wawi 0.0.9__py3-none-any.whl → 0.0.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of wawi might be problematic. Click here for more details.
- wawi/__init__.py +5 -3
- wawi/io.py +1 -1
- wawi/model/_model.py +15 -1
- wawi/time_domain.py +45 -0
- wawi/wind.py +1 -1
- {wawi-0.0.9.dist-info → wawi-0.0.11.dist-info}/METADATA +10 -2
- {wawi-0.0.9.dist-info → wawi-0.0.11.dist-info}/RECORD +10 -11
- {wawi-0.0.9.dist-info → wawi-0.0.11.dist-info}/WHEEL +1 -1
- wawi/ext/abq_legacy.py +0 -462
- {wawi-0.0.9.dist-info → wawi-0.0.11.dist-info/licenses}/LICENSE +0 -0
- {wawi-0.0.9.dist-info → wawi-0.0.11.dist-info}/top_level.txt +0 -0
wawi/__init__.py
CHANGED
wawi/io.py
CHANGED
wawi/model/_model.py
CHANGED
@@ -673,6 +673,8 @@ class Model:
|
|
673
673
|
return phi_tot
|
674
674
|
|
675
675
|
def get_result_psd(self, key='hydro', index=None, convert_to=None, modes=None):
|
676
|
+
# index: applied after transformation to requested csys (convert_to)
|
677
|
+
|
676
678
|
ix, ix_3d = self.get_mode_ix(modes)
|
677
679
|
|
678
680
|
if key is not None:
|
@@ -1321,4 +1323,16 @@ class Model:
|
|
1321
1323
|
if opt == 0:
|
1322
1324
|
return frf
|
1323
1325
|
else:
|
1324
|
-
return imp
|
1326
|
+
return imp
|
1327
|
+
|
1328
|
+
def get_node_ix(self, nodelabel):
|
1329
|
+
ix = np.where(self.eldef.get_node_labels()==nodelabel)[0]
|
1330
|
+
if len(ix)>0:
|
1331
|
+
ix = int(ix[0])
|
1332
|
+
else:
|
1333
|
+
ix = None
|
1334
|
+
|
1335
|
+
return ix
|
1336
|
+
|
1337
|
+
def get_node_ixs(self, nodelabels):
|
1338
|
+
return [self.get_node_ix(nodelabel) for nodelabel in nodelabels]
|
wawi/time_domain.py
CHANGED
@@ -52,6 +52,51 @@ def simulate_mdof(S, omega, fs=None, tmax=None, reg_factor=None, zero_limit=1e-1
|
|
52
52
|
phase_angles=None, return_phase_angles=False, interpolation_kind='linear',
|
53
53
|
component_scaling=None, print_status=False):
|
54
54
|
|
55
|
+
'''
|
56
|
+
Simulate time series from given cross-spectral density matrix.
|
57
|
+
|
58
|
+
Parameters
|
59
|
+
----------------
|
60
|
+
S : float
|
61
|
+
cross-spectral density matrix (Ndofs x Ndofs x Nfreqs) as complex numpy array
|
62
|
+
omega : float
|
63
|
+
numpy array defining frequencies in rad/s
|
64
|
+
fs : float, optional
|
65
|
+
sampling frequency in Hz; if not given, the value is defined as two times the maximum of `omega`
|
66
|
+
tmax : float, optional
|
67
|
+
duration of realization in seconds
|
68
|
+
reg_factor : float, optional
|
69
|
+
to help the Cholesky decomposition to achieve a numerical solution,
|
70
|
+
a diagonal matrix with the norm of all frequency components of the matrix S scaled by the given factor
|
71
|
+
- if no value is given (--> None imposed), no regularization is conducted;
|
72
|
+
used as input to function `spectrum_to_process` which decomposes the spectral density
|
73
|
+
zero_limit : float, optional
|
74
|
+
frequency components where the norm of S is below this limit is set to zero
|
75
|
+
if no value is given (--> None imposed), no zero limit is applied;
|
76
|
+
used as input to function `spectrum_to_process` which decomposes the spectral density
|
77
|
+
phase_angles : float, optional
|
78
|
+
if previously conducted simulations are to be recreated, they can by inputting the phase angles
|
79
|
+
(to get the phase angles from simulation, see `return_phase_angles` input parameter)
|
80
|
+
return_phase_angles : bool, default=False
|
81
|
+
whether or not to return phase angle enabling recreation of the simulation
|
82
|
+
interpolation_kind : optional, default='linear'
|
83
|
+
interpolation type used for interpolation (to ensure that we get defined duration and sampling) prior to ifft
|
84
|
+
component_scaling : float, optional
|
85
|
+
values to use for scaling of components prior to decomposition (and thereafter rescale afterwards);
|
86
|
+
can help if some components are much smaller than others; size should match number of DOFs in S
|
87
|
+
print_status : False, optional
|
88
|
+
whether or not to print status messages
|
89
|
+
|
90
|
+
Returns
|
91
|
+
----------------
|
92
|
+
p : float
|
93
|
+
time history
|
94
|
+
t : float
|
95
|
+
numpy array with time axis values corresponding to `p`
|
96
|
+
alpha : float
|
97
|
+
phase angles, only returned if `return_phase_angles` is True
|
98
|
+
'''
|
99
|
+
|
55
100
|
if omega[0] !=0:
|
56
101
|
omega = np.insert(omega, 0, 0)
|
57
102
|
S = np.dstack([0*S[:,:,0], S])
|
wawi/wind.py
CHANGED
@@ -6,7 +6,7 @@ from scipy.special import jv as besselj, yv as bessely
|
|
6
6
|
from .general import rodrot, blkdiag
|
7
7
|
from .plot import plot_ads
|
8
8
|
|
9
|
-
conv_text='''
|
9
|
+
conv_text = r'''
|
10
10
|
-----------------------------------------------------
|
11
11
|
| |
|
12
12
|
| ~ ~ ~~~ ~ ~~ ~ /^^^^^^^^^^^^\ 88ooo... . . . |
|
@@ -1,6 +1,6 @@
|
|
1
|
-
Metadata-Version: 2.
