wavedl 1.5.6__py3-none-any.whl → 1.6.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- wavedl/__init__.py +1 -1
- wavedl/models/__init__.py +52 -4
- wavedl/models/_timm_utils.py +238 -0
- wavedl/models/caformer.py +270 -0
- wavedl/models/convnext.py +108 -33
- wavedl/models/convnext_v2.py +504 -0
- wavedl/models/densenet.py +5 -5
- wavedl/models/efficientnet.py +30 -13
- wavedl/models/efficientnetv2.py +32 -9
- wavedl/models/fastvit.py +285 -0
- wavedl/models/mamba.py +535 -0
- wavedl/models/maxvit.py +251 -0
- wavedl/models/mobilenetv3.py +35 -12
- wavedl/models/regnet.py +39 -16
- wavedl/models/resnet.py +5 -5
- wavedl/models/resnet3d.py +2 -2
- wavedl/models/swin.py +41 -9
- wavedl/models/tcn.py +25 -5
- wavedl/models/unet.py +1 -1
- wavedl/models/vit.py +6 -6
- wavedl/test.py +7 -3
- wavedl/train.py +57 -23
- wavedl/utils/constraints.py +11 -5
- wavedl/utils/data.py +120 -18
- wavedl/utils/metrics.py +287 -326
- {wavedl-1.5.6.dist-info → wavedl-1.6.0.dist-info}/METADATA +104 -67
- wavedl-1.6.0.dist-info/RECORD +44 -0
- wavedl-1.5.6.dist-info/RECORD +0 -38
- {wavedl-1.5.6.dist-info → wavedl-1.6.0.dist-info}/LICENSE +0 -0
- {wavedl-1.5.6.dist-info → wavedl-1.6.0.dist-info}/WHEEL +0 -0
- {wavedl-1.5.6.dist-info → wavedl-1.6.0.dist-info}/entry_points.txt +0 -0
- {wavedl-1.5.6.dist-info → wavedl-1.6.0.dist-info}/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.2
|
|
2
2
|
Name: wavedl
|
|
3
|
-
Version: 1.
|
|
3
|
+
Version: 1.6.0
|
|
4
4
|
Summary: A Scalable Deep Learning Framework for Wave-Based Inverse Problems
|
|
5
5
|
Author: Ductho Le
|
|
6
6
|
License: MIT
|
|
@@ -23,6 +23,7 @@ Description-Content-Type: text/markdown
|
|
|
23
23
|
License-File: LICENSE
|
|
24
24
|
Requires-Dist: torch>=2.0.0
|
|
25
25
|
Requires-Dist: torchvision>=0.15.0
|
|
26
|
+
Requires-Dist: timm>=0.9.0
|
|
26
27
|
Requires-Dist: accelerate>=0.20.0
|
|
27
28
|
Requires-Dist: numpy>=1.24.0
|
|
28
29
|
Requires-Dist: scipy>=1.10.0
|
|
@@ -117,7 +118,7 @@ Train on datasets larger than RAM:
|
|
|
117
118
|
|
|
118
119
|
**🧠 Models? We've Got Options**
|
|
119
120
|
|
|
120
|
-
|
|
121
|
+
57 architectures, ready to go:
|
|
121
122
|
- CNNs, ResNets, ViTs, EfficientNets...
|
|
122
123
|
- All adapted for regression
|
|
123
124
|
- [Add your own](#adding-custom-models) in one line
|
|
@@ -202,7 +203,7 @@ Deploy models anywhere:
|
|
|
202
203
|
#### From PyPI (recommended for all users)
|
|
203
204
|
|
|
204
205
|
```bash
|
|
205
|
-
pip install wavedl
|
|
206
|
+
pip install --upgrade wavedl
|
|
206
207
|
```
|
|
207
208
|
|
|
208
209
|
This installs everything you need: training, inference, HPO, ONNX export.
