warp-lang 1.6.2__py3-none-win_amd64.whl → 1.7.0__py3-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +7 -1
- warp/bin/warp-clang.dll +0 -0
- warp/bin/warp.dll +0 -0
- warp/build.py +410 -0
- warp/build_dll.py +6 -14
- warp/builtins.py +452 -362
- warp/codegen.py +179 -119
- warp/config.py +42 -6
- warp/context.py +490 -271
- warp/dlpack.py +8 -6
- warp/examples/assets/nonuniform.usd +0 -0
- warp/examples/assets/nvidia_logo.png +0 -0
- warp/examples/benchmarks/benchmark_tile_load_store.py +103 -0
- warp/examples/core/example_sample_mesh.py +300 -0
- warp/examples/fem/example_apic_fluid.py +1 -1
- warp/examples/fem/example_burgers.py +2 -2
- warp/examples/fem/example_deformed_geometry.py +1 -1
- warp/examples/fem/example_distortion_energy.py +1 -1
- warp/examples/fem/example_magnetostatics.py +6 -6
- warp/examples/fem/utils.py +9 -3
- warp/examples/interop/example_jax_callable.py +116 -0
- warp/examples/interop/example_jax_ffi_callback.py +132 -0
- warp/examples/interop/example_jax_kernel.py +205 -0
- warp/examples/optim/example_fluid_checkpoint.py +497 -0
- warp/examples/tile/example_tile_matmul.py +2 -4
- warp/fem/__init__.py +11 -1
- warp/fem/adaptivity.py +4 -4
- warp/fem/field/nodal_field.py +22 -68
- warp/fem/field/virtual.py +62 -23
- warp/fem/geometry/adaptive_nanogrid.py +9 -10
- warp/fem/geometry/closest_point.py +1 -1
- warp/fem/geometry/deformed_geometry.py +5 -2
- warp/fem/geometry/geometry.py +5 -0
- warp/fem/geometry/grid_2d.py +12 -12
- warp/fem/geometry/grid_3d.py +12 -15
- warp/fem/geometry/hexmesh.py +5 -7
- warp/fem/geometry/nanogrid.py +9 -11
- warp/fem/geometry/quadmesh.py +13 -13
- warp/fem/geometry/tetmesh.py +3 -4
- warp/fem/geometry/trimesh.py +3 -8
- warp/fem/integrate.py +262 -93
- warp/fem/linalg.py +5 -5
- warp/fem/quadrature/pic_quadrature.py +37 -22
- warp/fem/quadrature/quadrature.py +194 -25
- warp/fem/space/__init__.py +1 -1
- warp/fem/space/basis_function_space.py +4 -2
- warp/fem/space/basis_space.py +25 -18
- warp/fem/space/hexmesh_function_space.py +2 -2
- warp/fem/space/partition.py +6 -2
- warp/fem/space/quadmesh_function_space.py +8 -8
- warp/fem/space/shape/cube_shape_function.py +23 -23
- warp/fem/space/shape/square_shape_function.py +12 -12
- warp/fem/space/shape/triangle_shape_function.py +1 -1
- warp/fem/space/tetmesh_function_space.py +3 -3
- warp/fem/space/trimesh_function_space.py +2 -2
- warp/fem/utils.py +12 -6
- warp/jax.py +14 -1
- warp/jax_experimental/__init__.py +16 -0
- warp/{jax_experimental.py → jax_experimental/custom_call.py} +14 -27
- warp/jax_experimental/ffi.py +698 -0
- warp/jax_experimental/xla_ffi.py +602 -0
- warp/math.py +89 -0
- warp/native/array.h +13 -0
- warp/native/builtin.h +29 -3
- warp/native/bvh.cpp +3 -1
- warp/native/bvh.cu +42 -14
- warp/native/bvh.h +2 -1
- warp/native/clang/clang.cpp +30 -3
- warp/native/cuda_util.cpp +14 -0
- warp/native/cuda_util.h +2 -0
- warp/native/exports.h +68 -63
- warp/native/intersect.h +26 -26
- warp/native/intersect_adj.h +33 -33
- warp/native/marching.cu +1 -1
- warp/native/mat.h +513 -9
- warp/native/mesh.h +10 -10
- warp/native/quat.h +99 -11
- warp/native/rand.h +6 -0
- warp/native/sort.cpp +122 -59
- warp/native/sort.cu +152 -15
- warp/native/sort.h +8 -1
- warp/native/sparse.cpp +43 -22
- warp/native/sparse.cu +52 -17
- warp/native/svd.h +116 -0
- warp/native/tile.h +301 -105
- warp/native/tile_reduce.h +46 -3
- warp/native/vec.h +68 -7
- warp/native/volume.cpp +85 -113
- warp/native/volume_builder.cu +25 -10
- warp/native/volume_builder.h +6 -0
- warp/native/warp.cpp +5 -6
- warp/native/warp.cu +99 -10
- warp/native/warp.h +19 -10
- warp/optim/linear.py +10 -10
- warp/sim/articulation.py +4 -4
- warp/sim/collide.py +21 -10
- warp/sim/import_mjcf.py +449 -155
- warp/sim/import_urdf.py +32 -12
- warp/sim/integrator_euler.py +5 -5
- warp/sim/integrator_featherstone.py +3 -10
- warp/sim/integrator_vbd.py +207 -2
- warp/sim/integrator_xpbd.py +5 -5