|
1
|
+
Metadata-Version: 2.4
|
2
2
|
Name: wawi
|
3
|
-
Version: 0.0.
|
3
|
+
Version: 0.0.11
|
4
4
|
Summary: WAve and WInd response prediction
|
5
5
|
Author-email: "Knut A. Kvåle" <knut.a.kvale@ntnu.no>, Ole Øiseth <ole.oiseth@ntnu.no>, Aksel Fenerci <aksel.fenerci@ntnu.no>, Øivind Wiig Petersen <oyvind.w.petersen@ntnu.no>
|
6
6
|
License: MIT License
|
@@ -43,6 +43,7 @@ Requires-Dist: trame
|
|
43
43
|
Requires-Dist: ipywidgets
|
44
44
|
Requires-Dist: pyvistaqt
|
45
45
|
Requires-Dist: beefpy
|
46
|
+
Dynamic: license-file
|
46
47
|
|
47
48
|

|
48
49
|
=======================
|
@@ -133,6 +134,13 @@ Examples
|
|
133
134
|
=======================
|
134
135
|
Examples are provided as Jupyter Notebooks in the [examples folder](https://github.com/knutankv/wawi/tree/main/examples).
|
135
136
|
|
137
|
+
The examples are structured in the following folders based on their topic:
|
138
|
+
|
139
|
+
* **0 Model generation and setup** - *Describing how a model is defined, either using input files together with the function `wawi.io.import_folder` or using the classes available in the `wawi.model` module directly (in the latter case, the open source Python library BEEF is used to create the required parameters directly in the notebook).*
|
140
|
+
* **1 Modal analysis** - *Describing how to set up iterative (and incremental) modal analyses to represent the contributions from aerodynamics and hydrodynamices. Also, an example showing how to set up a multi-modal flutter analysis is given.*
|
141
|
+
* **2 Response prediction** - *Describing how to conduct response analyses using WAWI. This includes assigning wind states, sea states, and the necessary commands to run a frequency domain analysis. Furthermore, more advanced topics such as wave-current interaction, inhomogeneous waves and stochastic linearization to represent quadratic drag damping are given in separate examples. Three models are considered: (i) a simple curved floating bridge, (ii) a single beam, (iii) a suspension bridge.*
|
142
|
+
* **3 Software interfacing** - *Describing how to export necessary data from other software (limited to Abaqus for now) to construct a WAWI model.*
|
143
|
+
|
136
144
|
References
|
137
145
|
=======================
|
138
146
|
|
@@ -4,25 +4,24 @@ tests/test_IABSE_step11a.py,sha256=guRsaP9gpERvSp0Ui3hO-WH764BcIe6Qx8vC4QVTAoU,8
|
|
4
4
|
tests/test_IABSE_step11c.py,sha256=U_NcL6BAmnQG7MSjkr8KYk9hH8ZPdZgg17pM9ugUBzo,10412
|
5
5
|
tests/test_IABSE_step2a.py,sha256=L5AyTOJZ_sPmcmW_4h-sQfRwvVW71LZkXc1yz33DABM,10203
|
6
6
|
tests/test_wind.py,sha256=r4rx6f8Tn-u4fn4gGPBMrL_JJQ2SVHGQiQ9sQuMQCPo,1707
