warp-lang 1.7.2rc1__py3-none-win_amd64.whl → 1.8.1__py3-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +3 -1
- warp/__init__.pyi +3489 -1
- warp/autograd.py +45 -122
- warp/bin/warp-clang.dll +0 -0
- warp/bin/warp.dll +0 -0
- warp/build.py +241 -252
- warp/build_dll.py +130 -26
- warp/builtins.py +1907 -384
- warp/codegen.py +272 -104
- warp/config.py +12 -1
- warp/constants.py +1 -1
- warp/context.py +770 -238
- warp/dlpack.py +1 -1
- warp/examples/benchmarks/benchmark_cloth.py +2 -2
- warp/examples/benchmarks/benchmark_tile_sort.py +155 -0
- warp/examples/core/example_sample_mesh.py +1 -1
- warp/examples/core/example_spin_lock.py +93 -0
- warp/examples/core/example_work_queue.py +118 -0
- warp/examples/fem/example_adaptive_grid.py +5 -5
- warp/examples/fem/example_apic_fluid.py +1 -1
- warp/examples/fem/example_burgers.py +1 -1
- warp/examples/fem/example_convection_diffusion.py +9 -6
- warp/examples/fem/example_darcy_ls_optimization.py +489 -0
- warp/examples/fem/example_deformed_geometry.py +1 -1
- warp/examples/fem/example_diffusion.py +2 -2
- warp/examples/fem/example_diffusion_3d.py +1 -1
- warp/examples/fem/example_distortion_energy.py +1 -1
- warp/examples/fem/example_elastic_shape_optimization.py +387 -0
- warp/examples/fem/example_magnetostatics.py +5 -3
- warp/examples/fem/example_mixed_elasticity.py +5 -3
- warp/examples/fem/example_navier_stokes.py +11 -9
- warp/examples/fem/example_nonconforming_contact.py +5 -3
- warp/examples/fem/example_streamlines.py +8 -3
- warp/examples/fem/utils.py +9 -8
- warp/examples/interop/example_jax_callable.py +34 -4
- warp/examples/interop/example_jax_ffi_callback.py +2 -2
- warp/examples/interop/example_jax_kernel.py +27 -1
- warp/examples/optim/example_drone.py +1 -1
- warp/examples/sim/example_cloth.py +1 -1
- warp/examples/sim/example_cloth_self_contact.py +48 -54
- warp/examples/tile/example_tile_block_cholesky.py +502 -0
- warp/examples/tile/example_tile_cholesky.py +2 -1
- warp/examples/tile/example_tile_convolution.py +1 -1
- warp/examples/tile/example_tile_filtering.py +1 -1
- warp/examples/tile/example_tile_matmul.py +1 -1
- warp/examples/tile/example_tile_mlp.py +2 -0
- warp/fabric.py +7 -7
- warp/fem/__init__.py +5 -0
- warp/fem/adaptivity.py +1 -1
- warp/fem/cache.py +152 -63
- warp/fem/dirichlet.py +2 -2
- warp/fem/domain.py +136 -6
- warp/fem/field/field.py +141 -99
- warp/fem/field/nodal_field.py +85 -39
- warp/fem/field/virtual.py +99 -52
- warp/fem/geometry/adaptive_nanogrid.py +91 -86
- warp/fem/geometry/closest_point.py +13 -0
- warp/fem/geometry/deformed_geometry.py +102 -40
- warp/fem/geometry/element.py +56 -2
- warp/fem/geometry/geometry.py +323 -22
- warp/fem/geometry/grid_2d.py +157 -62
- warp/fem/geometry/grid_3d.py +116 -20
- warp/fem/geometry/hexmesh.py +86 -20
- warp/fem/geometry/nanogrid.py +166 -86
- warp/fem/geometry/partition.py +59 -25
- warp/fem/geometry/quadmesh.py +86 -135
- warp/fem/geometry/tetmesh.py +47 -119
- warp/fem/geometry/trimesh.py +77 -270
- warp/fem/integrate.py +181 -95
- warp/fem/linalg.py +25 -58
- warp/fem/operator.py +124 -27
- warp/fem/quadrature/pic_quadrature.py +36 -14
- warp/fem/quadrature/quadrature.py +40 -16
- warp/fem/space/__init__.py +1 -1
- warp/fem/space/basis_function_space.py +66 -46
- warp/fem/space/basis_space.py +17 -4
- warp/fem/space/dof_mapper.py +1 -1
- warp/fem/space/function_space.py +2 -2
- warp/fem/space/grid_2d_function_space.py +4 -1
- warp/fem/space/hexmesh_function_space.py +4 -2
- warp/fem/space/nanogrid_function_space.py +3 -1
- warp/fem/space/partition.py +11 -2
- warp/fem/space/quadmesh_function_space.py +4 -1
- warp/fem/space/restriction.py +5 -2
- warp/fem/space/shape/__init__.py +10 -8
- warp/fem/space/tetmesh_function_space.py +4 -1
- warp/fem/space/topology.py +52 -21
- warp/fem/space/trimesh_function_space.py +4 -1
- warp/fem/utils.py +53 -8
