wawi 0.0.3__py3-none-any.whl → 0.0.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of wawi might be problematic. Click here for more details.
- wawi/__init__.py +2 -2
- wawi/general.py +0 -5
- wawi/io.py +35 -12
- wawi/modal.py +1 -1
- wawi/wind.py +32 -38
- {wawi-0.0.3.dist-info → wawi-0.0.7.dist-info}/METADATA +61 -2
- {wawi-0.0.3.dist-info → wawi-0.0.7.dist-info}/RECORD +10 -11
- wawi/abq.py +0 -1128
- {wawi-0.0.3.dist-info → wawi-0.0.7.dist-info}/LICENSE +0 -0
- {wawi-0.0.3.dist-info → wawi-0.0.7.dist-info}/WHEEL +0 -0
- {wawi-0.0.3.dist-info → wawi-0.0.7.dist-info}/top_level.txt +0 -0
wawi/abq.py
DELETED
@@ -1,1128 +0,0 @@
|
|
1
|
-
import numpy as np
|
2
|
-
import pdb
|
3
|
-
|
4
|
-
from abaqus import *
|
5
|
-
from abaqus import session
|
6
|
-
from abaqusConstants import *
|
7
|
-
import __main__
|
8
|
-
import section
|
9
|
-
import regionToolset
|
10
|
-
import displayGroupMdbToolset as dgm
|
11
|
-
import step
|
12
|
-
import part
|
13
|
-
import material
|
14
|
-
import assembly
|
15
|
-
import interaction
|
16
|
-
import load
|
17
|
-
import mesh
|
18
|
-
import optimization
|
19
|
-
import job
|
20
|
-
import sketch
|
21
|
-
import visualization
|
22
|
-
import xyPlot
|
23
|
-
import displayGroupOdbToolset as dgo
|
24
|
-
import connectorBehavior
|
25
|
-
import symbolicConstants
|
26
|
-
import odbAccess
|
27
|
-
import shutil
|
28
|
-
|
29
|
-
import csv
|
30
|
-
from copy import deepcopy
|
31
|
-
|
32
|
-
import numpy as np
|
33
|
-
import os
|
34
|
-
|
35
|
-
from .general import merge_tr_phi
|
36
|
-
|
37
|
-
'''
|
38
|
-
Abaqus interaction module
|
39
|
-
'''
|
40
|
-
|
41
|
-
## Functions to retrieve data from ODB
|
42
|
-
|
43
|
-
def modalparameters(frequency_step):
|
44
|
-
'''
|
45
|
-
Output the modal parameters from frequency step of current output database.
|
46
|
-
|
47
|
-
Parameters
|
48
|
-
-------------
|
49
|
-
frequency_step : str
|
50
|
-
name of step containing the modal results (frequency step)
|
51
|
-
|
52
|
-
Returns
|
53
|
-
--------------
|
54
|
-
f : float
|
55
|
-
numpy array with undamped natural frequencies in Hz of all modes computed
|
56
|
-
m : float
|
57
|
-
numpy array with modal mass for all modes computed
|
58
|
-
'''
|
59
|
-
|
60
|
-
odb = get_db('odb')
|
61
|
-
history_region_key = odb.steps[frequency_step].historyRegions.keys()[0]
|
62
|
-
|
63
|
-
ftemp = odb.steps[frequency_step].historyRegions[history_region_key].historyOutputs['EIGFREQ'].data
|
64
|
-
f = np.array([x[1] for x in ftemp])
|
65
|
-
|
66
|
-
if 'GM' in odb.steps[frequency_step].historyRegions[history_region_key].historyOutputs.keys():
|
67
|
-
mtemp = odb.steps[frequency_step].historyRegions[history_region_key].historyOutputs['GM'].data
|
68
|
-
m = np.array([x[1] for x in mtemp])
|
69
|
-
else:
|
70
|
-
m = np.ones(np.shape(f)) #if no GM field is available, mass normalization is assumed used on eigenvalues
|
71
|
-
return f, m
|
72
|
-
|
73
|
-
|
74
|
-
def modeshapes_from_region(regionobjs, frequency_step, field_outputs):
|
75
|
-
"""
|
76
|
-
Get modes (shape, frequency and modal mass) from "Frequency step" (eigenvalue analysis) in active Abaqus ODB.
|
77
|
-
|
78
|
-
Args:
|
79
|
-
regionobjs: Abaqus region objects in list
|
80
|
-
frequency_step: name of frequency step
|
81
|
-
field_outputs: list of strings with field output quantities, e.g., ['U', 'UR']
|
82
|
-
Returns:
|
83
|
-
phi: mode shape transformation matrix, ordered as NumPy matrices in list for each specified outputs
|
84
|
-
f: undamped natural frequencies
|
85
|
-
m: modal mass
|
86
|
-
output_dict: dictionary to access correct index in output phi
|
87
|
-
|
88
|
-
AAJ / Knut Andreas Kvaale, 2017
|
89
|
-
Further developed NTNU / Knut Andreas Kvaale, 2018
|
90
|
-
"""
|
91
|
-
odb = get_db('odb')
|
92
|
-
|
93
|
-
if odb.steps[frequency_step].domain != MODAL: #MODAL is a variable in abaqusConstants
|
94
|
-
raise TypeError('Type of input step is not modal!')
|
95
|
-
|
96
|
-
Nmodes = len(odb.steps[frequency_step].frames)-1
|
97
|
-
phi = [None]*len(field_outputs)
|
98
|
-
|
99
|
-
for iout, field_output in enumerate(field_outputs):
|
100
|
-
Ndofs, point_ranges, dof_ranges = count_region(regionobjs, field_output, odb.steps[frequency_step].frames[0])
|
101
|
-
phio = np.zeros([np.sum(Ndofs), Nmodes])
|
102
|
-
foobj0 = odb.steps[frequency_step].frames[0].fieldOutputs[field_output]
|
103
|
-
|
104
|
-
for ix, regionobj in enumerate(regionobjs):
|
105
|
-
current_dof_range = np.arange(dof_ranges[ix], dof_ranges[ix+1])
|
106
|
-
|
107
|
-
for mode in range(0, Nmodes):
|
108
|
-
foobj = odb.steps[frequency_step].frames[mode+1].fieldOutputs[field_output]
|
109
|
-
phio[:, mode] = np.reshape((np.array([v.data for v in foobj.getSubset(region=regionobj).values])), [np.sum(Ndofs)])
|
110
|
-
|
111
|
-
phi[iout] = phio
|
112
|
-
|
113
|
-
return phi
|
114
|
-
|
115
|
-
|
116
|
-
def modeshapes_from_nodelist(node_labels, frequency_step, field_outputs):
|
117
|
-
"""
|
118
|
-
Get mode shapes from "Frequency step" (eigenvalue analysis) in active Abaqus ODB.
|
119
|
-
|
120
|
-
Args:
|
121
|
-
node_labels:
|
122
|
-
frequency_step:
|
123
|
-
field_outputs:
|
124
|
-
Returns:
|
125
|
-
phi: mode shape transformation matrix, ordered as NumPy matrices in list for each specified outputs
|
126
|
-
|
127
|
-
NTNU / Knut Andreas Kvaale, 2018
|
128
|
-
"""
|
129
|
-
odb = get_db('odb')
|
130
|
-
|
131
|
-
if odb.steps[frequency_step].domain != MODAL: #MODAL is a variable in abaqusConstants
|
132
|
-
raise TypeError('Type of input step is not modal!')
