waterfall 0.1.4__py3-none-any.whl → 0.1.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
waterfall/watermark.py CHANGED
@@ -3,6 +3,7 @@ import logging
3
3
  import os
4
4
  import gc
5
5
  import torch
6
+ import numpy as np
6
7
  from typing import List, Literal, Optional, Tuple
7
8
 
8
9
  from transformers import AutoTokenizer, AutoModelForCausalLM
@@ -81,8 +82,9 @@ def watermark(
81
82
  def verify_texts(texts: List[str], id: int,
82
83
  watermarker: Optional[Watermarker] = None,
83
84
  k_p: Optional[int] = None,
84
- model_path: Optional[str] = "meta-llama/Llama-3.1-8B-Instruct"
85
- ) -> Tuple[float,float]:
85
+ model_path: Optional[str] = "meta-llama/Llama-3.1-8B-Instruct",
86
+ return_extracted_k_p: bool = False
87
+ ) -> np.ndarray | Tuple[np.ndarray,np.ndarray]:
86
88
  """Returns the q_score and extracted k_p"""
87
89
 
88
90
  if watermarker is None:
@@ -93,7 +95,11 @@ def verify_texts(texts: List[str], id: int,
93
95
  if k_p is None:
94
96
  k_p = watermarker.k_p
95
97
 
96
- verify_results = watermarker.verify(texts, id=[id], k_p=[k_p], return_extracted_k_p=True) # results are [text x id x k_p]
98
+ verify_results = watermarker.verify(texts, id=[id], k_p=[k_p], return_extracted_k_p=return_extracted_k_p) # results are [text x id x k_p]
99
+
100
+ if not return_extracted_k_p:
101
+ return verify_results[:,0,0]
102
+
97
103
  q_score = verify_results["q_score"]
98
104
  k_p_extracted = verify_results["k_p_extracted"]
99
105
 
@@ -161,13 +167,12 @@ def watermark_texts(
161
167
 
162
168
  if isinstance(waterfall_cached_watermarking_model, PreTrainedModel) and waterfall_cached_watermarking_model.name_or_path != model_path:
163
169
  device = waterfall_cached_watermarking_model.device.type
164
- del waterfall_cached_watermarking_model
170
+ waterfall_cached_watermarking_model = None
165
171
  gc.collect()
166
172
  if device == "cuda":
167
173
  torch.cuda.empty_cache()
168
174
  elif device == "mps":
169
175
  torch.mps.empty_cache()
170
- waterfall_cached_watermarking_model = None
171
176
 
172
177
  if waterfall_cached_watermarking_model is None:
173
178
  waterfall_cached_watermarking_model = AutoModelForCausalLM.from_pretrained(
@@ -308,7 +313,7 @@ def main():
308
313
  )
309
314
 
310
315
  # watermarker = Watermarker(tokenizer=tokenizer, model=None, id=id, k_p=k_p, watermarkingFnClass=watermarkingFnClass) # If only verifying the watermark, do not need to instantiate the model
311
- q_scores, extracted_k_ps = verify_texts(T_os + T_ws, id, watermarker, k_p=k_p)
316
+ q_scores, extracted_k_ps = verify_texts(T_os + T_ws, id, watermarker, k_p=k_p, return_extracted_k_p=True)
312
317
 
313
318
  for i in range(len(T_os)):
314
319
  # Handle the case where this is being run
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: waterfall
3
- Version: 0.1.4
3
+ Version: 0.1.6
4
4
  Summary: Scalable Framework for Robust Text Watermarking and Provenance for LLMs
5
5
  Project-URL: Homepage, https://github.com/aoi3142/Waterfall
6
6
  Project-URL: Issues, https://github.com/aoi3142/Waterfall/issues
@@ -141,7 +141,7 @@ from waterfall.watermark import verify_texts
141
141
  id = 1 # specify your watermarking ID
142
142
  test_texts = ["...", "..."] # Suspected texts to verify
143
143
 
144
- watermark_strength = verify_texts(test_texts, id)[0] # np array of floats
144
+ watermark_strength = verify_texts(test_texts, id) # np array of floats
145
145
  ```
146
146
 
147
147
  ## Code structure
@@ -4,9 +4,9 @@ waterfall/WatermarkingFnFourier.py,sha256=QYayAQYwi1dQkDIyqmvhU568VhrVYTVy47HkI8
4
4
  waterfall/WatermarkingFnSquare.py,sha256=2PAO05DdKT02npo7GDf_82D520nP7kGAWK6H4E4JMt4,1638
5
5
  waterfall/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
6
  waterfall/permute.py,sha256=RwxOHFhx_VSOhhFwy5s79YgwTUBkfW2-LCCXYR3VT2o,2582
7
- waterfall/watermark.py,sha256=h7e1z8vWTUAKxCcQsJ2Jkx_1ZL-ug2dEDs5FzWcYfCs,13332
8
- waterfall-0.1.4.dist-info/METADATA,sha256=3hBQwb1JyrTWrayLCPFxXVlTpPjuE-ukPstW5F9F9rg,8715
9
- waterfall-0.1.4.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
10
- waterfall-0.1.4.dist-info/entry_points.txt,sha256=XXnUzuWXu2nc9j4WAll9tq6HyodN_8WJLjeG0O4Y2Gw,60
11
- waterfall-0.1.4.dist-info/licenses/LICENSE,sha256=zAtaO-k41Q-Q4Etl4bzuh7pgNJsPH-dYfzvznRa0OvM,11341
12
- waterfall-0.1.4.dist-info/RECORD,,
7
+ waterfall/watermark.py,sha256=W5jYGqYGOXXO-KLPKzJoin5zC_Xb6Xk9BzsAA9-LKXA,13494
8
+ waterfall-0.1.6.dist-info/METADATA,sha256=inB0EWGyaAkNQo4CUSke5Bh4Vr07AuVPU9jmKB0gU3U,8714
9
+ waterfall-0.1.6.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
10
+ waterfall-0.1.6.dist-info/entry_points.txt,sha256=XXnUzuWXu2nc9j4WAll9tq6HyodN_8WJLjeG0O4Y2Gw,60
11
+ waterfall-0.1.6.dist-info/licenses/LICENSE,sha256=zAtaO-k41Q-Q4Etl4bzuh7pgNJsPH-dYfzvznRa0OvM,11341
12
+ waterfall-0.1.6.dist-info/RECORD,,