waveorder 2.2.0rc0__py3-none-any.whl → 2.2.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,188 @@
1
+ Metadata-Version: 2.4
2
+ Name: waveorder
3
+ Version: 2.2.1
4
+ Summary: Wave-optical simulations and deconvolution of optical properties
5
+ Author-email: CZ Biohub SF <compmicro@czbiohub.org>
6
+ Maintainer-email: Talon Chandler <talon.chandler@czbiohub.org>, Shalin Mehta <shalin.mehta@czbiohub.org>
7
+ License: BSD 3-Clause License
8
+
9
+ Copyright (c) 2019, Chan Zuckerberg Biohub
10
+
11
+ Redistribution and use in source and binary forms, with or without
12
+ modification, are permitted provided that the following conditions are met:
13
+
14
+ 1. Redistributions of source code must retain the above copyright notice, this
15
+ list of conditions and the following disclaimer.
16
+
17
+ 2. Redistributions in binary form must reproduce the above copyright notice,
18
+ this list of conditions and the following disclaimer in the documentation
19
+ and/or other materials provided with the distribution.
20
+
21
+ 3. Neither the name of the copyright holder nor the names of its
22
+ contributors may be used to endorse or promote products derived from
23
+ this software without specific prior written permission.
24
+
25
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
26
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
29
+ FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30
+ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
31
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32
+ CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
33
+ OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
34
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35
+
36
+ Project-URL: Homepage, https://github.com/mehta-lab/waveorder
37
+ Project-URL: Repository, https://github.com/mehta-lab/waveorder
38
+ Project-URL: Issues, https://github.com/mehta-lab/waveorder/issues
39
+ Keywords: simulation,optics,phase,scattering,polarization,label-free,permittivity,reconstruction-algorithm,qlipp,mipolscope,permittivity-tensor-imaging
40
+ Classifier: Development Status :: 4 - Beta
41
+ Classifier: Intended Audience :: Science/Research
42
+ Classifier: License :: OSI Approved :: BSD License
43
+ Classifier: Programming Language :: Python :: 3
44
+ Classifier: Programming Language :: Python :: 3.10
45
+ Classifier: Programming Language :: Python :: 3.11
46
+ Classifier: Programming Language :: Python :: 3.12
47
+ Classifier: Topic :: Scientific/Engineering
48
+ Classifier: Topic :: Scientific/Engineering :: Image Processing
49
+ Classifier: Topic :: Scientific/Engineering :: Bio-Informatics
50
+ Classifier: Operating System :: POSIX :: Linux
51
+ Classifier: Operating System :: Microsoft :: Windows
52
+ Classifier: Operating System :: MacOS
53
+ Requires-Python: >=3.10
54
+ Description-Content-Type: text/markdown
55
+ License-File: LICENSE
56
+ Requires-Dist: numpy>=1.24
57
+ Requires-Dist: matplotlib>=3.1.1
58
+ Requires-Dist: scipy>=1.3.0
59
+ Requires-Dist: pywavelets>=1.1.1
60
+ Requires-Dist: ipywidgets>=7.5.1
61
+ Requires-Dist: torch>=2.4.1
62
+ Provides-Extra: dev
63
+ Requires-Dist: pytest; extra == "dev"
64
+ Requires-Dist: pytest-cov; extra == "dev"
65
+ Requires-Dist: black==25.1.0; extra == "dev"
66
+ Provides-Extra: examples
67
+ Requires-Dist: napari[all]; extra == "examples"
68
+ Requires-Dist: jupyter; extra == "examples"
69
+ Dynamic: license-file
70
+
71
+ # waveorder
72
+
73
+ [![Python package index](https://img.shields.io/pypi/v/waveorder.svg)](https://pypi.org/project/waveorder)
74
+ [![PyPI monthly downloads](https://img.shields.io/pypi/dm/waveorder.svg)](https://pypistats.org/packages/waveorder)
75
+ [![Total downloads](https://pepy.tech/badge/waveorder)](https://pepy.tech/project/waveorder)
76
+ [![GitHub contributors](https://img.shields.io/github/contributors-anon/mehta-lab/waveorder)](https://github.com/mehta-lab/waveorder/graphs/contributors)
77
+ ![GitHub Repo stars](https://img.shields.io/github/stars/mehta-lab/waveorder)
78
+ ![GitHub forks](https://img.shields.io/github/forks/mehta-lab/waveorder)
79
+ ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/waveorder)
80
+
81
+
82
+ This computational imaging library enables wave-optical simulation and reconstruction of optical properties that report microscopic architectural order.