|
|
@@ -358,22 +359,10 @@ WaveDL/
|
|
|
358
359
|
│ ├── hpo.py # Hyperparameter optimization
|
|
359
360
|
│ ├── hpc.py # HPC distributed training launcher
|
|
360
361
|
│ │
|
|
361
|
-
│ ├── models/ # Model
|
|
362
|
+
│ ├── models/ # Model Zoo (57 architectures)
|
|
362
363
|
│ │ ├── registry.py # Model factory (@register_model)
|
|
363
364
|
│ │ ├── base.py # Abstract base class
|
|
364
|
-
│ │
|
|
365
|
-
│ │ ├── resnet.py # ResNet-18/34/50 (1D/2D/3D)
|
|
366
|
-
│ │ ├── resnet3d.py # ResNet3D-18, MC3-18 (3D only)
|
|
367
|
-
│ │ ├── tcn.py # TCN (1D only)
|
|
368
|
-
│ │ ├── efficientnet.py # EfficientNet-B0/B1/B2 (2D)
|
|
369
|
-
│ │ ├── efficientnetv2.py # EfficientNetV2-S/M/L (2D)
|
|
370
|
-
│ │ ├── mobilenetv3.py # MobileNetV3-Small/Large (2D)
|
|
371
|
-
│ │ ├── regnet.py # RegNetY variants (2D)
|
|
372
|
-
│ │ ├── swin.py # Swin Transformer (2D)
|
|
373
|
-
│ │ ├── vit.py # Vision Transformer (1D/2D)
|
|
374
|
-
│ │ ├── convnext.py # ConvNeXt (1D/2D/3D)
|
|
375
|
-
│ │ ├── densenet.py # DenseNet-121/169 (1D/2D/3D)
|
|
376
|
-
│ │ └── unet.py # U-Net Regression
|
|
365
|
+
│ │ └── ... # See "Available Models" section
|
|
377
366
|
│ │
|
|
378
367
|
│ └── utils/ # Utilities
|
|
379
368
|
│ ├── data.py # Memory-mapped data pipeline
|
|
@@ -388,7 +377,7 @@ WaveDL/
|
|
|
388
377
|
├── configs/ # YAML config templates
|
|
389
378
|
├── examples/ # Ready-to-run examples
|
|
390
379
|
├── notebooks/ # Jupyter notebooks
|
|
391
|
-
├── unit_tests/ # Pytest test suite
|
|
380
|
+
├── unit_tests/ # Pytest test suite
|
|
392
381
|
│
|
|
393
382
|
├── pyproject.toml # Package config, dependencies
|
|
394
383
|
├── CHANGELOG.md # Version history
|
|
@@ -411,71 +400,96 @@ WaveDL/
|
|
|
411
400
|
> ```
|
|
412
401
|
|
|
413
402
|
<details>
|
|
414
|
-
<summary><b>Available Models</b> —
|
|
403
|
+
<summary><b>Available Models</b> — 57 architectures</summary>
|
|
415
404
|
|
|
416
|
-
| Model | Params | Dim |
|
|
417
|
-
|
|
405
|
+
| Model | Backbone Params | Dim |
|
|
406
|
+
|-------|-----------------|-----|
|
|
418
407
|
| **CNN** — Convolutional Neural Network |||
|
|
419
|
-
| `cnn` | 1.
|
|
408
|
+
| `cnn` | 1.6M | 1D/2D/3D |
|
|
420
409
|
| **ResNet** — Residual Network |||
|
|
421
|
-
| `resnet18` | 11.
|
|
422
|
-
| `resnet34` | 21.
|
|
423
|
-
| `resnet50` |
|
|
424
|
-
| `resnet18_pretrained` ⭐ | 11.
|
|
425
|
-
| `resnet50_pretrained` ⭐ |
|
|
410
|
+
| `resnet18` | 11.2M | 1D/2D/3D |
|
|
411
|
+
| `resnet34` | 21.3M | 1D/2D/3D |
|
|
412
|
+
| `resnet50` | 23.5M | 1D/2D/3D |
|
|
413
|
+
| `resnet18_pretrained` ⭐ | 11.2M | 2D |
|
|
414
|
+
| `resnet50_pretrained` ⭐ | 23.5M | 2D |
|
|
426
415
|
| **ResNet3D** — 3D Residual Network |||
|
|
427
|
-
| `resnet3d_18` | 33.
|
|
428
|
-
| `mc3_18` — Mixed Convolution 3D | 11.
|
|
416
|
+
| `resnet3d_18` | 33.2M | 3D |
|
|
417
|
+
| `mc3_18` — Mixed Convolution 3D | 11.5M | 3D |
|
|
429
418
|
| **TCN** — Temporal Convolutional Network |||
|
|
430
|
-
| `tcn_small` |
|
|
431
|
-
| `tcn` |
|
|
432
|
-
| `tcn_large` | 10.
|
|
419
|
+
| `tcn_small` | 0.9M | 1D |
|
|
420
|
+
| `tcn` | 6.9M | 1D |
|
|
421
|
+
| `tcn_large` | 10.0M | 1D |
|
|
433
422
|
| **EfficientNet** — Efficient Neural Network |||
|
|
434
|
-
| `efficientnet_b0` ⭐ | 4.