- warp/sim/model.py +42 -13
- warp/sim/utils.py +2 -2
- warp/sparse.py +642 -555
- warp/stubs.py +216 -19
- warp/tests/__main__.py +0 -15
- warp/tests/cuda/__init__.py +0 -0
- warp/tests/{test_mempool.py → cuda/test_mempool.py} +39 -0
- warp/tests/{test_streams.py → cuda/test_streams.py} +71 -0
- warp/tests/geometry/__init__.py +0 -0
- warp/tests/{test_mesh_query_point.py → geometry/test_mesh_query_point.py} +66 -63
- warp/tests/{test_mesh_query_ray.py → geometry/test_mesh_query_ray.py} +1 -1
- warp/tests/{test_volume.py → geometry/test_volume.py} +41 -6
- warp/tests/interop/__init__.py +0 -0
- warp/tests/{test_dlpack.py → interop/test_dlpack.py} +28 -5
- warp/tests/sim/__init__.py +0 -0
- warp/tests/{disabled_kinematics.py → sim/disabled_kinematics.py} +9 -10
- warp/tests/{test_collision.py → sim/test_collision.py} +2 -2
- warp/tests/{test_model.py → sim/test_model.py} +40 -0
- warp/tests/{test_sim_kinematics.py → sim/test_sim_kinematics.py} +2 -1
- warp/tests/sim/test_vbd.py +597 -0
- warp/tests/test_bool.py +1 -1
- warp/tests/test_examples.py +28 -36
- warp/tests/test_fem.py +23 -4
- warp/tests/test_linear_solvers.py +0 -11
- warp/tests/test_mat.py +233 -79
- warp/tests/test_mat_scalar_ops.py +4 -4
- warp/tests/test_overwrite.py +0 -60
- warp/tests/test_quat.py +67 -46
- warp/tests/test_rand.py +44 -37
- warp/tests/test_sparse.py +47 -6
- warp/tests/test_spatial.py +75 -0
- warp/tests/test_static.py +1 -1
- warp/tests/test_utils.py +84 -4
- warp/tests/test_vec.py +46 -34
- warp/tests/tile/__init__.py +0 -0
- warp/tests/{test_tile.py → tile/test_tile.py} +136 -51
- warp/tests/{test_tile_load.py → tile/test_tile_load.py} +1 -1
- warp/tests/{test_tile_mathdx.py → tile/test_tile_mathdx.py} +9 -6
- warp/tests/{test_tile_mlp.py → tile/test_tile_mlp.py} +25 -14
- warp/tests/{test_tile_reduce.py → tile/test_tile_reduce.py} +60 -1
- warp/tests/{test_tile_view.py → tile/test_tile_view.py} +1 -1
- warp/tests/unittest_serial.py +1 -0
- warp/tests/unittest_suites.py +45 -59
- warp/tests/unittest_utils.py +2 -1
- warp/thirdparty/unittest_parallel.py +3 -1
- warp/types.py +110 -658
- warp/utils.py +137 -72
- {warp_lang-1.6.2.dist-info → warp_lang-1.7.0.dist-info}/METADATA +29 -7
- {warp_lang-1.6.2.dist-info → warp_lang-1.7.0.dist-info}/RECORD +172 -162
- {warp_lang-1.6.2.dist-info → warp_lang-1.7.0.dist-info}/WHEEL +1 -1
- warp/examples/optim/example_walker.py +0 -317
- warp/native/cutlass_gemm.cpp +0 -43
- warp/native/cutlass_gemm.cu +0 -382
- warp/tests/test_matmul.py +0 -511
- warp/tests/test_matmul_lite.py +0 -411
- warp/tests/test_vbd.py +0 -386
- warp/tests/unused_test_misc.py +0 -77
- /warp/tests/{test_async.py → cuda/test_async.py} +0 -0
- /warp/tests/{test_ipc.py → cuda/test_ipc.py} +0 -0
- /warp/tests/{test_multigpu.py → cuda/test_multigpu.py} +0 -0
- /warp/tests/{test_peer.py → cuda/test_peer.py} +0 -0
- /warp/tests/{test_pinned.py → cuda/test_pinned.py} +0 -0
- /warp/tests/{test_bvh.py → geometry/test_bvh.py} +0 -0
- /warp/tests/{test_hash_grid.py → geometry/test_hash_grid.py} +0 -0
- /warp/tests/{test_marching_cubes.py → geometry/test_marching_cubes.py} +0 -0
- /warp/tests/{test_mesh.py → geometry/test_mesh.py} +0 -0
- /warp/tests/{test_mesh_query_aabb.py → geometry/test_mesh_query_aabb.py} +0 -0
- /warp/tests/{test_volume_write.py → geometry/test_volume_write.py} +0 -0
- /warp/tests/{test_jax.py → interop/test_jax.py} +0 -0
- /warp/tests/{test_paddle.py → interop/test_paddle.py} +0 -0
- /warp/tests/{test_torch.py → interop/test_torch.py} +0 -0
- /warp/tests/{flaky_test_sim_grad.py → sim/flaky_test_sim_grad.py} +0 -0
- /warp/tests/{test_coloring.py → sim/test_coloring.py} +0 -0
- /warp/tests/{test_sim_grad_bounce_linear.py → sim/test_sim_grad_bounce_linear.py} +0 -0
- /warp/tests/{test_tile_shared_memory.py → tile/test_tile_shared_memory.py} +0 -0
- {warp_lang-1.6.2.dist-info → warp_lang-1.7.0.dist-info/licenses}/LICENSE.md +0 -0