83
+
84
+ ## Computational label-agnostic imaging
85
+
86
+ https://github.com/user-attachments/assets/4f9969e5-94ce-4e08-9f30-68314a905db6
87
+
88
+ `waveorder` enables simulations and reconstructions of label-agnostic microscopy data as described in the following [preprint](https://arxiv.org/abs/2412.09775)
89
+ <details>
90
+ <summary> Chandler et al. 2024 </summary>
91
+ <pre><code>
92
+ @article{chandler_2024,
93
+ author = {Chandler, Talon and Hirata-Miyasaki, Eduardo and Ivanov, Ivan E. and Liu, Ziwen and Sundarraman, Deepika and Ryan, Allyson Quinn and Jacobo, Adrian and Balla, Keir and Mehta, Shalin B.},
94
+ title = {waveOrder: generalist framework for label-agnostic computational microscopy},
95
+ journal = {arXiv},
96
+ year = {2024},
97
+ month = dec,
98
+ eprint = {2412.09775},
99
+ doi = {10.48550/arXiv.2412.09775}
100
+ }
101
+ </code></pre>
102
+ </details>
103
+
104
+ Specifically, `waveorder` enables simulation and reconstruction of 2D or 3D:
105
+
106
+ 1. __phase, projected retardance, and in-plane orientation__ from a polarization-diverse volumetric brightfield acquisition ([QLIPP](https://elifesciences.org/articles/55502)),
107
+
108
+ 2. __phase__ from a volumetric brightfield acquisition ([2D phase](https://www.osapublishing.org/ao/abstract.cfm?uri=ao-54-28-8566)/[3D phase](https://www.osapublishing.org/ao/abstract.cfm?uri=ao-57-1-a205)),
109
+
110
+ 3. __phase__ from an illumination-diverse volumetric acquisition ([2D](https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-23-9-11394&id=315599)/[3D](https://www.osapublishing.org/boe/fulltext.cfm?uri=boe-7-10-3940&id=349951) differential phase contrast),
111
+
112
+ 4. __fluorescence density__ from a widefield volumetric fluorescence acquisition (fluorescence deconvolution).
113
+
114
+ The [examples](https://github.com/mehta-lab/waveorder/tree/main/examples) demonstrate simulations and reconstruction for 2D QLIPP, 3D PODT, 3D fluorescence deconvolution, and 2D/3D PTI methods.
115
+
116
+ If you are interested in deploying QLIPP, phase from brightfield, or fluorescence deconvolution for label-agnostic imaging at scale, checkout our [napari plugin](https://www.napari-hub.org/plugins/recOrder-napari), [`recOrder-napari`](https://github.com/mehta-lab/recOrder).
117
+
118
+ ## Permittivity tensor imaging
119
+
120
+ Additionally, `waveorder` enabled the development of a new label-free imaging method, __permittivity tensor imaging (PTI)__, that measures density and 3D orientation of biomolecules with diffraction-limited resolution. These measurements are reconstructed from polarization-resolved images acquired with a sequence of oblique illuminations.
