warp-lang 1.5.1__py3-none-macosx_10_13_universal2.whl → 1.6.1__py3-none-macosx_10_13_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of warp-lang might be problematic. Click here for more details.

Files changed (131) hide show
  1. warp/__init__.py +5 -0
  2. warp/autograd.py +414 -191
  3. warp/bin/libwarp-clang.dylib +0 -0
  4. warp/bin/libwarp.dylib +0 -0
  5. warp/build.py +40 -12
  6. warp/build_dll.py +13 -6
  7. warp/builtins.py +1077 -481
  8. warp/codegen.py +250 -122
  9. warp/config.py +65 -21
  10. warp/context.py +500 -149
  11. warp/examples/assets/square_cloth.usd +0 -0
  12. warp/examples/benchmarks/benchmark_gemm.py +27 -18
  13. warp/examples/benchmarks/benchmark_interop_paddle.py +3 -3
  14. warp/examples/benchmarks/benchmark_interop_torch.py +3 -3
  15. warp/examples/core/example_marching_cubes.py +1 -1
  16. warp/examples/core/example_mesh.py +1 -1
  17. warp/examples/core/example_torch.py +18 -34
  18. warp/examples/core/example_wave.py +1 -1
  19. warp/examples/fem/example_apic_fluid.py +1 -0
  20. warp/examples/fem/example_mixed_elasticity.py +1 -1
  21. warp/examples/optim/example_bounce.py +1 -1
  22. warp/examples/optim/example_cloth_throw.py +1 -1
  23. warp/examples/optim/example_diffray.py +4 -15
  24. warp/examples/optim/example_drone.py +1 -1
  25. warp/examples/optim/example_softbody_properties.py +392 -0
  26. warp/examples/optim/example_trajectory.py +1 -3
  27. warp/examples/optim/example_walker.py +5 -0
  28. warp/examples/sim/example_cartpole.py +0 -2
  29. warp/examples/sim/example_cloth_self_contact.py +314 -0
  30. warp/examples/sim/example_granular_collision_sdf.py +4 -5
  31. warp/examples/sim/example_jacobian_ik.py +0 -2
  32. warp/examples/sim/example_quadruped.py +5 -2
  33. warp/examples/tile/example_tile_cholesky.py +79 -0
  34. warp/examples/tile/example_tile_convolution.py +2 -2
  35. warp/examples/tile/example_tile_fft.py +2 -2
  36. warp/examples/tile/example_tile_filtering.py +3 -3
  37. warp/examples/tile/example_tile_matmul.py +4 -4
  38. warp/examples/tile/example_tile_mlp.py +12 -12
  39. warp/examples/tile/example_tile_nbody.py +191 -0
  40. warp/examples/tile/example_tile_walker.py +319 -0
  41. warp/math.py +147 -0
  42. warp/native/array.h +12 -0
  43. warp/native/builtin.h +0 -1
  44. warp/native/bvh.cpp +149 -70
  45. warp/native/bvh.cu +287 -68
  46. warp/native/bvh.h +195 -85
  47. warp/native/clang/clang.cpp +6 -2
  48. warp/native/crt.h +1 -0
  49. warp/native/cuda_util.cpp +35 -0
  50. warp/native/cuda_util.h +5 -0
  51. warp/native/exports.h +40 -40
  52. warp/native/intersect.h +17 -0
  53. warp/native/mat.h +57 -3
  54. warp/native/mathdx.cpp +19 -0
  55. warp/native/mesh.cpp +25 -8
  56. warp/native/mesh.cu +153 -101
  57. warp/native/mesh.h +482 -403
  58. warp/native/quat.h +40 -0
  59. warp/native/solid_angle.h +7 -0
  60. warp/native/sort.cpp +85 -0
  61. warp/native/sort.cu +34 -0
  62. warp/native/sort.h +3 -1
  63. warp/native/spatial.h +11 -0
  64. warp/native/tile.h +1189 -664
  65. warp/native/tile_reduce.h +8 -6
  66. warp/native/vec.h +41 -0
  67. warp/native/warp.cpp +8 -1
  68. warp/native/warp.cu +263 -40