- warp/jax.py +1 -2
- warp/jax_experimental/ffi.py +210 -67
- warp/jax_experimental/xla_ffi.py +37 -24
- warp/math.py +171 -1
- warp/native/array.h +103 -4
- warp/native/builtin.h +182 -35
- warp/native/coloring.cpp +6 -2
- warp/native/cuda_util.cpp +1 -1
- warp/native/exports.h +118 -63
- warp/native/intersect.h +5 -5
- warp/native/mat.h +8 -13
- warp/native/mathdx.cpp +11 -5
- warp/native/matnn.h +1 -123
- warp/native/mesh.h +1 -1
- warp/native/quat.h +34 -6
- warp/native/rand.h +7 -7
- warp/native/sparse.cpp +121 -258
- warp/native/sparse.cu +181 -274
- warp/native/spatial.h +305 -17
- warp/native/svd.h +23 -8
- warp/native/tile.h +603 -73
- warp/native/tile_radix_sort.h +1112 -0
- warp/native/tile_reduce.h +239 -13
- warp/native/tile_scan.h +240 -0
- warp/native/tuple.h +189 -0
- warp/native/vec.h +10 -20
- warp/native/warp.cpp +36 -4
- warp/native/warp.cu +588 -52
- warp/native/warp.h +47 -74
- warp/optim/linear.py +5 -1
- warp/paddle.py +7 -8
- warp/py.typed +0 -0
- warp/render/render_opengl.py +110 -80
- warp/render/render_usd.py +124 -62
- warp/sim/__init__.py +9 -0
- warp/sim/collide.py +253 -80
- warp/sim/graph_coloring.py +8 -1
- warp/sim/import_mjcf.py +4 -3
- warp/sim/import_usd.py +11 -7
- warp/sim/integrator.py +5 -2
- warp/sim/integrator_euler.py +1 -1
- warp/sim/integrator_featherstone.py +1 -1
- warp/sim/integrator_vbd.py +761 -322
- warp/sim/integrator_xpbd.py +1 -1
- warp/sim/model.py +265 -260
- warp/sim/utils.py +10 -7
- warp/sparse.py +303 -166
- warp/tape.py +54 -51
- warp/tests/cuda/test_conditional_captures.py +1046 -0
- warp/tests/cuda/test_streams.py +1 -1
- warp/tests/geometry/test_volume.py +2 -2
- warp/tests/interop/test_dlpack.py +9 -9
- warp/tests/interop/test_jax.py +0 -1
- warp/tests/run_coverage_serial.py +1 -1
- warp/tests/sim/disabled_kinematics.py +2 -2
- warp/tests/sim/{test_vbd.py → test_cloth.py} +378 -112
- warp/tests/sim/test_collision.py +159 -51
- warp/tests/sim/test_coloring.py +91 -2
- warp/tests/test_array.py +254 -2
- warp/tests/test_array_reduce.py +2 -2
- warp/tests/test_assert.py +53 -0
- warp/tests/test_atomic_cas.py +312 -0
- warp/tests/test_codegen.py +142 -19
- warp/tests/test_conditional.py +47 -1
- warp/tests/test_ctypes.py +0 -20
- warp/tests/test_devices.py +8 -0
- warp/tests/test_fabricarray.py +4 -2
- warp/tests/test_fem.py +58 -25
- warp/tests/test_func.py +42 -1
- warp/tests/test_grad.py +1 -1
- warp/tests/test_lerp.py +1 -3
- warp/tests/test_map.py +481 -0
- warp/tests/test_mat.py +23 -24
- warp/tests/test_quat.py +28 -15
- warp/tests/test_rounding.py +10 -38
- warp/tests/test_runlength_encode.py +7 -7
- warp/tests/test_smoothstep.py +1 -1
- warp/tests/test_sparse.py +83 -2
- warp/tests/test_spatial.py +507 -1
- warp/tests/test_static.py +48 -0
- warp/tests/test_struct.py +2 -2
- warp/tests/test_tape.py +38 -0
- warp/tests/test_tuple.py +265 -0
- warp/tests/test_types.py +2 -2
- warp/tests/test_utils.py +24 -18
- warp/tests/test_vec.py +38 -408
- warp/tests/test_vec_constructors.py +325 -0
- warp/tests/tile/test_tile.py +438 -131
- warp/tests/tile/test_tile_mathdx.py +518 -14
- warp/tests/tile/test_tile_matmul.py +179 -0
- warp/tests/tile/test_tile_reduce.py +307 -5
- warp/tests/tile/test_tile_shared_memory.py +136 -7
- warp/tests/tile/test_tile_sort.py +121 -0
- warp/tests/unittest_suites.py +14 -6
- warp/types.py +462 -308
- warp/utils.py +647 -86
- {warp_lang-1.7.2rc1.dist-info → warp_lang-1.8.1.dist-info}/METADATA +20 -6
- {warp_lang-1.7.2rc1.dist-info → warp_lang-1.8.1.dist-info}/RECORD +190 -176
- warp/stubs.py +0 -3381
- warp/tests/sim/test_xpbd.py +0 -399
- warp/tests/test_mlp.py +0 -282
- {warp_lang-1.7.2rc1.dist-info → warp_lang-1.8.1.dist-info}/WHEEL +0 -0
- {warp_lang-1.7.2rc1.dist-info → warp_lang-1.8.1.dist-info}/licenses/LICENSE.md +0 -0
- {warp_lang-1.7.2rc1.dist-info → warp_lang-1.8.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,179 @@
