wavedl 1.6.0__py3-none-any.whl → 1.6.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: wavedl
3
- Version: 1.6.0
3
+ Version: 1.6.1
4
4
  Summary: A Scalable Deep Learning Framework for Wave-Based Inverse Problems
5
5
  Author: Ductho Le
6
6
  License: MIT
@@ -38,6 +38,7 @@ Requires-Dist: wandb>=0.15.0
38
38
  Requires-Dist: optuna>=3.0.0
39
39
  Requires-Dist: onnx>=1.14.0
40
40
  Requires-Dist: onnxruntime>=1.15.0
41
+ Requires-Dist: onnxscript>=0.1.0
41
42
  Requires-Dist: triton>=2.0.0; sys_platform == "linux"
42
43
  Provides-Extra: dev
43
44
  Requires-Dist: pytest>=7.0.0; extra == "dev"
@@ -118,7 +119,7 @@ Train on datasets larger than RAM:
118
119
 
119
120
  **🧠 Models? We've Got Options**
120
121
 
121
- 57 architectures, ready to go:
122
+ 69 architectures, ready to go:
122
123
  - CNNs, ResNets, ViTs, EfficientNets...
123
124
  - All adapted for regression
124
125
  - [Add your own](#adding-custom-models) in one line
@@ -359,7 +360,7 @@ WaveDL/
359
360
  │ ├── hpo.py # Hyperparameter optimization
360
361
  │ ├── hpc.py # HPC distributed training launcher
361
362
  │ │
362
- │ ├── models/ # Model Zoo (57 architectures)
363
+ │ ├── models/ # Model Zoo (69 architectures)
363
364
  │ │ ├── registry.py # Model factory (@register_model)
364
365
  │ │ ├── base.py # Abstract base class
365
366
  │ │ └── ... # See "Available Models" section
@@ -400,10 +401,11 @@ WaveDL/
400
401
  > ```
401
402
 
402
403
  <details>
403
- <summary><b>Available Models</b> — 57 architectures</summary>
404
+ <summary><b>Available Models</b> — 69 architectures</summary>
404
405
 
405
406
  | Model | Backbone Params | Dim |
406
407
  |-------|-----------------|-----|
408
+ | **── Classic CNNs ──** |||
407
409
  | **CNN** — Convolutional Neural Network |||
408
410
  | `cnn` | 1.6M | 1D/2D/3D |
409
411
  | **ResNet** — Residual Network |||
@@ -412,13 +414,14 @@ WaveDL/
412
414
  | `resnet50` | 23.5M | 1D/2D/3D |
413
415
  | `resnet18_pretrained` ⭐ | 11.2M | 2D |
414
416
  | `resnet50_pretrained` ⭐ | 23.5M | 2D |
415
- | **ResNet3D** — 3D Residual Network |||
416
- | `resnet3d_18` | 33.2M | 3D |
417
- | `mc3_18` — Mixed Convolution 3D | 11.5M | 3D |
418
- | **TCN** Temporal Convolutional Network |||
419
- | `tcn_small` | 0.9M | 1D |
420
- | `tcn` | 6.9M | 1D |
421
- | `tcn_large` | 10.0M | 1D |
417
+ | **DenseNet** — Densely Connected Network |||