- {warp_lang-1.6.2.dist-info → warp_lang-1.7.0.dist-info}/top_level.txt +0 -0
warp/tests/test_matmul.py
DELETED
|
@@ -1,511 +0,0 @@
|
|
|
1
|
-
# SPDX-FileCopyrightText: Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
2
|
-
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
-
#
|
|
4
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
-
# you may not use this file except in compliance with the License.
|
|
6
|
-
# You may obtain a copy of the License at
|
|
7
|
-
#
|
|
8
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
-
#
|
|
10
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
-
# See the License for the specific language governing permissions and
|
|
14
|
-
# limitations under the License.
|
|
15
|
-
|
|
16
|
-
import itertools
|
|
17
|
-
import unittest
|
|
18
|
-
from typing import Any
|
|
19
|
-
|
|
20
|
-
import numpy as np
|
|
21
|
-
|
|
22
|
-
import warp as wp
|
|
23
|
-
from warp.tests.unittest_utils import *
|
|
24
|
-
|
|
25
|
-
wp.init() # For wp.context.runtime.core.is_cutlass_enabled()
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
class gemm_test_bed_runner:
|
|
29
|
-
def __init__(self, dtype, device):
|
|
30
|
-
self.dtype = dtype
|
|
31
|
-
self.device = device
|
|
32
|
-
|
|
33
|
-
def alloc(self, m, n, k, batch_count):
|
|
34
|
-
rng = np.random.default_rng(42)
|
|
35
|
-
low = -4.5
|
|
36
|
-
high = 3.5
|
|
37
|
-
if batch_count == 1:
|
|
38
|
-
A = wp.array2d(
|
|
39
|
-
np.ceil(rng.uniform(low=low, high=high, size=(m, k))),
|
|
40
|
-
dtype=self.dtype,
|
|
41
|
-
device=self.device,
|
|
42
|
-
requires_grad=True,
|
|
43
|
-
)
|
|
44
|
-
B = wp.array2d(
|
|
45
|
-
np.ceil(rng.uniform(low=low, high=high, size=(k, n))),
|
|
46
|
-
dtype=self.dtype,
|
|
47
|
-
device=self.device,
|
|
48
|
-
requires_grad=True,
|
|
49
|
-
)
|
|
50
|
-
C = wp.array2d(
|
|
51
|
-
np.ceil(rng.uniform(low=low, high=high, size=(m, n))),
|
|
52
|
-
dtype=self.dtype,
|
|
53
|
-
device=self.device,
|
|
54
|
-
requires_grad=True,
|
|
55
|
-
)
|
|
56
|
-
D = wp.array2d(np.zeros((m, n)), dtype=self.dtype, device=self.device, requires_grad=True)
|
|
57
|
-
else:
|
|
58
|
-
A = wp.array3d(
|
|
59
|
-
np.ceil(rng.uniform(low=low, high=high, size=(batch_count, m, k))),
|
|
60
|
-
dtype=self.dtype,
|
|
61
|
-
device=self.device,
|
|
62
|
-
requires_grad=True,
|
|
63
|
-
)
|
|
64
|
-
B = wp.array3d(
|
|
65
|
-
np.ceil(rng.uniform(low=low, high=high, size=(batch_count, k, n))),
|
|
66
|
-
dtype=self.dtype,
|
|
67
|
-
device=self.device,
|
|
68
|
-
requires_grad=True,
|
|
69
|
-
)
|
|
70
|
-
C = wp.array3d(
|
|
71
|
-
np.ceil(rng.uniform(low=low, high=high, size=(batch_count, m, n))),
|
|
72
|
-
dtype=self.dtype,
|
|
73
|
-
device=self.device,
|
|
74
|
-
requires_grad=True,
|
|
75
|
-
)
|
|
76
|
-
D = wp.array3d(np.zeros((batch_count, m, n)), dtype=self.dtype, device=self.device, requires_grad=True)
|
|
77
|
-
return A, B, C, D
|
|
78
|
-
|
|
79
|
-
def run_and_verify(self, m, n, k, batch_count, alpha, beta):
|
|
80
|
-
A, B, C, D = self.alloc(m, n, k, batch_count)
|
|
81
|
-
ones = wp.zeros_like(D)
|
|
82
|
-
ones.fill_(1.0)
|
|
83
|
-
|
|
84
|
-
np_dtype = wp.types.warp_type_to_np_dtype[self.dtype]
|
|
85
|
-
|
|
86
|
-
if batch_count == 1:
|
|
87
|
-
tape = wp.Tape()
|
|
88
|
-
with tape:
|
|
89
|
-
wp.matmul(A, B, C, D, alpha, beta, False)
|
|
90
|
-
tape.backward(grads={D: ones})
|
|
91
|
-
|
|
92
|
-
D_np = alpha * np.matmul(A.numpy(), B.numpy(), dtype=np_dtype) + beta * C.numpy()
|
|
93
|
-
assert_np_equal(D.numpy(), D_np)
|
|
94
|
-
|
|
95
|
-
adj_A_np = alpha * np.matmul(ones.numpy(), B.numpy().transpose(), dtype=np_dtype)
