wavedl 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,292 @@
1
+ """
2
+ EfficientNetV2: Faster Training and Better Accuracy
3
+ ====================================================
4
+
5
+ Next-generation EfficientNet with improved training efficiency and performance.
6
+ EfficientNetV2 replaces early depthwise convolutions with fused MBConv blocks,
7
+ enabling 2-4× faster training while achieving better accuracy.
8
+
9
+ **Key Improvements over EfficientNet**:
10
+ - Fused-MBConv in early stages (faster on accelerators)
11
+ - Progressive learning support (start small, grow)
12
+ - Better NAS-optimized architecture
13
+
14
+ **Variants**:
15
+ - efficientnet_v2_s: Small (21.5M params) - Recommended default
16
+ - efficientnet_v2_m: Medium (54.1M params) - Higher accuracy
17
+ - efficientnet_v2_l: Large (118.5M params) - Maximum accuracy
18
+
19
+ **Note**: EfficientNetV2 is 2D-only. For 1D data, use TCN. For 3D data, use ResNet3D.
20
+
21
+ References:
22
+ Tan, M., & Le, Q. (2021). EfficientNetV2: Smaller Models and Faster Training.
23
+ ICML 2021. https://arxiv.org/abs/2104.00298
24
+
25
+ Author: Ductho Le (ductho.le@outlook.com)
26
+ """
27
+
28
+ from typing import Any
29
+
30
+ import torch
31
+ import torch.nn as nn
32
+
33
+
34
+ try:
35
+ from torchvision.models import (
36
+ EfficientNet_V2_L_Weights,
37
+ EfficientNet_V2_M_Weights,
38
+ EfficientNet_V2_S_Weights,
39
+ efficientnet_v2_l,
40
+ efficientnet_v2_m,
41
+ efficientnet_v2_s,
42
+ )
43
+
44
+ EFFICIENTNETV2_AVAILABLE = True
45
+ except ImportError:
46
+ EFFICIENTNETV2_AVAILABLE = False
47
+
48
+ from wavedl.models.base import BaseModel
49
+ from wavedl.models.registry import register_model
50
+
51
+
52
+ class EfficientNetV2Base(BaseModel):
53
+ """
54
+ Base EfficientNetV2 class for regression tasks.
55
+
56
+ Wraps torchvision EfficientNetV2 with:
57
+ - Optional pretrained weights (ImageNet-1K)
58
+ - Automatic input channel adaptation (grayscale → 3ch)
59
+ - Custom multi-layer regression head
60
+
61
+ Compared to EfficientNet (V1):
62
+ - 2-4× faster training on GPU/TPU
63
+ - Better accuracy at similar parameter counts
64
+ - More efficient at higher resolutions
65
+
66
+ Note: This is 2D-only. Input shape must be (H, W).
67
+ """
68
+
69
+ def __init__(
70
+ self,
71
+ in_shape: tuple[int, int],
72
+ out_size: int,
73
+ model_fn,
74
+ weights_class,
75
+ pretrained: bool = True,
76
+ dropout_rate: float = 0.3,
77
+ freeze_backbone: bool = False,
78
+ regression_hidden: int = 512,
79
+ **kwargs,
80
+ ):
81
+ """
82
+ Initialize EfficientNetV2 for regression.
83
+
84
+ Args:
85
+ in_shape: (H, W) input image dimensions
86
+ out_size: Number of regression output targets
87
+ model_fn: torchvision model constructor
88
+ weights_class: Pretrained weights enum class
89
+ pretrained: Use ImageNet pretrained weights (default: True)
90
+ dropout_rate: Dropout rate in regression head (default: 0.3)
91
+ freeze_backbone: Freeze backbone for fine-tuning (default: False)
92
+ regression_hidden: Hidden units in regression head (default: 512)
93
+ """
94
+ super().__init__(in_shape, out_size)
95
+
96
+ if not EFFICIENTNETV2_AVAILABLE:
97
+ raise ImportError(
98
+ "torchvision >= 0.13 is required for EfficientNetV2. "
99
+ "Install with: pip install torchvision>=0.13"
100
+ )
101
+
102
+ if len(in_shape) != 2:
103
+ raise ValueError(
104
+ f"EfficientNetV2 requires 2D input (H, W), got {len(in_shape)}D. "
105
+ "For 1D data, use TCN. For 3D data, use ResNet3D."