|
|
|
1
|
+
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
|
|
16
|
+
import unittest
|
|
17
|
+
from typing import Any
|
|
18
|
+
|
|
19
|
+
import numpy as np
|
|
20
|
+
|
|
21
|
+
import warp as wp
|
|
22
|
+
from warp.tests.unittest_utils import *
|
|
23
|
+
|
|
24
|
+
TILE_M = wp.constant(8)
|
|
25
|
+
TILE_N = wp.constant(4)
|
|
26
|
+
TILE_K = wp.constant(8)
|
|
27
|
+
|
|
28
|
+
# num threads per-tile
|
|
29
|
+
TILE_DIM = 64
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
@wp.kernel
|
|
33
|
+
def tile_grouped_gemm(A: wp.array3d(dtype=float), B: wp.array3d(dtype=float), C: wp.array3d(dtype=float)):
|
|
34
|
+
# output tile index
|
|
35
|
+
i = wp.tid()
|
|
36
|
+
|
|
37
|
+
a = wp.tile_load(A[i], shape=(TILE_M, TILE_K))
|
|
38
|
+
b = wp.tile_load(B[i], shape=(TILE_K, TILE_N))
|
|
39
|
+
|
|
40
|
+
sum = wp.tile_zeros(shape=(TILE_M, TILE_N), dtype=wp.float32)
|
|
41
|
+
|
|
42
|
+
wp.tile_matmul(a, b, sum)
|
|
43
|
+
|
|
44
|
+
wp.tile_store(C[i], sum)
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
def test_tile_grouped_gemm(test, device):
|
|
48
|
+
batch_count = 56
|
|
49
|
+
|
|
50
|
+
M = TILE_M
|
|
51
|
+
N = TILE_N
|
|
52
|
+
K = TILE_K
|
|
53
|
+
|
|
54
|
+
rng = np.random.default_rng(42)
|
|
55
|
+
A = rng.random((batch_count, M, K), dtype=np.float32)
|
|
56
|
+
B = rng.random((batch_count, K, N), dtype=np.float32)
|
|
57
|
+
C = A @ B
|
|
58
|
+
|
|
59
|
+
A_wp = wp.array(A, requires_grad=True, device=device)
|
|
60
|
+
B_wp = wp.array(B, requires_grad=True, device=device)
|
|
61
|
+
C_wp = wp.zeros((batch_count, TILE_M, TILE_N), requires_grad=True, device=device)
|
|
62
|
+
|
|
63
|
+
with wp.Tape() as tape:
|
|
64
|
+
wp.launch_tiled(
|
|
65
|
+
tile_grouped_gemm, dim=[batch_count], inputs=[A_wp, B_wp, C_wp], block_dim=TILE_DIM, device=device
|
|
66
|
+
)
|
|
67
|
+
|
|
68
|
+
# TODO: 32 mismatched elements
|
|
69
|
+
assert_np_equal(C_wp.numpy(), C, 1e-6)
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
@wp.kernel
|
|
73
|
+
def tile_gemm(A: wp.array2d(dtype=Any), B: wp.array2d(dtype=Any), C: wp.array2d(dtype=Any)):
|
|
74
|
+
# output tile index
|
|
75
|
+
i, j = wp.tid()
|
|
76
|
+
|
|
77
|
+
sum = wp.tile_zeros(shape=(TILE_M, TILE_N), dtype=A.dtype)
|
|
78
|
+
|
|
79
|
+
M = A.shape[0]
|
|
80
|
+
N = B.shape[1]
|
|
81
|
+
K = A.shape[1]
|
|
82
|
+
|
|
83
|
+
count = int(K / TILE_K)
|
|
84
|
+
|
|
85
|
+
for k in range(0, count):
|
|
86
|
+
a = wp.tile_load(A, shape=(TILE_M, TILE_K), offset=(i * TILE_M, k * TILE_K))
|
|
87
|
+
b = wp.tile_load(B, shape=(TILE_K, TILE_N), offset=(k * TILE_K, j * TILE_N))
|
|
88
|
+
|
|
89
|
+
# sum += a*b
|
|
90
|
+
wp.tile_matmul(a, b, sum)
|
|
91
|
+
|
|
92
|
+
wp.tile_store(C, sum, offset=(i * TILE_M, j * TILE_N))
|
|
93
|
+
|
|
94
|
+
|
|
95
|
+
wp.overload(
|
|
96
|
+
tile_gemm, {"A": wp.array2d(dtype=wp.float16), "B": wp.array2d(dtype=wp.float16), "C": wp.array2d(dtype=wp.float16)}
|
|
97
|
+
)
|
|
98
|
+
wp.overload(
|
|
99
|
+
tile_gemm, {"A": wp.array2d(dtype=wp.float32), "B": wp.array2d(dtype=wp.float32), "C": wp.array2d(dtype=wp.float32)}
|
|
100
|
+
)
|
|
101
|
+
wp.overload(
|
|
102
|
+
tile_gemm, {"A": wp.array2d(dtype=wp.float64), "B": wp.array2d(dtype=wp.float64), "C": wp.array2d(dtype=wp.float64)}
|
|
103
|
+
)
|
|
104
|
+
|
|
105
|
+
|
|
106
|
+
def test_tile_gemm(dtype):
|
|
107
|
+
def test(test, device):
|
|
108
|
+
M = TILE_M * 7
|
|
109
|
+
K = TILE_K * 6
|
|
110
|
+
N = TILE_N * 5
|
|
111
|
+
|
|
112
|
+
rng = np.random.default_rng(42)
|
|
113
|
+
A = rng.random((M, K), dtype=float).astype(wp.dtype_to_numpy(dtype))
|
|
114
|
+
B = rng.random((K, N), dtype=float).astype(wp.dtype_to_numpy(dtype))
|
|
115
|
+
C = np.zeros((M, N), dtype=float).astype(wp.dtype_to_numpy(dtype))
|
|
116
|
+
|
|
117
|
+
A_wp = wp.array(A, requires_grad=True, device=device)
|
|
118