|
|
435
|
-
| `efficientnet_b1` ⭐ |
|
|
436
|
-
| `efficientnet_b2` ⭐ |
|
|
423
|
+
| `efficientnet_b0` ⭐ | 4.0M | 2D |
|
|
424
|
+
| `efficientnet_b1` ⭐ | 6.5M | 2D |
|
|
425
|
+
| `efficientnet_b2` ⭐ | 7.7M | 2D |
|
|
437
426
|
| **EfficientNetV2** — Efficient Neural Network V2 |||
|
|
438
|
-
| `efficientnet_v2_s` ⭐ |
|
|
439
|
-
| `efficientnet_v2_m` ⭐ |
|
|
440
|
-
| `efficientnet_v2_l` ⭐ |
|
|
427
|
+
| `efficientnet_v2_s` ⭐ | 20.2M | 2D |
|
|
428
|
+
| `efficientnet_v2_m` ⭐ | 52.9M | 2D |
|
|
429
|
+
| `efficientnet_v2_l` ⭐ | 117.2M | 2D |
|
|
441
430
|
| **MobileNetV3** — Mobile Neural Network V3 |||
|
|
442
|
-
| `mobilenet_v3_small` ⭐ |
|
|
443
|
-
| `mobilenet_v3_large` ⭐ | 3.
|
|
431
|
+
| `mobilenet_v3_small` ⭐ | 0.9M | 2D |
|
|
432
|
+
| `mobilenet_v3_large` ⭐ | 3.0M | 2D |
|
|
444
433
|
| **RegNet** — Regularized Network |||
|
|
445
|
-
| `regnet_y_400mf` ⭐ |
|
|
446
|
-
| `regnet_y_800mf` ⭐ | 5.
|
|
447
|
-
| `regnet_y_1_6gf` ⭐ | 10.
|
|
448
|
-
| `regnet_y_3_2gf` ⭐ |
|
|
449
|
-
| `regnet_y_8gf` ⭐ | 37.
|
|
434
|
+
| `regnet_y_400mf` ⭐ | 3.9M | 2D |
|
|
435
|
+
| `regnet_y_800mf` ⭐ | 5.7M | 2D |
|
|
436
|
+
| `regnet_y_1_6gf` ⭐ | 10.3M | 2D |
|
|
437
|
+
| `regnet_y_3_2gf` ⭐ | 17.9M | 2D |
|
|
438
|
+
| `regnet_y_8gf` ⭐ | 37.4M | 2D |
|
|
450
439
|
| **Swin** — Shifted Window Transformer |||
|
|
451
|
-
| `swin_t` ⭐ |
|
|
452
|
-
| `swin_s` ⭐ |
|
|
453
|
-
| `swin_b` ⭐ |
|
|
440
|
+
| `swin_t` ⭐ | 27.5M | 2D |
|
|
441
|
+
| `swin_s` ⭐ | 48.8M | 2D |
|
|
442
|
+
| `swin_b` ⭐ | 86.7M | 2D |
|
|
454
443
|
| **ConvNeXt** — Convolutional Next |||
|
|
455
|
-
| `convnext_tiny` |
|
|
456
|
-
| `convnext_small` | 49.
|
|
457
|
-
| `convnext_base` |
|
|
458
|
-
| `convnext_tiny_pretrained` ⭐ |
|
|
444
|
+
| `convnext_tiny` | 27.8M | 1D/2D/3D |
|
|
445
|
+
| `convnext_small` | 49.5M | 1D/2D/3D |
|
|
446
|
+
| `convnext_base` | 87.6M | 1D/2D/3D |
|
|
447
|
+
| `convnext_tiny_pretrained` ⭐ | 27.8M | 2D |
|
|
459
448
|
| **DenseNet** — Densely Connected Network |||
|
|
460
|
-
| `densenet121` | 7.
|
|
461
|
-
| `densenet169` |
|
|
462
|
-
| `densenet121_pretrained` ⭐ | 7.
|
|
449
|
+
| `densenet121` | 7.0M | 1D/2D/3D |
|
|
450
|
+
| `densenet169` | 12.5M | 1D/2D/3D |
|
|
451
|
+
| `densenet121_pretrained` ⭐ | 7.0M | 2D |
|
|
463
452
|
| **ViT** — Vision Transformer |||
|
|
464
|
-
| `vit_tiny` | 5.
|
|
465
|
-
| `vit_small` | 21.
|
|
466
|
-
| `vit_base` | 85.