418
+ | `densenet121` | 7.0M | 1D/2D/3D |
419
+ | `densenet169` | 12.5M | 1D/2D/3D |
420
+ | `densenet121_pretrained` | 7.0M | 2D |
421
+ | **── Efficient/Mobile CNNs ──** |||
422
+ | **MobileNetV3** Mobile Neural Network V3 |||
423
+ | `mobilenet_v3_small` | 0.9M | 2D |
424
+ | `mobilenet_v3_large` ⭐ | 3.0M | 2D |
422
425
  | **EfficientNet** — Efficient Neural Network |||
423
426
  | `efficientnet_b0` ⭐ | 4.0M | 2D |
424
427
  | `efficientnet_b1` ⭐ | 6.5M | 2D |
@@ -427,47 +430,41 @@ WaveDL/
427
430
  | `efficientnet_v2_s` ⭐ | 20.2M | 2D |
428
431
  | `efficientnet_v2_m` ⭐ | 52.9M | 2D |
429
432
  | `efficientnet_v2_l` ⭐ | 117.2M | 2D |
430
- | **MobileNetV3** — Mobile Neural Network V3 |||
431
- | `mobilenet_v3_small` ⭐ | 0.9M | 2D |
432
- | `mobilenet_v3_large` ⭐ | 3.0M | 2D |
433
433
  | **RegNet** — Regularized Network |||
434
434
  | `regnet_y_400mf` ⭐ | 3.9M | 2D |
435
435
  | `regnet_y_800mf` ⭐ | 5.7M | 2D |
436
436
  | `regnet_y_1_6gf` ⭐ | 10.3M | 2D |
437
437
  | `regnet_y_3_2gf` ⭐ | 17.9M | 2D |
438
438
  | `regnet_y_8gf` ⭐ | 37.4M | 2D |
439
- | **Swin** Shifted Window Transformer |||
440
- | `swin_t` ⭐ | 27.5M | 2D |
441
- | `swin_s` ⭐ | 48.8M | 2D |
442
- | `swin_b` ⭐ | 86.7M | 2D |
439
+ | **── Modern CNNs ──** |||
443
440
  | **ConvNeXt** — Convolutional Next |||
444
441
  | `convnext_tiny` | 27.8M | 1D/2D/3D |
445
442
  | `convnext_small` | 49.5M | 1D/2D/3D |
446
443
  | `convnext_base` | 87.6M | 1D/2D/3D |
447
444
  | `convnext_tiny_pretrained` ⭐ | 27.8M | 2D |
448
- | **DenseNet** — Densely Connected Network |||
449
- | `densenet121` | 7.0M | 1D/2D/3D |
450
- | `densenet169` | 12.5M | 1D/2D/3D |
451
- | `densenet121_pretrained` ⭐ | 7.0M | 2D |
452
- | **ViT** — Vision Transformer |||
453
- | `vit_tiny` | 5.4M | 1D/2D |
454
- | `vit_small` | 21.4M | 1D/2D |
455
- | `vit_base` | 85.3M | 1D/2D |
456
445
  | **ConvNeXt V2** — ConvNeXt with GRN |||
457
446
  | `convnext_v2_tiny` | 27.9M | 1D/2D/3D |
458
447
  | `convnext_v2_small` | 49.6M | 1D/2D/3D |
459
448
  | `convnext_v2_base` | 87.7M | 1D/2D/3D |
460
449
  | `convnext_v2_tiny_pretrained` ⭐ | 27.9M | 2D |
461
- | **Mamba** — State Space Model |||
462
- | `mamba_1d` | 3.4M | 1D |
463
- | **Vision Mamba (ViM)** 2D Mamba |||
464
- | `vim_tiny` | 6.6M | 2D |
465
- | `vim_small` | 51.1M | 2D |
466
- | `vim_base` | 201.4M | 2D |
450
+ | **UniRepLKNet** — Large-Kernel ConvNet |||