|
133
|
-
|
134
|
-
Nnodes = len(node_labels)
|
135
|
-
Nmodes = len(odb.steps[frequency_step].frames) - 1
|
136
|
-
phi = [None]*len(field_outputs)
|
137
|
-
basedisp = [None]*len(field_outputs)
|
138
|
-
|
139
|
-
for iout, field_output in enumerate(field_outputs):
|
140
|
-
foobj0 = odb.steps[frequency_step].frames[0].fieldOutputs[field_output]
|
141
|
-
|
142
|
-
Ndofs = len(foobj0.values[0].data)
|
143
|
-
phio = np.zeros([Ndofs*Nnodes, Nmodes])
|
144
|
-
|
145
|
-
# Get correct data indices to get correct order (as given in node_labels)
|
146
|
-
all_nodes = [value.nodeLabel for value in foobj0.values]
|
147
|
-
data_indices = [None]*Nnodes
|
148
|
-
|
149
|
-
for ix, node in enumerate(node_labels):
|
150
|
-
data_indices[ix] = all_nodes.index(node)
|
151
|
-
|
152
|
-
basedisp[iout] = np.array([foobj0.values[data_ix].data for data_ix in data_indices]).flatten()
|
153
|
-
|
154
|
-
for mode in range(0, Nmodes):
|
155
|
-
foobj = odb.steps[frequency_step].frames[mode+1].fieldOutputs[field_output]
|
156
|
-
phio[:, mode] = np.array([foobj.values[data_ix].data for data_ix in data_indices]).flatten()
|
157
|
-
|
158
|
-
phi[iout] = phio
|
159
|
-
|
160
|
-
return phi, basedisp
|
161
|
-
|
162
|
-
|
163
|
-
def modeshapes_from_elementlist(element_labels, frequency_step, field_outputs):
|
164
|
-
"""
|
165
|
-
Get mode shape from "Frequency step" (eigenvalue analysis) in active Abaqus ODB.
|
166
|
-
|
167
|
-
Args:
|
168
|
-
node_labels:
|
169
|
-
frequency_step:
|
170
|
-
field_outputs:
|
171
|
-
Returns:
|
172
|
-
phi: mode shape transformation matrix, ordered as NumPy matrices in list for each specified outputs
|
173
|
-
|
174
|
-
NTNU / Knut Andreas Kvaale, 2018
|
175
|
-
"""
|
176
|
-
odb = get_db('odb')
|
177
|
-
|
178
|
-
if odb.steps[frequency_step].domain != MODAL: #MODAL is a variable in abaqusConstants
|
179
|
-
raise TypeError('Type of input step is not modal!')
|
180
|
-
|
181
|
-
|
182
|
-
Nmodes = len(odb.steps[frequency_step].frames) - 1
|
183
|
-
phi = [None]*len(field_outputs)
|
184
|
-
integration_points = [None]*len(field_outputs)
|
185
|
-
|
186
|
-
for iout, field_output in enumerate(field_outputs):
|
187
|
-
foobj0 = odb.steps[frequency_step].frames[0].fieldOutputs[field_output]
|
188
|
-
Ndofs = len(foobj0.values[0].data)
|
189
|
-
|
190
|
-
# Get correct data indices to get correct order (as given in node_labels)
|
191
|
-
all_elements = [value.elementLabel for value in foobj0.values]
|
192
|
-
all_integration_points = [value.integrationPoint for value in foobj0.values]
|
193
|
-
|
194
|
-
Nintpoints = len(element_labels) # number of integration points (same element label might appear multiple times if multiple integration points in element)
|
195
|
-
phio = np.zeros([Ndofs*Nintpoints, Nmodes])
|
196
|
-
|
197
|
-
data_indices = [None]*Nintpoints
|
198
|
-
|
199
|
-
for ix, element in enumerate(element_labels):
|
200
|
-
data_indices[ix] = all_elements.index(element)
|
201
|
-
|
202
|
-
for mode in range(0, Nmodes):
|
203
|
-
foobj = odb.steps[frequency_step].frames[mode+1].fieldOutputs[field_output]
|
204
|
-
phio[:, mode] = np.array([foobj.values[data_ix].data for data_ix in data_indices]).flatten()
|
205
|
-
|
206
|
-
integration_points[iout] = [all_integration_points[ix] for ix in data_indices]
|
207
|
-
phi[iout] = phio
|
208
|
-
|
209
|
-
|
210
|
-
return phi, integration_points
|
211
|
-
|
212
|
-
|
213
|
-
def modeshapes_from_set_xydata(field_output, components, output_position, instance_name, set_name, region_type):
|
214
|
-
"""
|
215
|
-
Get mode shapes from "Frequency step" (eigenvalue analysis) in active Abaqus ODB from specified sets.
|
216
|
-
|
217
|
-
Args: NOT FINISHED
|
218
|
-
field_output:
|
219
|
-
components:
|
220
|
-
data_position:
|
221
|
-
output_position:
|
222
|
-
set_name:
|
223
|
-
region_type:
|
224
|
-
Returns:
|
225
|
-
phi: mode shape transformation matrix (Numpy array)
|
226
|
-
|
227
|
-
NTNU / Knut Andreas Kvaale, 2018
|
228
|
-
"""
|
229
|
-
|
230
|
-
set_names = [(instance_name + '.' +set_name)]
|
231
|
-
|
232
|
-
odb = get_db('odb')
|
233
|
-
n_components = len(components)
|
234
|
-
xy_data = [None]*n_components
|
235
|
-
|
236
|
-
if region_type == 'element':
|
237
|
-
data_position = INTEGRATION_POINT
|
238
|
-
elif region_type == 'node':
|
239
|
-
data_position = NODAL
|
240
|
-
|
241
|
-
if output_position == 'element':
|
242
|
-
output_position = ELEMENT_NODAL
|
243
|
-
|
244
|
-
for ix, component in enumerate(components):
|
245
|
-
refinement = [[COMPONENT, component]]
|
246
|
-
variable = [[field_output, data_position, refinement]]
|
247
|
-
|
248
|
-
if region_type == 'element':
|
249
|
-
xy_data[ix] = session.xyDataListFromField(odb=odb, outputPosition=output_position, variable=variable, elementSets=set_names)
|
250
|
-
else:
|
251
|
-
xy_data[ix] = session.xyDataListFromField(odb=odb, outputPosition=output_position, variable=variable, nodeSets=set_names)
|
252
|
-
|
253
|
-
n_elements = len(xy_data[0])
|
254
|
-
n_modes = len(xy_data[0][0])
|
255
|
-
|
256
|
-
phi = np.zeros([n_components*n_elements, n_modes])
|
257
|
-
for compix, component in enumerate(xy_data):
|
258
|
-
for elix, element in enumerate(component):
|
259
|
-
for mode in range(0, n_modes):
|
260
|
-
phi[elix*n_components + compix, mode] = element[mode][1]
|
261
|
-
|
262
|
-
|
263
|
-
return phi, xy_data
|
264
|
-
|
265
|
-
## MODIFY ODB OR MDB
|
266
|
-
def set_view_variable(var, component):
|
267
|
-
"""
|
268
|
-
Set a new view variable and component in current odb session.
|
269
|
-
|
270
|
-
Args:
|
271
|
-
var: variable name
|
272
|
-
component: component to display
|
273
|
-
|
274
|
-
NTNU / Knut Andreas Kvaale, 2018
|
275
|
-
"""
|
276
|
-
position = {NODAL}
|
277
|
-
session.viewports['Viewport: 1'].odbDisplay.setPrimaryVariable(variableLabel=var, outputPosition=NODAL, refinement=(COMPONENT, component),)
|
278
|
-
|
279
|
-
|
280
|
-
def get_db(db_type):
|
281
|
-
"""
|
282
|
-
Return the current database (either a model or an odb object).
|
283
|
-
|
284
|
-
If a model db is wanted and no model is active, the model in the mdb is selected regardless,
|
285
|
-
as long as there is only one model open in the mdb. If no database fits the requirements, None is returned.
|
286
|
-
|
287
|
-
Args:
|
288
|
-
db_type: 'odb' or 'model'
|
289
|
-
Returns:
|
290
|
-
db: database
|
291
|
-
|
292
|
-
NTNU / Knut Andreas Kvaale, 2018
|
293
|
-
"""
|
294
|
-
if db_type is 'model' or db_type is 'mdb':
|
295
|
-
if not session_is_odb():
|
296
|
-
db = mdb.models[session.viewports['Viewport: 1'].displayedObject.modelName]
|
297
|
-
elif len(mdb.models.keys()) is 1:
|
298
|
-
db = mdb.models[mdb.models.keys()[0]]
|
299
|
-
elif len(mdb.models.keys()) > 1:
|
300
|
-
raise AttributeError('No model is not active, and more than one model is available in model database. Impossible to select correct.')
