warp-lang 1.9.1__py3-none-win_amd64.whl → 1.10.0__py3-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of warp-lang might be problematic. Click here for more details.

Files changed (346) hide show
  1. warp/__init__.py +301 -287
  2. warp/__init__.pyi +882 -305
  3. warp/_src/__init__.py +14 -0
  4. warp/_src/autograd.py +1077 -0
  5. warp/_src/build.py +620 -0
  6. warp/_src/build_dll.py +642 -0
  7. warp/{builtins.py → _src/builtins.py} +1435 -379
  8. warp/_src/codegen.py +4361 -0
  9. warp/{config.py → _src/config.py} +178 -169
  10. warp/_src/constants.py +59 -0
  11. warp/_src/context.py +8352 -0
  12. warp/_src/dlpack.py +464 -0
  13. warp/_src/fabric.py +362 -0
  14. warp/_src/fem/__init__.py +14 -0
  15. warp/_src/fem/adaptivity.py +510 -0
  16. warp/_src/fem/cache.py +689 -0
  17. warp/_src/fem/dirichlet.py +190 -0
  18. warp/{fem → _src/fem}/domain.py +42 -30
  19. warp/_src/fem/field/__init__.py +131 -0
  20. warp/_src/fem/field/field.py +703 -0
  21. warp/{fem → _src/fem}/field/nodal_field.py +32 -15
  22. warp/{fem → _src/fem}/field/restriction.py +3 -1
  23. warp/{fem → _src/fem}/field/virtual.py +55 -27
  24. warp/_src/fem/geometry/__init__.py +32 -0
  25. warp/{fem → _src/fem}/geometry/adaptive_nanogrid.py +79 -163
  26. warp/_src/fem/geometry/closest_point.py +99 -0
  27. warp/{fem → _src/fem}/geometry/deformed_geometry.py +16 -22
  28. warp/{fem → _src/fem}/geometry/element.py +34 -10
  29. warp/{fem → _src/fem}/geometry/geometry.py +50 -20
  30. warp/{fem → _src/fem}/geometry/grid_2d.py +14 -23
  31. warp/{fem → _src/fem}/geometry/grid_3d.py +14 -23
  32. warp/{fem → _src/fem}/geometry/hexmesh.py +42 -63
  33. warp/{fem → _src/fem}/geometry/nanogrid.py +256 -247
  34. warp/{fem → _src/fem}/geometry/partition.py +123 -63
  35. warp/{fem → _src/fem}/geometry/quadmesh.py +28 -45
  36. warp/{fem → _src/fem}/geometry/tetmesh.py +42 -63
  37. warp/{fem → _src/fem}/geometry/trimesh.py +28 -45
  38. warp/{fem → _src/fem}/integrate.py +166 -158
  39. warp/_src/fem/linalg.py +385 -0
  40. warp/_src/fem/operator.py +398 -0
  41. warp/_src/fem/polynomial.py +231 -0
  42. warp/{fem → _src/fem}/quadrature/pic_quadrature.py +17 -20
  43. warp/{fem → _src/fem}/quadrature/quadrature.py +97 -47
  44. warp/_src/fem/space/__init__.py +248 -0
  45. warp/{fem → _src/fem}/space/basis_function_space.py +22 -11
  46. warp/_src/fem/space/basis_space.py +681 -0
  47. warp/{fem → _src/fem}/space/dof_mapper.py +5 -3
  48. warp/{fem → _src/fem}/space/function_space.py +16 -13
  49. warp/{fem → _src/fem}/space/grid_2d_function_space.py +6 -7
  50. warp/{fem → _src/fem}/space/grid_3d_function_space.py +6 -4
  51. warp/{fem → _src/fem}/space/hexmesh_function_space.py +6 -10
  52. warp/{fem → _src/fem}/space/nanogrid_function_space.py +5 -9
  53. warp/{fem → _src/fem}/space/partition.py +119 -60
  54. warp/{fem → _src/fem}/space/quadmesh_function_space.py +6 -10
  55. warp/{fem → _src/fem}/space/restriction.py +68 -33
  56. warp/_src/fem/space/shape/__init__.py +152 -0
  57. warp/{fem → _src/fem}/space/shape/cube_shape_function.py +11 -9
  58. warp/{fem → _src/fem}/space/shape/shape_function.py +10 -9
  59. warp/{fem → _src/fem}/space/shape/square_shape_function.py +8 -6
  60. warp/{fem → _src/fem}/space/shape/tet_shape_function.py +5 -3
  61. warp/{fem → _src/fem}/space/shape/triangle_shape_function.py +5 -3
  62. warp/{fem → _src/fem}/space/tetmesh_function_space.py +5 -9
  63. warp/_src/fem/space/topology.py +461 -0
  64. warp/{fem → _src/fem}/space/trimesh_function_space.py +5 -9
  65. warp/_src/fem/types.py +114 -0
  66. warp/_src/fem/utils.py +488 -0
  67. warp/_src/jax.py +188 -0
  68. warp/_src/jax_experimental/__init__.py +14 -0
  69. warp/_src/jax_experimental/custom_call.py +389 -0
  70. warp/_src/jax_experimental/ffi.py +1286 -0
  71. warp/_src/jax_experimental/xla_ffi.py +658 -0
  72. warp/_src/marching_cubes.py +710 -0
  73. warp/_src/math.py +416 -0
  74. warp/_src/optim/__init__.py +14 -0
  75. warp/_src/optim/adam.py +165 -0
  76. warp/_src/optim/linear.py +1608 -0
  77. warp/_src/optim/sgd.py +114 -0
  78. warp/_src/paddle.py +408 -0
  79. warp/_src/render/__init__.py +14 -0
  80. warp/_src/render/imgui_manager.py +291 -0
  81. warp/_src/render/render_opengl.py +3638 -0
  82. warp/_src/render/render_usd.py +939 -0
  83. warp/_src/render/utils.py +162 -0
  84. warp/_src/sparse.py +2718 -0
  85. warp/_src/tape.py +1208 -0
  86. warp/{thirdparty → _src/thirdparty}/unittest_parallel.py +9 -2
  87. warp/_src/torch.py +393 -0
  88. warp/_src/types.py +5888 -0
  89. warp/_src/utils.py +1695 -0
  90. warp/autograd.py +12 -1054
  91. warp/bin/warp-clang.dll +0 -0
  92. warp/bin/warp.dll +0 -0
  93. warp/build.py +8 -588
  94. warp/build_dll.py +6 -721
  95. warp/codegen.py +6 -4251
  96. warp/constants.py +6 -39
  97. warp/context.py +12 -8062
  98. warp/dlpack.py +6 -444
  99. warp/examples/distributed/example_jacobi_mpi.py +4 -5