  69. warp/native/warp.h +19 -5
  70. warp/optim/linear.py +22 -4
  71. warp/render/render_opengl.py +132 -59
  72. warp/render/render_usd.py +10 -2
  73. warp/sim/__init__.py +6 -1
  74. warp/sim/collide.py +289 -32
  75. warp/sim/import_urdf.py +20 -5
  76. warp/sim/integrator_euler.py +25 -7
  77. warp/sim/integrator_featherstone.py +147 -35
  78. warp/sim/integrator_vbd.py +842 -40
  79. warp/sim/model.py +173 -112
  80. warp/sim/render.py +2 -2
  81. warp/stubs.py +249 -116
  82. warp/tape.py +28 -30
  83. warp/tests/aux_test_module_unload.py +15 -0
  84. warp/tests/{test_sim_grad.py → flaky_test_sim_grad.py} +104 -63
  85. warp/tests/test_array.py +100 -0
  86. warp/tests/test_assert.py +242 -0
  87. warp/tests/test_codegen.py +14 -61
  88. warp/tests/test_collision.py +8 -8
  89. warp/tests/test_examples.py +16 -1
  90. warp/tests/test_grad_debug.py +87 -2
  91. warp/tests/test_hash_grid.py +1 -1
  92. warp/tests/test_ipc.py +116 -0
  93. warp/tests/test_launch.py +77 -26
  94. warp/tests/test_mat.py +213 -168
  95. warp/tests/test_math.py +47 -1
  96. warp/tests/test_matmul.py +11 -7
  97. warp/tests/test_matmul_lite.py +4 -4
  98. warp/tests/test_mesh.py +84 -60
  99. warp/tests/test_mesh_query_aabb.py +165 -0
  100. warp/tests/test_mesh_query_point.py +328 -286
  101. warp/tests/test_mesh_query_ray.py +134 -121
  102. warp/tests/test_mlp.py +2 -2
  103. warp/tests/test_operators.py +43 -0
  104. warp/tests/test_overwrite.py +6 -5
  105. warp/tests/test_quat.py +77 -0
  106. warp/tests/test_reload.py +29 -0
  107. warp/tests/test_sim_grad_bounce_linear.py +204 -0
  108. warp/tests/test_static.py +16 -0
  109. warp/tests/test_tape.py +25 -0
  110. warp/tests/test_tile.py +134 -191
  111. warp/tests/test_tile_load.py +399 -0
  112. warp/tests/test_tile_mathdx.py +61 -8
  113. warp/tests/test_tile_mlp.py +17 -17
  114. warp/tests/test_tile_reduce.py +24 -18
  115. warp/tests/test_tile_shared_memory.py +66 -17
  116. warp/tests/test_tile_view.py +165 -0
  117. warp/tests/test_torch.py +35 -0
  118. warp/tests/test_utils.py +36 -24
  119. warp/tests/test_vec.py +110 -0
  120. warp/tests/unittest_suites.py +29 -4
  121. warp/tests/unittest_utils.py +30 -11
  122. warp/thirdparty/unittest_parallel.py +5 -2
  123. warp/types.py +419 -111
  124. warp/utils.py +9 -5
  125. {warp_lang-1.5.1.dist-info → warp_lang-1.6.1.dist-info}/METADATA +86 -45
  126. {warp_lang-1.5.1.dist-info → warp_lang-1.6.1.dist-info}/RECORD +129 -118
  127. {warp_lang-1.5.1.dist-info → warp_lang-1.6.1.dist-info}/WHEEL +1 -1
  128. warp/examples/benchmarks/benchmark_tile.py +0 -179
  129. warp/native/tile_gemm.h +0 -341
  130. {warp_lang-1.5.1.dist-info → warp_lang-1.6.1.dist-info}/LICENSE.md +0 -0
  131. {warp_lang-1.5.1.dist-info → warp_lang-1.6.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,314 @@
1
+ # Copyright (c) 2024 NVIDIA CORPORATION. All rights reserved.
2
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
3
+ # and proprietary rights in and to this software, related documentation
4
+ # and any modifications thereto. Any use, reproduction, disclosure or
5