|
7
|
-
wawi/__init__.py,sha256=
|
7
|
+
wawi/__init__.py,sha256=rH8H6W3AN1iZb8rU9K_8k-mycRSvQNxFq97Biy0-hzw,183
|
8
8
|
wawi/fe.py,sha256=22QKI1GlfsG7o_TpFXaKJfzmbO2_2zdIMaoJmaIZdmY,4001
|
9
9
|
wawi/general.py,sha256=xHRoDkcchrL6Y7pTUqGsjBHh8YBLvX9dYcNXXCjQap8,13787
|
10
10
|
wawi/identification.py,sha256=bVB6EVRR6J39OO9ckuzNJ6f0FwIo4cLqfYgrsIN89TE,1748
|
11
|
-
wawi/io.py,sha256=
|
11
|
+
wawi/io.py,sha256=cr8XLF7bwpTCxpZ84YjOyWjc5uuu-JjGv8vY9UKH-HI,25327
|
12
12
|
wawi/modal.py,sha256=WjNGFsk0C3tYRy18Q9WNRCatmGJtq1JSv0WrkGV02Eo,20247
|
13
13
|
wawi/plot.py,sha256=jllJcjZxTBqjzBoT4k9jLXVUnie8oqNr8371IJvCd3c,19791
|
14
14
|
wawi/prob.py,sha256=0nCdKdwkNf4M6sHyCZuYlt06gD0NmqRNfl4KesgySWA,215
|
15
15
|
wawi/random.py,sha256=MHPpyTlRJSJFkCmeTAmw4Q5K1BPoFVb0Nxg0jDhkuIM,871
|
16
16
|
wawi/signal.py,sha256=9HJs7VUhXOccuYPo12A0IUVoBIAJ2e_9F3rL-q3JuP4,1179
|
17
17
|
wawi/structural.py,sha256=t25ohH4uBbzUJ7Hqn_kUfYhxcikZkRp8da-9dn7aEbw,8341
|
18
|
-
wawi/time_domain.py,sha256=
|
18
|
+
wawi/time_domain.py,sha256=q8-H2xceP-2BmtOfbRQqYhD1JSb0z7jGq-dL_MzAX40,6122
|
19
19
|
wawi/tools.py,sha256=-hFBvf0qK4AMn2MQRhrOitDMMMKm2QuRkVfbPBefEkQ,332
|
20
20
|
wawi/wave.py,sha256=hhKg3KhKMBhOoCI7g8PFOGUbYgVhDyGmnYdBEdJ8mkY,16064
|
21
|
-
wawi/wind.py,sha256=
|
21
|
+
wawi/wind.py,sha256=VHy07IbrCJxlqR0Z5O5WRc9YE4jb-MqFbULPiXhj0NA,38211
|
22
22
|
wawi/wind_code.py,sha256=8OKLPpqc84obNNKBoYb2NunKjcn6a3i_pAWpIFEwg4Q,223
|
23
23
|
wawi/ext/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
24
24
|
wawi/ext/abq.py,sha256=Wo-Zzb6b3lr_z7cNKTW-NdYJuVeAwZgwzlGhF_5Jym0,8905
|
25
|
-
wawi/ext/abq_legacy.py,sha256=WVhoPjRAru98NxYqpKp9_G8wwfJiLO4X4xFc-CvI0j4,16494
|
26
25
|
wawi/ext/ansys.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
27
26
|
wawi/ext/orcaflex.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
28
27
|
wawi/ext/sofistik.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
@@ -30,10 +29,10 @@ wawi/model/__init__.py,sha256=u6B-dugP76LBkOUVMs0KAoQ81PeRHwFL0M8MbNeAaJA,218
|
|
30
29
|
wawi/model/_aero.py,sha256=tvWMjMoVi9ZVBc3NZ_s-wSofbEk1cc5jf5s-Swv2RxQ,9337
|
31
30
|
wawi/model/_dry.py,sha256=KpmFlSinoY6DrSyc3Y0M8w1-cCC7VCFep-uzcqZsHz4,3940
|
32
31
|
wawi/model/_hydro.py,sha256=1tUj19OgvEjItNtBxXuPHf0zWtKv_ioTrOcgl9Ov3dg,26960
|
33
|
-
wawi/model/_model.py,sha256=
|
32
|
+
wawi/model/_model.py,sha256=34qblCqGpIKwbsa38CJ3a8KbHYyX8LDWOFQhdRwK98Q,52504
|
34
33
|
wawi/model/_screening.py,sha256=NRYkKq928z2lqMSUTpbQLls04td_9R_4dhkjU3Gv1oQ,3716
|
35
|
-
wawi-0.0.
|
36
|
-
wawi-0.0.
|
37
|
-
wawi-0.0.
|
38
|
-
wawi-0.0.
|
39
|
-
wawi-0.0.