451
+ | `unireplknet_tiny` | 30.8M | 1D/2D/3D |
452
+ | `unireplknet_small` | 56.0M | 1D/2D/3D |
453
+ | `unireplknet_base` | 97.6M | 1D/2D/3D |
454
+ | **── Vision Transformers ──** |||
455
+ | **ViT** Vision Transformer |||
456
+ | `vit_tiny` | 5.4M | 1D/2D |
457
+ | `vit_small` | 21.4M | 1D/2D |
458
+ | `vit_base` | 85.3M | 1D/2D |
459
+ | **Swin** — Shifted Window Transformer |||
460
+ | `swin_t` ⭐ | 27.5M | 2D |
461
+ | `swin_s` ⭐ | 48.8M | 2D |
462
+ | `swin_b` ⭐ | 86.7M | 2D |
467
463
  | **MaxViT** — Multi-Axis ViT |||
468
464
  | `maxvit_tiny` ⭐ | 30.1M | 2D |
469
465
  | `maxvit_small` ⭐ | 67.6M | 2D |
470
466
  | `maxvit_base` ⭐ | 119.1M | 2D |
467
+ | **── Hybrid CNN-Transformer ──** |||
471
468
  | **FastViT** — Fast Hybrid CNN-ViT |||
472
469
  | `fastvit_t8` ⭐ | 4.0M | 2D |
473
470
  | `fastvit_t12` ⭐ | 6.8M | 2D |
@@ -478,6 +475,31 @@ WaveDL/
478
475
  | `caformer_s36` ⭐ | 39.2M | 2D |
479
476
  | `caformer_m36` ⭐ | 56.9M | 2D |
480
477
  | `poolformer_s12` ⭐ | 11.9M | 2D |
478
+ | **EfficientViT** — Memory-Efficient ViT |||
479
+ | `efficientvit_m0` ⭐ | 2.2M | 2D |
480
+ | `efficientvit_m1` ⭐ | 2.6M | 2D |
481
+ | `efficientvit_m2` ⭐ | 3.8M | 2D |
482
+ | `efficientvit_b0` ⭐ | 2.1M | 2D |
483
+ | `efficientvit_b1` ⭐ | 7.5M | 2D |
484
+ | `efficientvit_b2` ⭐ | 21.8M | 2D |
485
+ | `efficientvit_b3` ⭐ | 46.1M | 2D |
486
+ | `efficientvit_l1` ⭐ | 49.5M | 2D |
487
+ | `efficientvit_l2` ⭐ | 60.5M | 2D |
488
+ | **── State Space Models ──** |||
489
+ | **Mamba** — State Space Model |||
490
+ | `mamba_1d` | 3.4M | 1D |
491
+ | **Vision Mamba (ViM)** — 2D Mamba |||
492
+ | `vim_tiny` | 6.6M | 2D |
493
+ | `vim_small` | 51.1M | 2D |
494
+ | `vim_base` | 201.4M | 2D |
495
+ | **── Specialized Architectures ──** |||
496
+ | **TCN** — Temporal Convolutional Network |||
497
+ | `tcn_small` | 0.9M | 1D |
498
+ | `tcn` | 6.9M | 1D |
499
+ | `tcn_large` | 10.0M | 1D |
500
+ | **ResNet3D** — 3D Residual Network |||
501
+ | `resnet3d_18` | 33.2M | 3D |
502
+ | `mc3_18` — Mixed Convolution 3D | 11.5M | 3D |
481
503
  | **U-Net** — U-shaped Network |||
482
504
  | `unet_regression` | 31.0M | 1D/2D/3D |
483
505
 
@@ -497,34 +519,52 @@ os.environ['TORCH_HOME'] = '.torch_cache' # Match WaveDL's HPC cache location
497
519
  from torchvision import models as m
498
520
  from torchvision.models import video as v