|
301
|
-
else:
|
302
|
-
db = None
|
303
|
-
else:
|
304
|
-
if session_is_odb():
|
305
|
-
db = session.viewports[session.currentViewportName].displayedObject
|
306
|
-
else:
|
307
|
-
db = None
|
308
|
-
|
309
|
-
return db
|
310
|
-
|
311
|
-
|
312
|
-
|
313
|
-
## MODIFY ODB
|
314
|
-
def unlock_odb():
|
315
|
-
"""
|
316
|
-
Unlock current ODB file.
|
317
|
-
|
318
|
-
Returns:
|
319
|
-
odb: database (odb) object
|
320
|
-
|
321
|
-
NTNU / Knut Andreas Kvaale, 2018
|
322
|
-
"""
|
323
|
-
odb = session.viewports[session.currentViewportName].displayedObject
|
324
|
-
|
325
|
-
if odb.isReadOnly:
|
326
|
-
load_path = odb.path
|
327
|
-
odb.close()
|
328
|
-
odb = odbAccess.openOdb(load_path, readOnly=False)
|
329
|
-
session.viewports['Viewport: 1'].setValues(displayedObject=session.odbs[load_path])
|
330
|
-
|
331
|
-
return odb
|
332
|
-
|
333
|
-
|
334
|
-
def copy_and_unlock_odb():
|
335
|
-
"""
|
336
|
-
Copy and unlock current ODB file.
|
337
|
-
|
338
|
-
Returns:
|
339
|
-
odb: database (odb) object
|
340
|
-
|
341
|
-
NTNU / Knut Andreas Kvaale, 2018
|
342
|
-
"""
|
343
|
-
odb = session.viewports[session.currentViewportName].displayedObject
|
344
|
-
old_file_path = odb.path
|
345
|
-
new_file_path = odb.path.split('.odb')[0]+'_org.odb'
|
346
|
-
|
347
|
-
shutil.copyfile(old_file_path, new_file_path) #copy the old file
|
348
|
-
|
349
|
-
odb.close()
|
350
|
-
odb = odbAccess.openOdb(old_file_path, readOnly=False)
|
351
|
-
session.viewports['Viewport: 1'].setValues(displayedObject=session.odbs[old_file_path])
|
352
|
-
|
353
|
-
return odb
|
354
|
-
|
355
|
-
|
356
|
-
def session_is_odb():
|
357
|
-
"""
|
358
|
-
Check if current session is ODB.
|
359
|
-
|
360
|
-
Returns:
|
361
|
-
is_odb: boolean indicating if the session is odb or not
|
362
|
-
|
363
|
-
NTNU / Knut Andreas Kvaale, 2018
|
364
|
-
"""
|
365
|
-
is_odb =(('session' in locals() or 'session' in globals()) and
|
366
|
-
session.viewports['Viewport: 1'].displayedObject is not None and
|
367
|
-
hasattr(session.viewports['Viewport: 1'].displayedObject, 'jobData'))
|
368
|
-
|
369
|
-
return is_odb
|
370
|
-
|
371
|
-
|
372
|
-
def save_and_reopen_odb():
|
373
|
-
"""
|
374
|
-
Save and reopen database (odb) as read-only.
|
375
|
-
|
376
|
-
Returns:
|
377
|
-
odb: odb object
|
378
|
-
|
379
|
-
NTNU / Knut Andreas Kvaale, 2018
|
380
|
-
"""
|
381
|
-
odb = get_db('odb')
|
382
|
-
odb.save()
|
383
|
-
load_path = odb.path
|
384
|
-
odb.close()
|
385
|
-
|
386
|
-
odb = odbAccess.openOdb(load_path, readOnly=True)
|
387
|
-
|
388
|
-
return odb
|
389
|
-
|
390
|
-
|
391
|
-
def add_response_step_from_modal(phi_response, field_outputs, modal_var, frequency_step, step_name, region_strings, region_type, instance_name, description):
|
392
|
-
"""
|
393
|
-
Add an artificial step in Abaqus ODB for response data.
|
394
|
-
|
395
|
-
Args:
|
396
|
-
phi_response: phi of the requested response quantities (list with one matrix for each response quantities)
|
397
|
-
field_outputs: names of field output variables
|
398
|
-
modal_var: covariance matrix for the generalized (modal) DOFs
|
399
|
-
frequency_step: name of the new artificial step_name
|
400
|
-
step_name: node set name or region object that define what nodes / DOFs phi refers to
|
401
|
-
regionobjs: Abaqus region objects in list
|
402
|
-
instance_name: name of the instance
|
403
|
-
description: frame description
|
404
|
-
|
405
|
-
NTNU / Knut Andreas Kvaale, 2018
|
406
|
-
"""
|
407
|
-
|
408
|
-
odb = copy_and_unlock_odb()
|
409
|
-
regionobjs = str2region(instance_name, region_strings, region_type, 'odb')
|
410
|
-
instance = odb.rootAssembly.instances[instance_name]
|
411
|
-
|
412
|
-
step_data = odb.Step(name=step_name, description='Response step', domain=TIME, timePeriod=0)
|
413
|
-
frame = step_data.Frame(incrementNumber=0, description='Response', frameValue=0)
|
414
|
-
|
415
|
-
type_dict = {'SF': [TENSOR_3D_SURFACE, INTEGRATION_POINT, 'Section forces'], 'SM': [TENSOR_3D_SURFACE, INTEGRATION_POINT, 'Section moments'], 'U': [VECTOR, NODAL, 'Spatial displacement'], 'UR': [VECTOR, NODAL, 'Rotational displacement'] }
|
416
|
-
|
417
|
-
for ix, field_output in enumerate(field_outputs):
|
418
|
-
foobj_ref = odb.steps[frequency_step].frames[0].fieldOutputs[field_output]
|
419
|
-
phi = phi_response[ix]
|
420
|
-
region_type = type_dict[field_output][1]
|
421
|
-
comps = len(odb.steps[frequency_step].frames[0].fieldOutputs[field_output].componentLabels)
|
422
|
-
|
423
|
-
sigma = np.sqrt(np.sum((np.dot(phi, modal_var) * phi), axis=1)) # Calculate sigma (square root of covariance matrix) from modal coordinates
|
424
|
-
sigma_comp = np.reshape(sigma, [-1, 3]).astype('float')
|
425
|
-
data = [list(this) for this in sigma_comp]
|
426
|
-
|
427
|
-
foobj = frame.FieldOutput(name=field_output, description=type_dict[field_output][2], type=type_dict[field_output][0], validInvariants=())
|
428
|
-
|
429
|
-
N = len(odb.steps[frequency_step].frames[0].fieldOutputs[field_output].values)
|
430
|
-
Ndofs, point_ranges, dof_ranges = count_region(regionobjs, field_output, odb.steps[frequency_step].frames[0])
|
431
|
-
|
432
|
-
for regix,regionobj in enumerate(regionobjs):
|
433
|
-
good_ix, good_entries = good_element_ix(foobj_ref, regionobj)
|
434
|
-
point_range = range(point_ranges[regix],point_ranges[regix+1])
|
435
|
-
|
436
|
-
foobj.addData(position=region_type, instance=instance, labels=good_entries, data=data)
|
437
|
-
|
438
|
-
step_data.setDefaultField(foobj)
|
439
|
-
|
440
|
-
odb = save_and_reopen_odb()
|
441
|
-
|
442
|
-
return odb
|
443
|
-
|
444
|
-
|
445
|
-
def add_std_to_frame(odb, frame, instance_name, modal_var, phi, regionobj, field_output, reference_step):
|
446
|
-
'''
|
447
|
-
Under development. Not verified.
|
448
|
-
'''
|
449
|
-
if odb.isReadOnly:
|
450
|
-
raise TypeError('ODB is read only. Unable to add data.')