|
34
|
+
wawi-0.0.11.dist-info/licenses/LICENSE,sha256=bH1aWhrNbbPLrYnVFRaoYYzcUr-figHjry-kGB7Tc54,1076
|
35
|
+
wawi-0.0.11.dist-info/METADATA,sha256=TPaFfAkztMCRaw4F8U5JT6XqOK2IjY3orqmBmguLoaY,6530
|
36
|
+
wawi-0.0.11.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
|
37
|
+
wawi-0.0.11.dist-info/top_level.txt,sha256=Nk5G_ZwgZRCb9ZMWZdr1M3QIskX6kCnlqeMl67N3zg8,20
|
38
|
+
wawi-0.0.11.dist-info/RECORD,,
|
wawi/ext/abq_legacy.py
DELETED
@@ -1,462 +0,0 @@
|
|
1
|
-
import numpy as np
|
2
|
-
import pdb
|
3
|
-
|
4
|
-
from abaqus import *
|
5
|
-
from abaqus import session
|
6
|
-
from abaqusConstants import *
|
7
|
-
import __main__
|
8
|
-
import section
|
9
|
-
import regionToolset
|
10
|
-
import displayGroupMdbToolset as dgm
|
11
|
-
import step
|
12
|
-
import part
|
13
|
-
import material
|
14
|
-
import assembly
|
15
|
-
import interaction
|
16
|
-
import load
|
17
|
-
import mesh
|
18
|
-
import optimization
|
19
|
-
import job
|
20
|
-
import sketch
|
21
|
-
import visualization
|
22
|
-
import xyPlot
|
23
|
-
import displayGroupOdbToolset as dgo
|
24
|
-
import connectorBehavior
|
25
|
-
import symbolicConstants
|
26
|
-
import odbAccess
|
27
|
-
import shutil
|
28
|
-
|
29
|
-
import regionToolset
|
30
|
-
|
31
|
-
import csv
|
32
|
-
from copy import deepcopy
|
33
|
-
|
34
|
-
import numpy as np
|
35
|
-
import os
|
36
|
-
|
37
|
-
from wawi.general import merge_tr_phi
|
38
|
-
|
39
|
-
|
40
|
-
def export_wawi(odb_path, path):
|
41
|
-
pass
|
42
|
-
|
43
|
-
def get_modal_parameters(frequency_step):
|
44
|
-
'''
|
45
|
-
Output the modal parameters from frequency step of current output database.
|
46
|
-
|
47
|
-
Parameters
|
48
|
-
-------------
|
49
|
-
frequency_step : str
|
50
|
-
name of step containing the modal results (frequency step)
|
51
|
-
|
52
|
-
Returns
|
53
|
-
--------------
|
54
|
-
f : float
|
55
|
-
numpy array with undamped natural frequencies in Hz of all modes computed
|
56
|
-
m : float
|
57
|
-
numpy array with modal mass for all modes computed
|
58
|
-
'''
|
59
|
-
|
60
|
-
odb = get_db('odb')
|
61
|
-
history_region_key = odb.steps[frequency_step].historyRegions.keys()[0]
|
62
|
-
|
63
|
-
ftemp = odb.steps[frequency_step].historyRegions[history_region_key].historyOutputs['EIGFREQ'].data
|
64
|
-
f = np.array([x[1] for x in ftemp])
|
65
|
-
|
66
|
-
if 'GM' in odb.steps[frequency_step].historyRegions[history_region_key].historyOutputs.keys():
|
67
|
-
mtemp = odb.steps[frequency_step].historyRegions[history_region_key].historyOutputs['GM'].data
|
68
|
-
m = np.array([x[1] for x in mtemp])
|
69
|
-
else:
|
70
|
-
m = np.ones(np.shape(f)) #if no GM field is available, mass normalization is assumed used on eigenvalues
|
71
|
-
return f, m
|
72
|
-
|
73
|
-
def session_is_odb():
|
74
|
-
"""
|
75
|
-
Check if current session is ODB.
|
76
|
-
|
77
|
-
Returns:
|
78
|
-
is_odb: boolean indicating if the session is odb or not
|
79
|
-
"""
|
80
|
-
is_odb =(('session' in locals() or 'session' in globals()) and
|
81
|
-
session.viewports['Viewport: 1'].displayedObject is not None and
|
82
|
-
hasattr(session.viewports['Viewport: 1'].displayedObject, 'jobData'))
|
83
|
-
|
84
|
-
return is_odb
|
85
|
-
|
86
|
-
def get_db(db_type):
|
87
|
-
"""
|
88
|
-
Return the current database (either a model or an odb object).
|
89
|
-
|
90
|
-
If a model db is wanted and no model is active, the model in the mdb is selected regardless,
|
91
|
-
as long as there is only one model open in the mdb. If no database fits the requirements, None is returned.
|
92
|
-
|
93
|
-
Args:
|
94
|
-
db_type: 'odb' or 'model'
|
95
|
-
Returns:
|
96
|
-
db: database
|
97
|
-
|
98
|
-
NTNU / Knut Andreas Kvaale, 2018
|
99
|
-
"""
|
100
|
-
if db_type is 'model' or db_type is 'mdb':
|
101
|
-
if not session_is_odb():
|
102
|
-
db = mdb.models[session.viewports['Viewport: 1'].displayedObject.modelName]
|
103
|
-
elif len(mdb.models.keys()) is 1:
|
104
|
-
db = mdb.models[mdb.models.keys()[0]]
|
105
|
-
elif len(mdb.models.keys()) > 1:
|
106
|
-
raise AttributeError('No model is not active, and more than one model is available in model database. Impossible to select correct.')