499
521
 
500
- # === TorchVision Models ===
501
- weights = {
502
- 'resnet18': m.ResNet18_Weights, 'resnet50': m.ResNet50_Weights,
503
- 'efficientnet_b0': m.EfficientNet_B0_Weights, 'efficientnet_b1': m.EfficientNet_B1_Weights,
504
- 'efficientnet_b2': m.EfficientNet_B2_Weights, 'efficientnet_v2_s': m.EfficientNet_V2_S_Weights,
505
- 'efficientnet_v2_m': m.EfficientNet_V2_M_Weights, 'efficientnet_v2_l': m.EfficientNet_V2_L_Weights,
506
- 'mobilenet_v3_small': m.MobileNet_V3_Small_Weights, 'mobilenet_v3_large': m.MobileNet_V3_Large_Weights,
507
- 'regnet_y_400mf': m.RegNet_Y_400MF_Weights, 'regnet_y_800mf': m.RegNet_Y_800MF_Weights,
508
- 'regnet_y_1_6gf': m.RegNet_Y_1_6GF_Weights, 'regnet_y_3_2gf': m.RegNet_Y_3_2GF_Weights,
509
- 'regnet_y_8gf': m.RegNet_Y_8GF_Weights, 'swin_t': m.Swin_T_Weights, 'swin_s': m.Swin_S_Weights,
510
- 'swin_b': m.Swin_B_Weights, 'convnext_tiny': m.ConvNeXt_Tiny_Weights, 'densenet121': m.DenseNet121_Weights,
511
- }
512
- for name, w in weights.items():
513
- getattr(m, name)(weights=w.DEFAULT); print(f'✓ {name}')
522
+ # === TorchVision Models (use IMAGENET1K_V1 to match WaveDL) ===
523
+ models = [
524
+ ('resnet18', m.ResNet18_Weights.IMAGENET1K_V1),
525
+ ('resnet50', m.ResNet50_Weights.IMAGENET1K_V1),
526
+ ('efficientnet_b0', m.EfficientNet_B0_Weights.IMAGENET1K_V1),
527
+ ('efficientnet_b1', m.EfficientNet_B1_Weights.IMAGENET1K_V1),
528
+ ('efficientnet_b2', m.EfficientNet_B2_Weights.IMAGENET1K_V1),
529
+ ('efficientnet_v2_s', m.EfficientNet_V2_S_Weights.IMAGENET1K_V1),
530
+ ('efficientnet_v2_m', m.EfficientNet_V2_M_Weights.IMAGENET1K_V1),
531
+ ('efficientnet_v2_l', m.EfficientNet_V2_L_Weights.IMAGENET1K_V1),
532
+ ('mobilenet_v3_small', m.MobileNet_V3_Small_Weights.IMAGENET1K_V1),
533
+ ('mobilenet_v3_large', m.MobileNet_V3_Large_Weights.IMAGENET1K_V1),
534
+ ('regnet_y_400mf', m.RegNet_Y_400MF_Weights.IMAGENET1K_V1),
535
+ ('regnet_y_800mf', m.RegNet_Y_800MF_Weights.IMAGENET1K_V1),
536
+ ('regnet_y_1_6gf', m.RegNet_Y_1_6GF_Weights.IMAGENET1K_V1),
537
+ ('regnet_y_3_2gf', m.RegNet_Y_3_2GF_Weights.IMAGENET1K_V1),
538
+ ('regnet_y_8gf', m.RegNet_Y_8GF_Weights.IMAGENET1K_V1),
539
+ ('swin_t', m.Swin_T_Weights.IMAGENET1K_V1),
540
+ ('swin_s', m.Swin_S_Weights.IMAGENET1K_V1),
541
+ ('swin_b', m.Swin_B_Weights.IMAGENET1K_V1),
542
+ ('convnext_tiny', m.ConvNeXt_Tiny_Weights.IMAGENET1K_V1),