|
+
B_wp = wp.array(B, requires_grad=True, device=device)
|
|
119
|
+
C_wp = wp.array(C, requires_grad=True, device=device)
|
|
120
|
+
|
|
121
|
+
with wp.Tape() as tape:
|
|
122
|
+
wp.launch_tiled(
|
|
123
|
+
tile_gemm,
|
|
124
|
+
dim=(int(M / TILE_M), int(N / TILE_N)),
|
|
125
|
+
inputs=[A_wp, B_wp, C_wp],
|
|
126
|
+
block_dim=TILE_DIM,
|
|
127
|
+
device=device,
|
|
128
|
+
)
|
|
129
|
+
|
|
130
|
+
assert_np_equal(C_wp.numpy(), A @ B, tol=1.0e-1)
|
|
131
|
+
|
|
132
|
+
adj_C = np.ones_like(C)
|
|
133
|
+
|
|
134
|
+
tape.backward(grads={C_wp: wp.array(adj_C, device=device)})
|
|
135
|
+
|
|
136
|
+
assert_np_equal(A_wp.grad.numpy(), adj_C @ B.T, tol=1.0e-1)
|
|
137
|
+
assert_np_equal(B_wp.grad.numpy(), A.T @ adj_C, 1.0e-1)
|
|
138
|
+
|
|
139
|
+
return test
|
|
140
|
+
|
|
141
|
+
|
|
142
|
+
@wp.kernel
|
|
143
|
+
def test_tile_transpose_matmul_kernel(input: wp.array2d(dtype=float), output: wp.array2d(dtype=float)):
|
|
144
|
+
x = wp.tile_load(input, shape=(TILE_M, TILE_N))
|
|
145
|
+
y = wp.tile_transpose(x)
|
|
146
|
+
|
|
147
|
+
z = wp.tile_zeros(dtype=float, shape=(TILE_N, TILE_N))
|
|
148
|
+
wp.tile_matmul(y, x, z)
|
|
149
|
+
|
|
150
|
+
wp.tile_store(output, z)
|
|
151
|
+
|
|
152
|
+
|
|
153
|
+
def test_tile_transpose_matmul(test, device):
|
|
154
|
+
rng = np.random.default_rng(42)
|
|
155
|
+
input = wp.array(rng.random((TILE_M, TILE_N), dtype=np.float32), device=device)
|
|
156
|
+
output = wp.zeros((TILE_N, TILE_N), dtype=float, device=device)
|
|
157
|
+
|
|
158
|
+
wp.launch_tiled(
|
|
159
|
+
test_tile_transpose_matmul_kernel, dim=[1], inputs=[input, output], block_dim=TILE_DIM, device=device
|
|
160
|
+
)
|
|
161
|
+
|
|
162
|
+
assert_np_equal(output.numpy(), input.numpy().T @ input.numpy())
|
|
163
|
+
|
|
164
|
+
|
|
165
|
+
class TestTileMatmul(unittest.TestCase):
|
|
166
|
+
pass
|
|
167
|
+
|
|
168
|
+
|
|
169
|
+
devices = get_test_devices()
|
|
170
|
+
|
|
171
|
+
add_function_test(TestTileMatmul, "test_tile_gemm_fp16", test_tile_gemm(wp.float16), devices=devices)
|
|
172
|
+
add_function_test(TestTileMatmul, "test_tile_gemm_fp32", test_tile_gemm(wp.float32), devices=devices)
|
|
173
|
+
add_function_test(TestTileMatmul, "test_tile_gemm_fp64", test_tile_gemm(wp.float64), devices=devices)
|
|
174
|
+
add_function_test(TestTileMatmul, "test_tile_grouped_gemm", test_tile_grouped_gemm, devices=devices)
|
|
175
|
+
add_function_test(TestTileMatmul, "test_tile_transpose_matmul", test_tile_transpose_matmul, devices=devices)
|
|
176
|
+
|
|
177
|
+
if __name__ == "__main__":
|
|
178
|
+
wp.clear_kernel_cache()
|
|
179
|
+
unittest.main(verbosity=2, failfast=True)
|
|
@@ -73,6 +73,46 @@ def test_tile_reduce_sum(test, device):
|
|
|
73
73
|
assert_np_equal(input_wp.grad.numpy(), np.ones_like(input) * 0.5, tol=1.0e-4)
|
|
74
74
|
|
|
75
75
|
|
|
76
|
+
@wp.kernel
|
|
77
|
+
def tile_sum_to_shared_kernel(input: wp.array2d(dtype=float), output: wp.array(dtype=float)):
|
|
78
|
+
i, lane = wp.tid()
|
|
79
|
+
|
|
80
|
+
a = wp.tile_load(input[i], shape=TILE_DIM)
|
|
81
|
+
s = wp.tile_sum(a)
|
|
82
|
+
v = s[0] # force shared storage for s
|
|
83
|
+
wp.tile_store(output, s * 0.5, offset=i)
|
|
84
|
+
|
|
85
|
+
|
|
86
|
+
def test_tile_sum_to_shared(test, device):
|
|
87
|
+
batch_count = 1
|
|
88
|
+
|
|
89
|
+
rng = np.random.default_rng(42)
|
|
90
|
+
input = rng.random((batch_count, TILE_DIM), dtype=np.float32)
|
|
91
|
+
|
|
92
|
+
input_wp = wp.array(input, requires_grad=True, device=device, dtype=float)
|
|
93
|
+
output_wp = wp.zeros(batch_count, requires_grad=True, device=device, dtype=float)
|
|
94
|
+
|
|
95
|
+
with wp.Tape() as tape:
|
|
96
|
+
wp.launch_tiled(
|
|
97
|
+
tile_sum_to_shared_kernel,
|
|
98
|
+
dim=[batch_count],
|
|
99
|
+
inputs=[input_wp, output_wp],
|
|
100
|
+
block_dim=TILE_DIM,
|
|
101
|
+
device=device,
|
|
102
|
+
)
|
|
103