106
+ )
107
+
108
+ self.pretrained = pretrained
109
+ self.dropout_rate = dropout_rate
110
+ self.freeze_backbone = freeze_backbone
111
+ self.regression_hidden = regression_hidden
112
+
113
+ # Load pretrained backbone
114
+ weights = weights_class.IMAGENET1K_V1 if pretrained else None
115
+ self.backbone = model_fn(weights=weights)
116
+
117
+ # Get classifier input features (before the final classification layer)
118
+ in_features = self.backbone.classifier[1].in_features
119
+
120
+ # Replace classifier with regression head
121
+ # EfficientNetV2 benefits from a deeper regression head
122
+ self.backbone.classifier = nn.Sequential(
123
+ nn.Dropout(dropout_rate),
124
+ nn.Linear(in_features, regression_hidden),
125
+ nn.SiLU(inplace=True), # SiLU (Swish) matches EfficientNet's activation
126
+ nn.Dropout(dropout_rate * 0.5),
127
+ nn.Linear(regression_hidden, regression_hidden // 2),
128
+ nn.SiLU(inplace=True),
129
+ nn.Linear(regression_hidden // 2, out_size),
130
+ )
131
+
132
+ # Optionally freeze backbone for fine-tuning
133
+ if freeze_backbone:
134
+ self._freeze_backbone()
135
+
136
+ def _freeze_backbone(self):
137
+ """Freeze all backbone parameters except the classifier."""
138
+ for name, param in self.backbone.named_parameters():
139
+ if "classifier" not in name:
140
+ param.requires_grad = False
141
+
142
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
143
+ """
144
+ Forward pass.
145
+
146
+ Args:
147
+ x: Input tensor of shape (B, C, H, W) where C is 1 or 3
148
+
149
+ Returns:
150
+ Output tensor of shape (B, out_size)
151
+ """
152
+ # Expand single channel to 3 channels for pretrained weights compatibility
153
+ if x.size(1) == 1:
154
+ x = x.expand(-1, 3, -1, -1)
155
+
156
+ return self.backbone(x)
157
+
158
+ @classmethod
159
+ def get_default_config(cls) -> dict[str, Any]:
160
+ """Return default configuration for EfficientNetV2."""
161
+ return {
162
+ "pretrained": True,
163
+ "dropout_rate": 0.3,
164
+ "freeze_backbone": False,
165
+ "regression_hidden": 512,
166
+ }
167
+
168
+
169
+ # =============================================================================
170
+ # REGISTERED MODEL VARIANTS
171
+ # =============================================================================
172
+
173
+
174
+ @register_model("efficientnet_v2_s")
175
+ class EfficientNetV2S(EfficientNetV2Base):
176
+ """
177
+ EfficientNetV2-S: Small variant, recommended default.
178
+
179
+ ~21.5M parameters. Best balance of speed and accuracy for most tasks.
180
+ 2× faster training than EfficientNet-B4 with better accuracy.