|
|
453
|
+
| `vit_tiny` | 5.4M | 1D/2D |
|
|
454
|
+
| `vit_small` | 21.4M | 1D/2D |
|
|
455
|
+
| `vit_base` | 85.3M | 1D/2D |
|
|
456
|
+
| **ConvNeXt V2** — ConvNeXt with GRN |||
|
|
457
|
+
| `convnext_v2_tiny` | 27.9M | 1D/2D/3D |
|
|
458
|
+
| `convnext_v2_small` | 49.6M | 1D/2D/3D |
|
|
459
|
+
| `convnext_v2_base` | 87.7M | 1D/2D/3D |
|
|
460
|
+
| `convnext_v2_tiny_pretrained` ⭐ | 27.9M | 2D |
|
|
461
|
+
| **Mamba** — State Space Model |||
|
|
462
|
+
| `mamba_1d` | 3.4M | 1D |
|
|
463
|
+
| **Vision Mamba (ViM)** — 2D Mamba |||
|
|
464
|
+
| `vim_tiny` | 6.6M | 2D |
|
|
465
|
+
| `vim_small` | 51.1M | 2D |
|
|
466
|
+
| `vim_base` | 201.4M | 2D |
|
|
467
|
+
| **MaxViT** — Multi-Axis ViT |||
|
|
468
|
+
| `maxvit_tiny` ⭐ | 30.1M | 2D |
|
|
469
|
+
| `maxvit_small` ⭐ | 67.6M | 2D |
|
|
470
|
+
| `maxvit_base` ⭐ | 119.1M | 2D |
|
|
471
|
+
| **FastViT** — Fast Hybrid CNN-ViT |||
|
|
472
|
+
| `fastvit_t8` ⭐ | 4.0M | 2D |
|
|
473
|
+
| `fastvit_t12` ⭐ | 6.8M | 2D |
|
|
474
|
+
| `fastvit_s12` ⭐ | 8.8M | 2D |
|
|
475
|
+
| `fastvit_sa12` ⭐ | 10.9M | 2D |
|
|
476
|
+
| **CAFormer** — MetaFormer with Attention |||
|
|
477
|
+
| `caformer_s18` ⭐ | 26.3M | 2D |
|
|
478
|
+
| `caformer_s36` ⭐ | 39.2M | 2D |
|
|
479
|
+
| `caformer_m36` ⭐ | 56.9M | 2D |
|
|
480
|
+
| `poolformer_s12` ⭐ | 11.9M | 2D |
|
|
467
481
|
| **U-Net** — U-shaped Network |||
|
|
468
|
-
| `unet_regression` | 31.
|
|
482
|
+
| `unet_regression` | 31.0M | 1D/2D/3D |
|
|
483
|
+
|
|
469
484
|
|
|
470
485
|
⭐ = **Pretrained on ImageNet** (recommended for smaller datasets). Weights are downloaded automatically on first use.
|
|
471
486
|
- **Cache location**: `~/.cache/torch/hub/checkpoints/` (or `./.torch_cache/` on HPC if home is not writable)
|
|
472
|
-
- **Size**: ~20–350 MB per model depending on architecture
|
|
473
487
|
- **Train from scratch**: Use `--no_pretrained` to disable pretrained weights
|
|
474
488
|
|
|
475
489
|
**💡 HPC Users**: If compute nodes block internet, pre-download weights on the login node:
|
|
476
490
|
|
|
477
491
|
```bash
|
|
478
|
-
# Run once on login node (with internet) — downloads ALL pretrained weights
|
|
492
|
+
# Run once on login node (with internet) — downloads ALL pretrained weights
|
|
479
493
|
python -c "
|
|
480
494
|
import os
|
|
481
495
|
os.environ['TORCH_HOME'] = '.torch_cache' # Match WaveDL's HPC cache location
|
|
@@ -483,7 +497,7 @@ os.environ['TORCH_HOME'] = '.torch_cache' # Match WaveDL's HPC cache location
|
|
|
483
497
|
from torchvision import models as m
|
|
484
498
|
from torchvision.models import video as v
|
|
485
499
|
|
|
486
|
-
#
|
|
500
|
+
# === TorchVision Models ===
|
|
487
501
|
weights = {
|
|
488
502
|
'resnet18': m.ResNet18_Weights, 'resnet50': m.ResNet50_Weights,
|
|
489
503
|
'efficientnet_b0': m.EfficientNet_B0_Weights, 'efficientnet_b1': m.EfficientNet_B1_Weights,
|
|
@@ -501,6 +515,20 @@ for name, w in weights.items():
|
|
|
501
515
|
# 3D video models
|
|
502
516
|
v.r3d_18(weights=v.R3D_18_Weights.DEFAULT); print('✓ r3d_18')
|
|
503
517
|
v.mc3_18(weights=v.MC3_18_Weights.DEFAULT); print('✓ mc3_18')
|
|
518
|
+
|
|
519
|
+
# === Timm Models (MaxViT, FastViT, CAFormer, ConvNeXt V2) ===
|
|
520
|
+
import timm
|
|
521
|
+
|
|
522
|
+
timm_models = [
|
|
523
|
+
'maxvit_tiny_tf_224.in1k', 'maxvit_small_tf_224.in1k', 'maxvit_base_tf_224.in1k',
|
|
524
|
+
'fastvit_t8.apple_in1k', 'fastvit_t12.apple_in1k', 'fastvit_s12.apple_in1k', 'fastvit_sa12.apple_in1k',
|
|
525
|
+
'caformer_s18.sail_in1k', 'caformer_s36.sail_in22k_ft_in1k', 'caformer_m36.sail_in22k_ft_in1k',
|
|
526
|
+
'poolformer_s12.sail_in1k',
|
|
527
|
+
'convnextv2_tiny.fcmae_ft_in1k',
|
|
528
|
+
]
|
|
529
|
+
for name in timm_models:
|
|
530
|
+
timm.create_model(name, pretrained=True); print(f'✓ {name}')
|
|
531
|
+
|
|
504
532
|
print('\\n✓ All pretrained weights cached!')