+ # distribution of this software and related documentation without an express
6
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
7
+
8
+ ###########################################################################
9
+ # Example Sim Cloth Self Contact
10
+ #
11
+ # This simulation demonstrates twisting an FEM cloth model using the VBD
12
+ # integrator, showcasing its ability to handle complex self-contacts while
13
+ # ensuring it remains intersection-free.
14
+ #
15
+ ###########################################################################
16
+
17
+ import math
18
+ import os
19
+
20
+ import numpy as np
21
+ from pxr import Usd, UsdGeom
22
+
23
+ import warp as wp
24
+ import warp.examples
25
+ import warp.sim
26
+ import warp.sim.render
27
+ from warp.sim.model import PARTICLE_FLAG_ACTIVE
28
+
29
+
30
+ @wp.kernel
31
+ def initialize_rotation(
32
+ # input
33
+ vertex_indices_to_rot: wp.array(dtype=wp.int32),
34
+ pos: wp.array(dtype=wp.vec3),
35
+ rot_centers: wp.array(dtype=wp.vec3),
36
+ rot_axes: wp.array(dtype=wp.vec3),
37
+ t: wp.array(dtype=float),
38
+ # output
39
+ roots: wp.array(dtype=wp.vec3),
40
+ roots_to_ps: wp.array(dtype=wp.vec3),
41
+ ):
42
+ tid = wp.tid()
43
+ v_index = vertex_indices_to_rot[wp.tid()]
44
+
45
+ p = pos[v_index]
46
+ rot_center = rot_centers[tid]
47
+ rot_axis = rot_axes[tid]
48
+ op = p - rot_center
49
+
50
+ root = wp.dot(op, rot_axis) * rot_axis
51
+
52
+ root_to_p = p - root
53
+
54
+ roots[tid] = root
55
+ roots_to_ps[tid] = root_to_p
56
+
57
+ if tid == 0:
58
+ t[0] = 0.0
59
+
60
+
61
+ @wp.kernel
62
+ def apply_rotation(
63
+ # input
64
+ vertex_indices_to_rot: wp.array(dtype=wp.int32),
65
+ rot_axes: wp.array(dtype=wp.vec3),
66
+ roots: wp.array(dtype=wp.vec3),
67
+ roots_to_ps: wp.array(dtype=wp.vec3),
68
+ t: wp.array(dtype=float),
69
+ angular_velocity: float,
70
+ dt: float,
71
+ end_time: float,
72
+ # output
73
+ pos_0: wp.array(dtype=wp.vec3),
74
+ pos_1: wp.array(dtype=wp.vec3),
75
+ ):
76
+ cur_t = t[0]
77
+ if cur_t > end_time:
78
+ return
79
+
80
+ tid = wp.tid()
81
+ v_index = vertex_indices_to_rot[wp.tid()]
82
+
83
+ rot_axis = rot_axes[tid]
84
+
85
+ ux = rot_axis[0]
86
+ uy = rot_axis[1]
87
+ uz = rot_axis[2]
88
+
89
+ theta = cur_t * angular_velocity
90
+
91
+ R = wp.mat33(
92
+ wp.cos(theta) + ux * ux * (1.0 - wp.cos(theta)),
93
+ ux * uy * (1.0 - wp.cos(theta)) - uz * wp.sin(theta),
94
+ ux * uz * (1.0 - wp.cos(theta)) + uy * wp.sin(theta),
95
+ uy * ux * (1.0 - wp.cos(theta)) + uz * wp.sin(theta),
96
+ wp.cos(theta) + uy * uy * (1.0 - wp.cos(theta)),
97
+ uy * uz * (1.0 - wp.cos(theta)) - ux * wp.sin(theta),
98
+ uz * ux * (1.0 - wp.cos(theta)) - uy * wp.sin(theta),
99
+ uz * uy * (1.0 - wp.cos(theta)) + ux * wp.sin(theta),
100
+ wp.cos(theta) + uz * uz * (1.0 - wp.cos(theta)),
101
+ )
102
+
103
+ root = roots[tid]
104
+ root_to_p = roots_to_ps[tid]
105
+ root_to_p_rot = R * root_to_p
106
+ p_rot = root + root_to_p_rot
107
+
108
+ pos_0[v_index] = p_rot
109
+ pos_1[v_index] = p_rot
110
+
111
+ if tid == 0:
112
+ t[0] = cur_t + dt
113
+
114
+
115
+ class Example:
116
+ def __init__(self, stage_path="example_cloth_self_contact.usd", num_frames=600):
117