|
107
|
-
else:
|
108
|
-
db = None
|
109
|
-
else:
|
110
|
-
if session_is_odb():
|
111
|
-
db = session.viewports[session.currentViewportName].displayedObject
|
112
|
-
else:
|
113
|
-
db = None
|
114
|
-
|
115
|
-
return db
|
116
|
-
|
117
|
-
|
118
|
-
def modeshapes_from_region(regionobjs, frequency_step, field_outputs):
|
119
|
-
"""
|
120
|
-
Get modes (shape, frequency and modal mass) from "Frequency step" (eigenvalue analysis) in active Abaqus ODB.
|
121
|
-
|
122
|
-
"""
|
123
|
-
odb = get_db('odb')
|
124
|
-
|
125
|
-
if odb.steps[frequency_step].domain != MODAL: #MODAL is a variable in abaqusConstants
|
126
|
-
raise TypeError('Type of input step is not modal!')
|
127
|
-
|
128
|
-
Nmodes = len(odb.steps[frequency_step].frames)-1
|
129
|
-
phi = [None]*len(field_outputs)
|
130
|
-
|
131
|
-
for iout, field_output in enumerate(field_outputs):
|
132
|
-
Ndofs, point_ranges, dof_ranges = count_region(regionobjs, field_output, odb.steps[frequency_step].frames[0])
|
133
|
-
phio = np.zeros([np.sum(Ndofs), Nmodes])
|
134
|
-
foobj0 = odb.steps[frequency_step].frames[0].fieldOutputs[field_output]
|
135
|
-
|
136
|
-
for ix, regionobj in enumerate(regionobjs):
|
137
|
-
current_dof_range = np.arange(dof_ranges[ix], dof_ranges[ix+1])
|
138
|
-
|
139
|
-
for mode in range(0, Nmodes):
|
140
|
-
foobj = odb.steps[frequency_step].frames[mode+1].fieldOutputs[field_output]
|
141
|
-
phio[:, mode] = np.reshape((np.array([v.data for v in foobj.getSubset(region=regionobj).values])), [np.sum(Ndofs)])
|
142
|
-
|
143
|
-
phi[iout] = phio
|
144
|
-
|
145
|
-
return phi
|
146
|
-
|
147
|
-
def str2region(instance_name, setnames, region_type, db_type, *args):
|
148
|
-
"""
|
149
|
-
Construct a region object from a string defining the set name or a region object.
|
150
|
-
|
151
|
-
Args:
|
152
|
-
instance_name: string defining the set name (either node or element set) or a region object
|
153
|
-
setnames: name of set asked for
|
154
|
-
region_type: type of set ('elements' or 'nodes')
|
155
|
-
db_type: 'odb' or 'model'
|
156
|
-
Optional args:
|
157
|
-
db: database object, either mdb.model[...] or session.openOdb(...) - will get from viewport 1 if not given
|
158
|
-
Returns:
|
159
|
-
regionobjs: region objects
|
160
|
-
|
161
|
-
"""
|
162
|
-
|
163
|
-
is_assembly = instance_name is None
|
164
|
-
|
165
|
-
set_type = settype(region_type, db_type)
|
166
|
-
standard_sets = {'nodes': [' ALL NODES'], 'elements': [' ALL ELEMENTS']}
|
167
|
-
|
168
|
-
if setnames is None:
|
169
|
-
setnames = standard_sets[region_type]
|
170
|
-
|
171
|
-
if len(args)==1: # a db has been input
|
172
|
-
db = args[0]
|
173
|
-
isodb = hasattr(db,'jobData') #check if the input db is reffering to result/odb or model
|
174
|
-
|
175
|
-
else:
|
176
|
-
db = get_db(db_type)
|
177
|
-
|
178
|
-
if db is None:
|
179
|
-
raise TypeError('The database is empty. Please input a database object, or input parameters that matches one. Remember that odbs have to be active to get the db automatically!')
|
180
|
-
|
181
|
-
if is_assembly: # Instance name is given
|
182
|
-
regroot = db.rootAssembly
|
183
|
-
else:
|
184
|
-
regroot = db.rootAssembly.instances[instance_name]
|
185
|
-
|
186
|
-
regionobjs = [None] * np.size(setnames)
|
187
|
-
|
188
|
-
for ix,thisname in enumerate(setnames):
|
189
|
-
regionobjs[ix] = getattr(regroot, set_type)[thisname]
|
190
|
-
|
191
|
-
return regionobjs
|
192
|
-
|
193
|
-
|
194
|
-
def settype(region_type, db_type):
|
195
|
-
"""
|
196
|
-
Define the string used to get set based on region type and database type.