121
+
122
+ The acquisition, calibration, background correction, reconstruction, and applications of PTI are described in the following [paper](https://doi.org/10.1101/2020.12.15.422951) published in Nature Methods:
123
+
124
+ <details>
125
+ <summary> Yeh et al. 2024 </summary>
126
+ <pre><code>
127
+ @article{yeh_2024,
128
+ author = {Yeh, Li-Hao and Ivanov, Ivan E. and Chandler, Talon and Byrum, Janie R. and Chhun, Bryant B. and Guo, Syuan-Ming and Foltz, Cameron and Hashemi, Ezzat and Perez-Bermejo, Juan A. and Wang, Huijun and Yu, Yanhao and Kazansky, Peter G. and Conklin, Bruce R. and Han, May H. and Mehta, Shalin B.},
129
+ title = {Permittivity tensor imaging: modular label-free imaging of 3D dry mass and 3D orientation at high resolution},
130
+ journal = {Nature Methods},
131
+ volume = {21},
132
+ number = {7},
133
+ pages = {1257--1274},
134
+ year = {2024},
135
+ month = jul,
136
+ issn = {1548-7105},
137
+ publisher = {Nature Publishing Group},
138
+ doi = {10.1038/s41592-024-02291-w}
139
+ }
140
+ </code></pre>
141
+ </details>
142
+
143
+ PTI provides volumetric reconstructions of mean permittivity ($\propto$ material density), differential permittivity ($\propto$ material anisotropy), 3D orientation, and optic sign. The following figure summarizes PTI acquisition and reconstruction with a small optical section of the mouse brain tissue:
144
+
145
+ ![Data_flow](https://github.com/mehta-lab/waveorder/blob/main/readme.png?raw=true)
146
+
147
+ ## Examples
148
+ The [examples](https://github.com/mehta-lab/waveorder/tree/main/examples) illustrate simulations and reconstruction for 2D QLIPP, 3D phase from brightfield, and 2D/3D PTI methods.
149
+
150
+ If you are interested in deploying QLIPP or phase from brightbrield, or fluorescence deconvolution for label-agnostic imaging at scale, checkout our [napari plugin](https://www.napari-hub.org/plugins/recOrder-napari), [`recOrder-napari`](https://github.com/mehta-lab/recOrder).
151
+
152
+ ## Citation
153
+
154
+ Please cite this repository, along with the relevant preprint or paper, if you use or adapt this code. The citation information can be found by clicking "Cite this repository" button in the About section in the right sidebar.
155
+
156
+ ## Installation
157
+
158
+ Create a virtual environment:
159
+
160
+ ```sh
161
+ conda create -y -n waveorder python=3.10
162
+ conda activate waveorder
163
+ ```
164
+
165
+ Install `waveorder` from PyPI:
166
+
167
+ ```sh
168
+ pip install waveorder
169
+ ```
170
+
171
+ Use `waveorder` in your scripts:
172
+
173
+ ```sh
174
+ python
175
+ >>> import waveorder
176
+ ```
177
+
178
+ (Optional) Install example dependencies, clone the repository, and run an example script:
179
+ ```sh
180
+ pip install waveorder[examples]
181
+ git clone https://github.com/mehta-lab/waveorder.git
182
+ python waveorder/examples/models/phase_thick_3d.py
183
+ ```
184
+
185
+ (M1 users) `pytorch` has [incomplete GPU support](https://github.com/pytorch/pytorch/issues/77764),
186
+ so please use `export PYTORCH_ENABLE_MPS_FALLBACK=1`
187
+ to allow some operators to fallback to CPU
188
+ if you plan to use GPU acceleration for polarization reconstruction.