+ fps = 60
118
+ self.frame_dt = 1.0 / fps
119
+ # must be an even number when using CUDA Graph
120
+ self.num_substeps = 10
121
+ self.iterations = 4
122
+ self.dt = self.frame_dt / self.num_substeps
123
+
124
+ self.num_frames = num_frames
125
+ self.sim_time = 0.0
126
+ self.profiler = {}
127
+
128
+ self.rot_angular_velocity = math.pi / 3
129
+ self.rot_end_time = 10
130
+ self.use_cuda_graph = wp.get_device().is_cuda
131
+
132
+ usd_stage = Usd.Stage.Open(os.path.join(warp.examples.get_asset_directory(), "square_cloth.usd"))
133
+ usd_geom = UsdGeom.Mesh(usd_stage.GetPrimAtPath("/root/cloth/cloth"))
134
+
135
+ mesh_points = np.array(usd_geom.GetPointsAttr().Get())
136
+ mesh_indices = np.array(usd_geom.GetFaceVertexIndicesAttr().Get())
137
+
138
+ self.input_scale_factor = 1.0
139
+ self.renderer_scale_factor = 0.01
140
+
141
+ vertices = [wp.vec3(v) * self.input_scale_factor for v in mesh_points]
142
+ self.faces = mesh_indices.reshape(-1, 3)
143
+
144
+ builder = wp.sim.ModelBuilder()
145
+ builder.add_cloth_mesh(
146
+ pos=wp.vec3(0.0, 0.0, 0.0),
147
+ rot=wp.quat_identity(),
148
+ scale=1.0,
149
+ vertices=vertices,
150
+ indices=mesh_indices,
151
+ vel=wp.vec3(0.0, 0.0, 0.0),
152
+ density=0.02,
153
+ tri_ke=1.0e5,
154
+ tri_ka=1.0e5,
155
+ tri_kd=2.0e-6,
156
+ edge_ke=10,
157
+ )
158
+ builder.color()
159
+ self.model = builder.finalize()
160
+ self.model.ground = False
161
+ self.model.soft_contact_ke = 1.0e5
162
+ self.model.soft_contact_kd = 1.0e-6
163
+ self.model.soft_contact_mu = 0.2
164
+
165
+ # set up contact query and contact detection distances
166
+ self.model.soft_contact_radius = 0.2
167
+ self.model.soft_contact_margin = 0.35
168
+
169
+ cloth_size = 50
170
+ left_side = [cloth_size - 1 + i * cloth_size for i in range(cloth_size)]
171
+ right_side = [i * cloth_size for i in range(cloth_size)]
172
+ rot_point_indices = left_side + right_side
173
+
174
+ if len(rot_point_indices):
175
+ flags = self.model.particle_flags.numpy()
176
+ for fixed_vertex_id in rot_point_indices:
177
+ flags[fixed_vertex_id] = wp.uint32(int(flags[fixed_vertex_id]) & ~int(PARTICLE_FLAG_ACTIVE))
178
+
179
+ self.model.particle_flags = wp.array(flags)
180
+
181
+ self.integrator = wp.sim.VBDIntegrator(
182
+ self.model,
183
+ self.iterations,
184
+ handle_self_contact=True,
185
+ )
186
+ self.state0 = self.model.state()
187
+ self.state1 = self.model.state()
188
+
189
+ rot_axes = [[1, 0, 0]] * len(right_side) + [[-1, 0, 0]] * len(left_side)
190
+
191
+ self.rot_point_indices = wp.array(rot_point_indices, dtype=int)
192
+ self.t = wp.zeros((1,), dtype=float)
193
+ self.rot_centers = wp.zeros(len(rot_point_indices), dtype=wp.vec3)
194
+ self.rot_axes = wp.array(rot_axes, dtype=wp.vec3)
195
+
196
+ self.roots = wp.zeros_like(self.rot_centers)
197
+ self.roots_to_ps = wp.zeros_like(self.rot_centers)
198
+
199
+ wp.launch(
200
+ kernel=initialize_rotation,
201
+ dim=self.rot_point_indices.shape[0],
202
+ inputs=[
203
+ self.rot_point_indices,
204
+ self.state0.particle_q,
205
+ self.rot_centers,
206
+ self.rot_axes,
207
+ self.t,
208
+ ],
209
+ outputs=[
210
+ self.roots,
211
+ self.roots_to_ps,