  100. warp/examples/fem/example_adaptive_grid.py +1 -1
  101. warp/examples/fem/example_apic_fluid.py +1 -1
  102. warp/examples/fem/example_burgers.py +8 -8
  103. warp/examples/fem/example_diffusion.py +1 -1
  104. warp/examples/fem/example_distortion_energy.py +1 -1
  105. warp/examples/fem/example_mixed_elasticity.py +2 -2
  106. warp/examples/fem/example_navier_stokes.py +1 -1
  107. warp/examples/fem/example_nonconforming_contact.py +7 -7
  108. warp/examples/fem/example_stokes.py +1 -1
  109. warp/examples/fem/example_stokes_transfer.py +1 -1
  110. warp/examples/fem/utils.py +2 -2
  111. warp/examples/interop/example_jax_callable.py +1 -1
  112. warp/examples/interop/example_jax_ffi_callback.py +1 -1
  113. warp/examples/interop/example_jax_kernel.py +1 -1
  114. warp/examples/tile/example_tile_mcgp.py +191 -0
  115. warp/fabric.py +6 -337
  116. warp/fem/__init__.py +159 -97
  117. warp/fem/adaptivity.py +7 -489
  118. warp/fem/cache.py +9 -648
  119. warp/fem/dirichlet.py +6 -184
  120. warp/fem/field/__init__.py +8 -109
  121. warp/fem/field/field.py +7 -652
  122. warp/fem/geometry/__init__.py +7 -18
  123. warp/fem/geometry/closest_point.py +11 -77
  124. warp/fem/linalg.py +18 -366
  125. warp/fem/operator.py +11 -369
  126. warp/fem/polynomial.py +9 -209
  127. warp/fem/space/__init__.py +5 -211
  128. warp/fem/space/basis_space.py +6 -662
  129. warp/fem/space/shape/__init__.py +41 -118
  130. warp/fem/space/topology.py +6 -437
  131. warp/fem/types.py +6 -81
  132. warp/fem/utils.py +11 -444
  133. warp/jax.py +8 -165
  134. warp/jax_experimental/__init__.py +14 -1
  135. warp/jax_experimental/custom_call.py +8 -365
  136. warp/jax_experimental/ffi.py +17 -873
  137. warp/jax_experimental/xla_ffi.py +5 -605
  138. warp/marching_cubes.py +5 -689
  139. warp/math.py +16 -393
  140. warp/native/array.h +385 -37
  141. warp/native/builtin.h +314 -37
  142. warp/native/bvh.cpp +43 -9
  143. warp/native/bvh.cu +62 -27
  144. warp/native/bvh.h +310 -309
  145. warp/native/clang/clang.cpp +102 -97
  146. warp/native/coloring.cpp +0 -1
  147. warp/native/crt.h +208 -0
  148. warp/native/exports.h +156 -0
  149. warp/native/hashgrid.cu +2 -0
  150. warp/native/intersect.h +24 -1
  151. warp/native/intersect_tri.h +44 -35
  152. warp/native/mat.h +1456 -276
  153. warp/native/mesh.cpp +4 -4
  154. warp/native/mesh.cu +4 -2
  155. warp/native/mesh.h +176 -61
  156. warp/native/quat.h +0 -52
  157. warp/native/scan.cu +2 -0
  158. warp/native/sparse.cu +7 -3
  159. warp/native/spatial.h +12 -0
  160. warp/native/tile.h +681 -89
  161. warp/native/tile_radix_sort.h +3 -3
  162. warp/native/tile_reduce.h +394 -46
  163. warp/native/tile_scan.h +4 -4
  164. warp/native/vec.h +469 -0
  165. warp/native/version.h +23 -0
  166. warp/native/volume.cpp +1 -1
  167. warp/native/volume.cu +1 -0
  168. warp/native/volume.h +1 -1
  169. warp/native/volume_builder.cu +2 -0
  170. warp/native/warp.cpp +57 -29
  171. warp/native/warp.cu +521 -250
  172. warp/native/warp.h +11 -8
  173. warp/optim/__init__.py +6 -3
  174. warp/optim/adam.py +6 -145
  175. warp/optim/linear.py +14 -1585
  176. warp/optim/sgd.py +6 -94
  177. warp/paddle.py +6 -388
  178. warp/render/__init__.py +8 -4
  179. warp/render/imgui_manager.py +7 -267
  180. warp/render/render_opengl.py +6 -3618
  181. warp/render/render_usd.py +6 -919
  182. warp/render/utils.py +6 -142
  183. warp/sparse.py +37 -2563
  184. warp/tape.py +6 -1188
  185. warp/tests/__main__.py +1 -1
  186. warp/tests/cuda/test_async.py +4 -4
  187. warp/tests/cuda/test_conditional_captures.py +1 -1
  188. warp/tests/cuda/test_multigpu.py +1 -1
  189. warp/tests/cuda/test_streams.py +58 -1
  190. warp/tests/geometry/test_bvh.py +157 -22
  191. warp/tests/geometry/test_marching_cubes.py +0 -1
  192. warp/tests/geometry/test_mesh.py +5 -3
  193. warp/tests/geometry/test_mesh_query_aabb.py +5 -12
  194. warp/tests/geometry/test_mesh_query_point.py +5 -2
  195. warp/tests/geometry/test_mesh_query_ray.py +15 -3
  196. warp/tests/geometry/test_volume_write.py +5 -5
  197. warp/tests/interop/test_dlpack.py +18 -17
  198. warp/tests/interop/test_jax.py +772 -49
  199. warp/tests/interop/test_paddle.py +1 -1
  200. warp/tests/test_adam.py +0 -1
  201. warp/tests/test_arithmetic.py +9 -9
  202. warp/tests/test_array.py +578 -100
  203. warp/tests/test_array_reduce.py +3 -3
  204. warp/tests/test_atomic.py +12 -8
  205. warp/tests/test_atomic_bitwise.py +209 -0
  206. warp/tests/test_atomic_cas.py +4 -4
  207. warp/tests/test_bool.py +2 -2
  208. warp/tests/test_builtins_resolution.py +5 -571
  209. warp/tests/test_codegen.py +33 -14
  210. warp/tests/test_conditional.py +1 -1
  211. warp/tests/test_context.py +6 -6
  212. warp/tests/test_copy.py +242 -161
  213. warp/tests/test_ctypes.py +3 -3
  214. warp/tests/test_devices.py +24 -2
  215. warp/tests/test_examples.py +16 -84