|
+
|
|
104
|
+
sum_wp = output_wp.numpy()
|
|
105
|
+
for i in range(batch_count):
|
|
106
|
+
sum_np = np.sum(input[i], axis=0) * 0.5
|
|
107
|
+
assert_np_equal(sum_wp[i], sum_np, tol=0.0001)
|
|
108
|
+
|
|
109
|
+
output_wp.grad.fill_(1.0)
|
|
110
|
+
|
|
111
|
+
tape.backward()
|
|
112
|
+
|
|
113
|
+
assert_np_equal(input_wp.grad.numpy(), np.ones_like(input) * 0.5, tol=1.0e-4)
|
|
114
|
+
|
|
115
|
+
|
|
76
116
|
@wp.kernel
|
|
77
117
|
def tile_min_kernel(input: wp.array2d(dtype=float), output: wp.array(dtype=float)):
|
|
78
118
|
# output tile index
|
|
@@ -84,6 +124,13 @@ def tile_min_kernel(input: wp.array2d(dtype=float), output: wp.array(dtype=float
|
|
|
84
124
|
wp.tile_store(output, m, offset=i)
|
|
85
125
|
|
|
86
126
|
|
|
127
|
+
@wp.kernel
|
|
128
|
+
def tile_min_kernel_edge_case(x: wp.array2d(dtype=float), y: wp.array(dtype=float)):
|
|
129
|
+
t = wp.tile_load(x, shape=(3, 3))
|
|
130
|
+
min = wp.tile_min(t)
|
|
131
|
+
wp.tile_store(y, min)
|
|
132
|
+
|
|
133
|
+
|
|
87
134
|
def test_tile_reduce_min(test, device):
|
|
88
135
|
batch_count = 56
|
|
89
136
|
|
|
@@ -105,6 +152,62 @@ def test_tile_reduce_min(test, device):
|
|
|
105
152
|
min_np = np.min(input[i])
|
|
106
153
|
test.assertAlmostEqual(min_wp[i], min_np, places=4)
|
|
107
154
|
|
|
155
|
+
# test edge case: tile is multiple warps in size but at least one is empty
|
|
156
|
+
x = wp.array(np.array([[2.0, 2.0, 3.0], [4.0, 1.0, 6.0], [7.0, 3.0, 9.0]]), dtype=float, device=device)
|
|
157
|
+
y = wp.zeros(1, dtype=float, device=device)
|
|
158
|
+
|
|
159
|
+
wp.launch_tiled(tile_min_kernel_edge_case, dim=1, inputs=[x, y], block_dim=64, device=device)
|
|
160
|
+
|
|
161
|
+
assert_np_equal(y.numpy(), np.array([1.0]))
|
|
162
|
+
|
|
163
|
+
|
|
164
|
+
@wp.kernel
|
|
165
|
+
def tile_argmin_kernel(input: wp.array2d(dtype=float), output: wp.array(dtype=int)):
|
|
166
|
+
# output tile index
|
|
167
|
+
i = wp.tid()
|
|
168
|
+
|
|
169
|
+
a = wp.tile_load(input[i], shape=TILE_DIM)
|
|
170
|
+
m = wp.tile_argmin(a)
|
|
171
|
+
|
|
172
|
+
wp.tile_store(output, m, offset=i)
|
|
173
|
+
|
|
174
|
+
|
|
175
|
+
@wp.kernel
|
|
176
|
+
def tile_argmin_kernel_edge_case(x: wp.array2d(dtype=float), y: wp.array(dtype=int)):
|
|
177
|
+
t = wp.tile_load(x, shape=(3, 3))
|
|
178
|
+
min = wp.tile_argmin(t)
|
|
179
|
+
wp.tile_store(y, min)
|
|
180
|
+
|
|
181
|
+
|
|
182
|
+
def test_tile_reduce_argmin(test, device):
|
|
183
|
+
batch_count = 56
|
|
184
|
+
|
|
185
|
+
N = TILE_DIM
|
|
186
|
+
|
|
187
|
+
rng = np.random.default_rng(42)
|
|
188
|
+
input = rng.random((batch_count, N), dtype=np.float32)
|
|
189
|
+
|
|
190
|
+
input_wp = wp.array(input, requires_grad=True, device=device)
|
|
191
|
+
output_wp = wp.zeros(batch_count, dtype=wp.int32, requires_grad=True, device=device)
|
|
192
|
+
|
|
193
|
+
with wp.Tape() as tape:
|
|
194
|
+
wp.launch_tiled(
|
|
195
|
+
tile_argmin_kernel, dim=[batch_count], inputs=[input_wp, output_wp], block_dim=TILE_DIM, device=device
|
|
196
|
+
)
|
|
197
|
+
|
|
198
|
+
argmin_wp = output_wp.numpy()
|
|
199
|
+
for i in range(batch_count):
|
|
200
|
+
argmin_np = np.argmin(input[i])
|
|
201
|
+
test.assertAlmostEqual(argmin_wp[i], argmin_np, places=4)
|
|
202
|
+
|
|
203
|
+
# test edge case: tile is multiple warps in size but at least one is empty
|
|
204
|
+
x = wp.array(np.array([[2.0, 2.0, 3.0], [4.0, 1.0, 6.0], [7.0, 3.0, 9.0]]), dtype=float, device=device)
|
|
205
|
+
y = wp.zeros(1, dtype=int, device=device)
|
|
206
|
+
|
|
207
|
+
wp.launch_tiled(tile_argmin_kernel_edge_case, dim=1, inputs=[x, y], block_dim=64, device=device)
|
|
208
|
+
|
|
209
|
+
assert_np_equal(y.numpy(), np.array([4]))
|
|
210
|
+
|
|
108
211
|
|
|
109
212
|
@wp.kernel
|
|
110
213
|
def tile_max_kernel(input: wp.array2d(dtype=float), output: wp.array(dtype=float)):
|
|
@@ -139,6 +242,39 @@ def test_tile_reduce_max(test, device):