|
|
505
533
|
"
|
|
506
534
|
```
|
|
@@ -1035,12 +1063,20 @@ The `examples/` folder contains a **complete, ready-to-run example** for **mater
|
|
|
1035
1063
|
|
|
1036
1064
|
| Parameter | Unit | Description |
|
|
1037
1065
|
|-----------|------|-------------|
|
|
1038
|
-
|
|
|
1039
|
-
|
|
|
1040
|
-
|
|
|
1066
|
+
| $h$ | mm | Plate thickness |
|
|
1067
|
+
| $\sqrt{E/\rho}$ | km/s | Square root of Young's modulus over density |
|
|
1068
|
+
| $\nu$ | — | Poisson's ratio |
|
|
1041
1069
|
|
|
1042
1070
|
> [!NOTE]
|
|
1043
|
-
> This example is based on our paper at **SPIE Smart Structures + NDE 2026**: [*"
|
|
1071
|
+
> This example is based on our paper at **SPIE Smart Structures + NDE 2026**: [*"A lightweight deep learning model for ultrasonic assessment of plate thickness and elasticity
|
|
1072
|
+
"*](https://spie.org/spie-smart-structures-and-materials-nondestructive-evaluation/presentation/A-lightweight-deep-learning-model-for-ultrasonic-assessment-of-plate/13951-4) (Paper 13951-4, to appear).
|
|
1073
|
+
|
|
1074
|
+
**Sample Dispersion Data:**
|
|
1075
|
+
|
|
1076
|
+
<p align="center">
|
|
1077
|
+
<img src="examples/elasticity_prediction/dispersion_samples.png" alt="Dispersion curve samples" width="700"><br>
|
|
1078
|
+
<em>Test samples showing the wavenumber-frequency relationship for different plate properties</em>
|
|
1079
|
+
</p>
|
|
1044
1080
|
|
|
1045
1081
|
**Try it yourself:**
|
|
1046
1082
|
|
|
@@ -1061,7 +1097,8 @@ python -m wavedl.test --checkpoint ./examples/elasticity_prediction/best_checkpo
|
|
|
1061
1097
|
| File | Description |
|
|
1062
1098
|
|------|-------------|
|
|
1063
1099
|
| `best_checkpoint/` | Pre-trained MobileNetV3 checkpoint |
|
|
1064
|
-
| `Test_data_100.mat` | 100 sample test set (500×500 dispersion curves →
|
|
1100
|
+
| `Test_data_100.mat` | 100 sample test set (500×500 dispersion curves → $h$, $\sqrt{E/\rho}$, $\nu$) |
|
|
1101
|
+
| `dispersion_samples.png` | Visualization of sample dispersion curves with material parameters |
|
|
1065
1102
|
| `model.onnx` | ONNX export with embedded de-normalization |
|
|
1066
1103
|
| `training_history.csv` | Epoch-by-epoch training metrics (loss, R², LR, etc.) |
|
|
1067
1104
|
| `training_curves.png` | Training/validation loss and learning rate plot |
|
|
@@ -0,0 +1,44 @@
|
|
|
1
|
+
wavedl/__init__.py,sha256=aVEVBCcciyAZkpkVZjaY2BrgP5Pbx96x38_RRvv4H2Q,1177
|
|
2
|
+
wavedl/hpc.py,sha256=6rV38nozzMt0-jKZbVJNwvQZXK0wUsIZmr9lgWN_XUw,9212