  216. warp/tests/test_fabricarray.py +35 -35
  217. warp/tests/test_fast_math.py +0 -2
  218. warp/tests/test_fem.py +56 -10
  219. warp/tests/test_fixedarray.py +3 -3
  220. warp/tests/test_func.py +8 -5
  221. warp/tests/test_generics.py +1 -1
  222. warp/tests/test_indexedarray.py +24 -24
  223. warp/tests/test_intersect.py +39 -9
  224. warp/tests/test_large.py +1 -1
  225. warp/tests/test_lerp.py +3 -1
  226. warp/tests/test_linear_solvers.py +1 -1
  227. warp/tests/test_map.py +35 -4
  228. warp/tests/test_mat.py +52 -62
  229. warp/tests/test_mat_constructors.py +4 -5
  230. warp/tests/test_mat_lite.py +1 -1
  231. warp/tests/test_mat_scalar_ops.py +121 -121
  232. warp/tests/test_math.py +34 -0
  233. warp/tests/test_module_aot.py +4 -4
  234. warp/tests/test_modules_lite.py +28 -2
  235. warp/tests/test_print.py +11 -11
  236. warp/tests/test_quat.py +93 -58
  237. warp/tests/test_runlength_encode.py +1 -1
  238. warp/tests/test_scalar_ops.py +38 -10
  239. warp/tests/test_smoothstep.py +1 -1
  240. warp/tests/test_sparse.py +126 -15
  241. warp/tests/test_spatial.py +105 -87
  242. warp/tests/test_special_values.py +6 -6
  243. warp/tests/test_static.py +7 -7
  244. warp/tests/test_struct.py +13 -2
  245. warp/tests/test_triangle_closest_point.py +48 -1
  246. warp/tests/test_types.py +27 -15
  247. warp/tests/test_utils.py +52 -52
  248. warp/tests/test_vec.py +29 -29
  249. warp/tests/test_vec_constructors.py +5 -5
  250. warp/tests/test_vec_scalar_ops.py +97 -97
  251. warp/tests/test_version.py +75 -0
  252. warp/tests/tile/test_tile.py +178 -0
  253. warp/tests/tile/test_tile_atomic_bitwise.py +403 -0
  254. warp/tests/tile/test_tile_cholesky.py +7 -4
  255. warp/tests/tile/test_tile_load.py +26 -2
  256. warp/tests/tile/test_tile_mathdx.py +3 -3
  257. warp/tests/tile/test_tile_matmul.py +1 -1
  258. warp/tests/tile/test_tile_mlp.py +2 -4
  259. warp/tests/tile/test_tile_reduce.py +214 -13
  260. warp/tests/unittest_suites.py +6 -14
  261. warp/tests/unittest_utils.py +10 -9
  262. warp/tests/walkthrough_debug.py +3 -1
  263. warp/torch.py +6 -373
  264. warp/types.py +29 -5764
  265. warp/utils.py +10 -1659
  266. {warp_lang-1.9.1.dist-info → warp_lang-1.10.0.dist-info}/METADATA +46 -99
  267. warp_lang-1.10.0.dist-info/RECORD +468 -0
  268. warp_lang-1.10.0.dist-info/licenses/licenses/Gaia-LICENSE.txt +6 -0
  269. warp_lang-1.10.0.dist-info/licenses/licenses/appdirs-LICENSE.txt +22 -0
  270. warp_lang-1.10.0.dist-info/licenses/licenses/asset_pixel_jpg-LICENSE.txt +3 -0
  271. warp_lang-1.10.0.dist-info/licenses/licenses/cuda-LICENSE.txt +1582 -0
  272. warp_lang-1.10.0.dist-info/licenses/licenses/dlpack-LICENSE.txt +201 -0
  273. warp_lang-1.10.0.dist-info/licenses/licenses/fp16-LICENSE.txt +28 -0
  274. warp_lang-1.10.0.dist-info/licenses/licenses/libmathdx-LICENSE.txt +220 -0
  275. warp_lang-1.10.0.dist-info/licenses/licenses/llvm-LICENSE.txt +279 -0
  276. warp_lang-1.10.0.dist-info/licenses/licenses/moller-LICENSE.txt +16 -0
  277. warp_lang-1.10.0.dist-info/licenses/licenses/nanovdb-LICENSE.txt +2 -0
  278. warp_lang-1.10.0.dist-info/licenses/licenses/nvrtc-LICENSE.txt +1592 -0
  279. warp_lang-1.10.0.dist-info/licenses/licenses/svd-LICENSE.txt +23 -0
  280. warp_lang-1.10.0.dist-info/licenses/licenses/unittest_parallel-LICENSE.txt +21 -0
  281. warp_lang-1.10.0.dist-info/licenses/licenses/usd-LICENSE.txt +213 -0
  282. warp_lang-1.10.0.dist-info/licenses/licenses/windingnumber-LICENSE.txt +21 -0
  283. warp/examples/assets/cartpole.urdf +0 -110
  284. warp/examples/assets/crazyflie.usd +0 -0
  285. warp/examples/assets/nv_ant.xml +0 -92
  286. warp/examples/assets/nv_humanoid.xml +0 -183
  287. warp/examples/assets/quadruped.urdf +0 -268
  288. warp/examples/optim/example_bounce.py +0 -266
  289. warp/examples/optim/example_cloth_throw.py +0 -228
  290. warp/examples/optim/example_drone.py +0 -870
  291. warp/examples/optim/example_inverse_kinematics.py +0 -182
  292. warp/examples/optim/example_inverse_kinematics_torch.py +0 -191
  293. warp/examples/optim/example_softbody_properties.py +0 -400
  294. warp/examples/optim/example_spring_cage.py +0 -245
  295. warp/examples/optim/example_trajectory.py +0 -227
  296. warp/examples/sim/example_cartpole.py +0 -143
  297. warp/examples/sim/example_cloth.py +0 -225
  298. warp/examples/sim/example_cloth_self_contact.py +0 -316
  299. warp/examples/sim/example_granular.py +0 -130
  300. warp/examples/sim/example_granular_collision_sdf.py +0 -202
  301. warp/examples/sim/example_jacobian_ik.py +0 -244
  302. warp/examples/sim/example_particle_chain.py +0 -124
  303. warp/examples/sim/example_quadruped.py +0 -203
  304. warp/examples/sim/example_rigid_chain.py +0 -203
  305. warp/examples/sim/example_rigid_contact.py +0 -195
  306. warp/examples/sim/example_rigid_force.py +0 -133
  307. warp/examples/sim/example_rigid_gyroscopic.py +0 -115
  308. warp/examples/sim/example_rigid_soft_contact.py +0 -140