181
+
182
+ Recommended for:
183
+ - Default choice for 2D wave data
184
+ - Moderate compute budgets
185
+ - When training speed matters
186
+
187
+ Args:
188
+ in_shape: (H, W) image dimensions
189
+ out_size: Number of regression targets
190
+ pretrained: Use ImageNet pretrained weights (default: True)
191
+ dropout_rate: Dropout rate in head (default: 0.3)
192
+ freeze_backbone: Freeze backbone for fine-tuning (default: False)
193
+ regression_hidden: Hidden units in regression head (default: 512)
194
+
195
+ Example:
196
+ >>> model = EfficientNetV2S(in_shape=(500, 500), out_size=3)
197
+ >>> x = torch.randn(4, 1, 500, 500)
198
+ >>> out = model(x) # (4, 3)
199
+ """
200
+
201
+ def __init__(self, in_shape: tuple[int, int], out_size: int, **kwargs):
202
+ super().__init__(
203
+ in_shape=in_shape,
204
+ out_size=out_size,
205
+ model_fn=efficientnet_v2_s,
206
+ weights_class=EfficientNet_V2_S_Weights,
207
+ **kwargs,
208
+ )
209
+
210
+ def __repr__(self) -> str:
211
+ pt = "pretrained" if self.pretrained else "scratch"
212
+ return f"EfficientNetV2_S({pt}, in={self.in_shape}, out={self.out_size})"
213
+
214
+
215
+ @register_model("efficientnet_v2_m")
216
+ class EfficientNetV2M(EfficientNetV2Base):
217
+ """
218
+ EfficientNetV2-M: Medium variant for higher accuracy.
219
+
220
+ ~54.1M parameters. Use when accuracy is more important than speed.
221
+
222
+ Recommended for:
223
+ - Large datasets (>50k samples)
224
+ - Complex wave patterns
225
+ - When compute is not a bottleneck
226
+
227
+ Args:
228
+ in_shape: (H, W) image dimensions
229
+ out_size: Number of regression targets
230
+ pretrained: Use ImageNet pretrained weights (default: True)
231
+ dropout_rate: Dropout rate in head (default: 0.3)
232
+ freeze_backbone: Freeze backbone for fine-tuning (default: False)
233
+ regression_hidden: Hidden units in regression head (default: 512)
234
+
235
+ Example:
236
+ >>> model = EfficientNetV2M(in_shape=(500, 500), out_size=3)
237
+ >>> x = torch.randn(4, 1, 500, 500)
238
+ >>> out = model(x) # (4, 3)
239
+ """
240
+
241
+ def __init__(self, in_shape: tuple[int, int], out_size: int, **kwargs):
242
+ super().__init__(
243
+ in_shape=in_shape,
244
+ out_size=out_size,
245
+ model_fn=efficientnet_v2_m,
246
+ weights_class=EfficientNet_V2_M_Weights,
247
+ **kwargs,
248
+ )
249
+
250
+ def __repr__(self) -> str:
251
+ pt = "pretrained" if self.pretrained else "scratch"
252
+ return f"EfficientNetV2_M({pt}, in={self.in_shape}, out={self.out_size})"
253
+
254
+
255
+ @register_model("efficientnet_v2_l")
256
+ class EfficientNetV2L(EfficientNetV2Base):
257
+ """
258
+ EfficientNetV2-L: Large variant for maximum accuracy.
259
+
260
+ ~118.5M parameters. Use only with large datasets and sufficient compute.
261
+
262
+ Recommended for:
263
+ - Very large datasets (>100k samples)
264
+ - When maximum accuracy is critical
265
+ - HPC environments with ample GPU memory
266
+
267
+ Args:
268
+ in_shape: (H, W) image dimensions
269
+ out_size: Number of regression targets
270
+ pretrained: Use ImageNet pretrained weights (default: True)
271
+ dropout_rate: Dropout rate in head (default: 0.3)
272
+ freeze_backbone: Freeze backbone for fine-tuning (default: False)
273
+ regression_hidden: Hidden units in regression head (default: 512)
274
+
275
+ Example:
276
+ >>> model = EfficientNetV2L(in_shape=(500, 500), out_size=3)
277
+ >>> x = torch.randn(4, 1, 500, 500)
278
+ >>> out = model(x) # (4, 3)
279
+ """
280
+
281
+ def __init__(self, in_shape: tuple[int, int], out_size: int, **kwargs):
282
+ super().__init__(
283
+ in_shape=in_shape,
284
+ out_size=out_size,
285
+ model_fn=efficientnet_v2_l,
286
+ weights_class=EfficientNet_V2_L_Weights,
287
+ **kwargs,
288
+ )
289
+
290
+ def __repr__(self) -> str:
291
+ pt = "pretrained" if self.pretrained else "scratch"
292
+ return f"EfficientNetV2_L({pt}, in={self.in_shape}, out={self.out_size})"
@@ -0,0 +1,272 @@
1
+ """
2
+ MobileNetV3: Efficient Networks for Edge Deployment
3
+ ====================================================
4
+
5
+ Lightweight architecture optimized for mobile and embedded devices.