|
|
96
|
-
adj_B_np = alpha * np.matmul(A.numpy().transpose(), ones.numpy(), dtype=np_dtype)
|
|
97
|
-
adj_C_np = beta * ones.numpy()
|
|
98
|
-
|
|
99
|
-
else:
|
|
100
|
-
tape = wp.Tape()
|
|
101
|
-
with tape:
|
|
102
|
-
wp.batched_matmul(A, B, C, D, alpha, beta, False)
|
|
103
|
-
tape.backward(grads={D: ones})
|
|
104
|
-
|
|
105
|
-
D_np = alpha * np.matmul(A.numpy(), B.numpy(), dtype=np_dtype) + beta * C.numpy()
|
|
106
|
-
assert_np_equal(D.numpy(), D_np)
|
|
107
|
-
|
|
108
|
-
adj_A_np = alpha * np.matmul(ones.numpy(), B.numpy().transpose((0, 2, 1)), dtype=np_dtype)
|
|
109
|
-
adj_B_np = alpha * np.matmul(A.numpy().transpose((0, 2, 1)), ones.numpy(), dtype=np_dtype)
|
|
110
|
-
adj_C_np = beta * ones.numpy()
|
|
111
|
-
|
|
112
|
-
assert_np_equal(A.grad.numpy(), adj_A_np)
|
|
113
|
-
assert_np_equal(B.grad.numpy(), adj_B_np)
|
|
114
|
-
assert_np_equal(C.grad.numpy(), adj_C_np)
|
|
115
|
-
|
|
116
|
-
def run(self):
|
|
117
|
-
Ms = [16, 32, 64]
|
|
118
|
-
Ns = [16, 32, 64]
|
|
119
|
-
Ks = [16, 32, 64]
|
|
120
|
-
batch_counts = [1, 4]
|
|
121
|
-
betas = [0.0, 1.0]
|
|
122
|
-
alpha = 1.0
|
|
123
|
-
|
|
124
|
-
for batch_count, m, n, k, beta in itertools.product(batch_counts, Ms, Ns, Ks, betas):
|
|
125
|
-
self.run_and_verify(m, n, k, batch_count, alpha, beta)
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
class gemm_test_bed_runner_transpose:
|
|
129
|
-
def __init__(self, dtype, device):
|
|
130
|
-
self.dtype = dtype
|
|
131
|
-
self.device = device
|
|
132
|
-
|
|
133
|
-
def alloc(self, m, n, k, batch_count):
|
|
134
|
-
rng = np.random.default_rng(42)
|
|
135
|
-
low = -4.5
|
|
136
|
-
high = 3.5
|
|
137
|
-
if batch_count == 1:
|
|
138
|
-
A = wp.array2d(
|
|
139
|
-
np.ceil(rng.uniform(low=low, high=high, size=(m, k))),
|
|
140
|
-
dtype=self.dtype,
|
|
141
|
-
device=self.device,
|
|
142
|
-
requires_grad=True,
|
|
143
|
-
)
|
|
144
|
-
B = wp.array2d(
|
|
145
|
-
np.ceil(rng.uniform(low=low, high=high, size=(k, n))),
|
|
146
|
-
dtype=self.dtype,
|
|
147
|
-
device=self.device,
|
|
148
|
-
requires_grad=True,
|
|
149
|
-
)
|
|
150
|
-
C = wp.array2d(
|
|
151
|
-
np.ceil(rng.uniform(low=low, high=high, size=(m, n))),
|
|
152
|
-
dtype=self.dtype,
|
|
153
|
-
device=self.device,
|
|
154
|
-
requires_grad=True,
|
|
155
|
-
)
|
|
156
|
-
D = wp.array2d(np.zeros((m, n)), dtype=self.dtype, device=self.device, requires_grad=True)
|
|
157
|
-
AT = wp.array2d(A.numpy().transpose([1, 0]), dtype=self.dtype, device=self.device, requires_grad=True)
|
|
158
|
-
BT = wp.array2d(B.numpy().transpose([1, 0]), dtype=self.dtype, device=self.device, requires_grad=True)
|
|
159
|
-
else:
|
|
160
|
-
A = wp.array3d(
|
|
161
|
-
np.ceil(rng.uniform(low=low, high=high, size=(batch_count, m, k))),
|
|
162
|
-
dtype=self.dtype,
|
|
163
|
-
device=self.device,
|
|
164
|
-
requires_grad=True,
|
|
165
|
-
)
|
|
166
|
-
B = wp.array3d(
|
|
167
|
-
np.ceil(rng.uniform(low=low, high=high, size=(batch_count, k, n))),
|
|
168
|
-
dtype=self.dtype,
|
|
169
|
-
device=self.device,
|
|
170
|
-
requires_grad=True,
|
|
171
|
-
)
|
|
172
|
-
C = wp.array3d(
|
|
173
|
-
np.ceil(rng.uniform(low=low, high=high, size=(batch_count, m, n))),
|
|
174
|
-
dtype=self.dtype,
|
|
175
|
-
device=self.device,
|
|
176
|
-
requires_grad=True,
|
|
177
|
-
)
|
|
178
|
-
D = wp.array3d(np.zeros((batch_count, m, n)), dtype=self.dtype, device=self.device, requires_grad=True)
|
|
179
|
-
AT = wp.array3d(A.numpy().transpose([0, 2, 1]), dtype=self.dtype, device=self.device, requires_grad=True)
|
|
180
|
-