  309. warp/examples/sim/example_soft_body.py +0 -196
  310. warp/examples/tile/example_tile_walker.py +0 -327
  311. warp/sim/__init__.py +0 -74
  312. warp/sim/articulation.py +0 -793
  313. warp/sim/collide.py +0 -2570
  314. warp/sim/graph_coloring.py +0 -307
  315. warp/sim/import_mjcf.py +0 -791
  316. warp/sim/import_snu.py +0 -227
  317. warp/sim/import_urdf.py +0 -579
  318. warp/sim/import_usd.py +0 -898
  319. warp/sim/inertia.py +0 -357
  320. warp/sim/integrator.py +0 -245
  321. warp/sim/integrator_euler.py +0 -2000
  322. warp/sim/integrator_featherstone.py +0 -2101
  323. warp/sim/integrator_vbd.py +0 -2487
  324. warp/sim/integrator_xpbd.py +0 -3295
  325. warp/sim/model.py +0 -4821
  326. warp/sim/particles.py +0 -121
  327. warp/sim/render.py +0 -431
  328. warp/sim/utils.py +0 -431
  329. warp/tests/sim/disabled_kinematics.py +0 -244
  330. warp/tests/sim/test_cloth.py +0 -863
  331. warp/tests/sim/test_collision.py +0 -743
  332. warp/tests/sim/test_coloring.py +0 -347
  333. warp/tests/sim/test_inertia.py +0 -161
  334. warp/tests/sim/test_model.py +0 -226
  335. warp/tests/sim/test_sim_grad.py +0 -287
  336. warp/tests/sim/test_sim_grad_bounce_linear.py +0 -212
  337. warp/tests/sim/test_sim_kinematics.py +0 -98
  338. warp/thirdparty/__init__.py +0 -0
  339. warp_lang-1.9.1.dist-info/RECORD +0 -456
  340. /warp/{fem → _src/fem}/quadrature/__init__.py +0 -0
  341. /warp/{tests/sim → _src/thirdparty}/__init__.py +0 -0
  342. /warp/{thirdparty → _src/thirdparty}/appdirs.py +0 -0
  343. /warp/{thirdparty → _src/thirdparty}/dlpack.py +0 -0
  344. {warp_lang-1.9.1.dist-info → warp_lang-1.10.0.dist-info}/WHEEL +0 -0
  345. {warp_lang-1.9.1.dist-info → warp_lang-1.10.0.dist-info}/licenses/LICENSE.md +0 -0
  346. {warp_lang-1.9.1.dist-info → warp_lang-1.10.0.dist-info}/top_level.txt +0 -0
warp/_src/fem/utils.py ADDED
@@ -0,0 +1,488 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ from typing import Optional, Tuple, Union
17
+
18
+ import numpy as np
19
+
20
+ import warp as wp
21
+ import warp._src.fem.cache as cache
22
+ from warp._src.fem.linalg import array_axpy, inverse_qr, symmetric_eigenvalues_qr # noqa: F401
23
+ from warp._src.fem.types import NULL_NODE_INDEX
24
+ from warp._src.types import scalar_types, type_is_matrix
25
+ from warp._src.utils import array_scan, radix_sort_pairs, runlength_encode
26
+
27
+ _wp_module_name_ = "warp.fem.utils"
28
+
29
+
30
+ def type_zero_element(dtype):
31
+ suffix = cache.pod_type_key(dtype)
32
+
33
+ if dtype in scalar_types:
34
+
35
+ @cache.dynamic_func(suffix=suffix)
36
+ def zero_element():
37
+ return dtype(0.0)
38
+
39
+ return zero_element
40
+
41
+ @cache.dynamic_func(suffix=suffix)
42
+ def zero_element():
43
+ return dtype()
44
+
45
+ return zero_element
46
+
47
+
48
+ def type_basis_element(dtype):
49
+ suffix = cache.pod_type_key(dtype)
50
+
51
+ if dtype in scalar_types:
52
+
53
+ @cache.dynamic_func(suffix=suffix)
54
+ def basis_element(coord: int):
55
+ return dtype(1.0)
56
+
57
+ return basis_element
58
+
59
+ if type_is_matrix(dtype):
60
+ cols = dtype._shape_[1]
61
+
62
+ @cache.dynamic_func(suffix=suffix)
63
+ def basis_element(coord: int):
64
+ v = dtype()
65
+ i = coord // cols
66
+ j = coord - i * cols
67
+ v[i, j] = v.dtype(1.0)
68
+ return v
69
+
70
+ return basis_element
71
+
72
+ @cache.dynamic_func(suffix=suffix)
73
+ def basis_element(coord: int):
74
+ v = dtype()
75
+ v[coord] = v.dtype(1.0)
76
+ return v
77
+
78
+ return basis_element
79
+
80
+
81
+ def compress_node_indices(
82
+ node_count: int,
83
+ node_indices: wp.array(dtype=int),
84
+ return_unique_nodes=False,
85
+ node_offsets: wp.array(dtype=int) = None,
86
+ sorted_array_indices: wp.array(dtype=int) = None,
87
+ unique_node_count: wp.array(dtype=int) = None,
88
+ unique_node_indices: wp.array(dtype=int) = None,
89
+ temporary_store: cache.TemporaryStore = None,
90
+ ) -> Union[Tuple[cache.Temporary, cache.Temporary], Tuple[cache.Temporary, cache.Temporary, int, cache.Temporary]]:
91
+ """
92
+ Compress an unsorted list of node indices into:
93
+ - the `node_offsets` array, giving for each node the start offset of corresponding indices in sorted_array_indices
94
+ - the `sorted_array_indices` array, listing the indices in the input array corresponding to each node
95
+
96
+ Plus if `return_unique_nodes` is ``True``,
97
+ - the `unique_node_count` array containing the number of unique node indices
98
+ - the `unique_node_indices` array containing the sorted list of unique node indices (i.e. the list of indices i for which node_offsets[i] < node_offsets[i+1])
99
+
100
+ Node indices equal to NULL_NODE_INDEX will be ignored
101
+
102
+ If the ``node_offsets``, ``sorted_array_indices``, ``unique_node_count`` and ``unique_node_indices`` arrays are provided and adequately shaped, they will be used to store the results instead of creating new arrays.