|
197
|
-
|
198
|
-
Args:
|
199
|
-
region_type: 'element' or 'node'
|
200
|
-
db_type: 'odb' or 'mdb'
|
201
|
-
Returns:
|
202
|
-
set_string: string used to obtain set data from database object (odb or mdb)
|
203
|
-
|
204
|
-
"""
|
205
|
-
if db_type is 'odb':
|
206
|
-
if 'element' in region_type.lower():
|
207
|
-
set_string = 'elementSets'
|
208
|
-
elif 'node' in region_type.lower():
|
209
|
-
set_string = 'nodeSets'
|
210
|
-
else:
|
211
|
-
raise TypeError('Wrong input!')
|
212
|
-
elif db_type == 'mdb' or db_type == 'model':
|
213
|
-
set_string = 'sets'
|
214
|
-
|
215
|
-
return set_string
|
216
|
-
|
217
|
-
def count_region(regionobjs, field_output, frame):
|
218
|
-
"""
|
219
|
-
Count the number of DOFs and points in the specified region objects for given field output and frame object.
|
220
|
-
|
221
|
-
Args:
|
222
|
-
regionobjs: list of region objects to query
|
223
|
-
field_output: string specifying field output
|
224
|
-
frame: frame object (from where fieldOutputs field is accessible)
|
225
|
-
Returns:
|
226
|
-
Ndofs: number of DOFs for each region (list)
|
227
|
-
point_ranges: point/node ranges for each region (list of lists)
|
228
|
-
dof_ranges: dof ranges for each region (list of lists)
|
229
|
-
"""
|
230
|
-
odb = get_db('odb')
|
231
|
-
|
232
|
-
Npoints = [len(frame.fieldOutputs[field_output].getSubset(region=regionobj).values) for regionobj in regionobjs]
|
233
|
-
Ndofs = np.dot(Npoints, len(frame.fieldOutputs[field_output].componentLabels))
|
234
|
-
|
235
|
-
dof_ranges = np.cumsum(np.append([0], Ndofs))
|
236
|
-
point_ranges = np.cumsum(np.append([0], Npoints))
|
237
|
-
|
238
|
-
return Ndofs, point_ranges, dof_ranges
|
239
|
-
|
240
|
-
|
241
|
-
def wind_set_data(set_strings, frequency_step, instance, db_type, field_outputs, mode_type='nodes', use_node_region_acronym=False):
|
242
|
-
# use_node_region_acronym: if True, a node set with identical name as the element set given in set_strings is picked and the nodes assumed to correspond to the element. If not the case, the element set is used to establish the nodes (and thus phi)
|
243
|
-
wind_element_regions = str2region(instance, set_strings, 'elements', db_type) # index 0 is girder, index 1 is columns
|
244
|
-
|
245
|
-
if use_node_region_acronym:
|
246
|
-
wind_node_regions = str2region(instance, set_strings, 'nodes', db_type)
|
247
|
-
|
248
|
-
element_labels = [None]*len(set_strings)
|
249
|
-
element_node_indices = [None]*len(set_strings)
|
250
|
-
node_labels = [None]*len(set_strings)
|
251
|
-
node_coordinates = [None]*len(set_strings)
|
252
|
-
phi_ae = [None]*len(set_strings)
|
253
|
-
|
254
|
-
for set_ix, set_string in enumerate(set_strings):
|
255
|
-
element_labels[set_ix], element_node_indices[set_ix], nl, nc = region2elnodes_legacy(wind_element_regions[set_ix])
|
256
|
-
if use_node_region_acronym:
|
257
|
-
nl, nc = region2nodes(wind_node_regions[set_ix])
|
258
|
-
|
259
|
-
node_labels[set_ix] = nl
|
260
|
-
node_coordinates[set_ix] = nc
|
261
|
-
|
262
|
-
# Establish modal transformation matrix, phi
|
263
|
-
if mode_type=='nodes':
|
264
|
-
for set_ix, set_string in enumerate(set_strings):
|
265
|
-
phi_ae_temp = modeshapes_from_nodelist(node_labels[set_ix], frequency_step, field_outputs)
|
266
|
-
phi_ae[set_ix] = merge_tr_phi(phi_ae_temp[0][0], phi_ae_temp[0][1])
|
267
|
-
elif mode_type=='elements':
|
268
|
-
for set_ix, set_string in enumerate(set_strings):
|
269
|
-
phi_ae_temp, integration_points = modeshapes_from_elementlist(element_labels[set_ix], frequency_step, field_outputs)
|
270
|
-
phi_ae[set_ix] = merge_tr_phi(phi_ae_temp[0], phi_ae_temp[1])
|
271
|
-
|
272
|
-
return element_labels, element_node_indices, node_labels, node_coordinates, phi_ae
|
273
|
-
|
274
|
-
|
275
|
-
def region2elnodes_legacy(regionobjs, avoid_central_nodes=True):
|
276
|
-
"""
|
277
|
-
Give node labels (indices) for each node in specified element set.
