZXuhBCtEsxBpSaZ38GteaE,1365
239
239
  wbfdm/models/instruments/llm/__init__.py,sha256=dSmxRmEWb0A4O_lUoWuRKt2mBtUuLCTPVVJqGyi_n40,52
240
- wbfdm/models/instruments/llm/create_instrument_news_relationships.py,sha256=Eza39rlkNJxpURroIsJLImKC6F-KtTmkdjHn1kv4F3Q,3439
240
+ wbfdm/models/instruments/llm/create_instrument_news_relationships.py,sha256=1EOd3VmLk31eIDzWLxKp9cRHg3c0IGHJkkwJTG_pxoU,3611
241
241
  wbfdm/models/instruments/mixin/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
242
242
  wbfdm/models/instruments/mixin/financials_computed.py,sha256=L5wjXDsR0maiwfOKP6KyWNJNH4nGOoAjSc_hDM7fsj0,35105
243
243
  wbfdm/models/instruments/mixin/financials_serializer_fields.py,sha256=-OkpcUt1rZmB3nUcO2vckpJdVm8IxRqkPDEgcPqqoRU,68886
@@ -352,6 +352,6 @@ wbfdm/viewsets/statements/__init__.py,sha256=odxtFYUDICPmz8WCE3nx93EvKZLSPBEI4d7
352
352
  wbfdm/viewsets/statements/statements.py,sha256=kmtM0uZ3f7eJJe5gVmd-iVra9dHwTB9x12p7f5qTEx8,4084
353
353
  wbfdm/viewsets/technical_analysis/__init__.py,sha256=qtCIBg0uSiZeJq_1tEQFilnorMBkMe6uCMfqar6-cLE,77
354
354
  wbfdm/viewsets/technical_analysis/monthly_performances.py,sha256=O1j8CGfOranL74LqVvcf7jERaDIboEJZiBf_AbbVDQ8,3974
355
- wbfdm-1.50.8.dist-info/METADATA,sha256=hEBxoYh2UG1X-acebLjmgi9I9upqoDbBQ8O74bou304,737
356
- wbfdm-1.50.8.dist-info/WHEEL,sha256=tkmg4JIqwd9H8mL30xA7crRmoStyCtGp0VWshokd1Jc,105
357
- wbfdm-1.50.8.dist-info/RECORD,,
355
+ wbfdm-1.50.9.dist-info/METADATA,sha256=8QJvuseP4Skk5G-3N9GPPLyzPh8pI1awjM9W46HHGpA,737
356
+ wbfdm-1.50.9.dist-info/WHEEL,sha256=tkmg4JIqwd9H8mL30xA7crRmoStyCtGp0VWshokd1Jc,105
357
+ wbfdm-1.50.9.dist-info/RECORD,,
File without changes