|
|
|
139
242
|
test.assertAlmostEqual(max_wp[i], max_np, places=4)
|
|
140
243
|
|
|
141
244
|
|
|
245
|
+
@wp.kernel
|
|
246
|
+
def tile_argmax_kernel(input: wp.array2d(dtype=float), output: wp.array(dtype=int)):
|
|
247
|
+
# output tile index
|
|
248
|
+
i = wp.tid()
|
|
249
|
+
|
|
250
|
+
a = wp.tile_load(input[i], shape=TILE_DIM)
|
|
251
|
+
m = wp.tile_argmax(a)
|
|
252
|
+
|
|
253
|
+
wp.tile_store(output, m, offset=i)
|
|
254
|
+
|
|
255
|
+
|
|
256
|
+
def test_tile_reduce_argmax(test, device):
|
|
257
|
+
batch_count = 56
|
|
258
|
+
|
|
259
|
+
N = TILE_DIM
|
|
260
|
+
|
|
261
|
+
rng = np.random.default_rng(42)
|
|
262
|
+
input = rng.random((batch_count, N), dtype=np.float32)
|
|
263
|
+
|
|
264
|
+
input_wp = wp.array(input, requires_grad=True, device=device)
|
|
265
|
+
output_wp = wp.zeros(batch_count, dtype=wp.int32, requires_grad=True, device=device)
|
|
266
|
+
|
|
267
|
+
with wp.Tape() as tape:
|
|
268
|
+
wp.launch_tiled(
|
|
269
|
+
tile_argmax_kernel, dim=[batch_count], inputs=[input_wp, output_wp], block_dim=TILE_DIM, device=device
|
|
270
|
+
)
|
|
271
|
+
|
|
272
|
+
argmax_wp = output_wp.numpy()
|
|
273
|
+
for i in range(batch_count):
|
|
274
|
+
argmax_np = np.argmax(input[i])
|
|
275
|
+
test.assertAlmostEqual(argmax_wp[i], argmax_np, places=4)
|
|
276
|
+
|
|
277
|
+
|
|
142
278
|
@wp.kernel
|
|
143
279
|
def tile_reduce_custom_kernel(input: wp.array2d(dtype=float), output: wp.array(dtype=float)):
|
|
144
280
|
# output tile index
|
|
@@ -176,6 +312,79 @@ def test_tile_reduce_custom(test, device):
|
|
|
176
312
|
test.assertAlmostEqual(prod_wp[i], prod_np, places=4)
|
|
177
313
|
|
|
178
314
|
|
|
315
|
+
def create_tile_scan_inclusive_kernel(tile_dim: int):
|
|
316
|
+
@wp.kernel(module="unique")
|
|
317
|
+
def tile_scan_inclusive_kernel(input: wp.array2d(dtype=float), output: wp.array2d(dtype=float)):
|
|
318
|
+
i = wp.tid()
|
|
319
|
+
t = wp.tile_load(input[i], shape=tile_dim)
|
|
320
|
+
t = wp.tile_scan_inclusive(t)
|
|
321
|
+
wp.tile_store(output[i], t)
|
|
322
|
+
|
|
323
|
+
return tile_scan_inclusive_kernel
|
|
324
|
+
|
|
325
|
+
|
|
326
|
+
def test_tile_scan_inclusive(test, device):
|
|
327
|
+
batch_count = 56
|
|
328
|
+
N = 1234
|
|
329
|
+
|
|
330
|
+
rng = np.random.default_rng(42)
|
|
331
|
+
input = rng.random((batch_count, N), dtype=np.float32)
|
|
332
|
+
|
|
333
|
+
input_wp = wp.array2d(input, requires_grad=True, device=device)
|
|
334
|
+
output_wp = wp.zeros_like(input_wp, requires_grad=True, device=device)
|
|
335
|
+
|
|
336
|
+
with wp.Tape() as tape:
|
|
337
|
+
wp.launch_tiled(
|
|
338
|
+
create_tile_scan_inclusive_kernel(N),
|
|
339
|
+
dim=[batch_count],
|
|
340
|
+
inputs=[input_wp, output_wp],
|
|
341
|
+
block_dim=TILE_DIM,
|
|
342
|
+
device=device,
|
|
343
|
+
)
|
|
344
|
+
|
|
345
|
+
scan_wp = output_wp.numpy()
|
|
346
|
+
for i in range(batch_count):
|
|
347
|
+
scan_np = np.cumsum(input[i])
|
|
348
|
+
np.testing.assert_allclose(scan_wp[i], scan_np, rtol=1e-5, atol=1e-6)
|
|
349
|
+
|
|
350
|
+
|
|
351
|
+
def create_tile_scan_exclusive_kernel(tile_dim: int):
|
|
352
|
+
@wp.kernel(module="unique")
|
|
353
|
+
def tile_scan_exclusive_kernel(input: wp.array2d(dtype=float), output: wp.array2d(dtype=float)):
|
|
354
|
+
i = wp.tid()
|
|
355
|
+
t = wp.tile_load(input[i], shape=tile_dim)
|
|
356
|
+
t = wp.tile_scan_exclusive(t)
|
|
357
|
+
wp.tile_store(output[i], t)
|
|
358
|
+
|
|
359
|
+
return tile_scan_exclusive_kernel
|
|
360
|
+
|
|
361
|
+
|
|
362
|
+
def test_tile_scan_exclusive(test, device):
|
|
363
|
+
batch_count = 56
|
|
364
|
+
N = 1234
|
|
365
|
+
|
|
366
|
+
rng = np.random.default_rng(42)
|
|
367
|
+
input = rng.random((batch_count, N), dtype=np.float32)
|
|
368
|
+
|
|
369
|
+
input_wp = wp.array2d(input, requires_grad=True, device=device)
|
|
370
|
+