6
+ MobileNetV3 combines neural architecture search (NAS) with hardware-aware
7
+ optimization to achieve excellent accuracy with minimal computational cost.
8
+
9
+ **Key Features**:
10
+ - Inverted residuals with depthwise separable convolutions
11
+ - Squeeze-and-Excitation (SE) attention for channel weighting
12
+ - h-swish activation: efficient approximation of swish
13
+ - Designed for real-time inference on CPUs and edge devices
14
+
15
+ **Variants**:
16
+ - mobilenet_v3_small: Ultra-lightweight (~1.1M params) - Edge/embedded
17
+ - mobilenet_v3_large: Balanced (~3.2M params) - Mobile deployment
18
+
19
+ **Use Cases**:
20
+ - Real-time structural health monitoring on embedded systems
21
+ - Field inspection with portable devices
22
+ - When model size and inference speed are critical
23
+
24
+ **Note**: MobileNetV3 is 2D-only. For 1D data, use TCN. For 3D data, use ResNet3D.
25
+
26
+ References:
27
+ Howard, A., et al. (2019). Searching for MobileNetV3.
28
+ ICCV 2019. https://arxiv.org/abs/1905.02244
29
+
30
+ Author: Ductho Le (ductho.le@outlook.com)
31
+ """
32
+
33
+ from typing import Any
34
+
35
+ import torch
36
+ import torch.nn as nn
37
+
38
+
39
+ try:
40
+ from torchvision.models import (
41
+ MobileNet_V3_Large_Weights,
42
+ MobileNet_V3_Small_Weights,
43
+ mobilenet_v3_large,
44
+ mobilenet_v3_small,
45
+ )
46
+
47
+ MOBILENETV3_AVAILABLE = True
48
+ except ImportError:
49
+ MOBILENETV3_AVAILABLE = False
50
+
51
+ from wavedl.models.base import BaseModel
52
+ from wavedl.models.registry import register_model
53
+
54
+
55
+ class MobileNetV3Base(BaseModel):
56
+ """
57
+ Base MobileNetV3 class for regression tasks.
58
+
59
+ Wraps torchvision MobileNetV3 with:
60
+ - Optional pretrained weights (ImageNet-1K)
61
+ - Automatic input channel adaptation (grayscale → 3ch)
62
+ - Lightweight regression head (maintains efficiency)
63
+
64
+ MobileNetV3 is ideal for:
65
+ - Edge deployment (Raspberry Pi, Jetson, mobile)
66
+ - Real-time inference requirements
67
+ - Memory-constrained environments
68
+ - Quick prototyping and experimentation
69
+
70
+ Note: This is 2D-only. Input shape must be (H, W).
71
+ """
72
+
73
+ def __init__(
74
+ self,
75
+ in_shape: tuple[int, int],
76
+ out_size: int,
77
+ model_fn,
78
+ weights_class,
79
+ pretrained: bool = True,
80
+ dropout_rate: float = 0.2,
81
+ freeze_backbone: bool = False,
82
+ regression_hidden: int = 256,
83
+ **kwargs,
84
+ ):
85
+ """
86
+ Initialize MobileNetV3 for regression.