543
+ ('densenet121', m.DenseNet121_Weights.IMAGENET1K_V1),
544
+ ]
545
+ for name, w in models:
546
+ getattr(m, name)(weights=w); print(f'✓ {name}')
514
547
 
515
548
  # 3D video models
516
- v.r3d_18(weights=v.R3D_18_Weights.DEFAULT); print('✓ r3d_18')
517
- v.mc3_18(weights=v.MC3_18_Weights.DEFAULT); print('✓ mc3_18')
549
+ v.r3d_18(weights=v.R3D_18_Weights.KINETICS400_V1); print('✓ r3d_18')
550
+ v.mc3_18(weights=v.MC3_18_Weights.KINETICS400_V1); print('✓ mc3_18')
518
551
 
519
552
  # === Timm Models (MaxViT, FastViT, CAFormer, ConvNeXt V2) ===
520
553
  import timm
521
554
 
522
555
  timm_models = [
523
- 'maxvit_tiny_tf_224.in1k', 'maxvit_small_tf_224.in1k', 'maxvit_base_tf_224.in1k',
524
- 'fastvit_t8.apple_in1k', 'fastvit_t12.apple_in1k', 'fastvit_s12.apple_in1k', 'fastvit_sa12.apple_in1k',
525
- 'caformer_s18.sail_in1k', 'caformer_s36.sail_in22k_ft_in1k', 'caformer_m36.sail_in22k_ft_in1k',
526
- 'poolformer_s12.sail_in1k',
527
- 'convnextv2_tiny.fcmae_ft_in1k',
556
+ # MaxViT (no suffix - timm resolves to default)
557
+ 'maxvit_tiny_tf_224', 'maxvit_small_tf_224', 'maxvit_base_tf_224',
558
+ # FastViT (no suffix)
559
+ 'fastvit_t8', 'fastvit_t12', 'fastvit_s12', 'fastvit_sa12',
560
+ # CAFormer/PoolFormer (no suffix)
561
+ 'caformer_s18', 'caformer_s36', 'caformer_m36', 'poolformer_s12',
562
+ # ConvNeXt V2 (no suffix)
563
+ 'convnextv2_tiny',
564
+ # EfficientViT (no suffix)
565
+ 'efficientvit_m0', 'efficientvit_m1', 'efficientvit_m2',
566
+ 'efficientvit_b0', 'efficientvit_b1', 'efficientvit_b2', 'efficientvit_b3',
567
+ 'efficientvit_l1', 'efficientvit_l2',
528
568
  ]
529
569
  for name in timm_models:
530
570
  timm.create_model(name, pretrained=True); print(f'✓ {name}')
@@ -0,0 +1,46 @@
1
+ wavedl/__init__.py,sha256=tz3qpBFZ4wTNv32Nz7aKGmHCXrTFTxAEJQeJO8La38Q,1177
2
+ wavedl/hpc.py,sha256=6rV38nozzMt0-jKZbVJNwvQZXK0wUsIZmr9lgWN_XUw,9212
3
+ wavedl/hpo.py,sha256=6eHYV9Nzbp2YbTY52NRnW7pwzlI_DNWskN-zBR-wj24,14654
4
+ wavedl/test.py,sha256=1UUy9phCqrr3h_lN6mGJ7Sj73skDg4KyLk2Yuq9DiKU,38797
5
+ wavedl/train.py,sha256=PzJGARHounr6R8WUOrUwwd2hRcLsGkxes08jYKkBRIo,58003
6
+ wavedl/models/__init__.py,sha256=8OiT2seq1qBiUzKaSkmh_VOLJlLTT9Cn-mjhMHKGFpI,5203
7
+ wavedl/models/_pretrained_utils.py,sha256=VPdU1DwJB93ZBf_GFIgb8-6BbAt18Phs4yorwlhLw70,12404
8
+ wavedl/models/_template.py,sha256=J_D8taSPmV8lBaucN_vU-WiG98iFr7CJrZVNNX_Tdts,4600