output_wp = wp.zeros_like(input_wp, requires_grad=True, device=device)
|
|
371
|
+
|
|
372
|
+
with wp.Tape() as tape:
|
|
373
|
+
wp.launch_tiled(
|
|
374
|
+
create_tile_scan_exclusive_kernel(N),
|
|
375
|
+
dim=[batch_count],
|
|
376
|
+
inputs=[input_wp, output_wp],
|
|
377
|
+
block_dim=TILE_DIM,
|
|
378
|
+
device=device,
|
|
379
|
+
)
|
|
380
|
+
|
|
381
|
+
scan_wp = output_wp.numpy()
|
|
382
|
+
for i in range(batch_count):
|
|
383
|
+
scan_np = np.zeros(N, dtype=np.float32)
|
|
384
|
+
scan_np[1:] = np.cumsum(input[i][:-1])
|
|
385
|
+
np.testing.assert_allclose(scan_wp[i], scan_np, rtol=1e-5, atol=1e-6)
|
|
386
|
+
|
|
387
|
+
|
|
179
388
|
@wp.struct
|
|
180
389
|
class KeyValue:
|
|
181
390
|
key: wp.int32
|
|
@@ -259,7 +468,7 @@ def test_tile_reduce_grouped_sum(test, device):
|
|
|
259
468
|
|
|
260
469
|
with wp.Tape() as tape:
|
|
261
470
|
wp.launch_tiled(
|
|
262
|
-
|
|
471
|
+
tile_grouped_sum_kernel, dim=[batch_count], inputs=[input_wp, output_wp], block_dim=TILE_DIM, device=device
|
|
263
472
|
)
|
|
264
473
|
|
|
265
474
|
sum_wp = output_wp.numpy()
|
|
@@ -359,17 +568,17 @@ def test_untile_vector_kernel(input: wp.array(dtype=wp.vec3), output: wp.array(d
|
|
|
359
568
|
|
|
360
569
|
|
|
361
570
|
def test_tile_untile_vector(test, device):
|
|
362
|
-
input = wp.full(
|
|
571
|
+
input = wp.full(TILE_DIM, wp.vec3(1.0, 2.0, 3.0), requires_grad=True, device=device)
|
|
363
572
|
output = wp.zeros_like(input, device=device)
|
|
364
573
|
|
|
365
574
|
with wp.Tape() as tape:
|
|
366
|
-
wp.launch(test_untile_vector_kernel, dim=
|
|
575
|
+
wp.launch(test_untile_vector_kernel, dim=TILE_DIM, inputs=[input, output], block_dim=TILE_DIM, device=device)
|
|
367
576
|
|
|
368
577
|
output.grad = wp.ones_like(output, device=device)
|
|
369
578
|
tape.backward()
|
|
370
579
|
|
|
371
580
|
assert_np_equal(output.numpy(), input.numpy())
|
|
372
|
-
assert_np_equal(input.grad.numpy(), np.ones((
|
|
581
|
+
assert_np_equal(input.grad.numpy(), np.ones((TILE_DIM, 3)))
|
|
373
582
|
|
|
374
583
|
|
|
375
584
|
@wp.kernel
|
|
@@ -423,6 +632,91 @@ def test_tile_arange(test, device):
|
|
|
423
632
|
assert_np_equal(output.numpy()[4], np.arange(17, 0, -1))
|
|
424
633
|
|
|
425
634
|
|
|
635
|
+
@wp.kernel(module="unique")
|
|
636
|
+
def tile_strided_loop_kernel(arr: wp.array(dtype=float), max_val: wp.array(dtype=float)):
|
|
637
|
+
tid, lane = wp.tid()
|
|
638
|
+
|
|
639
|
+
num_threads = wp.block_dim()
|
|
640
|
+
|
|
641
|
+
thread_max = wp.float32(-wp.inf)
|
|
642
|
+
|
|
643
|
+
length = arr.shape[0]
|
|
644
|
+
upper = ((length + num_threads - 1) // num_threads) * num_threads
|
|
645
|
+
for el_id in range(lane, upper, num_threads):
|
|
646
|
+
if el_id < length:
|
|
647
|
+
val = arr[el_id]
|
|
648
|
+
else:
|
|
649
|
+
val = wp.float32(-wp.inf)
|
|
650
|
+
|
|
651
|
+
t = wp.tile(val)
|
|
652
|
+
local_max = wp.tile_max(t)
|
|
653
|
+
|
|
654
|
+
thread_max = wp.max(thread_max, local_max[0])
|
|
655
|
+
|
|
656
|
+
if lane == 0:
|
|
657
|
+
max_val[0] = thread_max
|
|
658
|
+
|
|
659
|
+
|
|
660
|
+
def test_tile_strided_loop(test, device):
|
|
661
|
+
N = 5 # Length of array
|
|
662
|
+
|
|
663
|
+
rng = np.random.default_rng(42)
|
|
664
|
+
input = rng.random(N, dtype=np.float32)
|
|
665
|
+
|
|
666
|
+
input_wp = wp.array(input, device=device)
|
|
667
|
+
output_wp = wp.zeros(1, dtype=wp.float32, device=device)
|
|
668
|
+
|
|
669
|
+
wp.launch_tiled(
|
|
670
|
+
tile_strided_loop_kernel,
|
|
671
|
+
dim=[1],
|
|
672
|
+
inputs=[input_wp, output_wp],
|
|
673
|
+
device=device,
|
|
674
|
+
block_dim=128,
|
|
675
|
+
)
|
|
676
|
+
|
|
677
|
+
max_wp = output_wp.numpy()
|
|
678
|
+
max_np = np.max(input)
|
|
679
|
+
test.assertAlmostEqual(max_wp[0], max_np, places=4)
|
|
680
|
+
|
|
681
|
+
|
|
682
|
+
@wp.kernel
|
|
683
|
+
def test_tile_reduce_matrix_kernel(y: wp.array(dtype=wp.mat33)):
|
|
684