103
+
104
+ """
105
+
106
+ index_count = node_indices.size
107
+ device = node_indices.device
108
+
109
+ with wp.ScopedDevice(device):
110
+ sorted_node_indices = cache.borrow_temporary(temporary_store, shape=2 * index_count, dtype=int)
111
+
112
+ if sorted_array_indices is None or sorted_array_indices.shape != sorted_node_indices.shape:
113
+ sorted_array_indices = cache.borrow_temporary_like(sorted_node_indices, temporary_store)
114
+
115
+ indices_per_element = 1 if node_indices.ndim == 1 else node_indices.shape[-1]
116
+ wp.launch(
117
+ kernel=_prepare_node_sort_kernel,
118
+ dim=index_count,
119
+ inputs=[node_indices.flatten(), sorted_node_indices, sorted_array_indices, indices_per_element],
120
+ )
121
+
122
+ # Sort indices
123
+ radix_sort_pairs(sorted_node_indices, sorted_array_indices, count=index_count)
124
+
125
+ # Build prefix sum of number of elements per node
126
+ node_element_counts = cache.borrow_temporary(temporary_store, shape=index_count, dtype=int)
127
+ if unique_node_indices is None or unique_node_indices.shape != node_element_counts.shape:
128
+ unique_node_indices = cache.borrow_temporary_like(node_element_counts, temporary_store)
129
+
130
+ if unique_node_count is None or unique_node_count.shape != (1,):
131
+ unique_node_count = cache.borrow_temporary(temporary_store, shape=(1,), dtype=int)
132
+
133
+ runlength_encode(
134
+ sorted_node_indices,
135
+ unique_node_indices,
136
+ node_element_counts,
137
+ value_count=index_count,
138
+ run_count=unique_node_count,
139
+ )
140
+
141
+ # Scatter seen run counts to global array of element count per node
142
+ if node_offsets is None or node_offsets.shape != (node_count + 1,):
143
+ node_offsets = cache.borrow_temporary(temporary_store, shape=(node_count + 1), dtype=int)
144
+
145
+ node_offsets.zero_()
146
+ wp.launch(
147
+ kernel=_scatter_node_counts,
148
+ dim=node_count + 1, # +1 to accommodate possible NULL node,
149
+ inputs=[node_element_counts, unique_node_indices, node_offsets, unique_node_count],
150
+ )
151
+
152
+ # Prefix sum of number of elements per node
153
+ array_scan(node_offsets, node_offsets, inclusive=True)
154
+
155
+ sorted_node_indices.release()
156
+ node_element_counts.release()
157
+
158
+ if not return_unique_nodes:
159
+ return node_offsets, sorted_array_indices
160
+
161
+ return node_offsets, sorted_array_indices, unique_node_count, unique_node_indices
162
+
163
+
164
+ def host_read_at_index(array: wp.array, index: int = -1, temporary_store: cache.TemporaryStore = None) -> int:
165
+ """Returns the value of the array element at the given index on host"""
166
+
167
+ if index < 0:
168
+ index += array.shape[0]
169
+ return array[index : index + 1].numpy()[0]
170
+
171
+
172
+ def masked_indices(
173
+ mask: wp.array,
174
+ missing_index: int = -1,
175
+ max_index_count: int = -1,
176
+ local_to_global: Optional[wp.array] = None,
177
+ global_to_local: Optional[wp.array] = None,
178
+ temporary_store: cache.TemporaryStore = None,
179
+ ) -> Tuple[wp.array, wp.array]:
180
+ """
181
+ From an array of boolean masks (must be either 0 or 1), returns:
182
+ - Local to global map: The list of indices for which the mask is 1
183
+ - Global to local map: A map associating to each element of the input mask array its local index if non-zero, or missing_index if zero.
184
+
185
+ If ``max_index_count`` is provided, it will be used to limit the number of indices returned instead of synchronizing back to the host
186
+
187
+ If ``local_to_global`` and ``global_to_local`` are provided and adequately sized, they will be used to store the indices instead of creating new arrays.