@@ -0,0 +1,27 @@
1
+ waveorder/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ waveorder/_version.py,sha256=wUUonx5HNvzUsCYrR_oek7De76IsD1eqg46c4ZbWiDg,511
3
+ waveorder/background_estimator.py,sha256=GFy3N0qqp5M6JVZBbIUvTYhSin8Njg7zA2WN69pKLAE,12398
4
+ waveorder/correction.py,sha256=uAWDKXq-FYwi1obxxWq0A-suNVf1cvqUnPsDC-LIlsM,3460
5
+ waveorder/filter.py,sha256=BSNYTMYy-HrqtupcXMm9OzWPMlX_NF7KSNjeN0-0ghQ,7350
6
+ waveorder/focus.py,sha256=ELI-bhtoodSFL7mKlXt0S8HqCc02gJMr7gCl3kYW5bE,6314
7
+ waveorder/optics.py,sha256=RikR3kkPFoVUS86jiGQZey7Jtz5Ga-xKWnXsexo3Okc,44242
8
+ waveorder/reconstruct.py,sha256=nF00-uxYF67QVcNClp1VIB31ElUfbjO3RNxbxc0ELH4,832
9
+ waveorder/sampling.py,sha256=OAqlfjEemX6tQV2a2S8X0wQx9JCSykcvVxvKr1CY3H0,2521
10
+ waveorder/stokes.py,sha256=G_hcqS-GbslVnCWmS13y77K1YZ8cvwIl-DDKyC84LSI,15184
11
+ waveorder/util.py,sha256=K5wdR_da1MYSVHUSp0O-m_FzMKRX60_KXCv3IXtCgKA,71243
12
+ waveorder/waveorder_reconstructor.py,sha256=-MluWmnZnCZm7Xu-8V8QWX9ma0_5oAZO2Xlyrg1bRes,152072
13
+ waveorder/waveorder_simulator.py,sha256=uRRX_wcWzJzlVcfToLpIlh4e8Xt9NjTvdonyGEf2Z1c,45805
14
+ waveorder/models/inplane_oriented_thick_pol3d.py,sha256=bx5yViNz7wY5BBXUea1Tw0RhYsEzErENRnAbgpa34C0,5992
15
+ waveorder/models/inplane_oriented_thick_pol3d_vector.py,sha256=tAHkIV02CZ1DbjvikKON2bvkrRfR6jEiUenDhrTtdtI,9754
16
+ waveorder/models/isotropic_fluorescent_thick_3d.py,sha256=mrai8u3aQ9TxI_TZZXFXZWei6g_ZcxkLxjlUDv1rHJA,7050
17
+ waveorder/models/isotropic_thin_3d.py,sha256=ADn1py_-bkXKD9_Uw4av1xE-X-Y6Wyp3uSdaA9C7JPU,10956
18
+ waveorder/models/phase_thick_3d.py,sha256=sOHphv6_SfarLxrhj4bcZwM-5bdjXS4-j6RCreOBTmA,8654
19
+ waveorder/visuals/jupyter_visuals.py,sha256=6kxICjEtP1qc1EuETc_NJ6Y4A7nVaC-bP3wl_CQNPfg,58096
20
+ waveorder/visuals/matplotlib_visuals.py,sha256=v1zi0ZlXEV5CcpNzTWL0vDJ2Md2-RSHnc3rAB61wimg,10915
21
+ waveorder/visuals/napari_visuals.py,sha256=jgyKRlWqJv1PvCRWfpgqRUv6rwIsI4AXQGLL5IftPnM,2352
22
+ waveorder/visuals/utils.py,sha256=QC5WSc2yzPMjk66IjA39iNFgO_0It6evma201hH8Lg4,1001
23
+ waveorder-2.2.1.dist-info/licenses/LICENSE,sha256=auz4oGH1A-xZtoiR2zuXIk-Hii4v9aGgFVBqn7nfpms,1509
24
+ waveorder-2.2.1.dist-info/METADATA,sha256=bzVQdpmEMhw3v8-HYa-qbVOIIKPxWgk92KsJciUYGe4,9744
25
+ waveorder-2.2.1.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
26
+ waveorder-2.2.1.dist-info/top_level.txt,sha256=i3zReXiiMTnyPk93W7aEz_oEfsLnfR_Kzl7PW7kUslA,10
27
+ waveorder-2.2.1.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (70.3.0)
2
+ Generator: setuptools (78.1.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,147 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: waveorder
3
- Version: 2.2.0rc0
4
- Summary: Wave-optical simulations and deconvolution of optical properties
5
- Author-email: CZ Biohub SF <compmicro@czbiohub.org>
6
- Maintainer-email: Talon Chandler <talon.chandler@czbiohub.org>, Shalin Mehta <shalin.mehta@czbiohub.org>
7
- License: BSD 3-Clause License
8
-
9
- Copyright (c) 2019, Chan Zuckerberg Biohub
10
-
11
- Redistribution and use in source and binary forms, with or without
12
- modification, are permitted provided that the following conditions are met:
13
-
14
- 1. Redistributions of source code must retain the above copyright notice, this
15
- list of conditions and the following disclaimer.