BT = wp.array3d(B.numpy().transpose([0, 2, 1]), dtype=self.dtype, device=self.device, requires_grad=True)
|
|
181
|
-
return A, B, C, D, AT, BT
|
|
182
|
-
|
|
183
|
-
def run_and_verify(self, m, n, k, batch_count, alpha, beta):
|
|
184
|
-
A, B, C1, D1, AT1, BT1 = self.alloc(m, n, k, batch_count)
|
|
185
|
-
C2 = wp.clone(C1)
|
|
186
|
-
C3 = wp.clone(C1)
|
|
187
|
-
D2 = wp.clone(D1)
|
|
188
|
-
D3 = wp.clone(D1)
|
|
189
|
-
AT2 = wp.clone(AT1)
|
|
190
|
-
BT2 = wp.clone(BT1)
|
|
191
|
-
ones1 = wp.zeros_like(D1)
|
|
192
|
-
ones1.fill_(1.0)
|
|
193
|
-
ones2 = wp.zeros_like(D2)
|
|
194
|
-
ones2.fill_(1.0)
|
|
195
|
-
ones3 = wp.zeros_like(D3)
|
|
196
|
-
ones3.fill_(1.0)
|
|
197
|
-
|
|
198
|
-
np_dtype = wp.types.warp_type_to_np_dtype[self.dtype]
|
|
199
|
-
|
|
200
|
-
if batch_count == 1:
|
|
201
|
-
ATT1 = AT1.transpose([1, 0])
|
|
202
|
-
BTT1 = BT1.transpose([1, 0])
|
|
203
|
-
ATT2 = AT2.transpose([1, 0])
|
|
204
|
-
BTT2 = BT2.transpose([1, 0])
|
|
205
|
-
tape = wp.Tape()
|
|
206
|
-
with tape:
|
|
207
|
-
wp.matmul(A, BTT1, C1, D1, alpha, beta, False)
|
|
208
|
-
wp.matmul(ATT1, B, C2, D2, alpha, beta, False)
|
|
209
|
-
wp.matmul(ATT2, BTT2, C3, D3, alpha, beta, False)
|
|
210
|
-
tape.backward(grads={D1: ones1, D2: ones2, D3: ones3})
|
|
211
|
-
|
|
212
|
-
D_np = alpha * np.matmul(A.numpy(), B.numpy(), dtype=np_dtype) + beta * C1.numpy()
|
|
213
|
-
assert_np_equal(D1.numpy(), D_np)
|
|
214
|
-
assert_np_equal(D2.numpy(), D_np)
|
|
215
|
-
assert_np_equal(D3.numpy(), D_np)
|
|
216
|
-
|
|
217
|
-
adj_A_np = alpha * np.matmul(ones1.numpy(), B.numpy().transpose(), dtype=np_dtype)
|
|
218
|
-
adj_B_np = alpha * np.matmul(A.numpy().transpose(), ones1.numpy(), dtype=np_dtype)
|
|
219
|
-
adj_C_np = beta * ones1.numpy()
|
|
220
|
-
|
|
221
|
-
else:
|
|
222
|
-
ATT1 = AT1.transpose([0, 2, 1])
|
|
223
|
-
BTT1 = BT1.transpose([0, 2, 1])
|
|
224
|
-
ATT2 = AT2.transpose([0, 2, 1])
|
|
225
|
-
BTT2 = BT2.transpose([0, 2, 1])
|
|
226
|
-
tape = wp.Tape()
|
|
227
|
-
with tape:
|
|
228
|
-
wp.batched_matmul(A, BTT1, C1, D1, alpha, beta, False)
|
|
229
|
-
wp.batched_matmul(ATT1, B, C2, D2, alpha, beta, False)
|
|
230
|
-
wp.batched_matmul(ATT2, BTT2, C3, D3, alpha, beta, False)
|
|
231
|
-
tape.backward(grads={D1: ones1, D2: ones2, D3: ones3})
|
|
232
|
-
|
|
233
|
-
D_np = alpha * np.matmul(A.numpy(), B.numpy(), dtype=np_dtype) + beta * C1.numpy()
|
|
234
|
-
assert_np_equal(D1.numpy(), D_np)
|
|
235
|
-
assert_np_equal(D2.numpy(), D_np)
|
|
236
|
-
assert_np_equal(D3.numpy(), D_np)
|
|
237
|
-
|
|
238
|
-
adj_A_np = alpha * np.matmul(ones1.numpy(), B.numpy().transpose((0, 2, 1)), dtype=np_dtype)
|
|
239
|
-
adj_B_np = alpha * np.matmul(A.numpy().transpose((0, 2, 1)), ones1.numpy(), dtype=np_dtype)
|
|
240
|
-
adj_C_np = beta * ones1.numpy()
|
|
241
|
-
|
|
242
|
-
assert_np_equal(A.grad.numpy(), adj_A_np)
|
|
243
|
-
assert_np_equal(ATT1.grad.numpy(), adj_A_np)
|
|
244
|
-
assert_np_equal(ATT2.grad.numpy(), adj_A_np)
|
|
245
|
-
assert_np_equal(B.grad.numpy(), adj_B_np)
|
|
246
|
-
assert_np_equal(BTT1.grad.numpy(), adj_B_np)
|
|
247
|
-
assert_np_equal(BTT2.grad.numpy(), adj_B_np)
|
|
248
|
-
assert_np_equal(C1.grad.numpy(), adj_C_np)
|
|
249
|
-
assert_np_equal(C2.grad.numpy(), adj_C_np)
|
|
250
|
-
assert_np_equal(C3.grad.numpy(), adj_C_np)
|
|
251
|
-
|
|
252
|
-
def run(self):
|
|
253
|
-
m = 16
|
|
254
|
-
n = 32
|
|
255
|
-
k = 64
|
|
256
|
-
batch_counts = [1, 4]
|
|
257
|
-
beta = 1.0
|
|
258
|
-
alpha = 1.0
|
|
259
|
-
|
|
260
|
-
for batch_count in batch_counts:
|
|
261
|
-
self.run_and_verify(m, n, k, batch_count, alpha, beta)