212
+ ],
213
+ )
214
+
215
+ if stage_path:
216
+ self.renderer = wp.sim.render.SimRenderer(self.model, stage_path, scaling=1)
217
+ else:
218
+ self.renderer = None
219
+ self.cuda_graph = None
220
+ if self.use_cuda_graph:
221
+ with wp.ScopedCapture() as capture:
222
+ for _ in range(self.num_substeps):
223
+ wp.launch(
224
+ kernel=apply_rotation,
225
+ dim=self.rot_point_indices.shape[0],
226
+ inputs=[
227
+ self.rot_point_indices,
228
+ self.rot_axes,
229
+ self.roots,
230
+ self.roots_to_ps,
231
+ self.t,
232
+ self.rot_angular_velocity,
233
+ self.dt,
234
+ self.rot_end_time,
235
+ ],
236
+ outputs=[
237
+ self.state0.particle_q,
238
+ self.state1.particle_q,
239
+ ],
240
+ )
241
+
242
+ self.integrator.simulate(self.model, self.state0, self.state1, self.dt, None)
243
+ (self.state0, self.state1) = (self.state1, self.state0)
244
+
245
+ self.cuda_graph = capture.graph
246
+
247
+ def step(self):
248
+ with wp.ScopedTimer("step", print=False, dict=self.profiler):
249
+ if self.use_cuda_graph:
250
+ wp.capture_launch(self.cuda_graph)
251
+ else:
252
+ for _ in range(self.num_substeps):
253
+ wp.launch(
254
+ kernel=apply_rotation,
255
+ dim=self.rot_point_indices.shape[0],
256
+ inputs=[
257
+ self.rot_point_indices,
258
+ self.rot_axes,
259
+ self.roots,
260
+ self.roots_to_ps,
261
+ self.t,
262
+ self.rot_angular_velocity,
263
+ self.dt,
264
+ self.rot_end_time,
265
+ ],
266
+ outputs=[
267
+ self.state0.particle_q,
268
+ self.state1.particle_q,
269
+ ],
270
+ )
271
+ self.integrator.simulate(self.model, self.state0, self.state1, self.dt)
272
+
273
+ (self.state0, self.state1) = (self.state1, self.state0)
274
+
275
+ self.sim_time += self.dt
276
+
277
+ def render(self):
278
+ if self.renderer is None:
279
+ return
280
+
281
+ with wp.ScopedTimer("render", print=False):
282
+ self.renderer.begin_frame(self.sim_time)
283
+ self.renderer.render(self.state0)
284
+ self.renderer.end_frame()
285
+
286
+
287
+ if __name__ == "__main__":
288
+ import argparse
289
+
290
+ parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
291
+ parser.add_argument("--device", type=str, default=None, help="Override the default Warp device.")
292
+ parser.add_argument(
293
+ "--stage_path",
294
+ type=lambda x: None if x == "None" else str(x),
295
+ default="example_cloth_self_contact.usd",
296
+ help="Path to the output USD file.",
297
+ )
298
+ parser.add_argument("--num_frames", type=int, default=300, help="Total number of frames.")
299
+
300
+ args = parser.parse_known_args()[0]
301
+
302
+ with wp.ScopedDevice(args.device):
303
+ example = Example(stage_path=args.stage_path, num_frames=args.num_frames)
304
+
305
+ for i in range(example.num_frames):
306
+ example.step()
307
+ example.render()
308
+ print(f"[{i:4d}/{example.num_frames}]")
309
+
310
+ frame_times = example.profiler["step"]
311
+ print("\nAverage frame sim time: {:.2f} ms".format(sum(frame_times) / len(frame_times)))
312
+
313
+ if example.renderer:
314
+ example.renderer.save()
@@ -15,7 +15,6 @@
15
15
  # Note: requires a CUDA-capable device
16
16
  ###########################################################################
17
17
 