16
-
17
- 2. Redistributions in binary form must reproduce the above copyright notice,
18
- this list of conditions and the following disclaimer in the documentation
19
- and/or other materials provided with the distribution.
20
-
21
- 3. Neither the name of the copyright holder nor the names of its
22
- contributors may be used to endorse or promote products derived from
23
- this software without specific prior written permission.
24
-
25
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
26
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
29
- FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30
- DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
31
- SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32
- CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
33
- OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
34
- OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35
-
36
- Project-URL: Homepage, https://github.com/mehta-lab/waveorder
37
- Project-URL: Repository, https://github.com/mehta-lab/waveorder
38
- Project-URL: Issues, https://github.com/mehta-lab/waveorder/issues
39
- Keywords: simulation,optics,phase,scattering,polarization,label-free,permittivity,reconstruction-algorithm,qlipp,mipolscope,permittivity-tensor-imaging
40
- Classifier: Development Status :: 4 - Beta
41
- Classifier: Intended Audience :: Science/Research
42
- Classifier: License :: OSI Approved :: BSD License
43
- Classifier: Programming Language :: Python :: 3
44
- Classifier: Programming Language :: Python :: 3.10
45
- Classifier: Programming Language :: Python :: 3.11
46
- Classifier: Programming Language :: Python :: 3.12
47
- Classifier: Topic :: Scientific/Engineering
48
- Classifier: Topic :: Scientific/Engineering :: Image Processing
49
- Classifier: Topic :: Scientific/Engineering :: Bio-Informatics
50
- Classifier: Operating System :: POSIX :: Linux
51
- Classifier: Operating System :: Microsoft :: Windows
52
- Classifier: Operating System :: MacOS
53
- Requires-Python: >=3.10
54
- Description-Content-Type: text/markdown
55
- License-File: LICENSE
56
- Requires-Dist: numpy <2,>=1.21
57
- Requires-Dist: matplotlib >=3.1.1
58
- Requires-Dist: scipy >=1.3.0
59
- Requires-Dist: pywavelets >=1.1.1
60
- Requires-Dist: ipywidgets >=7.5.1
61
- Requires-Dist: torch >=2.2.1
62
- Provides-Extra: dev
63
- Requires-Dist: pytest ; extra == 'dev'
64
- Requires-Dist: pytest-cov ; extra == 'dev'
65
-
66
- # waveorder
67
-
68
- ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/waveorder)
69
- [![Downloads](https://pepy.tech/badge/waveorder)](https://pepy.tech/project/waveorder)
70
- [![Python package index](https://img.shields.io/pypi/v/waveorder.svg)](https://pypi.org/project/waveorder)
71
- [![Development Status](https://img.shields.io/pypi/status/napari.svg)](https://en.wikipedia.org/wiki/Software_release_life_cycle#Alpha)
72
-
73
- This computational imaging library enables wave-optical simulation and reconstruction of optical properties that report microscopic architectural order.
74
-
75
- ## Computational label-free imaging
76
-
77
- This vectorial wave simulator and reconstructor enabled the development of a new label-free imaging method, __permittivity tensor imaging (PTI)__, that measures density and 3D orientation of biomolecules with diffraction-limited resolution. These measurements are reconstructed from polarization-resolved images acquired with a sequence of oblique illuminations.