|
451
|
-
|
452
|
-
type_dict = {'SF': [TENSOR_3D_SURFACE, INTEGRATION_POINT, 'Section forces'], 'SM': [TENSOR_3D_SURFACE, INTEGRATION_POINT, 'Section moments'], 'U': [VECTOR, NODAL, 'Spatial displacement'], 'UR': [VECTOR, NODAL, 'Rotational displacement'] }
|
453
|
-
foobj_ref = odb.steps[reference_step].frames[0].fieldOutputs[field_output]
|
454
|
-
|
455
|
-
region_type = type_dict[field_output][1]
|
456
|
-
comps = len(odb.steps[reference_step].frames[0].fieldOutputs[field_output].componentLabels)
|
457
|
-
|
458
|
-
sigma = np.sqrt(np.sum((np.dot(phi, modal_var) * phi), axis=1)) # Calculate sigma (square root of covariance matrix) from modal coordinates
|
459
|
-
sigma_comp = np.reshape(sigma, [-1, comps]).astype('float')
|
460
|
-
data = [list(this) for this in sigma_comp]
|
461
|
-
|
462
|
-
# If already exists, don't create new, but assign to that.
|
463
|
-
if field_output not in frame.fieldOutputs.keys():
|
464
|
-
foobj = frame.FieldOutput(name=field_output, description=type_dict[field_output][2], type=type_dict[field_output][0], validInvariants=())
|
465
|
-
else:
|
466
|
-
foobj = frame.fieldOutputs[field_output]
|
467
|
-
|
468
|
-
N = len(odb.steps[reference_step].frames[0].fieldOutputs[field_output].values)
|
469
|
-
good_ix, good_entries = good_element_ix(foobj_ref, regionobj)
|
470
|
-
instance = odb.rootAssembly.instances[instance_name]
|
471
|
-
|
472
|
-
foobj.addData(position=region_type, instance=instance, labels=good_entries, data=data)
|
473
|
-
step_data.setDefaultField(foobj)
|
474
|
-
|
475
|
-
|
476
|
-
|
477
|
-
def add_complex_mode_step(phi, eigvals, instance_name, step_name, region):
|
478
|
-
"""
|
479
|
-
Add an artificial step in Abaqus ODB for complex modes.
|
480
|
-
|
481
|
-
Args:
|
482
|
-
phi: complex eigenvector matrix
|
483
|
-
eigvals: complex eigenvalues
|
484
|
-
instance_name: name of the instance
|
485
|
-
step_name: name of the new artificial step_name
|
486
|
-
regionobj: Abaqus region object
|
487
|
-
|
488
|
-
Knut Andreas Kvaale, 2018
|
489
|
-
"""
|
490
|
-
|
491
|
-
odb = unlock_odb()
|
492
|
-
complex_step = odb.Step(name=step_name, description='Complex modes', domain=MODAL)
|
493
|
-
frame0 = complex_step.Frame(incrementNumber=0, description='Base state', frameValue=0)
|
494
|
-
frame_data = frame0.FieldOutput(name='U', description='Spatial displacement', type=VECTOR, validInvariants=(MAGNITUDE,))
|
495
|
-
instance = odb.rootAssembly.instances[instance_name]
|
496
|
-
|
497
|
-
for m, lambdam in enumerate(eigvals):
|
498
|
-
phim = np.reshape(phi[:, m], (-1, 3)).astype('float')
|
499
|
-
xim = -np.real(lambdam)/abs(lambdam)
|
500
|
-
|
501
|
-
freqm_ud_rad = abs(lambdam)
|
502
|
-
freqm_d_rad = abs(np.imag(lambdam))
|
503
|
-
freqm_ud_Hz = freqm_ud_rad/(2*np.pi)
|
504
|
-
|
505
|
-
periodm_ud = 2*np.pi/abs(lambdam)
|
506
|
-
|
507
|
-
description_m = 'Mode ' + str(m+1) + ': f = ' + str(freqm_ud_Hz) + 'Hz | om = ' + str(freqm_ud_rad) + 'rad/s | T = ' + str(periodm_ud) + 's | xi = ' + str(xim*100) + '%'
|
508
|
-
|
509
|
-
frame_m = complex_step.Frame(incrementNumber=m+1, description=description_m, frameValue=freqm_ud_Hz)
|
510
|
-
frame_data = frame_m.FieldOutput(name='U', description='Spatial displacement', type=VECTOR, validInvariants=(MAGNITUDE,))
|
511
|
-
nodelabels = np.array([node.label for node in regionobj.nodes[0]]).astype('int')
|
512
|
-
|
513
|
-
frame_data.addData(position=NODAL, instance=instance, labels=nodelabels, data=np.real(phim), conjugateData=np.imag(phim))
|
514
|
-
|
515
|
-
odb.save()
|
516
|
-
load_path = odb.path
|
517
|
-
odb.close()
|
518
|
-
odb = odbAccess.openOdb(load_path, readOnly=True)
|
519
|
-
|
520
|
-
## MODIFY MDB
|
521
|
-
def mass_and_stiffness_input(stiffness,mass,pontoon_set_names,pont_nodes,trans_mats,filename):
|
522
|
-
pontoons = len(pontoon_set_names)
|
523
|
-
if len(pont_nodes) != pontoons or len(trans_mats)!=pontoons:
|
524
|
-
raise ValueError('Mismatch between dimensions for input variables: pontoon_set_names, pont_nodes and trans_mats')
|
525
|
-
f = open(filename, 'w')
|
526
|
-
|
527
|
-
for pontoon in range(0,pontoons):
|
528
|
-
f.write('********************************PONTOON NUMBER {0} ************************************* \n'.format(str(pontoon+1)))
|
529
|
-
f.write('*USER ELEMENT, LINEAR, NODES=1, UNSYM, TYPE=U{0}00 \n'.format(str(pontoon+1))) # Defines a linear user element
|
530
|
-
f.write('1, 2, 3, 4, 5, 6 \n') # The element has one node with 6 DOFS
|
531
|
-
|
532
|
-
T = trans_mats[pontoon]
|
533
|
-
|
534
|
-
K = np.dot(np.dot(T.transpose(), stiffness),T)
|
535
|
-
M = np.dot(np.dot(T.transpose(), mass),T)
|
536
|
-
|
537
|
-
f.write('*MATRIX, TYPE=MASS \n') # Defines the mass matrix in GLOBAL coordinate system
|
538
|
-
for n in range(0,6):
|
539
|
-
string1 = ','.join(map(str, M[n, 0:4]))
|
540
|
-
string2 = ','.join(map(str, M[n, 4:6]))
|
541
|
-
f.write(string1 + '\n' + string2 +'\n')
|
542
|
-
|
543
|
-
f.write('*MATRIX, TYPE=STIFFNESS \n')
|
544
|
-
for n in range(0,6):
|
545
|
-
string1 = ','.join(map(str, K[n, 0:4]))
|
546
|
-
string2 = ','.join(map(str, K[n, 4:6]))
|
547
|
-
f.write(string1 + '\n' + string2 +'\n')
|
548
|
-
|
549
|
-
f.write('*ELEMENT, TYPE=U{0}00, ELSET={1} \n'.format(str(pontoon+1),pontoon_set_names[pontoon])) #Introduce one user element into the FE model
|
550
|
-
f.write('800{0}, {1} \n'.format(str(pontoon+1),pont_nodes[pontoon])) #Numbering elements as 8001,8002,...,8007, followed by first node number forming the element
|
551
|
-
f.write('*UEL PROPERTY, ELSET={0} \n'.format(pontoon_set_names[pontoon]))
|
552
|
-
|
553
|
-
|
554
|
-
def update_input(freq,wadam_file,input_file,pontoon_set_names,pont_nodes,trans_mats):
|
555
|
-
from .io import import_wadam_mat
|
556
|
-
static_mass, stiffness, added_mass, damping, frequency = import_wadam_mat(wadam_file)
|
557
|
-
mass = freq_sysmat(added_mass,frequency,freq)+static_mass
|
558
|
-
mass_and_stiffness_input(stiffness,mass,pontoon_set_names,pont_nodes,trans_mats,input_file)
|
559
|
-
print('Input file '+ input_file + ' is modified to correspond to added mass at f = ' + str(freq) + ' Hz.')