87
+
88
+ Args:
89
+ in_shape: (H, W) input image dimensions
90
+ out_size: Number of regression output targets
91
+ model_fn: torchvision model constructor
92
+ weights_class: Pretrained weights enum class
93
+ pretrained: Use ImageNet pretrained weights (default: True)
94
+ dropout_rate: Dropout rate in regression head (default: 0.2)
95
+ freeze_backbone: Freeze backbone for fine-tuning (default: False)
96
+ regression_hidden: Hidden units in regression head (default: 256)
97
+ """
98
+ super().__init__(in_shape, out_size)
99
+
100
+ if not MOBILENETV3_AVAILABLE:
101
+ raise ImportError(
102
+ "torchvision is required for MobileNetV3. "
103
+ "Install with: pip install torchvision"
104
+ )
105
+
106
+ if len(in_shape) != 2:
107
+ raise ValueError(
108
+ f"MobileNetV3 requires 2D input (H, W), got {len(in_shape)}D. "
109
+ "For 1D data, use TCN. For 3D data, use ResNet3D."
110
+ )
111
+
112
+ self.pretrained = pretrained
113
+ self.dropout_rate = dropout_rate
114
+ self.freeze_backbone = freeze_backbone
115
+ self.regression_hidden = regression_hidden
116
+
117
+ # Load pretrained backbone
118
+ weights = weights_class.IMAGENET1K_V1 if pretrained else None
119
+ self.backbone = model_fn(weights=weights)
120
+
121
+ # MobileNetV3 classifier structure:
122
+ # classifier[0]: Linear (features → 1280 for Large, 1024 for Small)
123
+ # classifier[1]: Hardswish
124
+ # classifier[2]: Dropout
125
+ # classifier[3]: Linear (1280/1024 → num_classes)
126
+
127
+ # Get the input features to the final classifier
128
+ in_features = self.backbone.classifier[0].in_features
129
+
130
+ # Replace classifier with lightweight regression head
131
+ # Keep it efficient to maintain MobileNet's speed advantage
132
+ self.backbone.classifier = nn.Sequential(
133
+ nn.Linear(in_features, regression_hidden),
134
+ nn.Hardswish(inplace=True), # Match MobileNetV3's activation
135
+ nn.Dropout(dropout_rate),
136
+ nn.Linear(regression_hidden, out_size),
137
+ )
138
+
139
+ # Optionally freeze backbone for fine-tuning
140
+ if freeze_backbone:
141
+ self._freeze_backbone()
142
+
143
+ def _freeze_backbone(self):
144
+ """Freeze all backbone parameters except the classifier."""
145
+ for name, param in self.backbone.named_parameters():
146
+ if "classifier" not in name:
147
+ param.requires_grad = False
148
+
149
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
150
+ """
151
+ Forward pass.
152
+
153
+ Args:
154
+ x: Input tensor of shape (B, C, H, W) where C is 1 or 3
155
+
156
+ Returns:
157
+ Output tensor of shape (B, out_size)
158
+ """
159
+ # Expand single channel to 3 channels for pretrained weights compatibility
160
+ if x.size(1) == 1:
161
+ x = x.expand(-1, 3, -1, -1)
162
+
163
+ return self.backbone(x)
164
+
165
+ @classmethod
166
+ def get_default_config(cls) -> dict[str, Any]:
167
+ """Return default configuration for MobileNetV3."""
168
+ return {
169
+ "pretrained": True,
170
+ "dropout_rate": 0.2,
171
+ "freeze_backbone": False,
172
+ "regression_hidden": 256,
173
+ }
174
+
175
+
176
+ # =============================================================================
177
+ # REGISTERED MODEL VARIANTS
178
+ # =============================================================================
179
+
180
+
181
+ @register_model("mobilenet_v3_small")
182
+ class MobileNetV3Small(MobileNetV3Base):
183
+ """
184
+ MobileNetV3-Small: Ultra-lightweight for edge deployment.
185
+
186
+ ~1.1M parameters. Designed for the most constrained environments.
187
+ Achieves ~67% ImageNet accuracy with minimal compute.