78
-
79
- The acquisition, calibration, background correction, reconstruction, and applications of PTI are described in the following [preprint](https://doi.org/10.1101/2020.12.15.422951):
80
-
81
- ```bibtex
82
- L.-H. Yeh, I. E. Ivanov, B. B. Chhun, S.-M. Guo, E. Hashemi, J. R. Byrum, J. A. Pérez-Bermejo, H. Wang, Y. Yu, P. G. Kazansky, B. R. Conklin, M. H. Han, and S. B. Mehta, "uPTI: uniaxial permittivity tensor imaging of intrinsic density and anisotropy," bioRxiv 2020.12.15.422951 (2020).
83
- ```
84
-
85
- In addition to PTI, `waveorder` enables simulations and reconstructions of subsets of label-free measurements with subsets of the acquired data:
86
-
87
- 1. Reconstruction of 2D or 3D phase, projected retardance, and in-plane orientation from a polarization-diverse volumetric brightfield acquisition ([QLIPP](https://elifesciences.org/articles/55502))
88
-
89
- 2. Reconstruction of 2D or 3D phase from a volumetric brightfield acquisition ([2D](https://www.osapublishing.org/ao/abstract.cfm?uri=ao-54-28-8566)/[3D (PODT)](https://www.osapublishing.org/ao/abstract.cfm?uri=ao-57-1-a205) phase)
90
-
91
- 3. Reconstruction of 2D or 3D phase from an illumination-diverse volumetric acquisition ([2D](https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-23-9-11394&id=315599)/[3D](https://www.osapublishing.org/boe/fulltext.cfm?uri=boe-7-10-3940&id=349951) differential phase contrast)
92
-
93
- PTI provides volumetric reconstructions of mean permittivity ($\propto$ material density), differential permittivity ($\propto$ material anisotropy), 3D orientation, and optic sign. The following figure summarizes PTI acquisition and reconstruction with a small optical section of the mouse brain tissue:
94
-
95
- ![Data_flow](https://github.com/mehta-lab/waveorder/blob/main/readme.png?raw=true)
96
-
97
-
98
- The [examples](https://github.com/mehta-lab/waveorder/tree/main/examples) illustrate simulations and reconstruction for 2D QLIPP, 3D PODT, and 2D/3D PTI methods.
99
-
100
- If you are interested in deploying QLIPP or PODT for label-free imaging at scale, checkout our [napari plugin](https://www.napari-hub.org/plugins/recOrder-napari), [`recOrder-napari`](https://github.com/mehta-lab/recOrder).
101
-
102
- ## Correlative imaging
103
-
104
- In addition to label-free reconstruction algorithms, `waveorder` also implements widefield fluorescence and fluorescence polarization reconstruction algorithms for correlative label-free and fluorescence imaging.
105
-
106
- 1. Correlative measurements of biomolecular density and orientation from polarization-diverse widefield imaging ([multimodal Instant PolScope](https://opg.optica.org/boe/fulltext.cfm?uri=boe-13-5-3102&id=472350))
107
-
108
- We provide an [example notebook](https://github.com/mehta-lab/waveorder/blob/main/examples/documentation/fluorescence_deconvolution/fluorescence_deconv.ipynb) for widefield fluorescence deconvolution.
109
-
110
- ## Citation
111
-
112
- Please cite this repository, along with the relevant preprint or paper, if you use or adapt this code. The citation information can be found by clicking "Cite this repository" button in the About section in the right sidebar.