|
|
262
|
-
|
|
263
|
-
|
|
264
|
-
# NOTE: F16 tests are slow due to the performance of the reference numpy F16 matmuls performed on CPU.
|
|
265
|
-
def test_f16(test, device):
|
|
266
|
-
gemm_test_bed_runner(wp.float16, device).run()
|
|
267
|
-
gemm_test_bed_runner_transpose(wp.float16, device).run()
|
|
268
|
-
|
|
269
|
-
|
|
270
|
-
@unittest.skipUnless(wp.context.runtime.core.is_cutlass_enabled(), "Warp was not built with CUTLASS support")
|
|
271
|
-
def test_f32(test, device):
|
|
272
|
-
gemm_test_bed_runner(wp.float32, device).run()
|
|
273
|
-
gemm_test_bed_runner_transpose(wp.float32, device).run()
|
|
274
|
-
|
|
275
|
-
|
|
276
|
-
@unittest.skipUnless(wp.context.runtime.core.is_cutlass_enabled(), "Warp was not built with CUTLASS support")
|
|
277
|
-
def test_f64(test, device):
|
|
278
|
-
gemm_test_bed_runner(wp.float64, device).run()
|
|
279
|
-
gemm_test_bed_runner_transpose(wp.float64, device).run()
|
|
280
|
-
|
|
281
|
-
|
|
282
|
-
@wp.kernel
|
|
283
|
-
def matrix_sum_kernel(arr: wp.array2d(dtype=float), loss: wp.array(dtype=float)):
|
|
284
|
-
i, j = wp.tid()
|
|
285
|
-
wp.atomic_add(loss, 0, arr[i, j])
|
|
286
|
-
|
|
287
|
-
|
|
288
|
-
@unittest.skipUnless(wp.context.runtime.core.is_cutlass_enabled(), "Warp was not built with CUTLASS support")
|
|
289
|
-
def test_tape(test, device):
|
|
290
|
-
rng = np.random.default_rng(42)
|
|
291
|
-
low = -4.5
|
|
292
|
-
high = 3.5
|
|
293
|
-
m = 64
|
|
294
|
-
n = 128
|
|
295
|
-
k = 256
|
|
296
|
-
A = wp.array2d(
|
|
297
|
-
np.ceil(rng.uniform(low=low, high=high, size=(m, k))), dtype=float, device=device, requires_grad=True
|
|
298
|
-
)
|
|
299
|
-
B = wp.array2d(
|
|
300
|
-
np.ceil(rng.uniform(low=low, high=high, size=(k, n))), dtype=float, device=device, requires_grad=True
|
|
301
|
-
)
|
|
302
|
-
C = wp.array2d(
|
|
303
|
-
np.ceil(rng.uniform(low=low, high=high, size=(m, n))), dtype=float, device=device, requires_grad=True
|
|
304
|
-
)
|
|
305
|
-
D = wp.array2d(np.zeros((m, n)), dtype=float, device=device, requires_grad=True)
|
|
306
|
-
loss = wp.zeros(1, dtype=float, device=device, requires_grad=True)
|
|
307
|
-
|
|
308
|
-
# test tape
|
|
309
|
-
tape = wp.Tape()
|
|
310
|
-
with tape:
|
|
311
|
-
wp.matmul(A, B, C, D)
|
|
312
|
-
wp.launch(matrix_sum_kernel, dim=(m, n), inputs=[D, loss], device=device)
|
|
313
|
-
|
|
314
|
-
tape.backward(loss=loss)
|
|
315
|
-
A_grad = A.grad.numpy()
|
|
316
|
-
tape.reset()
|
|
317
|
-
|
|
318
|
-
# test adjoint
|
|
319
|
-
D.grad = wp.ones((m, n), dtype=float, device=device)
|
|
320
|
-
wp.adj_matmul(A, B, C, A.grad, B.grad, C.grad, D.grad)
|
|
321
|
-
assert_np_equal(A_grad, A.grad.numpy())
|
|
322
|
-
|
|
323
|
-
# test zero
|
|
324
|
-
tape.zero()
|
|
325
|
-
assert_array_equal(A.grad, wp.zeros_like(A))
|
|
326
|
-
|
|
327
|
-
|
|
328
|
-
@unittest.skipUnless(wp.context.runtime.core.is_cutlass_enabled(), "Warp was not built with CUTLASS support")
|
|
329
|
-
def test_operator(test, device):
|
|
330
|
-
rng = np.random.default_rng(42)
|
|
331
|
-
low = -4.5
|
|
332
|
-
high = 3.5
|
|
333
|
-
m = 64
|
|
334
|
-
n = 128
|
|
335
|
-
k = 256
|
|
336
|
-
A = wp.array2d(
|
|
337
|
-
np.ceil(rng.uniform(low=low, high=high, size=(m, k))), dtype=float, device=device, requires_grad=True
|
|
338
|
-
)
|
|
339
|
-
B = wp.array2d(
|
|
340
|
-
np.ceil(rng.uniform(low=low, high=high, size=(k, n))), dtype=float, device=device, requires_grad=True
|
|
341
|
-
)
|
|
342
|
-
loss = wp.zeros(1, dtype=float, device=device, requires_grad=True)
|
|
343
|
-
|
|
344
|
-
# test tape
|
|
345
|
-