188
+
189
+ Recommended for:
190
+ - Embedded systems (Raspberry Pi, Arduino with accelerators)
191
+ - Battery-powered devices
192
+ - Ultra-low latency requirements (<10ms)
193
+ - Quick training experiments
194
+
195
+ Performance (approximate):
196
+ - CPU inference: ~6ms (single core)
197
+ - Parameters: 2.5M
198
+ - MAdds: 56M
199
+
200
+ Args:
201
+ in_shape: (H, W) image dimensions
202
+ out_size: Number of regression targets
203
+ pretrained: Use ImageNet pretrained weights (default: True)
204
+ dropout_rate: Dropout rate in head (default: 0.2)
205
+ freeze_backbone: Freeze backbone for fine-tuning (default: False)
206
+ regression_hidden: Hidden units in regression head (default: 256)
207
+
208
+ Example:
209
+ >>> model = MobileNetV3Small(in_shape=(224, 224), out_size=3)
210
+ >>> x = torch.randn(1, 1, 224, 224)
211
+ >>> out = model(x) # (1, 3)
212
+ """
213
+
214
+ def __init__(self, in_shape: tuple[int, int], out_size: int, **kwargs):
215
+ super().__init__(
216
+ in_shape=in_shape,
217
+ out_size=out_size,
218
+ model_fn=mobilenet_v3_small,
219
+ weights_class=MobileNet_V3_Small_Weights,
220
+ **kwargs,
221
+ )
222
+
223
+ def __repr__(self) -> str:
224
+ pt = "pretrained" if self.pretrained else "scratch"
225
+ return f"MobileNetV3_Small({pt}, in={self.in_shape}, out={self.out_size})"
226
+
227
+
228
+ @register_model("mobilenet_v3_large")
229
+ class MobileNetV3Large(MobileNetV3Base):
230
+ """
231
+ MobileNetV3-Large: Balanced efficiency and accuracy.
232
+
233
+ ~3.2M parameters. Best trade-off for mobile/portable deployment.
234
+ Achieves ~75% ImageNet accuracy with efficient inference.
235
+
236
+ Recommended for:
237
+ - Mobile deployment (smartphones, tablets)
238
+ - Portable inspection devices
239
+ - Real-time processing with moderate accuracy needs
240
+ - Default choice for edge deployment
241
+
242
+ Performance (approximate):
243
+ - CPU inference: ~20ms (single core)
244
+ - Parameters: 5.4M
245
+ - MAdds: 219M
246
+
247
+ Args:
248
+ in_shape: (H, W) image dimensions
249
+ out_size: Number of regression targets
250
+ pretrained: Use ImageNet pretrained weights (default: True)
251
+ dropout_rate: Dropout rate in head (default: 0.2)
252
+ freeze_backbone: Freeze backbone for fine-tuning (default: False)
253
+ regression_hidden: Hidden units in regression head (default: 256)
254
+
255
+ Example:
256
+ >>> model = MobileNetV3Large(in_shape=(224, 224), out_size=3)
257
+ >>> x = torch.randn(1, 1, 224, 224)
258
+ >>> out = model(x) # (1, 3)
259
+ """
260
+
261
+ def __init__(self, in_shape: tuple[int, int], out_size: int, **kwargs):
262
+ super().__init__(
263
+ in_shape=in_shape,
264
+ out_size=out_size,
265
+ model_fn=mobilenet_v3_large,
266
+ weights_class=MobileNet_V3_Large_Weights,
267
+ **kwargs,
268
+ )
269
+
270
+ def __repr__(self) -> str:
271
+ pt = "pretrained" if self.pretrained else "scratch"
272
+ return f"MobileNetV3_Large({pt}, in={self.in_shape}, out={self.out_size})"
wavedl/models/registry.py CHANGED
@@ -6,7 +6,6 @@ Provides the core model registration and factory functionality.
6
6
  This module has no dependencies on other model modules to prevent circular imports.
7
7
 
8
8
  Author: Ductho Le (ductho.le@outlook.com)
9
- Version: 1.0.0
10
9
  """
11
10
 
12
11
  import torch.nn as nn