113
-
114
- ## Installation
115
-
116
- (Optional but recommended) install [anaconda](https://www.anaconda.com/products/distribution) and create a virtual environment:
117
-
118
- ```sh
119
- conda create -y -n waveorder python=3.11
120
- conda activate waveorder
121
- ```
122
-
123
- Install `waveorder` from PyPI:
124
-
125
- ```sh
126
- pip install waveorder
127
- ```
128
-
129
- Use `waveorder` in your scripts:
130
-
131
- ```sh
132
- python
133
- >>> import waveorder
134
- ```
135
-
136
- (Optional) Download the repository, install `jupyter`, and experiment with the example notebooks
137
-
138
- ```sh
139
- git clone https://github.com/mehta-lab/waveorder.git
140
- pip install jupyter
141
- jupyter notebook ./waveorder/examples/
142
- ```
143
-
144
- (M1 users) `pytorch` has [incomplete GPU support](https://github.com/pytorch/pytorch/issues/77764),
145
- so please use `export PYTORCH_ENABLE_MPS_FALLBACK=1`
146
- to allow some operators to fallback to CPU
147
- if you plan to use GPU acceleration for polarization reconstruction.
@@ -1,20 +0,0 @@
1
- waveorder/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
- waveorder/_version.py,sha256=y62tGqTh86kx1L4FG_Wu91vm4c-zkqBUqEkv0mTr0sY,414
3
- waveorder/background_estimator.py,sha256=gCIO6-232H0CGH4o6gnqW9KSYGOrXf5E9nD67WeF304,12399
4
- waveorder/correction.py,sha256=N0Ic6mqw3U7mqow4dKTOkNx2QYOLwedGNH7HiKV-M6s,3460
5
- waveorder/focus.py,sha256=4mg84Fe4V-oFplsuaU_VQU1_TEDoEfPggIAv6Is2dE4,6312
6
- waveorder/optics.py,sha256=-mHYRMzDUNAz8kwF8xAR8RFuAEkWZzczKv2wnU5NuVs,37640
7
- waveorder/stokes.py,sha256=Wk9ZimzICIZLh1CkB0kQSCSBLeugkDeydwXTPd-M-po,15186
8
- waveorder/util.py,sha256=3k810fpb7pIEcc4fii6gP4wTerxCtFYgG82SiDzUTtQ,69898
9
- waveorder/visual.py,sha256=SFzkQdMit3HyqTqrgzX4w5bRwz8QuwGumzVayi3DwDM,58171
10
- waveorder/waveorder_reconstructor.py,sha256=5-jlbK8gcJqHbFhiWt-TcETV5cdLHSAXq9O3JupPXD0,151942
11
- waveorder/waveorder_simulator.py,sha256=_HCmDZkACUGzgwnaI-q0PjsL1gRE55IQuaWw-wtAjCU,45856
12
- waveorder/models/inplane_oriented_thick_pol3d.py,sha256=Z7rfufrDeEkUYf2MlZsXyvKsZWHIJWujK357_z1BBg0,5809
13
- waveorder/models/isotropic_fluorescent_thick_3d.py,sha256=Pzi2kM1OGmwQIrI6b5h9OeIOGzHssG30Wv8zDi4n4PQ,5395
14
- waveorder/models/isotropic_thin_3d.py,sha256=E__ly_xF6Tw_bHLSHHPpd3p60t01LhIPiFrqfd5u1r4,8493
15
- waveorder/models/phase_thick_3d.py,sha256=itGav-JUDcs7YXxxtdtFK95CuaKR759o9ubL7ms8lBk,6590
16
- waveorder-2.2.0rc0.dist-info/LICENSE,sha256=auz4oGH1A-xZtoiR2zuXIk-Hii4v9aGgFVBqn7nfpms,1509
17
- waveorder-2.2.0rc0.dist-info/METADATA,sha256=KItkcQO-Bl3Gj-rutxx1V89YkVGYovr-QFo-OUPnAHI,8249
18
- waveorder-2.2.0rc0.dist-info/WHEEL,sha256=Z4pYXqR_rTB7OWNDYFOm1qRk0RX6GFP2o8LgvP453Hk,91
19
- waveorder-2.2.0rc0.dist-info/top_level.txt,sha256=i3zReXiiMTnyPk93W7aEz_oEfsLnfR_Kzl7PW7kUslA,10
20
- waveorder-2.2.0rc0.dist-info/RECORD,,