18
- import math
19
18
  import os
20
19
 
21
20
  import numpy as np
@@ -66,8 +65,8 @@ class Example:
66
65
  sdf=rock_sdf,
67
66
  body=-1,
68
67
  pos=wp.vec3(0.0, 0.0, 0.0),
69
- rot=wp.quat_from_axis_angle(wp.vec3(1.0, 0.0, 0.0), -0.5 * math.pi),
70
- scale=wp.vec3(0.01, 0.01, 0.01),
68
+ rot=wp.quat(0.0, 0.0, 0.0, 1.0),
69
+ scale=wp.vec3(1.0, 1.0, 1.0),
71
70
  )
72
71
 
73
72
  mins = np.array([-3.0, -3.0, -3.0])
@@ -149,13 +148,13 @@ class Example:
149
148
  with wp.ScopedTimer("render"):
150
149
  self.renderer.begin_frame(self.sim_time)
151
150
 
152
- # Note the extra wp.quat_from_axis_angle(wp.vec3(1.0, 0.0, 0.0), math.pi) is because .usd is oriented differently from .nvdb
153
151
  self.renderer.render_ref(
154
152
  name="collision",
155
153
  path=os.path.join(warp.examples.get_asset_directory(), "rocks.usd"),
156
154
  pos=wp.vec3(0.0, 0.0, 0.0),
157
155
  rot=wp.quat(0.0, 0.0, 0.0, 1.0),
158
- scale=wp.vec3(0.01, 0.01, 0.01),
156
+ scale=wp.vec3(1.0, 1.0, 1.0),
157
+ color=(0.35, 0.55, 0.9),
159
158
  )
160
159
 
161
160
  self.renderer.render_sphere(
@@ -43,8 +43,6 @@ class Example:
43
43
  def __init__(self, stage_path="example_jacobian_ik.usd", num_envs=10):
44
44
  rng = np.random.default_rng(42)
45
45
 
46
- builder = wp.sim.ModelBuilder()
47
-
48
46
  self.num_envs = num_envs
49
47
 
50
48
  fps = 60
@@ -93,7 +93,7 @@ class Example:
93
93
  fps = 100
94
94
  self.frame_dt = 1.0 / fps
95
95
 
96
- self.sim_substeps = 5
96
+ self.sim_substeps = 10
97
97
  self.sim_dt = self.frame_dt / self.sim_substeps
98
98
 
99
99
  self.num_envs = num_envs
@@ -116,10 +116,13 @@ class Example:
116
116
  self.model.joint_attach_ke = 16000.0
117
117
  self.model.joint_attach_kd = 200.0
118
118
  self.use_tile_gemm = False
119
+ self.fuse_cholesky = False
119
120
 
120
121
  # self.integrator = wp.sim.XPBDIntegrator()
121
122
  # self.integrator = wp.sim.SemiImplicitIntegrator()
122
- self.integrator = wp.sim.FeatherstoneIntegrator(self.model, use_tile_gemm=self.use_tile_gemm)
123
+ self.integrator = wp.sim.FeatherstoneIntegrator(
124
+ self.model, use_tile_gemm=self.use_tile_gemm, fuse_cholesky=self.fuse_cholesky
125
+ )
123
126
 
124
127
  if stage_path:
125
128
  self.renderer = wp.sim.render.SimRenderer(self.model, stage_path)
@@ -0,0 +1,79 @@
1
+ # Copyright (c) 2025 NVIDIA CORPORATION. All rights reserved.
2
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
3
+ # and proprietary rights in and to this software, related documentation
4
+ # and any modifications thereto. Any use, reproduction, disclosure or
5
+ # distribution of this software and related documentation without an express
6
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
7
+
8
+ ###########################################################################
9
+ # Example Tile Cholesky
10
+ #
11
+ # Shows how to write a simple kernel computing a Cholesky factorize and
12
+ # triangular solve using Warp Cholesky Tile APIs.
13
+ #
14
+ ###########################################################################
15
+
16
+ import numpy as np
17
+
18
+ import warp as wp
19
+
20
+ wp.init()
21
+ wp.set_module_options({"enable_backward": False})
22
+
23
+ BLOCK_DIM = 128
24
+ TILE = 32
25
+
26
+ # Both should work
27
+ np_type, wp_type = np.float64, wp.float64
28
+ # np_type, wp_type = np.float32, wp.float32
29
+
30
+
31
+ @wp.kernel
32
+ def cholesky(
33
+ A: wp.array2d(dtype=wp_type),
34
+ L: wp.array2d(dtype=wp_type),
35
+ X: wp.array1d(dtype=wp_type),
36
+ Y: wp.array1d(dtype=wp_type),
37
+ ):
38
+ i, j, _ = wp.tid()
39
+
40
+ a = wp.tile_load(A, shape=(TILE, TILE))
41
+ l = wp.tile_cholesky(a)
42
+ wp.tile_store(L, l)
43
+
44
+ x = wp.tile_load(X, shape=TILE)
45
+ y = wp.tile_cholesky_solve(l, x)
46
+ wp.tile_store(Y, y)
47
+
48
+
49
+ if __name__ == "__main__":
50
+ wp.set_device("cuda:0")
51
+
52
+ A_h = np.ones((TILE, TILE), dtype=np_type) + 5 * np.diag(np.ones(TILE), 0)
53
+ L_h = np.zeros_like(A_h)
54
+
55
+ A_wp = wp.array2d(A_h, dtype=wp_type)
56
+ L_wp = wp.array2d(L_h, dtype=wp_type)
57
+
58
+ X_h = np.arange(TILE, dtype=np_type)
59
+ Y_h = np.zeros_like(X_h)
60
+
61
+ X_wp = wp.array1d(X_h, dtype=wp_type)
62
+ Y_wp = wp.array1d(Y_h, dtype=wp_type)
63
+
64
+ wp.launch_tiled(cholesky, dim=[1, 1], inputs=[A_wp, L_wp, X_wp, Y_wp], block_dim=BLOCK_DIM)
65
+
66
+ L_np = np.linalg.cholesky(A_h)
67
+ Y_np = np.linalg.solve(A_h, X_h)
68
+
69
+ print("A:\n", A_h)
70
+ print("L (Warp):\n", L_wp)
71
+ print("L (Numpy):\n", L_np)
72
+
73
+ print("x:\n", X_h)
74
+ print("A\\n (Warp):\n", Y_wp.numpy())
75
+ print("A\\x (Numpy):\n", Y_np)
76
+
77
+ assert np.allclose(Y_wp.numpy(), Y_np) and np.allclose(L_wp.numpy(), L_np)
78
+
79
+ print("Example Tile Cholesky passed")
@@ -34,11 +34,11 @@ def filter(x: wp.vec2d):
34
34
  @wp.kernel
35
35
  def conv_tiled(x: wp.array2d(dtype=wp.vec2d), y: wp.array2d(dtype=wp.vec2d)):
36
36
  i, j, _ = wp.tid()
37
- a = wp.tile_load(x, i, j, m=TILE_M, n=TILE_N)
37
+ a = wp.tile_load(x, shape=(TILE_M, TILE_N))
38
38
  wp.tile_fft(a)
39
39
  b = wp.tile_map(filter, a)
40
40
  wp.tile_ifft(b)
41
- wp.tile_store(y, i, j, b)
41
+ wp.tile_store(y, b)
42
42
 