|
560
|
-
|
561
|
-
|
562
|
-
def imperfection_input(node_labels, displacement_vector, input_file=None, rotations=False):
|
563
|
-
|
564
|
-
d = np.array(displacement_vector)
|
565
|
-
|
566
|
-
if rotations is True:
|
567
|
-
n_nodes = len(d)/6
|
568
|
-
d_trans = np.zeros([n_nodes*3])
|
569
|
-
for node in range(0, n_nodes):
|
570
|
-
d_trans[node*3:node*3+3] = d[node*6:node*6+3]
|
571
|
-
|
572
|
-
d = d_trans
|
573
|
-
else:
|
574
|
-
n_nodes = len(d)/3
|
575
|
-
|
576
|
-
mat = np.hstack([np.array(node_labels)[:, np.newaxis], d.reshape(-1, 3)])
|
577
|
-
|
578
|
-
if input_file != None:
|
579
|
-
open(input_file, 'w').close()
|
580
|
-
|
581
|
-
with open(input_file, 'a') as f:
|
582
|
-
f.write('*IMPERFECTION \n')
|
583
|
-
np.savetxt(f, mat, delimiter=',', fmt='%i,%.8e,%.8e,%.8e')
|
584
|
-
|
585
|
-
return mat
|
586
|
-
|
587
|
-
|
588
|
-
def add_input_file(model, input_file_path, pos, target_string=None, relative_pos=0):
|
589
|
-
|
590
|
-
if target_string != None:
|
591
|
-
pos = model.keywordBlock.sieBlocks.index(target_string)
|
592
|
-
|
593
|
-
model.keywordBlock.insert(pos+relative_pos, '*INCLUDE, INPUT={0}'.format(input_file_path))
|
594
|
-
|
595
|
-
|
596
|
-
def add_springs(assem, Kh, region, name):
|
597
|
-
|
598
|
-
ON = symbolicConstants.AbaqusBoolean(1)
|
599
|
-
|
600
|
-
Kpos = (Kh+abs(Kh))/2
|
601
|
-
Krem = (Kh-abs(Kh))/2
|
602
|
-
|
603
|
-
for dof in range(2, 5):
|
604
|
-
if Kpos[dof, dof] != 0:
|
605
|
-
assem.engineeringFeatures.SpringDashpotToGround(name=name+'_K%i%i' % (dof+1, dof+1), region=region, orientation=None, dof=dof+1, springBehavior=ON, springStiffness=Kpos[dof, dof])
|
606
|
-
|
607
|
-
return Krem
|
608
|
-
|
609
|
-
|
610
|
-
def add_inertia(assem, M0, region, name, specify_rot=False):
|
611
|
-
if specify_rot is True:
|
612
|
-
assem.engineeringFeatures.PointMassInertia(alpha=0.0, composite=0.0, i11=M0[3, 3], i12=M0[3, 4], i13=M0[3, 5], i22=M0[4, 4], i23=M0[4, 5],
|
613
|
-
i33=M0[5, 5], mass1=M0[0, 0], mass2=M0[1, 1], mass3=M0[2, 2], name=name+'_M0', region=region)
|
614
|
-
comps = range(0, 6)
|
615
|
-
elif specify_rot is False:
|
616
|
-
assem.engineeringFeatures.PointMassInertia(alpha=0.0, composite=0.0, mass1=M0[0, 0], mass2=M0[1, 1], mass3=M0[2, 2], name=name+'_M0', region=region)
|
617
|
-
comps = range(0, 3)
|
618
|
-
|
619
|
-
Mrem = deepcopy(M0)
|
620
|
-
|
621
|
-
for comp in comps:
|
622
|
-
Mrem[comp, comp] = 0
|
623
|
-
|
624
|
-
return Mrem
|
625
|
-
|
626
|
-
|
627
|
-
#%% USEFUL FUNCTIONS FOR DEALING WITH REGIONS IN DATABASE
|
628
|
-
def count_region(regionobjs, field_output, frame):
|
629
|
-
"""
|
630
|
-
Count the number of DOFs and points in the specified region objects for given field output and frame object.
|
631
|
-
|
632
|
-
Args:
|
633
|
-
regionobjs: list of region objects to query
|
634
|
-
field_output: string specifying field output
|
635
|
-
frame: frame object (from where fieldOutputs field is accessible)
|
636
|
-
Returns:
|
637
|
-
Ndofs: number of DOFs for each region (list)
|
638
|
-
point_ranges: point/node ranges for each region (list of lists)
|
639
|
-
dof_ranges: dof ranges for each region (list of lists)
|
640
|
-
|
641
|
-
NTNU / Knut Andreas Kvaale, 2018
|
642
|
-
"""
|
643
|
-
odb = get_db('odb')
|
644
|
-
|
645
|
-
Npoints = [len(frame.fieldOutputs[field_output].getSubset(region=regionobj).values) for regionobj in regionobjs]
|
646
|
-
Ndofs = np.dot(Npoints, len(frame.fieldOutputs[field_output].componentLabels))
|
647
|
-
|
648
|
-
dof_ranges = np.cumsum(np.append([0], Ndofs))
|
649
|
-
point_ranges = np.cumsum(np.append([0], Npoints))
|
650
|
-
|
651
|
-
return Ndofs, point_ranges, dof_ranges
|
652
|
-
|
653
|
-
|
654
|
-
def good_element_ix(foobj, regionobj):
|
655
|
-
"""
|
656
|
-
Get the indices of the good (??) elements.
|
657
|
-
|
658
|
-
Args:
|
659
|
-
foobj: field object
|
660
|
-
regionobj: region object
|
661
|
-
Returns:
|
662
|
-
good_ix: ?
|
663
|
-
good_entries: ?
|
664
|
-
|
665
|
-
NTNU / Knut Andreas Kvaale, 2018
|
666
|
-
"""
|
667
|
-
foobj_values = foobj.getSubset(region=regionobj).values
|
668
|
-
region_type = obtain_region_types([regionobj])[0]
|
669
|
-
|
670
|
-
if region_type is 'elements':
|
671
|
-
rootobj = regionobj.elements
|
672
|
-
label_string = 'elementLabel'
|
673
|
-
elif region_type is 'nodes':
|
674
|
-
rootobj = regionobj.nodes
|
675
|
-
label_string = 'nodeLabel'
|
676
|
-
|
677
|
-
if type(rootobj) is tuple:
|
678
|
-
rootobj = rootobj[0]
|
679
|
-
|
680
|
-
good_entries = [getattr(val, label_string) for val in foobj_values]
|
681
|
-
all_entries = [obj.label for obj in rootobj]
|
682
|
-
|
683
|
-
good_ix = [all_entries.index(this_entry) for this_entry in good_entries]
|
684
|
-
|
685
|
-
return good_ix, good_entries
|
686
|
-
|
687
|
-
|
688
|
-
def obtain_region_types(regionobjs):
|
689
|
-
"""
|
690
|
-
Get the region types of list of region objects.
|
691
|
-
|
692
|
-
Args:
|
693
|
-
regionobjs: list of region objects
|
694
|
-
Returns:
|
695
|
-
region_type: list of region types
|
696
|
-
|
697
|
-
NTNU / Knut Andreas Kvaale, 2018
|
698
|
-
"""
|
699
|
-
elementsets = [regionobj.nodes is None for regionobj in regionobjs] # true if regionobjects are element sets
|
700
|
-
settypedict = {False: 'nodes', True: 'elements'}
|
701
|
-
region_type = [settypedict[elementset] for elementset in elementsets]
|
702
|
-
|
703
|
-
return region_type
|
704
|
-
|
705
|
-
|
706
|
-
def str2region(instance_name, setnames, region_type, db_type, *args):
|
707
|
-
"""
|
708
|
-
Construct a region object from a string defining the set name or a region object.