188
+ """
189
+
190
+ if global_to_local is None or global_to_local.shape != mask.shape:
191
+ offsets = cache.borrow_temporary_like(mask, temporary_store)
192
+ global_to_local = offsets
193
+ else:
194
+ offsets = global_to_local
195
+
196
+ array_scan(mask, offsets, inclusive=True)
197
+
198
+ # Get back total counts (on host if no estimate is provided)
199
+ local_count = (
200
+ min(max_index_count, mask.shape[0])
201
+ if max_index_count >= 0
202
+ else int(host_read_at_index(offsets, temporary_store=temporary_store))
203
+ )
204
+
205
+ # Convert counts to indices
206
+ if local_to_global is None or local_to_global.shape[0] != local_count:
207
+ local_to_global = cache.borrow_temporary(temporary_store, shape=local_count, device=mask.device, dtype=int)
208
+
209
+ if max_index_count >= 0:
210
+ # We might (and hopefully have) reserved more space than necessary
211
+ # Fill with missing index to avoid uninitialized values
212
+ local_to_global.fill_(missing_index)
213
+
214
+ wp.launch(
215
+ kernel=_masked_indices_kernel,
216
+ dim=offsets.shape,
217
+ inputs=[missing_index, mask, offsets, local_to_global, offsets],
218
+ device=mask.device,
219
+ )
220
+
221
+ return local_to_global, global_to_local
222
+
223
+
224
+ @wp.kernel
225
+ def _prepare_node_sort_kernel(
226
+ node_indices: wp.array(dtype=int),
227
+ sort_keys: wp.array(dtype=int),
228
+ sort_values: wp.array(dtype=int),
229
+ divisor: int,
230
+ ):
231
+ i = wp.tid()
232
+ node = node_indices[i]
233
+ sort_keys[i] = wp.where(node >= 0, node, NULL_NODE_INDEX)
234
+ sort_values[i] = i // divisor
235
+
236
+
237
+ @wp.kernel
238
+ def _scatter_node_counts(
239
+ unique_counts: wp.array(dtype=int),
240
+ unique_node_indices: wp.array(dtype=int),
241
+ node_counts: wp.array(dtype=int),
242
+ unique_node_count: wp.array(dtype=int),
243
+ ):
244
+ i = wp.tid()
245
+
246
+ if i >= unique_node_count[0]:
247
+ if i < unique_node_indices.shape[0]:
248
+ unique_node_indices[i] = NULL_NODE_INDEX
249
+ return
250
+
251
+ node_index = unique_node_indices[i]
252
+ if node_index == NULL_NODE_INDEX:
253
+ wp.atomic_sub(unique_node_count, 0, 1)
254
+ return
255
+
256
+ node_counts[1 + node_index] = unique_counts[i]
257
+
258
+
259
+ @wp.kernel
260
+ def _masked_indices_kernel(
261
+ missing_index: int,
262
+ mask: wp.array(dtype=int),
263
+ offsets: wp.array(dtype=int),
264
+ masked_to_global: wp.array(dtype=int),
265
+ global_to_masked: wp.array(dtype=int),
266
+ ):
267
+ i = wp.tid()
268
+
269
+ max_count = masked_to_global.shape[0]
270
+ masked_idx = offsets[i] - 1
271
+
272
+ if i + 1 == offsets.shape[0] and masked_idx >= max_count:
273
+ if max_count < offsets[i]:
274
+ wp.printf(
275
+ "Number of elements exceeded the %d limit; increase to %d.\n",
276
+ max_count,
277
+ masked_idx + 1,
278
+ )
279
+
280
+ if mask[i] == 0 or masked_idx >= max_count:
281
+ # index not in mask, or greater than reserved index count
282
+ global_to_masked[i] = missing_index
283
+ else:
284
+ global_to_masked[i] = masked_idx
285
+ masked_to_global[masked_idx] = i
286
+
287
+
288
+ def grid_to_tris(Nx: int, Ny: int):
289
+ """Constructs a triangular mesh topology by dividing each cell of a dense 2D grid into two triangles.
290
+
291
+ The resulting triangles will be oriented counter-clockwise assuming that `y` is the fastest moving index direction
292
+
293
+ Args:
294
+ Nx: Resolution of the grid along `x` dimension
295
+ Ny: Resolution of the grid along `y` dimension
296
+
297
+ Returns:
298
+ Array of shape (2 * Nx * Ny, 3) containing vertex indices for each triangle
299
+ """
300
+
301
+ cx, cy = np.meshgrid(np.arange(Nx, dtype=int), np.arange(Ny, dtype=int), indexing="ij")
302
+
303
+ vidx = np.transpose(
304
+ np.array(
305
+ [
306
+ (Ny + 1) * cx + cy,
307
+ (Ny + 1) * (cx + 1) + cy,
308
+ (Ny + 1) * (cx + 1) + (cy + 1),
309
+ (Ny + 1) * cx + cy,
310
+ (Ny + 1) * (cx + 1) + (cy + 1),
311
+ (Ny + 1) * (cx) + (cy + 1),
312
+ ]
313
+ )
314
+ ).reshape((-1, 3))
315
+
316
+ return vidx
317
+
318
+
319
+ def grid_to_tets(Nx: int, Ny: int, Nz: int):
320
+ """Constructs a tetrahedral mesh topology by diving each cell of a dense 3D grid into five tetrahedrons
321
+
322
+ The resulting tets have positive volume assuming that `z` is the fastest moving index direction
323
+
324
+ Args:
325
+ Nx: Resolution of the grid along `x` dimension
326
+ Ny: Resolution of the grid along `y` dimension
327
+ Nz: Resolution of the grid along `z` dimension
328
+
329
+ Returns:
330
+ Array of shape (5 * Nx * Ny * Nz, 4) containing vertex indices for each tet
331
+ """
332
+
333
+ # Global node indices for each cell
334
+ cx, cy, cz = np.meshgrid(
335
+ np.arange(Nx, dtype=int), np.arange(Ny, dtype=int), np.arange(Nz, dtype=int), indexing="ij"
336
+ )
337
+
338
+ grid_vidx = np.array(
339
+ [
340
+ (Ny + 1) * (Nz + 1) * cx + (Nz + 1) * cy + cz,
341
+ (Ny + 1) * (Nz + 1) * cx + (Nz + 1) * cy + cz + 1,
342
+ (Ny + 1) * (Nz + 1) * cx + (Nz + 1) * (cy + 1) + cz,
343
+ (Ny + 1) * (Nz + 1) * cx + (Nz + 1) * (cy + 1) + cz + 1,
344