43
43
 
44
44
  if __name__ == "__main__":
@@ -26,10 +26,10 @@ TILE_N = 32
26
26
  @wp.kernel
27
27
  def fft_tiled(x: wp.array2d(dtype=wp.vec2d), y: wp.array2d(dtype=wp.vec2d)):
28
28
  i, j, _ = wp.tid()
29
- a = wp.tile_load(x, i, j, m=TILE_M, n=TILE_N)
29
+ a = wp.tile_load(x, shape=(TILE_M, TILE_N))
30
30
  wp.tile_fft(a)
31
31
  wp.tile_ifft(a)
32
- wp.tile_store(y, i, j, a)
32
+ wp.tile_store(y, a)
33
33
 
34
34
 
35
35
  if __name__ == "__main__":
@@ -38,12 +38,12 @@ def cplx_prod(x: wp.vec2d, y: wp.vec2d):
38
38
  @wp.kernel
39
39
  def conv_tiled(x: wp.array2d(dtype=wp.vec2d), y: wp.array2d(dtype=wp.vec2d), z: wp.array2d(dtype=wp.vec2d)):
40
40
  i, j, _ = wp.tid()
41
- a = wp.tile_load(x, i, j, m=TILE_M, n=TILE_N)
42
- b = wp.tile_load(y, i, j, m=TILE_M, n=TILE_N)
41
+ a = wp.tile_load(x, shape=(TILE_M, TILE_N))
42
+ b = wp.tile_load(y, shape=(TILE_M, TILE_N))
43
43
  wp.tile_fft(a)
44
44
  c = wp.tile_map(cplx_prod, a, b)
45
45
  wp.tile_ifft(c)
46
- wp.tile_store(z, i, j, c)
46
+ wp.tile_store(z, c)
47
47
 
48
48
 
49
49
  if __name__ == "__main__":
@@ -30,7 +30,7 @@ def tile_gemm(A: wp.array2d(dtype=wp.float32), B: wp.array2d(dtype=wp.float16),
30
30
  # output tile index
31
31
  i, j = wp.tid()
32
32
 
33
- sum = wp.tile_zeros(m=TILE_M, n=TILE_N, dtype=wp.float64)
33
+ sum = wp.tile_zeros(shape=(TILE_M, TILE_N), dtype=wp.float64)
34
34
 