|
709
|
-
|
710
|
-
Args:
|
711
|
-
instance_name: string defining the set name (either node or element set) or a region object
|
712
|
-
setnames: name of set asked for
|
713
|
-
region_type: type of set ('elements' or 'nodes')
|
714
|
-
db_type: 'odb' or 'model'
|
715
|
-
Optional args:
|
716
|
-
db: database object, either mdb.model[...] or session.openOdb(...) - will get from viewport 1 if not given
|
717
|
-
Returns:
|
718
|
-
regionobjs: region objects
|
719
|
-
|
720
|
-
AAJ / Knut Andreas Kvaale, 2017
|
721
|
-
Further developed NTNU / Knut Andreas Kvaale, 2018
|
722
|
-
"""
|
723
|
-
|
724
|
-
is_assembly = instance_name is None
|
725
|
-
|
726
|
-
set_type = settype(region_type, db_type)
|
727
|
-
standard_sets = {'nodes': [' ALL NODES'], 'elements': [' ALL ELEMENTS']}
|
728
|
-
|
729
|
-
if setnames is None:
|
730
|
-
setnames = standard_sets[region_type]
|
731
|
-
|
732
|
-
if len(args)==1: # a db has been input
|
733
|
-
db = args[0]
|
734
|
-
isodb = hasattr(db,'jobData') #check if the input db is reffering to result/odb or model
|
735
|
-
|
736
|
-
else:
|
737
|
-
db = get_db(db_type)
|
738
|
-
|
739
|
-
if db is None:
|
740
|
-
raise TypeError('The database is empty. Please input a database object, or input parameters that matches one. Remember that odbs have to be active to get the db automatically!')
|
741
|
-
|
742
|
-
if is_assembly: # Instance name is given
|
743
|
-
regroot = db.rootAssembly
|
744
|
-
else:
|
745
|
-
regroot = db.rootAssembly.instances[instance_name]
|
746
|
-
|
747
|
-
regionobjs = [None] * np.size(setnames)
|
748
|
-
|
749
|
-
for ix,thisname in enumerate(setnames):
|
750
|
-
regionobjs[ix] = getattr(regroot, set_type)[thisname]
|
751
|
-
|
752
|
-
return regionobjs
|
753
|
-
|
754
|
-
|
755
|
-
def region2nodes(regionobj, sortfun=None):
|
756
|
-
"""
|
757
|
-
Give node labels (indices) of nodes in specified node set(s).
|
758
|
-
|
759
|
-
Args:
|
760
|
-
regionobj: region object to query for node labels
|
761
|
-
|
762
|
-
Optional args:
|
763
|
-
sortfun: function with three inputs (1: x, 2: y, 3:z) to sort nodes by
|
764
|
-
examples: sortfun = lambda x, y, z: -np.arctan2(y,x)
|
765
|
-
sortfun = lambda x, y, z: x
|
766
|
-
|
767
|
-
Returns:
|
768
|
-
node_labels: list with nodelabels
|
769
|
-
|
770
|
-
NTNU / Knut Andreas Kvaale, 2018
|
771
|
-
"""
|
772
|
-
|
773
|
-
set_name = regionobj.__repr__().split("ets[")[1].split("'")[1]
|
774
|
-
|
775
|
-
if len(np.shape(regionobj.nodes))>1:
|
776
|
-
nodes = regionobj.nodes[0]
|
777
|
-
else:
|
778
|
-
nodes = regionobj.nodes
|
779
|
-
|
780
|
-
node_labels = np.array([node.label for node in nodes])
|
781
|
-
node_coordinates = np.array([node.coordinates for node in nodes])
|
782
|
-
|
783
|
-
if sortfun != None:
|
784
|
-
vals = sortfun(x=node_coordinates[:,0], y=node_coordinates[:,1], z=node_coordinates[:,2])
|
785
|
-
sort_ix = np.argsort(vals)
|
786
|
-
node_labels = node_labels[:, sort_ix]
|
787
|
-
node_coordinates = node_coordinates[sort_ix, :]
|
788
|
-
|
789
|
-
return node_labels, node_coordinates
|
790
|
-
|
791
|
-
def region2elnodes(regionobj, avoid_central_nodes=True, db_type='odb'):
|
792
|
-
"""
|
793
|
-
Give node labels (indices) for each node in specified element set.
|
794
|
-
|
795
|
-
Args:
|
796
|
-
regionobj: region object to query for labels
|
797
|
-
|
798
|
-
Returns:
|
799
|
-
element_labels: the labels (indices) of the elements in list
|
800
|
-
element_node_indices: the labels (indices) of the ndoes in each element; list of lists
|
801
|
-
node_labels: all the nodes labels (indices) in a flattened list
|
802
|
-
node_coordinates: node coordinates for each element (list of lists)
|
803
|
-
|
804
|
-
NTNU / Knut Andreas Kvaale, 2018
|
805
|
-
"""
|
806
|
-
|
807
|
-
db = get_db(db_type)
|
808
|
-
objstr = regionobj.__repr__()
|
809
|
-
if 'instances' in objstr:
|
810
|
-
instance_name = objstr.split(".instances['")[1].split("'].")[0]
|
811
|
-
else:
|
812
|
-
instance_name = None
|
813
|
-
|
814
|
-
if instance_name is None:
|
815
|
-
instance = db.rootAssembly
|
816
|
-
else:
|
817
|
-
instance = db.rootAssembly.instances[instance_name]
|
818
|
-
|
819
|
-
# Get the elements object root
|
820
|
-
if len(np.shape(regionobj.elements))>1:
|
821
|
-
elements = regionobj.elements[0]
|
822
|
-
else:
|
823
|
-
elements = regionobj.elements
|
824
|
-
|
825
|
-
# Get all element labels and corresponding connectivity (node labels)
|
826
|
-
element_labels = np.array([element.label for element in elements])
|
827
|
-
node_labels = [el.connectivity for el in elements]
|
828
|
-
|
829
|
-
if avoid_central_nodes:
|
830
|
-
node_labels = np.unique([item for sublist in node_labels for item in sublist[:1]+sublist[-1:]])
|
831
|
-
else:
|
832
|
-
node_labels = [item for sublist in node_labels for item in sublist]
|
833
|
-
|
834
|
-
element_matrix = None
|
835
|
-
|
836
|
-
return element_labels, node_labels, element_matrix
|
837
|
-
|
838
|
-
|
839
|
-
def get_element_matrix(element_labels=None): #if None is specified, full model is exported
|
840
|
-
pass
|
841
|
-
|
842
|
-
def get_node_matrix(node_labels=None): #if None is specified, full model is exported
|
843
|
-
pass
|
844
|
-
|
845
|
-
def region2elnodes_legacy(regionobjs, avoid_central_nodes=True):
|
846
|
-
"""
|
847
|
-
Give node labels (indices) for each node in specified element set.
|
848
|
-
|
849
|
-
Args:
|
850
|
-
regionobjs: region objects to query for node labels
|
851
|
-
|
852
|
-
Returns:
|
853
|
-
element_labels: the labels (indices) of the elements in list
|
854
|
-
element_node_indices: the labels (indices) of the ndoes in each element; list of lists
|
855
|
-
node_labels: all the nodes labels (indices) in a flattened list
|
856
|
-
node_coordinates: node coordinates for each element (list of lists)
|
857
|
-
|
858
|
-
NTNU / Knut Andreas Kvaale, 2018
|
859
|
-
"""
|
860
|
-
|
861
|
-
objstr = regionobjs.__repr__()
|
862
|
-
instance_name = objstr.split(".instances['")[1].split("'].")[0]
|
863
|
-
|
864
|
-
if '.odb' in objstr:
|
865
|
-
db = get_db('odb')
|
866
|
-
dbtype = 'odb'
|
867
|
-
else:
|
868
|
-
db = get_db('mdb')
|
869
|
-
dbtype = 'mdb'
|
870
|
-
|
871
|
-
# Get the elements object root
|
872
|
-
if len(np.shape(regionobjs.elements))>1:
|
873
|
-
elements = regionobjs.elements[0]
|
874
|
-
else:
|
875
|
-
elements = regionobjs.elements
|
876
|
-
|
877
|
-
# Get all element labels and corresponding connectivity (node labels)
|
878
|
-
element_labels = np.array([element.label for element in elements])
|
879
|
-
|
880
|
-
# Instance object
|
881
|
-
instance = db.rootAssembly.instances[instance_name]
|
882
|
-
|
883
|
-
# Full arrays labels and coordinates
|
884
|
-
all_node_labels = np.array([node.label for node in instance.nodes]).flatten([-1])
|
885
|
-
all_node_coords = np.array([node.coordinates for node in instance.nodes])
|
886
|
-
|
887
|
-
# Nodes belonging to all the elements
|
888
|
-
if dbtype is 'odb':
|
889
|
-
element_node_labels = [element.connectivity for element in elements]
|
890
|
-
else:
|
891
|
-
element_node_labels = [[all_node_labels[ix] for ix in element.connectivity] for element in elements]
|
892
|
-
|
893
|
-
if avoid_central_nodes:
|
894
|
-
element_node_labels = [[node_lb[0], node_lb[-1]] for node_lb in element_node_labels]
|
895
|
-
|
896
|
-
node_labels = np.unique(np.array(element_node_labels).flatten())
|
897
|
-
|
898
|
-
nodeixs = np.array([np.where(all_node_labels==node)[0] for node in node_labels]).flatten()
|
899
|
-
node_coordinates = all_node_coords[nodeixs, :]
|
900
|
-
element_node_indices = np.array([np.array([np.where(node_labels==node_label) for node_label in node_labels_for_element]).flatten() for node_labels_for_element in element_node_labels])
|
901
|
-
|
902
|
-
return element_labels, element_node_indices, node_labels, node_coordinates
|
903
|
-
|
904
|
-
|
905
|
-
#%% RETRIEVE THINGS FROM DATABASE
|
906
|
-
def element_orientations(element_labels, instance_name):
|
907
|
-
"""
|
908
|
-
Provide transformation matrices describing the three unit vectors of the local CSYS of all elements in element_labels.