+ (Ny + 1) * (Nz + 1) * (cx + 1) + (Nz + 1) * cy + cz,
345
+ (Ny + 1) * (Nz + 1) * (cx + 1) + (Nz + 1) * cy + cz + 1,
346
+ (Ny + 1) * (Nz + 1) * (cx + 1) + (Nz + 1) * (cy + 1) + cz,
347
+ (Ny + 1) * (Nz + 1) * (cx + 1) + (Nz + 1) * (cy + 1) + cz + 1,
348
+ ]
349
+ )
350
+
351
+ # decompose grid cells into 5 tets
352
+ tet_vidx = np.array(
353
+ [
354
+ [0, 1, 2, 4],
355
+ [3, 2, 1, 7],
356
+ [5, 1, 7, 4],
357
+ [6, 7, 4, 2],
358
+ [4, 1, 2, 7],
359
+ ]
360
+ )
361
+
362
+ # Convert to 3d index coordinates
363
+ vidx_coords = np.array(
364
+ [
365
+ [0, 0, 0],
366
+ [0, 0, 1],
367
+ [0, 1, 0],
368
+ [0, 1, 1],
369
+ [1, 0, 0],
370
+ [1, 0, 1],
371
+ [1, 1, 0],
372
+ [1, 1, 1],
373
+ ]
374
+ )
375
+ tet_coords = vidx_coords[tet_vidx]
376
+
377
+ # Symmetry bits for each cell
378
+ ox, oy, oz = np.meshgrid(
379
+ np.arange(Nx, dtype=int) % 2, np.arange(Ny, dtype=int) % 2, np.arange(Nz, dtype=int) % 2, indexing="ij"
380
+ )
381
+ tet_coords = np.broadcast_to(tet_coords, shape=(*ox.shape, *tet_coords.shape))
382
+
383
+ # Flip coordinates according to symmetry
384
+ ox_bk = np.broadcast_to(ox.reshape(*ox.shape, 1, 1), tet_coords.shape[:-1])
385
+ oy_bk = np.broadcast_to(oy.reshape(*oy.shape, 1, 1), tet_coords.shape[:-1])
386
+ oz_bk = np.broadcast_to(oz.reshape(*oz.shape, 1, 1), tet_coords.shape[:-1])
387
+
388
+ tet_coords_x = tet_coords[..., 0] ^ ox_bk
389
+ tet_coords_y = tet_coords[..., 1] ^ oy_bk
390
+ tet_coords_z = tet_coords[..., 2] ^ oz_bk
391
+
392
+ # Back to local vertex indices
393
+ corner_indices = 4 * tet_coords_x + 2 * tet_coords_y + tet_coords_z
394
+
395
+ # Now go from cell-local to global node indices
396
+ # There must be a nicer way than this, but for small grids this works
397
+
398
+ corner_indices = corner_indices.reshape(-1, 4)
399
+
400
+ grid_vidx = grid_vidx.reshape((8, -1, 1))
401
+ grid_vidx = np.broadcast_to(grid_vidx, shape=(8, grid_vidx.shape[1], 5))
402
+ grid_vidx = grid_vidx.reshape((8, -1))
403
+
404
+ node_indices = np.arange(corner_indices.shape[0])
405
+ tet_grid_vidx = np.transpose(
406
+ [
407
+ grid_vidx[corner_indices[:, 0], node_indices],
408
+ grid_vidx[corner_indices[:, 1], node_indices],
409
+ grid_vidx[corner_indices[:, 2], node_indices],
410
+ grid_vidx[corner_indices[:, 3], node_indices],
411
+ ]
412
+ )
413
+
414
+ return tet_grid_vidx
415
+
416
+
417
+ def grid_to_quads(Nx: int, Ny: int):
418
+ """Constructs a quadrilateral mesh topology from a dense 2D grid
419
+
420
+ The resulting quads will be indexed counter-clockwise
421
+
422
+ Args:
423
+ Nx: Resolution of the grid along `x` dimension
424
+ Ny: Resolution of the grid along `y` dimension
425
+
426
+ Returns:
427
+ Array of shape (Nx * Ny, 4) containing vertex indices for each quadrilateral
428
+ """
429
+
430
+ quad_vtx = np.array(
431
+ [
432
+ [0, 0],
433
+ [1, 0],
434
+ [1, 1],
435
+ [0, 1],
436
+ ]
437
+ ).T
438
+
439
+ quads = np.stack(np.meshgrid(np.arange(0, Nx), np.arange(0, Ny), indexing="ij"))
440
+
441
+ quads_vtx_shape = (*quads.shape, quad_vtx.shape[1])
442
+ quads_vtx = np.broadcast_to(quads.reshape(*quads.shape, 1), quads_vtx_shape) + np.broadcast_to(
443
+ quad_vtx.reshape(2, 1, 1, quad_vtx.shape[1]), quads_vtx_shape
444
+ )
445
+
446
+ quad_vtx_indices = quads_vtx[0] * (Ny + 1) + quads_vtx[1]
447
+
448
+ return quad_vtx_indices.reshape(-1, 4)
449
+
450
+
451
+ def grid_to_hexes(Nx: int, Ny: int, Nz: int):
452
+ """Constructs a hexahedral mesh topology from a dense 3D grid
453
+
454
+ The resulting hexes will be indexed following usual convention assuming that `z` is the fastest moving index direction
455
+ (counter-clockwise bottom vertices, then counter-clockwise top vertices)
456
+
457
+ Args:
458
+ Nx: Resolution of the grid along `x` dimension
459
+ Ny: Resolution of the grid along `y` dimension
460
+ Nz: Resolution of the grid along `z` dimension
461
+
462
+ Returns:
463
+ Array of shape (Nx * Ny * Nz, 8) containing vertex indices for each hexahedron
464
+ """
465
+
466
+ hex_vtx = np.array(
467
+ [
468
+ [0, 0, 0],
469
+ [1, 0, 0],
470
+ [1, 1, 0],
471
+ [0, 1, 0],
472
+ [0, 0, 1],
473
+ [1, 0, 1],
474
+ [1, 1, 1],
475
+ [0, 1, 1],
476
+ ]
477
+ ).T
478
+
479
+ hexes = np.stack(np.meshgrid(np.arange(0, Nx), np.arange(0, Ny), np.arange(0, Nz), indexing="ij"))
480
+
481
+ hexes_vtx_shape = (*hexes.shape, hex_vtx.shape[1])
482
+ hexes_vtx = np.broadcast_to(hexes.reshape(*hexes.shape, 1), hexes_vtx_shape) + np.broadcast_to(
483
+ hex_vtx.reshape(3, 1, 1, 1, hex_vtx.shape[1]), hexes_vtx_shape
484
+ )
485
+
486
+ hexes_vtx_indices = hexes_vtx[0] * (Nz + 1) * (Ny + 1) + hexes_vtx[1] * (Nz + 1) + hexes_vtx[2]
487
+
488
+ return hexes_vtx_indices.reshape(-1, 8)
warp/_src/jax.py ADDED
@@ -0,0 +1,188 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import warp
17
+
18
+ _wp_module_name_ = "warp.jax"
19
+
20
+
21
+ def device_to_jax(warp_device: warp._src.context.Devicelike):
22
+ """Return the Jax device corresponding to a Warp device.
23
+
24
+ Returns:
25
+ :class:`jax.Device`
26
+
27
+ Raises:
28
+ RuntimeError: Failed to find the corresponding Jax device.