|
278
|
-
|
279
|
-
Args:
|
280
|
-
regionobjs: region objects to query for node labels
|
281
|
-
|
282
|
-
Returns:
|
283
|
-
element_labels: the labels (indices) of the elements in list
|
284
|
-
element_node_indices: the labels (indices) of the ndoes in each element; list of lists
|
285
|
-
node_labels: all the nodes labels (indices) in a flattened list
|
286
|
-
node_coordinates: node coordinates for each element (list of lists)
|
287
|
-
|
288
|
-
"""
|
289
|
-
|
290
|
-
objstr = regionobjs.__repr__()
|
291
|
-
instance_name = objstr.split(".instances['")[1].split("'].")[0]
|
292
|
-
|
293
|
-
if '.odb' in objstr:
|
294
|
-
db = get_db('odb')
|
295
|
-
dbtype = 'odb'
|
296
|
-
else:
|
297
|
-
db = get_db('mdb')
|
298
|
-
dbtype = 'mdb'
|
299
|
-
|
300
|
-
# Get the elements object root
|
301
|
-
if len(np.shape(regionobjs.elements))>1:
|
302
|
-
elements = regionobjs.elements[0]
|
303
|
-
else:
|
304
|
-
elements = regionobjs.elements
|
305
|
-
|
306
|
-
# Get all element labels and corresponding connectivity (node labels)
|
307
|
-
element_labels = np.array([element.label for element in elements])
|
308
|
-
|
309
|
-
# Instance object
|
310
|
-
instance = db.rootAssembly.instances[instance_name]
|
311
|
-
|
312
|
-
# Full arrays labels and coordinates
|
313
|
-
all_node_labels = np.array([node.label for node in instance.nodes]).flatten([-1])
|
314
|
-
all_node_coords = np.array([node.coordinates for node in instance.nodes])
|
315
|
-
|
316
|
-
# Nodes belonging to all the elements
|
317
|
-
if dbtype is 'odb':
|
318
|
-
element_node_labels = [element.connectivity for element in elements]
|
319
|
-
else:
|
320
|
-
element_node_labels = [[all_node_labels[ix] for ix in element.connectivity] for element in elements]
|
321
|
-
|
322
|
-
if avoid_central_nodes:
|
323
|
-
element_node_labels = [[node_lb[0], node_lb[-1]] for node_lb in element_node_labels]
|
324
|
-
|
325
|
-
node_labels = np.unique(np.array(element_node_labels).flatten())
|
326
|
-
|
327
|
-
nodeixs = np.array([np.where(all_node_labels==node)[0] for node in node_labels]).flatten()
|
328
|
-
node_coordinates = all_node_coords[nodeixs, :]
|
329
|
-
element_node_indices = np.array([np.array([np.where(node_labels==node_label) for node_label in node_labels_for_element]).flatten() for node_labels_for_element in element_node_labels])
|
330
|
-
|
331
|
-
return element_labels, element_node_indices, node_labels, node_coordinates
|
332
|
-
|
333
|
-
|
334
|
-
def region2nodes(regionobj, sortfun=None):
|
335
|
-
"""
|
336
|
-
Give node labels (indices) of nodes in specified node set(s).
|
337
|
-
|
338
|
-
Args:
|
339
|
-
regionobj: region object to query for node labels
|
340
|
-
|
341
|
-
Optional args:
|
342
|
-
sortfun: function with three inputs (1: x, 2: y, 3:z) to sort nodes by
|
343
|
-
examples: sortfun = lambda x, y, z: -np.arctan2(y,x)
|
344
|
-
sortfun = lambda x, y, z: x
|
345
|
-
|
346
|
-
Returns:
|
347
|
-
node_labels: list with nodelabels
|
348
|
-
|
349
|
-
NTNU / Knut Andreas Kvaale, 2018
|
350
|
-
"""
|
351
|
-
|
352
|
-
set_name = regionobj.__repr__().split("ets[")[1].split("'")[1]
|
353
|
-
|
354
|
-
if len(np.shape(regionobj.nodes))>1:
|
355
|
-
nodes = regionobj.nodes[0]
|
356
|
-
else:
|
357
|
-
nodes = regionobj.nodes
|
358
|
-
|
359
|
-
node_labels = np.array([node.label for node in nodes])
|
360
|
-
node_coordinates = np.array([node.coordinates for node in nodes])
|
361
|
-
|
362
|
-
if sortfun != None:
|
363
|
-
vals = sortfun(x=node_coordinates[:,0], y=node_coordinates[:,1], z=node_coordinates[:,2])
|
364
|
-
sort_ix = np.argsort(vals)
|
365
|
-
node_labels = node_labels[:, sort_ix]
|
366
|
-
node_coordinates = node_coordinates[sort_ix, :]
|
367
|
-
|
368
|
-
return node_labels, node_coordinates
|
369
|
-
|
370
|
-
def modeshapes_from_nodelist(node_labels, frequency_step, field_outputs):
|
371
|
-
"""
|
372
|
-
Get mode shapes from "Frequency step" (eigenvalue analysis) in active Abaqus ODB.