|
909
|
-
|
910
|
-
Args:
|
911
|
-
element_labels: element labels to query
|
912
|
-
instance_name: name of instance to find beam orientations
|
913
|
-
|
914
|
-
Returns:
|
915
|
-
element_orientations: array of numpy 2d-arrays with transformation matrices of all elements in element_labels
|
916
|
-
|
917
|
-
NTNU / Knut Andreas Kvaale, 2018
|
918
|
-
"""
|
919
|
-
db_type = 'odb' # may consider mdb option later
|
920
|
-
db = get_db(db_type)
|
921
|
-
|
922
|
-
all_elements = db.rootAssembly.elementSets[' ALL ELEMENTS'].elements[0]
|
923
|
-
all_nodes = db.rootAssembly.nodeSets[' ALL NODES'].nodes[0]
|
924
|
-
all_element_labels = [value.label for value in all_elements]
|
925
|
-
all_node_labels = [value.label for value in all_nodes]
|
926
|
-
element_orientations = [None]*len(element_labels)
|
927
|
-
|
928
|
-
beam_orientations = db.rootAssembly.instances[instance_name].beamOrientations
|
929
|
-
|
930
|
-
for beam_orientation in beam_orientations:
|
931
|
-
bo_elements = [value.label for value in beam_orientation.region.elements]
|
932
|
-
for this_element_label in bo_elements:
|
933
|
-
if this_element_label in element_labels:
|
934
|
-
n1_temp = np.array(beam_orientation.vector)
|
935
|
-
node_labels = all_elements[all_element_labels.index(this_element_label)].connectivity
|
936
|
-
|
937
|
-
node_start_coor = all_nodes[all_node_labels.index(node_labels[0])].coordinates
|
938
|
-
node_end_coor = all_nodes[all_node_labels.index(node_labels[-1])].coordinates
|
939
|
-
t = (node_end_coor-node_start_coor)
|
940
|
-
t = t/np.linalg.norm(t)
|
941
|
-
|
942
|
-
n2 = np.cross(t, n1_temp)
|
943
|
-
n2 = n2/np.linalg.norm(n2)
|
944
|
-
|
945
|
-
n1 = np.cross(n2, t) #does this actually work?
|
946
|
-
|
947
|
-
element_orientations[np.where(element_labels == this_element_label)[0]] = np.array([t,n1,n2])
|
948
|
-
|
949
|
-
return element_orientations
|
950
|
-
|
951
|
-
|
952
|
-
def freq_sysmat(mat,freqs,freq):
|
953
|
-
"""
|
954
|
-
Interpolate frequency dependent matrix, for given frequency value. !! Deprecated - use numpy functions directly instead !!
|
955
|
-
|
956
|
-
Args:
|
957
|
-
mat: 3D matrix (Numpy array)
|
958
|
-
freqs: frequency axis (Numpy array)
|
959
|
-
freq: selected frequency value (scalar)
|
960
|
-
Returns:
|
961
|
-
mat_sel: 2D matrix corresponding to queried frequency value (Numpy array)
|
962
|
-
|
963
|
-
NTNU / AAJ / Knut Andreas Kvaale, 2018
|
964
|
-
"""
|
965
|
-
from .general import interp1z
|
966
|
-
|
967
|
-
if freq == []:
|
968
|
-
mat_sel = 0
|
969
|
-
else:
|
970
|
-
mat_sel = interp1z(freqs[:,0,0],mat,freq)
|
971
|
-
return mat_sel
|
972
|
-
|
973
|
-
|
974
|
-
def wind_set_data(set_strings, frequency_step, instance, db_type, field_outputs, mode_type='nodes', use_node_region_acronym=False):
|
975
|
-
# use_node_region_acronym: if True, a node set with identical name as the element set given in set_strings is picked and the nodes assumed to correspond to the element. If not the case, the element set is used to establish the nodes (and thus phi)
|
976
|
-
wind_element_regions = str2region(instance, set_strings, 'elements', db_type) # index 0 is girder, index 1 is columns
|
977
|
-
|
978
|
-
if use_node_region_acronym:
|
979
|
-
wind_node_regions = str2region(instance, set_strings, 'nodes', db_type)
|
980
|
-
|
981
|
-
element_labels = [None]*len(set_strings)
|
982
|
-
element_node_indices = [None]*len(set_strings)
|
983
|
-
node_labels = [None]*len(set_strings)
|
984
|
-
node_coordinates = [None]*len(set_strings)
|
985
|
-
phi_ae = [None]*len(set_strings)
|
986
|
-
|
987
|
-
for set_ix, set_string in enumerate(set_strings):
|
988
|
-
element_labels[set_ix], element_node_indices[set_ix], nl, nc = region2elnodes_legacy(wind_element_regions[set_ix])
|
989
|
-
if use_node_region_acronym:
|
990
|
-
nl, nc = region2nodes(wind_node_regions[set_ix])
|
991
|
-
|
992
|
-
node_labels[set_ix] = nl
|
993
|
-
node_coordinates[set_ix] = nc
|
994
|
-
|
995
|
-
# Establish modal transformation matrix, phi
|
996
|
-
if mode_type=='nodes':
|
997
|
-
for set_ix, set_string in enumerate(set_strings):
|
998
|
-
phi_ae_temp = modeshapes_from_nodelist(node_labels[set_ix], frequency_step, field_outputs)
|
999
|
-
phi_ae[set_ix] = merge_tr_phi(phi_ae_temp[0][0], phi_ae_temp[0][1])
|
1000
|
-
elif mode_type=='elements':
|
1001
|
-
for set_ix, set_string in enumerate(set_strings):
|
1002
|
-
phi_ae_temp, integration_points = modeshapes_from_elementlist(element_labels[set_ix], frequency_step, field_outputs)
|
1003
|
-
phi_ae[set_ix] = merge_tr_phi(phi_ae_temp[0], phi_ae_temp[1])
|
1004
|
-
|
1005
|
-
return element_labels, element_node_indices, node_labels, node_coordinates, phi_ae
|
1006
|
-
|
1007
|
-
|
1008
|
-
|
1009
|
-
def settype(region_type, db_type):
|
1010
|
-
"""
|
1011
|
-
Define the string used to get set based on region type and database type.