|
|
3
|
+
wavedl/hpo.py,sha256=CZF0MZwTGMOrPGDveUXZFbGHwLHj1FcJTCBKVVEtLWg,15105
|
|
4
|
+
wavedl/test.py,sha256=1UUy9phCqrr3h_lN6mGJ7Sj73skDg4KyLk2Yuq9DiKU,38797
|
|
5
|
+
wavedl/train.py,sha256=xfA5fuug0bk-20o2MHpAXoWpGFmciSpWsE9C5RERpf8,59433
|
|
6
|
+
wavedl/models/__init__.py,sha256=uBoH7JRZIYF2TxiZbdTw8x_I9fz_ZRaSnQPRG7HDyug,4462
|
|
7
|
+
wavedl/models/_template.py,sha256=J_D8taSPmV8lBaucN_vU-WiG98iFr7CJrZVNNX_Tdts,4600
|
|
8
|
+
wavedl/models/_timm_utils.py,sha256=yb_6ZiklFmNG3ETw3kw8BzGfo6DCdgizb_B7duLQEFs,8051
|
|
9
|
+
wavedl/models/base.py,sha256=T9iDF9IQM2MYucG_ggQd31rieUkB2fob-nkHyNIl2ak,7337
|
|
10
|
+
wavedl/models/caformer.py,sha256=H8T_UbO1gq0PZFMgWYaWq5qg_5sFf42coQ829ab7n3o,7916
|
|
11
|
+
wavedl/models/cnn.py,sha256=rn2Xmup0w_ll6wuAnYclSeIVazoSUrUGPY-9XnhA1gE,8341
|
|
12
|
+
wavedl/models/convnext.py,sha256=R72w6Vep-SIvzIYlAdQz38Gk8Zmg4wU1WyQ_ZFNdOk0,16116
|
|
13
|
+
wavedl/models/convnext_v2.py,sha256=qj8SewFxOJ-JZiUJjzBDGmSw1wxEX7XnMBwf_yckhvI,15434
|
|
14
|
+
wavedl/models/densenet.py,sha256=oVNKJPzoET43KJxJBhDnLkbJOjFBDWe_f_TqpgBetlY,13050
|
|
15
|
+
wavedl/models/efficientnet.py,sha256=HWfhqSX57lC5Xug5TrQ3r-uFqkksoIKjmQ5Zr5njkEA,8264
|
|
16
|
+
wavedl/models/efficientnetv2.py,sha256=mSJaHJwtQbtfsOFEuOCoQwUY2vh4CXgISqnobbABD_U,11262
|
|
17
|
+
wavedl/models/fastvit.py,sha256=PrrNEN_q5uFHRcbY4LrzM2MwU3Y_C1cOqdv_oErRlm8,8539
|
|
18
|
+
wavedl/models/mamba.py,sha256=ZavdpOLYZOIuCgyy2tFPCk0jiAtW7_mRKu8O9kqH3nY,15819
|
|
19
|
+
wavedl/models/maxvit.py,sha256=yHPbFyEppEweSg4TwMbcrZQmJYHrpKtciTslfa_KhwY,7459
|
|
20
|
+
wavedl/models/mobilenetv3.py,sha256=nj-OYXSfxLp_HkoMF2qzvaa8wwhmpNslWlpyknN-VKk,10537
|
|
21
|
+
wavedl/models/registry.py,sha256=InYAXX2xbRvsFDFnYUPCptJh0F9lHlFPN77A9kqHRT0,2980
|
|
22
|
+
wavedl/models/regnet.py,sha256=kZz9IVxPW_q0ZIFsMbD7H2DuW60h4pfdZmOTypvAkbg,14183
|
|
23
|
+
wavedl/models/resnet.py,sha256=W27hx_g8_Jt6kmzRILZ4uYuhL4_c0Jro_yOLJ2ijm6g,18082
|
|
24
|
+
wavedl/models/resnet3d.py,sha256=I2_4k2kEXfgSxpkocD2J0cLN2RRoPezrDzDyd_o5bDs,8768
|
|
25
|
+
wavedl/models/swin.py,sha256=G_C7xQM2RIuEzrOrD2m_4VINUhmJNsntcu1WnKwHK68,15423
|
|
26
|
+
wavedl/models/tcn.py,sha256=VZOzTnGbDyXZeULPU9VnGcN-4WcRbgAff7fKbGUVqrA,13214
|
|
27
|
+
wavedl/models/unet.py,sha256=L5qPmSKRrybwSldXIuUCPdpY1KSkokbWsQIl1ZHABhg,7799
|
|
28
|
+
wavedl/models/vit.py,sha256=nE2IWtSeMVxyKJreI7jyfS-ZqNG5g2AB7KBHKjLHKyc,14878
|
|
29
|
+
wavedl/utils/__init__.py,sha256=s5R9bRmJ8GNcJrD3OSAOXzwZJIXZbdYrAkZnus11sVQ,3300