9
+ wavedl/models/base.py,sha256=bDoHYFli-aR8amcFYXbF98QYaKSCEwZWpvOhN21ODro,9075
10
+ wavedl/models/caformer.py,sha256=ufPM-HzQ-qUZcXgnOulurY6jBUlMUzokC01whtPeVMg,7922
11
+ wavedl/models/cnn.py,sha256=1-sNBDZHc5DySbduf5tkV1Ha25R6irksjVqfOiFbI3M,7465
12
+ wavedl/models/convnext.py,sha256=fdXieXUuHyULjicw9Nno2SK2Tm5bDabUtdiGuEpuAF4,15711
13
+ wavedl/models/convnext_v2.py,sha256=1ELKBPWIlUm3uybLX1KN5cgwjBPEUzZDoXL8qUzF9YY,14920
14
+ wavedl/models/densenet.py,sha256=V_caGd0wsG_Q3Q38I4MEgYmU0v4j8mDyvv7Rn3Bk7Ac,12667
15
+ wavedl/models/efficientnet.py,sha256=HWfhqSX57lC5Xug5TrQ3r-uFqkksoIKjmQ5Zr5njkEA,8264
16
+ wavedl/models/efficientnetv2.py,sha256=hVSnVId8T1rjqaKlckLqWFwvo2J-qASX7o9lMbXbP-s,10947
17
+ wavedl/models/efficientvit.py,sha256=KqFoZq9YHBMnTue6aMdPKgBOMczeBPryY_F6ip0hoEI,11630
18
+ wavedl/models/fastvit.py,sha256=S0SF0iC-9ZJrP-9YUTLPhMJMV-W9r2--V3hVAmSSVKI,7083
19
+ wavedl/models/mamba.py,sha256=ENmOQjtoX8btS1tDvOYEG_M3GFn1P2vWsDWcsQPSPJ0,17189
20
+ wavedl/models/maxvit.py,sha256=I6TFGrLRcyMU-nU7u5VhOaXZWWdwmNJwHsMqbJh_g_o,7548
21
+ wavedl/models/mobilenetv3.py,sha256=LZxCg599kGP6-XI_l3PpT8jzh4oTAdWH3Y7GH097o28,10242
22
+ wavedl/models/registry.py,sha256=InYAXX2xbRvsFDFnYUPCptJh0F9lHlFPN77A9kqHRT0,2980
23
+ wavedl/models/regnet.py,sha256=6Yjo2wZzdjK8VpOMagbCrHqmsfRmGkuiURmc-MesYvA,13777
24
+ wavedl/models/resnet.py,sha256=3i4zfE15qF4cd0qbTKX-Wdy2Kd0f4mLcdd316FAcVCo,16720
25
+ wavedl/models/resnet3d.py,sha256=edxLW4P4OBpZ5z9kMnWYV6qJ1GTkiqpwnW3-IqrPyqE,8510
26
+ wavedl/models/swin.py,sha256=39Gwn5hNEw3-tndc8qFFzV-VZ7pJMMKey2oZONAZ8MU,14980
27
+ wavedl/models/tcn.py,sha256=XzojpuMFG4lu_0oQHbQnkLAb7AnW-D7_6KoBlQDPLnQ,12367
28
+ wavedl/models/unet.py,sha256=oi7eBONSe0ALpJKsYda3jRGwu-LuSiFgNdURebnGGt0,7712
29
+ wavedl/models/unireplknet.py,sha256=jCy22m6mkApkLf3EzimMIqXy4xFs5WPUkaoz_KVWpqc,15205
30
+ wavedl/models/vit.py,sha256=5DXshtBdN2jYlH8MxWGTlIxP5lgbmfsdLSNchOvTaYk,14911
31
+ wavedl/utils/__init__.py,sha256=s5R9bRmJ8GNcJrD3OSAOXzwZJIXZbdYrAkZnus11sVQ,3300
32
+ wavedl/utils/config.py,sha256=MXkaVc1_zo8sDro8mjtK1MV65t2z8b1Z6fviwSorNiY,10534
33
+ wavedl/utils/constraints.py,sha256=V9Gyi8-uIMbLUWb2cOaHZD0SliWLxVrHZHFyo4HWK7g,18031
34
+ wavedl/utils/cross_validation.py,sha256=HfInyZ8gUROc_AyihYKzzUE0vnoPt_mFvAI2OPK4P54,17945
35
+ wavedl/utils/data.py,sha256=5ph2Pi8PKvuaSoJaXbFIL9WsX8pTN0A6P8FdmxvXdv4,63469