29
+ """
30
+ import jax
31
+
32
+ d = warp.get_device(warp_device)
33
+
34
+ if d.is_cuda:
35
+ cuda_devices = jax.devices("cuda")
36
+ if d.ordinal >= len(cuda_devices):
37
+ raise RuntimeError(f"Jax device corresponding to '{warp_device}' is not available")
38
+ return cuda_devices[d.ordinal]
39
+ else:
40
+ cpu_devices = jax.devices("cpu")
41
+ if not cpu_devices:
42
+ raise RuntimeError(f"Jax device corresponding to '{warp_device}' is not available")
43
+ return cpu_devices[0]
44
+
45
+
46
+ def device_from_jax(jax_device) -> warp._src.context.Device:
47
+ """Return the Warp device corresponding to a Jax device.
48
+
49
+ Args:
50
+ jax_device (jax.Device): A Jax device descriptor.
51
+
52
+ Raises:
53
+ RuntimeError: The Jax device is neither a CPU nor GPU device.
54
+ """
55
+ if jax_device.platform == "cpu":
56
+ return warp.get_device("cpu")
57
+ elif jax_device.platform == "gpu":
58
+ return warp.get_cuda_device(jax_device.id)
59
+ else:
60
+ raise RuntimeError(f"Unsupported Jax device platform '{jax_device.platform}'")
61
+
62
+
63
+ def get_jax_device():
64
+ """Get the current Jax device."""
65
+ import jax
66
+
67
+ # TODO: is there a simpler way of getting the Jax "current" device?
68
+ # check if jax.default_device() context manager is active
69
+ device = jax.config.jax_default_device
70
+ # if default device is not set, use first device
71
+ if device is None:
72
+ device = jax.local_devices()[0]
73
+ return device
74
+
75
+
76
+ def dtype_to_jax(warp_dtype):
77
+ """Return the Jax dtype corresponding to a Warp dtype.
78
+
79
+ Args:
80
+ warp_dtype: A Warp data type that has a corresponding Jax data type.
81
+
82
+ Raises:
83
+ TypeError: Unable to find a corresponding Jax data type.
84
+ """
85
+ # initialize lookup table on first call to defer jax import
86
+ if dtype_to_jax.type_map is None:
87
+ import jax.numpy as jp
88
+
89
+ dtype_to_jax.type_map = {
90
+ warp.float16: jp.float16,
91
+ warp.float32: jp.float32,
92
+ warp.float64: jp.float64,
93
+ warp.int8: jp.int8,
94
+ warp.int16: jp.int16,
95
+ warp.int32: jp.int32,
96
+ warp.int64: jp.int64,
97
+ warp.uint8: jp.uint8,
98
+ warp.uint16: jp.uint16,
99
+ warp.uint32: jp.uint32,
100
+ warp.uint64: jp.uint64,
101
+ warp.bool: jp.bool_,
102
+ }
103
+
104
+ jax_dtype = dtype_to_jax.type_map.get(warp_dtype)
105
+ if jax_dtype is not None:
106
+ return jax_dtype
107
+ else:
108
+ raise TypeError(f"Cannot convert {warp_dtype} to a Jax type")
109
+
110
+
111
+ def dtype_from_jax(jax_dtype):
112
+ """Return the Warp dtype corresponding to a Jax dtype.
113
+
114
+ Raises:
115
+ TypeError: Unable to find a corresponding Warp data type.
116
+ """
117
+ # initialize lookup table on first call to defer jax import
118
+ if dtype_from_jax.type_map is None:
119
+ import jax.numpy as jp
120
+
121
+ dtype_from_jax.type_map = {
122
+ # Jax scalar types
123
+ jp.float16: warp.float16,
124
+ jp.float32: warp.float32,
125
+ jp.float64: warp.float64,
126
+ jp.int8: warp.int8,
127
+ jp.int16: warp.int16,
128
+ jp.int32: warp.int32,
129
+ jp.int64: warp.int64,
130
+ jp.uint8: warp.uint8,
131
+ jp.uint16: warp.uint16,
132
+ jp.uint32: warp.uint32,
133
+ jp.uint64: warp.uint64,
134
+ jp.bool_: warp.bool,
135
+ # Jax dtype objects
136
+ jp.dtype(jp.float16): warp.float16,
137
+ jp.dtype(jp.float32): warp.float32,
138
+ jp.dtype(jp.float64): warp.float64,
139
+ jp.dtype(jp.int8): warp.int8,
140
+ jp.dtype(jp.int16): warp.int16,
141
+ jp.dtype(jp.int32): warp.int32,
142
+ jp.dtype(jp.int64): warp.int64,
143
+ jp.dtype(jp.uint8): warp.uint8,
144
+ jp.dtype(jp.uint16): warp.uint16,
145
+ jp.dtype(jp.uint32): warp.uint32,
146
+ jp.dtype(jp.uint64): warp.uint64,
147
+ jp.dtype(jp.bool_): warp.bool,
148
+ }
149
+
150
+ wp_dtype = dtype_from_jax.type_map.get(jax_dtype)
151
+ if wp_dtype is not None:
152
+ return wp_dtype
153
+ else:
154
+ raise TypeError(f"Cannot convert {jax_dtype} to a Warp type")
155
+
156
+
157
+ # lookup tables initialized when needed
158
+ dtype_from_jax.type_map = None
159
+ dtype_to_jax.type_map = None
160
+
161
+
162
+ def to_jax(warp_array):
163
+ """
164
+ Convert a Warp array to a Jax array without copying the data.
165
+
166
+ Args:
167
+ warp_array (warp.array): The Warp array to convert.
168
+
169
+ Returns:
170
+ jax.Array: The converted Jax array.
171
+ """
172
+ import jax.dlpack
173
+
174
+ return jax.dlpack.from_dlpack(warp_array)
175
+
176
+
177
+ def from_jax(jax_array, dtype=None) -> warp.array:
178
+ """Convert a Jax array to a Warp array without copying the data.
179
+
180
+ Args:
181
+ jax_array (jax.Array): The Jax array to convert.
182
+ dtype (optional): The target data type of the resulting Warp array. Defaults to the Jax array's data type mapped to a Warp data type.
183
+
184
+ Returns:
185
+ warp.array: The converted Warp array.
186
+ """
187
+
188
+ return warp.from_dlpack(jax_array, dtype=dtype)
@@ -0,0 +1,14 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.