|
373
|
-
|
374
|
-
Args:
|
375
|
-
node_labels:
|
376
|
-
frequency_step:
|
377
|
-
field_outputs:
|
378
|
-
Returns:
|
379
|
-
phi: mode shape transformation matrix, ordered as NumPy matrices in list for each specified outputs
|
380
|
-
|
381
|
-
"""
|
382
|
-
odb = get_db('odb')
|
383
|
-
|
384
|
-
if odb.steps[frequency_step].domain != MODAL: #MODAL is a variable in abaqusConstants
|
385
|
-
raise TypeError('Type of input step is not modal!')
|
386
|
-
|
387
|
-
Nnodes = len(node_labels)
|
388
|
-
Nmodes = len(odb.steps[frequency_step].frames) - 1
|
389
|
-
phi = [None]*len(field_outputs)
|
390
|
-
basedisp = [None]*len(field_outputs)
|
391
|
-
|
392
|
-
for iout, field_output in enumerate(field_outputs):
|
393
|
-
foobj0 = odb.steps[frequency_step].frames[0].fieldOutputs[field_output]
|
394
|
-
|
395
|
-
Ndofs = len(foobj0.values[0].data)
|
396
|
-
phio = np.zeros([Ndofs*Nnodes, Nmodes])
|
397
|
-
|
398
|
-
# Get correct data indices to get correct order (as given in node_labels)
|
399
|
-
all_nodes = [value.nodeLabel for value in foobj0.values]
|
400
|
-
data_indices = [None]*Nnodes
|
401
|
-
|
402
|
-
for ix, node in enumerate(node_labels):
|
403
|
-
data_indices[ix] = all_nodes.index(node)
|
404
|
-
|
405
|
-
basedisp[iout] = np.array([foobj0.values[data_ix].data for data_ix in data_indices]).flatten()
|
406
|
-
|
407
|
-
for mode in range(0, Nmodes):
|
408
|
-
foobj = odb.steps[frequency_step].frames[mode+1].fieldOutputs[field_output]
|
409
|
-
phio[:, mode] = np.array([foobj.values[data_ix].data for data_ix in data_indices]).flatten()
|
410
|
-
|
411
|
-
phi[iout] = phio
|
412
|
-
|
413
|
-
return phi, basedisp
|
414
|
-
|
415
|
-
|
416
|
-
def modeshapes_from_elementlist(element_labels, frequency_step, field_outputs):
|
417
|
-
"""
|
418
|
-
Get mode shape from "Frequency step" (eigenvalue analysis) in active Abaqus ODB.
|
419
|
-
|
420
|
-
Args:
|
421
|
-
node_labels:
|
422
|
-
frequency_step:
|
423
|
-
field_outputs:
|
424
|
-
Returns:
|
425
|
-
phi: mode shape transformation matrix, ordered as NumPy matrices in list for each specified outputs
|
426
|
-
|
427
|
-
"""
|
428
|
-
odb = get_db('odb')
|
429
|
-
|
430
|
-
if odb.steps[frequency_step].domain != MODAL: #MODAL is a variable in abaqusConstants
|
431
|
-
raise TypeError('Type of input step is not modal!')
|
432
|
-
|
433
|
-
|
434
|
-
Nmodes = len(odb.steps[frequency_step].frames) - 1
|
435
|
-
phi = [None]*len(field_outputs)
|
436
|
-
integration_points = [None]*len(field_outputs)
|
437
|
-
|
438
|
-
for iout, field_output in enumerate(field_outputs):
|
439
|
-
foobj0 = odb.steps[frequency_step].frames[0].fieldOutputs[field_output]
|
440
|
-
Ndofs = len(foobj0.values[0].data)
|
441
|
-
|
442
|
-
# Get correct data indices to get correct order (as given in node_labels)
|
443
|
-
all_elements = [value.elementLabel for value in foobj0.values]
|
444
|
-
all_integration_points = [value.integrationPoint for value in foobj0.values]
|
445
|
-
|
446
|
-
Nintpoints = len(element_labels) # number of integration points (same element label might appear multiple times if multiple integration points in element)
|
447
|
-
phio = np.zeros([Ndofs*Nintpoints, Nmodes])
|
448
|
-
|
449
|
-
data_indices = [None]*Nintpoints
|
450
|
-
|
451
|
-
for ix, element in enumerate(element_labels):
|
452
|
-
data_indices[ix] = all_elements.index(element)
|
453
|
-
|
454
|
-
for mode in range(0, Nmodes):
|
455
|
-
foobj = odb.steps[frequency_step].frames[mode+1].fieldOutputs[field_output]
|
456
|
-
phio[:, mode] = np.array([foobj.values[data_ix].data for data_ix in data_indices]).flatten()
|
457
|
-
|
458
|
-
integration_points[iout] = [all_integration_points[ix] for ix in data_indices]
|
459
|
-
phi[iout] = phio
|
460
|
-
|
461
|
-
|
462
|
-
return phi, integration_points
|
File without changes
|
File without changes
|