36
+ wavedl/utils/distributed.py,sha256=7wQ3mRjkp_xjPSxDWMnBf5dSkAGUaTzntxbz0BhC5v0,4145
37
+ wavedl/utils/losses.py,sha256=KWpU5S5noFzp3bLbcH9RNpkFPajy6fyTIh5cNjI-BYA,7038
38
+ wavedl/utils/metrics.py,sha256=YoqiXWOsUB9Y4_alj8CmHcTgnV4MFcH5PH4XlIC13HY,40304
39
+ wavedl/utils/optimizers.py,sha256=ZoETDSOK1fWUT2dx69PyYebeM8Vcqf9zOIKUERWk5HY,6107
40
+ wavedl/utils/schedulers.py,sha256=K6YCiyiMM9rb0cCRXTp89noXeXcAyUEiePr27O5Cozs,7408
41
+ wavedl-1.6.1.dist-info/LICENSE,sha256=cEUCvcvH-9BT9Y-CNGY__PwWONCKu9zsoIqWA-NeHJ4,1066
42
+ wavedl-1.6.1.dist-info/METADATA,sha256=eS4uG6dzEVs25zYmiZZnGeHz8lUHIVKL9TpyCJt7kh8,48232
43
+ wavedl-1.6.1.dist-info/WHEEL,sha256=beeZ86-EfXScwlR_HKu4SllMC9wUEj_8Z_4FJ3egI2w,91
44
+ wavedl-1.6.1.dist-info/entry_points.txt,sha256=f1RNDkXFZwBzrBzTMFocJ6xhfTvTmaEDTi5YyDEUaF8,140
45
+ wavedl-1.6.1.dist-info/top_level.txt,sha256=ccneUt3D5Qzbh3bsBSSrq9bqrhGiogcWKY24ZC4Q6Xw,7
46
+ wavedl-1.6.1.dist-info/RECORD,,
@@ -1,44 +0,0 @@
1
- wavedl/__init__.py,sha256=aVEVBCcciyAZkpkVZjaY2BrgP5Pbx96x38_RRvv4H2Q,1177
2
- wavedl/hpc.py,sha256=6rV38nozzMt0-jKZbVJNwvQZXK0wUsIZmr9lgWN_XUw,9212
3
- wavedl/hpo.py,sha256=CZF0MZwTGMOrPGDveUXZFbGHwLHj1FcJTCBKVVEtLWg,15105
4
- wavedl/test.py,sha256=1UUy9phCqrr3h_lN6mGJ7Sj73skDg4KyLk2Yuq9DiKU,38797
5
- wavedl/train.py,sha256=xfA5fuug0bk-20o2MHpAXoWpGFmciSpWsE9C5RERpf8,59433
6
- wavedl/models/__init__.py,sha256=uBoH7JRZIYF2TxiZbdTw8x_I9fz_ZRaSnQPRG7HDyug,4462
7
- wavedl/models/_template.py,sha256=J_D8taSPmV8lBaucN_vU-WiG98iFr7CJrZVNNX_Tdts,4600
8
- wavedl/models/_timm_utils.py,sha256=yb_6ZiklFmNG3ETw3kw8BzGfo6DCdgizb_B7duLQEFs,8051
9
- wavedl/models/base.py,sha256=T9iDF9IQM2MYucG_ggQd31rieUkB2fob-nkHyNIl2ak,7337
10
- wavedl/models/caformer.py,sha256=H8T_UbO1gq0PZFMgWYaWq5qg_5sFf42coQ829ab7n3o,7916
11
- wavedl/models/cnn.py,sha256=rn2Xmup0w_ll6wuAnYclSeIVazoSUrUGPY-9XnhA1gE,8341
12
- wavedl/models/convnext.py,sha256=R72w6Vep-SIvzIYlAdQz38Gk8Zmg4wU1WyQ_ZFNdOk0,16116
13
- wavedl/models/convnext_v2.py,sha256=qj8SewFxOJ-JZiUJjzBDGmSw1wxEX7XnMBwf_yckhvI,15434
14
- wavedl/models/densenet.py,sha256=oVNKJPzoET43KJxJBhDnLkbJOjFBDWe_f_TqpgBetlY,13050
15
- wavedl/models/efficientnet.py,sha256=HWfhqSX57lC5Xug5TrQ3r-uFqkksoIKjmQ5Zr5njkEA,8264
16
- wavedl/models/efficientnetv2.py,sha256=mSJaHJwtQbtfsOFEuOCoQwUY2vh4CXgISqnobbABD_U,11262
17
- wavedl/models/fastvit.py,sha256=PrrNEN_q5uFHRcbY4LrzM2MwU3Y_C1cOqdv_oErRlm8,8539