tape = wp.Tape()
|
|
346
|
-
with tape:
|
|
347
|
-
D = A @ B
|
|
348
|
-
wp.launch(matrix_sum_kernel, dim=(m, n), inputs=[D, loss], device=device)
|
|
349
|
-
|
|
350
|
-
tape.backward(loss=loss)
|
|
351
|
-
|
|
352
|
-
# test adjoint
|
|
353
|
-
D.grad = wp.ones((m, n), dtype=float, device=device)
|
|
354
|
-
B_transpose = wp.array2d(B.transpose().numpy(), dtype=float, device=device)
|
|
355
|
-
|
|
356
|
-
adj_A = D.grad @ B_transpose
|
|
357
|
-
assert_array_equal(adj_A, A.grad)
|
|
358
|
-
|
|
359
|
-
# test zero
|
|
360
|
-
tape.zero()
|
|
361
|
-
assert_array_equal(A.grad, wp.zeros_like(A))
|
|
362
|
-
|
|
363
|
-
|
|
364
|
-
@unittest.skipUnless(wp.context.runtime.core.is_cutlass_enabled(), "Warp was not built with CUTLASS support")
|
|
365
|
-
def test_large_batch_count(test, device):
|
|
366
|
-
rng = np.random.default_rng(42)
|
|
367
|
-
low = -4.5
|
|
368
|
-
high = 3.5
|
|
369
|
-
m = 2
|
|
370
|
-
n = 3
|
|
371
|
-
k = 4
|
|
372
|
-
batch_count = 65535 * 2 + int(65535 / 2)
|
|
373
|
-
A = wp.array3d(
|
|
374
|
-
np.ceil(rng.uniform(low=low, high=high, size=(batch_count, m, k))),
|
|
375
|
-
dtype=float,
|
|
376
|
-
device=device,
|
|
377
|
-
requires_grad=True,
|
|
378
|
-
)
|
|
379
|
-
B = wp.array3d(
|
|
380
|
-
np.ceil(rng.uniform(low=low, high=high, size=(batch_count, k, n))),
|
|
381
|
-
dtype=float,
|
|
382
|
-
device=device,
|
|
383
|
-
requires_grad=True,
|
|
384
|
-
)
|
|
385
|
-
C = wp.array3d(
|
|
386
|
-
np.ceil(rng.uniform(low=low, high=high, size=(batch_count, m, n))),
|
|
387
|
-
dtype=float,
|
|
388
|
-
device=device,
|
|
389
|
-
requires_grad=True,
|
|
390
|
-
)
|
|
391
|
-
D = wp.array3d(np.zeros((batch_count, m, n)), dtype=float, device=device, requires_grad=True)
|
|
392
|
-
ones = wp.zeros_like(D)
|
|
393
|
-
ones.fill_(1.0)
|
|
394
|
-
|
|
395
|
-
alpha = 1.0
|
|
396
|
-
beta = 1.0
|
|
397
|
-
|
|
398
|
-
tape = wp.Tape()
|
|
399
|
-
with tape:
|
|
400
|
-
wp.batched_matmul(A, B, C, D, alpha=alpha, beta=beta, allow_tf32x3_arith=False)
|
|
401
|
-
tape.backward(grads={D: ones})
|
|
402
|
-
|
|
403
|
-
D_np = alpha * np.matmul(A.numpy(), B.numpy()) + beta * C.numpy()
|
|
404
|
-
assert_np_equal(D.numpy(), D_np)
|
|
405
|
-
|
|
406
|
-
adj_A_np = alpha * np.matmul(ones.numpy(), B.numpy().transpose((0, 2, 1)))
|
|
407
|
-
adj_B_np = alpha * np.matmul(A.numpy().transpose((0, 2, 1)), ones.numpy())
|
|
408
|
-
adj_C_np = beta * ones.numpy()
|
|
409
|
-
|
|
410
|
-
assert_np_equal(A.grad.numpy(), adj_A_np)
|
|
411
|
-
assert_np_equal(B.grad.numpy(), adj_B_np)
|
|
412
|
-
assert_np_equal(C.grad.numpy(), adj_C_np)
|
|
413
|
-
|
|
414
|
-
|
|
415
|
-
@unittest.skipUnless(wp.context.runtime.core.is_cutlass_enabled(), "Warp was not built with CUTLASS support")
|
|
416
|
-
def test_adjoint_accumulation(test, device):
|
|
417
|
-
a_np = np.ones(shape=(2, 3))
|
|
418
|
-
b_np = np.ones(shape=(3, 2))
|
|
419
|
-
c_np = np.zeros(shape=(2, 2))
|
|
420
|
-
d_np = np.zeros(shape=(2, 2))
|
|
421
|
-
|
|
422
|
-
a_wp = wp.from_numpy(a_np, dtype=float, requires_grad=True, device=device)
|
|
423
|
-
b_wp = wp.from_numpy(b_np, dtype=float, requires_grad=True, device=device)
|
|
424
|
-
c_wp = wp.from_numpy(c_np, dtype=float, requires_grad=True, device=device)
|
|
425
|
-
d1_wp = wp.from_numpy(d_np, dtype=float, requires_grad=True, device=device)
|
|
426
|
-
d2_wp = wp.from_numpy(d_np, dtype=float, requires_grad=True, device=device)
|
|
427
|
-
|
|
428
|
-
tape = wp.Tape()
|
|
429
|
-
|
|
430
|
-
with tape:
|
|
431
|
-
wp.matmul(a_wp, b_wp, c_wp, d1_wp, alpha=1.0, beta=1.0)
|
|
432
|
-