|
+
i = wp.tid()
|
|
685
|
+
I = wp.identity(3, dtype=wp.float32)
|
|
686
|
+
m = wp.float32(i) * I
|
|
687
|
+
|
|
688
|
+
t = wp.tile(m, preserve_type=True)
|
|
689
|
+
sum = wp.tile_reduce(wp.add, t)
|
|
690
|
+
|
|
691
|
+
wp.tile_atomic_add(y, sum)
|
|
692
|
+
|
|
693
|
+
|
|
694
|
+
def test_tile_reduce_matrix(test, device):
|
|
695
|
+
y = wp.zeros(shape=1, dtype=wp.mat33, device=device)
|
|
696
|
+
|
|
697
|
+
wp.launch(test_tile_reduce_matrix_kernel, dim=TILE_DIM, inputs=[], outputs=[y], block_dim=TILE_DIM, device=device)
|
|
698
|
+
|
|
699
|
+
assert_np_equal(y.numpy().squeeze(), np.eye(3, dtype=np.float32) * 2016.0)
|
|
700
|
+
|
|
701
|
+
|
|
702
|
+
@wp.kernel
|
|
703
|
+
def test_tile_reduce_vector_kernel(out: wp.array(dtype=wp.vec3)):
|
|
704
|
+
v = wp.vec3f(1.0)
|
|
705
|
+
v_tile = wp.tile(v, preserve_type=True)
|
|
706
|
+
|
|
707
|
+
sum = wp.tile_reduce(wp.add, v_tile)
|
|
708
|
+
|
|
709
|
+
wp.tile_atomic_add(out, sum)
|
|
710
|
+
|
|
711
|
+
|
|
712
|
+
def test_tile_reduce_vector(test, device):
|
|
713
|
+
out = wp.zeros(1, dtype=wp.vec3, device=device)
|
|
714
|
+
|
|
715
|
+
wp.launch(kernel=test_tile_reduce_vector_kernel, dim=8, inputs=[], outputs=[out], block_dim=TILE_DIM, device=device)
|
|
716
|
+
|
|
717
|
+
assert_np_equal(out.numpy(), np.array([[8.0, 8.0, 8.0]]))
|
|
718
|
+
|
|
719
|
+
|
|
426
720
|
devices = get_test_devices()
|
|
427
721
|
|
|
428
722
|
|
|
@@ -431,16 +725,24 @@ class TestTileReduce(unittest.TestCase):
|
|
|
431
725
|
|
|
432
726
|
|
|
433
727
|
add_function_test(TestTileReduce, "test_tile_reduce_sum", test_tile_reduce_sum, devices=devices)
|
|
728
|
+
add_function_test(TestTileReduce, "test_tile_sum_to_shared", test_tile_sum_to_shared, devices=devices)
|
|
434
729
|
add_function_test(TestTileReduce, "test_tile_reduce_min", test_tile_reduce_min, devices=devices)
|
|
435
730
|
add_function_test(TestTileReduce, "test_tile_reduce_max", test_tile_reduce_max, devices=devices)
|
|
731
|
+
add_function_test(TestTileReduce, "test_tile_reduce_argmin", test_tile_reduce_argmin, devices=devices)
|
|
732
|
+
add_function_test(TestTileReduce, "test_tile_reduce_argmax", test_tile_reduce_argmax, devices=devices)
|
|
436
733
|
add_function_test(TestTileReduce, "test_tile_reduce_custom", test_tile_reduce_custom, devices=devices)
|
|
437
734
|
add_function_test(TestTileReduce, "test_tile_reduce_custom_struct", test_tile_reduce_custom_struct, devices=devices)
|
|
438
|
-
add_function_test(TestTileReduce, "test_tile_reduce_grouped_sum",
|
|
735
|
+
add_function_test(TestTileReduce, "test_tile_reduce_grouped_sum", test_tile_reduce_grouped_sum, devices=devices)
|
|
439
736
|
add_function_test(TestTileReduce, "test_tile_reduce_simt", test_tile_reduce_simt, devices=devices)
|
|
440
737
|
add_function_test(TestTileReduce, "test_tile_ones", test_tile_ones, devices=devices)
|
|
441
738
|
add_function_test(TestTileReduce, "test_tile_arange", test_tile_arange, devices=devices)
|
|
442
739
|
add_function_test(TestTileReduce, "test_tile_untile_scalar", test_tile_untile_scalar, devices=devices)
|
|
443
740
|
add_function_test(TestTileReduce, "test_tile_untile_vector", test_tile_untile_vector, devices=devices)
|
|
741
|
+
add_function_test(TestTileReduce, "test_tile_strided_loop", test_tile_strided_loop, devices=devices)
|
|
742
|
+
add_function_test(TestTileReduce, "test_tile_scan_inclusive", test_tile_scan_inclusive, devices=devices)
|
|
743
|
+
add_function_test(TestTileReduce, "test_tile_scan_exclusive", test_tile_scan_exclusive, devices=devices)
|
|
744
|
+
add_function_test(TestTileReduce, "test_tile_reduce_matrix", test_tile_reduce_matrix, devices=devices)
|
|
745
|
+
add_function_test(TestTileReduce, "test_tile_reduce_vector", test_tile_reduce_vector, devices=devices)
|
|
444
746
|
|
|
445
747
|
if __name__ == "__main__":
|
|
446
748
|
wp.clear_kernel_cache()
|