35
35
  _M = A.shape[0]
36
36
  _N = B.shape[1]
@@ -39,13 +39,13 @@ def tile_gemm(A: wp.array2d(dtype=wp.float32), B: wp.array2d(dtype=wp.float16),
39
39
  count = int(K / TILE_K)
40
40
 
41
41
  for k in range(0, count):
42
- a = wp.tile_load(A, i, k, m=TILE_M, n=TILE_K)
43
- b = wp.tile_load(B, k, j, m=TILE_K, n=TILE_N)
42
+ a = wp.tile_load(A, shape=(TILE_M, TILE_K), offset=(i * TILE_M, k * TILE_K))
43
+ b = wp.tile_load(B, shape=(TILE_K, TILE_N), offset=(k * TILE_K, j * TILE_N))
44
44
 
45
45
  # sum += a*b
46
46
  wp.tile_matmul(a, b, sum)
47
47
 
48
- wp.tile_store(C, i, j, sum)
48
+ wp.tile_store(C, sum, offset=(i * TILE_M, j * TILE_N))
49
49
 
50
50
 
51
51
  if __name__ == "__main__":
@@ -117,23 +117,23 @@ def compute(
117
117
  f = wp.tile(local)
118
118
 
119
119
  # input layer
120
- w0 = wp.tile_load(weights_0, 0, 0, m=DIM_HID, n=DIM_IN)
121
- b0 = wp.tile_load(bias_0, 0, 0, m=DIM_HID, n=1)
122
- z = wp.tile_map(relu, wp.tile_matmul(w0, f) + wp.tile_broadcast(b0, m=DIM_HID, n=NUM_THREADS))
120
+ w0 = wp.tile_load(weights_0, shape=(DIM_HID, DIM_IN))
121
+ b0 = wp.tile_load(bias_0, shape=(DIM_HID, 1))
122
+ z = wp.tile_map(relu, wp.tile_matmul(w0, f) + wp.tile_broadcast(b0, shape=(DIM_HID, NUM_THREADS)))
123
123
 
124
124
  # hidden layer
125
- w1 = wp.tile_load(weights_1, 0, 0, m=DIM_HID, n=DIM_HID)
126
- b1 = wp.tile_load(bias_1, 0, 0, m=DIM_HID, n=1)
127
- z = wp.tile_map(relu, wp.tile_matmul(w1, z) + wp.tile_broadcast(b1, m=DIM_HID, n=NUM_THREADS))
125
+ w1 = wp.tile_load(weights_1, shape=(DIM_HID, DIM_HID))
126
+ b1 = wp.tile_load(bias_1, shape=(DIM_HID, 1))
127
+ z = wp.tile_map(relu, wp.tile_matmul(w1, z) + wp.tile_broadcast(b1, shape=(DIM_HID, NUM_THREADS)))
128
128
 
129
- w2 = wp.tile_load(weights_2, 0, 0, m=DIM_HID, n=DIM_HID)
130
- b2 = wp.tile_load(bias_2, 0, 0, m=DIM_HID, n=1)
131
- z = wp.tile_map(relu, wp.tile_matmul(w2, z) + wp.tile_broadcast(b2, m=DIM_HID, n=NUM_THREADS))
129
+ w2 = wp.tile_load(weights_2, shape=(DIM_HID, DIM_HID))
130
+ b2 = wp.tile_load(bias_2, shape=(DIM_HID, 1))
131
+ z = wp.tile_map(relu, wp.tile_matmul(w2, z) + wp.tile_broadcast(b2, shape=(DIM_HID, NUM_THREADS)))
132
132
 
133
133
  # output layer
134
- w3 = wp.tile_load(weights_3, 0, 0, m=DIM_OUT, n=DIM_HID)
135
- b3 = wp.tile_load(bias_3, 0, 0, m=DIM_OUT, n=1)
136
- o = wp.tile_map(relu, wp.tile_matmul(w3, z) + wp.tile_broadcast(b3, m=DIM_OUT, n=NUM_THREADS))
134
+ w3 = wp.tile_load(weights_3, shape=(DIM_OUT, DIM_HID))
135
+ b3 = wp.tile_load(bias_3, shape=(DIM_OUT, 1))
136
+ o = wp.tile_map(relu, wp.tile_matmul(w3, z) + wp.tile_broadcast(b3, shape=(DIM_OUT, NUM_THREADS)))
137
137
 
138
138
  # untile back to SIMT
139
139
  output = wp.untile(o)