wp.matmul(a_wp, b_wp, d1_wp, d2_wp, alpha=1.0, beta=1.0)
|
|
433
|
-
|
|
434
|
-
d_grad = wp.zeros_like(d2_wp, device=device)
|
|
435
|
-
d_grad.fill_(1.0)
|
|
436
|
-
grads = {d2_wp: d_grad}
|
|
437
|
-
tape.backward(grads=grads)
|
|
438
|
-
|
|
439
|
-
assert_np_equal(a_wp.grad.numpy(), 4.0 * np.ones(shape=(2, 3)))
|
|
440
|
-
assert_np_equal(b_wp.grad.numpy(), 4.0 * np.ones(shape=(3, 2)))
|
|
441
|
-
assert_np_equal(c_wp.grad.numpy(), np.ones(shape=(2, 2)))
|
|
442
|
-
|
|
443
|
-
|
|
444
|
-
@unittest.skipUnless(wp.context.runtime.core.is_cutlass_enabled(), "Warp was not built with CUTLASS support")
|
|
445
|
-
def test_cuda_graph_capture(test, device):
|
|
446
|
-
@wp.kernel
|
|
447
|
-
def mat_sum(mat: wp.array2d(dtype=Any), loss: wp.array(dtype=Any)):
|
|
448
|
-
i, j = wp.tid()
|
|
449
|
-
e = mat[i, j]
|
|
450
|
-
wp.atomic_add(loss, 0, e)
|
|
451
|
-
|
|
452
|
-
for T in [wp.float16, wp.float32, wp.float64]:
|
|
453
|
-
wp.overload(mat_sum, [wp.array2d(dtype=T), wp.array(dtype=T)])
|
|
454
|
-
|
|
455
|
-
wp.load_module(device=device)
|
|
456
|
-
wp.load_module(module="warp.utils", device=device)
|
|
457
|
-
|
|
458
|
-
for dtype in [wp.float16, wp.float32, wp.float64]:
|
|
459
|
-
m = 8
|
|
460
|
-
n = 8
|
|
461
|
-
k = 8
|
|
462
|
-
|
|
463
|
-
A = wp.ones((m, n), dtype=dtype, device=device, requires_grad=True)
|
|
464
|
-
B = wp.ones((n, k), dtype=dtype, device=device, requires_grad=True)
|
|
465
|
-
C = wp.zeros((m, k), dtype=dtype, device=device, requires_grad=True)
|
|
466
|
-
D = wp.zeros((m, k), dtype=dtype, device=device, requires_grad=True)
|
|
467
|
-
|
|
468
|
-
loss = wp.zeros(1, dtype=dtype, device=device, requires_grad=True)
|
|
469
|
-
|
|
470
|
-
wp.capture_begin(device, force_module_load=False)
|
|
471
|
-
try:
|
|
472
|
-
tape = wp.Tape()
|
|
473
|
-
|
|
474
|
-
with tape:
|
|
475
|
-
wp.matmul(A, B, C, D)
|
|
476
|
-
wp.launch(mat_sum, dim=(m, k), inputs=[D, loss], device=device)
|
|
477
|
-
|
|
478
|
-
tape.backward(loss=loss)
|
|
479
|
-
finally:
|
|
480
|
-
graph = wp.capture_end(device)
|
|
481
|
-
|
|
482
|
-
wp.capture_launch(graph)
|
|
483
|
-
|
|
484
|
-
assert_np_equal(A.grad.numpy(), 8.0 * np.ones((m, n), dtype=wp.types.warp_type_to_np_dtype[dtype]))
|
|
485
|
-
|
|
486
|
-
|
|
487
|
-
devices = get_test_devices()
|
|
488
|
-
cuda_devices = get_selected_cuda_test_devices()
|
|
489
|
-
|
|
490
|
-
|
|
491
|
-
class TestMatmul(unittest.TestCase):
|
|
492
|
-
pass
|
|
493
|
-
|
|
494
|
-
|
|
495
|
-
# add_function_test(TestMatmul, "test_f16", test_f16, devices=devices)
|
|
496
|
-
add_function_test(TestMatmul, "test_f32", test_f32, devices=devices, check_output=False)
|
|
497
|
-
add_function_test(TestMatmul, "test_f64", test_f64, devices=devices, check_output=False)
|
|
498
|
-
add_function_test(TestMatmul, "test_tape", test_tape, devices=devices, check_output=False)
|
|
499
|
-
add_function_test(TestMatmul, "test_operator", test_operator, devices=devices, check_output=False)
|
|
500
|
-
add_function_test(TestMatmul, "test_large_batch_count", test_large_batch_count, devices=devices, check_output=False)
|
|
501
|
-
add_function_test(
|
|
502
|
-
TestMatmul, "test_adjoint_accumulation", test_adjoint_accumulation, devices=devices, check_output=False
|
|
503
|
-
)
|
|
504
|
-
add_function_test(
|
|
505
|
-
TestMatmul, "test_cuda_graph_capture", test_cuda_graph_capture, devices=cuda_devices, check_output=False
|
|
506
|
-
)
|
|
507
|
-
|
|
508
|
-
|
|
509
|
-
if __name__ == "__main__":
|
|
510
|
-
wp.clear_kernel_cache()
|
|
511
|
-
unittest.main(verbosity=2, failfast=False)
|