|
|
30
|
+
wavedl/utils/config.py,sha256=AsGwb3XtxmbTLb59BLl5AA4wzMNgVTpl7urOJ6IGqfM,10901
|
|
31
|
+
wavedl/utils/constraints.py,sha256=V9Gyi8-uIMbLUWb2cOaHZD0SliWLxVrHZHFyo4HWK7g,18031
|
|
32
|
+
wavedl/utils/cross_validation.py,sha256=gwXSFTx5oxWndPjWLJAJzB6nnq2f1t9f86SbjbF-jNI,18475
|
|
33
|
+
wavedl/utils/data.py,sha256=5ph2Pi8PKvuaSoJaXbFIL9WsX8pTN0A6P8FdmxvXdv4,63469
|
|
34
|
+
wavedl/utils/distributed.py,sha256=7wQ3mRjkp_xjPSxDWMnBf5dSkAGUaTzntxbz0BhC5v0,4145
|
|
35
|
+
wavedl/utils/losses.py,sha256=5762M-TBC_hz6uyj1NPbU1vZeFOJQq7fR3-j7OygJRo,7254
|
|
36
|
+
wavedl/utils/metrics.py,sha256=YoqiXWOsUB9Y4_alj8CmHcTgnV4MFcH5PH4XlIC13HY,40304
|
|
37
|
+
wavedl/utils/optimizers.py,sha256=PyIkJ_hRhFi_Fio81Gy5YQNhcME0JUUEl8OTSyu-0RA,6323
|
|
38
|
+
wavedl/utils/schedulers.py,sha256=e6Sf0yj8VOqkdwkUHLMyUfGfHKTX4NMr-zfgxWqCTYI,7659
|
|
39
|
+
wavedl-1.6.0.dist-info/LICENSE,sha256=cEUCvcvH-9BT9Y-CNGY__PwWONCKu9zsoIqWA-NeHJ4,1066
|
|
40
|
+
wavedl-1.6.0.dist-info/METADATA,sha256=rYu2eVqVaFndhEngDzM0yr-U1MAlcH2zBjELaMY9xmU,46707
|
|
41
|
+
wavedl-1.6.0.dist-info/WHEEL,sha256=beeZ86-EfXScwlR_HKu4SllMC9wUEj_8Z_4FJ3egI2w,91
|
|
42
|
+
wavedl-1.6.0.dist-info/entry_points.txt,sha256=f1RNDkXFZwBzrBzTMFocJ6xhfTvTmaEDTi5YyDEUaF8,140
|
|
43
|
+
wavedl-1.6.0.dist-info/top_level.txt,sha256=ccneUt3D5Qzbh3bsBSSrq9bqrhGiogcWKY24ZC4Q6Xw,7
|
|
44
|
+
wavedl-1.6.0.dist-info/RECORD,,
|
wavedl-1.5.6.dist-info/RECORD
DELETED
|
@@ -1,38 +0,0 @@
|
|
|
1
|
-
wavedl/__init__.py,sha256=qesevvzcBx9pJrvfW07e7PB9_sjb1eOL1BrWpUF-wZM,1177
|
|
2
|
-
wavedl/hpc.py,sha256=6rV38nozzMt0-jKZbVJNwvQZXK0wUsIZmr9lgWN_XUw,9212
|
|
3
|
-
wavedl/hpo.py,sha256=CZF0MZwTGMOrPGDveUXZFbGHwLHj1FcJTCBKVVEtLWg,15105
|
|
4
|
-
wavedl/test.py,sha256=WIHG3HWT-uF399FQApPpxjggBVFn59cC54HAL4990QU,38550
|
|
5
|
-
wavedl/train.py,sha256=JlSXWyTdU4S_PTgvANqXN4ceCS9KONOybbRksDPPcuo,57570
|
|
6
|
-
wavedl/models/__init__.py,sha256=lfSohEnAUztO14nuwayMJhPjpgySzRN3jGiyAUuBmAU,3206
|
|
7
|
-
wavedl/models/_template.py,sha256=J_D8taSPmV8lBaucN_vU-WiG98iFr7CJrZVNNX_Tdts,4600
|
|
8
|
-
wavedl/models/base.py,sha256=T9iDF9IQM2MYucG_ggQd31rieUkB2fob-nkHyNIl2ak,7337
|
|
9
|
-
wavedl/models/cnn.py,sha256=rn2Xmup0w_ll6wuAnYclSeIVazoSUrUGPY-9XnhA1gE,8341
|
|
10
|
-
wavedl/models/convnext.py,sha256=5zELY0ztMB6FxJB9uBurloT7JBdxLXezmrNRzLQjrI0,12846
|
|
11
|
-
wavedl/models/densenet.py,sha256=LzNbQOvtcJJ4SVf-XvIlXGNUgVS2SXl-MMPbr8lcYrA,12995
|
|
12
|
-
wavedl/models/efficientnet.py,sha256=0DHBgEGaOucevtmO1KPUTb5bCdJRg-Gzfpu9EuaylGQ,7456