|
1012
|
-
|
1013
|
-
Args:
|
1014
|
-
region_type: 'element' or 'node'
|
1015
|
-
db_type: 'odb' or 'mdb'
|
1016
|
-
Returns:
|
1017
|
-
set_string: string used to obtain set data from database object (odb or mdb)
|
1018
|
-
|
1019
|
-
NTNU / Knut Andreas Kvaale, 2018
|
1020
|
-
"""
|
1021
|
-
if db_type is 'odb':
|
1022
|
-
if 'element' in region_type.lower():
|
1023
|
-
set_string = 'elementSets'
|
1024
|
-
elif 'node' in region_type.lower():
|
1025
|
-
set_string = 'nodeSets'
|
1026
|
-
else:
|
1027
|
-
raise TypeError('Wrong input!')
|
1028
|
-
elif db_type == 'mdb' or db_type == 'model':
|
1029
|
-
set_string = 'sets'
|
1030
|
-
|
1031
|
-
return set_string
|
1032
|
-
|
1033
|
-
#%% EXPORT THINGS
|
1034
|
-
def save_nodes_and_elements(folder, element_labels, element_node_indices, node_labels, node_coordinates, element_orientations=None, set_strings=None):
|
1035
|
-
for ix, element_labels_i in enumerate(element_labels):
|
1036
|
-
element_info = np.column_stack([element_labels[ix], element_node_indices[ix]])
|
1037
|
-
node_info = np.column_stack([node_labels[ix], node_coordinates[ix]])
|
1038
|
-
np.savetxt(os.path.join(folder, 'node_info_%i.dat' % (ix)), node_info)
|
1039
|
-
np.savetxt(os.path.join(folder, 'element_info_%i.dat' % (ix)), element_info)
|
1040
|
-
|
1041
|
-
if element_orientations:
|
1042
|
-
np.savetxt(os.path.join(folder, 'element_orientations_%i.dat' % (ix)), element_orientations)
|
1043
|
-
|
1044
|
-
if set_strings:
|
1045
|
-
np.savetxt(os.path.join(folder, 'node_and_element_sets.txt'), set_strings, fmt='%s', delimiter=',')
|
1046
|
-
|
1047
|
-
|
1048
|
-
def save_pontoon_info(folder, node_labels, node_coordinates, pontoon_labels=None, pontoon_angles=None):
|
1049
|
-
if pontoon_labels==None: # standard if no pontoon_labels are provided (integers!)
|
1050
|
-
pontoon_labels = np.linspace(1, len(node_labels), len(node_labels)).astype(int)
|
1051
|
-
|
1052
|
-
if pontoon_angles==None:
|
1053
|
-
pontoon_angles = np.zeros(len(node_labels)) #if no angles are given, output zero for all pontoon angles
|
1054
|
-
|
1055
|
-
pontooninfo = np.column_stack([pontoon_labels, node_coordinates, node_labels, pontoon_angles])
|
1056
|
-
np.savetxt(os.path.join(folder, 'pontoon_info.dat'), pontooninfo)
|
1057
|
-
|
1058
|
-
|
1059
|
-
def save_all_modal(folder, phi, suffix='', f=None, m=None, set_strings=None):
|
1060
|
-
|
1061
|
-
if isinstance(phi, list):
|
1062
|
-
for ix, phi_i in enumerate(phi):
|
1063
|
-
np.savetxt(os.path.join(folder, 'phi_%s_%i.dat' % (suffix, ix)), phi_i)
|
1064
|
-
|
1065
|
-
if set_strings:
|
1066
|
-
np.savetxt(os.path.join(folder, 'phi_%s_sets.txt' % (suffix)), set_strings, fmt='%s', delimiter=',')
|
1067
|
-
|
1068
|
-
elif isinstance(phi, np.ndarray):
|
1069
|
-
np.savetxt(os.path.join(folder, 'phi_%s_%i.dat' % (suffix, 0)), phi)
|
1070
|
-
|
1071
|
-
if f is not None:
|
1072
|
-
np.savetxt(os.path.join(folder, 'f.dat'), f)
|
1073
|
-
if m is not None:
|
1074
|
-
np.savetxt(os.path.join(folder, 'm.dat'), m)
|
1075
|
-
|
1076
|
-
|
1077
|
-
#%% ONLY DEBUGGED IN BRIGADE
|
1078
|
-
def mode2df(model, node_labels, phi, name, instance_name):
|
1079
|
-
nodes = tuple(np.repeat(node_labels,6).tolist())
|
1080
|
-
dofs = np.tile(np.arange(1,6+1), len(node_labels))
|
1081
|
-
|
1082
|
-
dofs_and_mags = np.empty([np.shape(dofs)[0],2])
|
1083
|
-
dofs_and_mags[:, 0::2] = dofs[:, np.newaxis]
|
1084
|
-
dofs_and_mags[:, 1::2] = phi[:, np.newaxis]
|
1085
|
-
|
1086
|
-
data = ((instance_name, 2, nodes, tuple(dofs_and_mags.flatten().tolist())),)
|
1087
|
-
df = model.DiscreteField(data=data, dataWidth=2, defaultValues=(0.0, 0.0, 0.0, 0.0, 0.0, 0.0), description='Mode displacement', fieldType=PRESCRIBEDCONDITION_DOF, location=NODES, name=name)
|
1088
|
-
|
1089
|
-
return df
|
1090
|
-
|
1091
|
-
|
1092
|
-
def apply_nodal_load(model, node_labels, step_name, loads, instance_name, prefix=''):
|
1093
|
-
instance = model.rootAssembly.instances[instance_name]
|
1094
|
-
all_node_labels = [node.label for node in instance.nodes]
|
1095
|
-
ndof = 6 # assumes 6 DOFs for all nodes - be aware!
|
1096
|
-
for node_ix, node_label in enumerate(node_labels):
|
1097
|
-
if all_node_labels.count(node_label) != None: # if in node labels
|
1098
|
-
global_node_ix = all_node_labels.index(node_label)
|
1099
|
-
node_set = model.rootAssembly.Set(name='node_%i' % (node_label), nodes=instance.nodes[global_node_ix:global_node_ix+1])
|
1100
|
-
nodeloads = loads[node_ix*6:node_ix*6+6]
|
1101
|
-
|
1102
|
-
if not np.all(nodeloads[0:3]==0):
|
1103
|
-
model.ConcentratedForce(cf1=nodeloads[0], cf2=nodeloads[1], cf3=nodeloads[2], createStepName=step_name, distributionType=UNIFORM, field='', localCsys=None, name='%sforces_node_%i' % (prefix, node_label), region=node_set)
|
1104
|
-
|
1105
|
-
if not np.all(nodeloads[3:6]==0):
|
1106
|
-
model.Moment(cm1=nodeloads[3], cm2=nodeloads[4], cm3=nodeloads[5], createStepName=step_name, distributionType=UNIFORM, field='', localCsys=None, name='%smoments_node_%i' % (prefix, node_label), region=node_set)
|
1107
|
-
|
1108
|
-
else:
|
1109
|
-
raise ValueError('Node %i does not exist in selected instance.' % (node_label))
|
1110
|
-
|
1111
|
-
|
1112
|
-
def assign_modal_constraint_equation(model, instance_name, name, node_labels, displacement):
|
1113
|
-
ndof = 6 # assumes 6 DOFs for all nodes - be aware!
|
1114
|
-
instance = model.rootAssembly.instances[instance_name]
|
1115
|
-
all_node_labels = [node.label for node in instance.nodes]
|
1116
|
-
terms = []
|
1117
|
-
for node_ix, node_label in enumerate(node_labels):
|
1118
|
-
if all_node_labels.count(node_label) != None: # if in node labels
|
1119
|
-
global_node_ix = all_node_labels.index(node_label)
|
1120
|
-
node_set_name = 'node_%i' % (node_label)
|
1121
|
-
node_set = model.rootAssembly.Set(name=node_set_name, nodes=instance.nodes[global_node_ix:global_node_ix+1])
|
1122
|
-
displacement_of_node = displacement[node_ix*ndof:node_ix*ndof+ndof]
|
1123
|
-
non_zero = np.where(displacement_of_node !=0 )[0]
|
1124
|
-
terms.append([(displacement_of_node[ldof], node_set_name, ldof+1) for ldof in non_zero])
|
1125
|
-
|
1126
|
-
terms = tuple([term for sublist in terms for term in sublist])
|
1127
|
-
model.Equation(name=name, terms=terms)
|
1128
|
-
|