18
- wavedl/models/mamba.py,sha256=ZavdpOLYZOIuCgyy2tFPCk0jiAtW7_mRKu8O9kqH3nY,15819
19
- wavedl/models/maxvit.py,sha256=yHPbFyEppEweSg4TwMbcrZQmJYHrpKtciTslfa_KhwY,7459
20
- wavedl/models/mobilenetv3.py,sha256=nj-OYXSfxLp_HkoMF2qzvaa8wwhmpNslWlpyknN-VKk,10537
21
- wavedl/models/registry.py,sha256=InYAXX2xbRvsFDFnYUPCptJh0F9lHlFPN77A9kqHRT0,2980
22
- wavedl/models/regnet.py,sha256=kZz9IVxPW_q0ZIFsMbD7H2DuW60h4pfdZmOTypvAkbg,14183
23
- wavedl/models/resnet.py,sha256=W27hx_g8_Jt6kmzRILZ4uYuhL4_c0Jro_yOLJ2ijm6g,18082
24
- wavedl/models/resnet3d.py,sha256=I2_4k2kEXfgSxpkocD2J0cLN2RRoPezrDzDyd_o5bDs,8768
25
- wavedl/models/swin.py,sha256=G_C7xQM2RIuEzrOrD2m_4VINUhmJNsntcu1WnKwHK68,15423
26
- wavedl/models/tcn.py,sha256=VZOzTnGbDyXZeULPU9VnGcN-4WcRbgAff7fKbGUVqrA,13214
27
- wavedl/models/unet.py,sha256=L5qPmSKRrybwSldXIuUCPdpY1KSkokbWsQIl1ZHABhg,7799
28
- wavedl/models/vit.py,sha256=nE2IWtSeMVxyKJreI7jyfS-ZqNG5g2AB7KBHKjLHKyc,14878
29
- wavedl/utils/__init__.py,sha256=s5R9bRmJ8GNcJrD3OSAOXzwZJIXZbdYrAkZnus11sVQ,3300
30
- wavedl/utils/config.py,sha256=AsGwb3XtxmbTLb59BLl5AA4wzMNgVTpl7urOJ6IGqfM,10901
31
- wavedl/utils/constraints.py,sha256=V9Gyi8-uIMbLUWb2cOaHZD0SliWLxVrHZHFyo4HWK7g,18031
32
- wavedl/utils/cross_validation.py,sha256=gwXSFTx5oxWndPjWLJAJzB6nnq2f1t9f86SbjbF-jNI,18475
33
- wavedl/utils/data.py,sha256=5ph2Pi8PKvuaSoJaXbFIL9WsX8pTN0A6P8FdmxvXdv4,63469
34
- wavedl/utils/distributed.py,sha256=7wQ3mRjkp_xjPSxDWMnBf5dSkAGUaTzntxbz0BhC5v0,4145
35
- wavedl/utils/losses.py,sha256=5762M-TBC_hz6uyj1NPbU1vZeFOJQq7fR3-j7OygJRo,7254
36
- wavedl/utils/metrics.py,sha256=YoqiXWOsUB9Y4_alj8CmHcTgnV4MFcH5PH4XlIC13HY,40304
37
- wavedl/utils/optimizers.py,sha256=PyIkJ_hRhFi_Fio81Gy5YQNhcME0JUUEl8OTSyu-0RA,6323
38
- wavedl/utils/schedulers.py,sha256=e6Sf0yj8VOqkdwkUHLMyUfGfHKTX4NMr-zfgxWqCTYI,7659
39
- wavedl-1.6.0.dist-info/LICENSE,sha256=cEUCvcvH-9BT9Y-CNGY__PwWONCKu9zsoIqWA-NeHJ4,1066
40
- wavedl-1.6.0.dist-info/METADATA,sha256=rYu2eVqVaFndhEngDzM0yr-U1MAlcH2zBjELaMY9xmU,46707
41
- wavedl-1.6.0.dist-info/WHEEL,sha256=beeZ86-EfXScwlR_HKu4SllMC9wUEj_8Z_4FJ3egI2w,91
42
- wavedl-1.6.0.dist-info/entry_points.txt,sha256=f1RNDkXFZwBzrBzTMFocJ6xhfTvTmaEDTi5YyDEUaF8,140
43
- wavedl-1.6.0.dist-info/top_level.txt,sha256=ccneUt3D5Qzbh3bsBSSrq9bqrhGiogcWKY24ZC4Q6Xw,7
44
- wavedl-1.6.0.dist-info/RECORD,,
File without changes