|
|
13
|
-
wavedl/models/efficientnetv2.py,sha256=rP8y1ZAWyNyi0PXGPXg-4HjgzoELZ-CjMFgr8WnSXeg,10244
|
|
14
|
-
wavedl/models/mobilenetv3.py,sha256=h3f6TiNSyHRH9Qidce7dCGTbdEWYfYF5kbU-TFoTg0U,9490
|
|
15
|
-
wavedl/models/registry.py,sha256=InYAXX2xbRvsFDFnYUPCptJh0F9lHlFPN77A9kqHRT0,2980
|
|
16
|
-
wavedl/models/regnet.py,sha256=Yf9gAoDLv0j4uEuoKC822gizHNh59LCbvFCMP11Q1C0,13116
|
|
17
|
-
wavedl/models/resnet.py,sha256=laePTbIgINijh-Xkcp4iui8-1F17NJAjyAuA4T11eG4,18027
|
|
18
|
-
wavedl/models/resnet3d.py,sha256=C7CL4XeSnRlIBuwf5Ei-z183uzIBObrXfkM9Iwuc5e0,8746
|
|
19
|
-
wavedl/models/swin.py,sha256=cbV_iqIS4no-EAUR8j_93gqd59AkAkfM5DYo6VryLEg,13937
|
|
20
|
-
wavedl/models/tcn.py,sha256=RtY13QpFHqz72b4ultv2lStCIDxfvjySVe5JaTx_GaM,12601
|
|
21
|
-
wavedl/models/unet.py,sha256=LqIXhasdBygwP7SZNNmiW1bHMPaJTVBpaeHtPgEHkdU,7790
|
|
22
|
-
wavedl/models/vit.py,sha256=D4jlYAlvegb3O19jCPpUHYmt5q0SZ7EGVBIWiYbq0GA,14816
|
|
23
|
-
wavedl/utils/__init__.py,sha256=s5R9bRmJ8GNcJrD3OSAOXzwZJIXZbdYrAkZnus11sVQ,3300
|
|
24
|
-
wavedl/utils/config.py,sha256=AsGwb3XtxmbTLb59BLl5AA4wzMNgVTpl7urOJ6IGqfM,10901
|
|
25
|
-
wavedl/utils/constraints.py,sha256=Pof5hzeTSGsPY_E6Sc8iMQDaXc_zfEasQI2tCszk_gw,17614
|
|
26
|
-
wavedl/utils/cross_validation.py,sha256=gwXSFTx5oxWndPjWLJAJzB6nnq2f1t9f86SbjbF-jNI,18475
|
|
27
|
-
wavedl/utils/data.py,sha256=l8aqC7mtnUyXPOS0cCbgE-jS8TKndXnHU2WiP1VU1Zk,58361
|
|
28
|
-
wavedl/utils/distributed.py,sha256=7wQ3mRjkp_xjPSxDWMnBf5dSkAGUaTzntxbz0BhC5v0,4145
|
|
29
|
-
wavedl/utils/losses.py,sha256=5762M-TBC_hz6uyj1NPbU1vZeFOJQq7fR3-j7OygJRo,7254
|
|
30
|
-
wavedl/utils/metrics.py,sha256=El2NYsulH5jxBhC1gCAMcS8C-yxEjuSC930LhsKYQrY,40059
|
|
31
|
-
wavedl/utils/optimizers.py,sha256=PyIkJ_hRhFi_Fio81Gy5YQNhcME0JUUEl8OTSyu-0RA,6323
|
|
32
|
-
wavedl/utils/schedulers.py,sha256=e6Sf0yj8VOqkdwkUHLMyUfGfHKTX4NMr-zfgxWqCTYI,7659
|
|
33
|
-
wavedl-1.5.6.dist-info/LICENSE,sha256=cEUCvcvH-9BT9Y-CNGY__PwWONCKu9zsoIqWA-NeHJ4,1066
|
|
34
|
-
wavedl-1.5.6.dist-info/METADATA,sha256=lLNnw1m1vOKEvFKr-9-v3xb71RHqDUUJxqu4VzNR8eI,45715
|
|
35
|
-
wavedl-1.5.6.dist-info/WHEEL,sha256=beeZ86-EfXScwlR_HKu4SllMC9wUEj_8Z_4FJ3egI2w,91
|
|
36
|
-
wavedl-1.5.6.dist-info/entry_points.txt,sha256=f1RNDkXFZwBzrBzTMFocJ6xhfTvTmaEDTi5YyDEUaF8,140
|
|
37
|
-
wavedl-1.5.6.dist-info/top_level.txt,sha256=ccneUt3D5Qzbh3bsBSSrq9bqrhGiogcWKY24ZC4Q6Xw,7
|
|
38
|
-
wavedl-1.5.6.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|