warp-lang 1.5.1__py3-none-macosx_10_13_universal2.whl → 1.6.0__py3-none-macosx_10_13_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +5 -0
- warp/autograd.py +414 -191
- warp/bin/libwarp-clang.dylib +0 -0
- warp/bin/libwarp.dylib +0 -0
- warp/build.py +40 -12
- warp/build_dll.py +13 -6
- warp/builtins.py +1076 -480
- warp/codegen.py +240 -119
- warp/config.py +1 -1
- warp/context.py +298 -84
- warp/examples/assets/square_cloth.usd +0 -0
- warp/examples/benchmarks/benchmark_gemm.py +27 -18
- warp/examples/benchmarks/benchmark_interop_paddle.py +3 -3
- warp/examples/benchmarks/benchmark_interop_torch.py +3 -3
- warp/examples/core/example_torch.py +18 -34
- warp/examples/fem/example_apic_fluid.py +1 -0
- warp/examples/fem/example_mixed_elasticity.py +1 -1
- warp/examples/optim/example_bounce.py +1 -1
- warp/examples/optim/example_cloth_throw.py +1 -1
- warp/examples/optim/example_diffray.py +4 -15
- warp/examples/optim/example_drone.py +1 -1
- warp/examples/optim/example_softbody_properties.py +392 -0
- warp/examples/optim/example_trajectory.py +1 -3
- warp/examples/optim/example_walker.py +5 -0
- warp/examples/sim/example_cartpole.py +0 -2
- warp/examples/sim/example_cloth_self_contact.py +260 -0
- warp/examples/sim/example_granular_collision_sdf.py +4 -5
- warp/examples/sim/example_jacobian_ik.py +0 -2
- warp/examples/sim/example_quadruped.py +5 -2
- warp/examples/tile/example_tile_cholesky.py +79 -0
- warp/examples/tile/example_tile_convolution.py +2 -2
- warp/examples/tile/example_tile_fft.py +2 -2
- warp/examples/tile/example_tile_filtering.py +3 -3
- warp/examples/tile/example_tile_matmul.py +4 -4
- warp/examples/tile/example_tile_mlp.py +12 -12
- warp/examples/tile/example_tile_nbody.py +180 -0
- warp/examples/tile/example_tile_walker.py +319 -0
- warp/math.py +147 -0
- warp/native/array.h +12 -0
- warp/native/builtin.h +0 -1
- warp/native/bvh.cpp +149 -70
- warp/native/bvh.cu +287 -68
- warp/native/bvh.h +195 -85
- warp/native/clang/clang.cpp +5 -1
- warp/native/cuda_util.cpp +35 -0
- warp/native/cuda_util.h +5 -0
- warp/native/exports.h +40 -40
- warp/native/intersect.h +17 -0
- warp/native/mat.h +41 -0
- warp/native/mathdx.cpp +19 -0
- warp/native/mesh.cpp +25 -8
- warp/native/mesh.cu +153 -101
- warp/native/mesh.h +482 -403
- warp/native/quat.h +40 -0
- warp/native/solid_angle.h +7 -0
- warp/native/sort.cpp +85 -0
- warp/native/sort.cu +34 -0
- warp/native/sort.h +3 -1
- warp/native/spatial.h +11 -0
- warp/native/tile.h +1185 -664
- warp/native/tile_reduce.h +8 -6
- warp/native/vec.h +41 -0
- warp/native/warp.cpp +8 -1
- warp/native/warp.cu +263 -40
- warp/native/warp.h +19 -5
- warp/optim/linear.py +22 -4
- warp/render/render_opengl.py +124 -59
- warp/sim/__init__.py +6 -1
- warp/sim/collide.py +270 -26
- warp/sim/integrator_euler.py +25 -7
- warp/sim/integrator_featherstone.py +154 -35
- warp/sim/integrator_vbd.py +842 -40
- warp/sim/model.py +111 -53
- warp/stubs.py +248 -115
- warp/tape.py +28 -30
- warp/tests/aux_test_module_unload.py +15 -0
- warp/tests/{test_sim_grad.py → flaky_test_sim_grad.py} +104 -63
- warp/tests/test_array.py +74 -0
- warp/tests/test_assert.py +242 -0
- warp/tests/test_codegen.py +14 -61
- warp/tests/test_collision.py +2 -2
- warp/tests/test_examples.py +9 -0
- warp/tests/test_grad_debug.py +87 -2
- warp/tests/test_hash_grid.py +1 -1
- warp/tests/test_ipc.py +116 -0
- warp/tests/test_mat.py +138 -167
- warp/tests/test_math.py +47 -1
- warp/tests/test_matmul.py +11 -7
- warp/tests/test_matmul_lite.py +4 -4
- warp/tests/test_mesh.py +84 -60
- warp/tests/test_mesh_query_aabb.py +165 -0
- warp/tests/test_mesh_query_point.py +328 -286
- warp/tests/test_mesh_query_ray.py +134 -121
- warp/tests/test_mlp.py +2 -2
- warp/tests/test_operators.py +43 -0
- warp/tests/test_overwrite.py +2 -2
- warp/tests/test_quat.py +77 -0
- warp/tests/test_reload.py +29 -0
- warp/tests/test_sim_grad_bounce_linear.py +204 -0
- warp/tests/test_static.py +16 -0
- warp/tests/test_tape.py +25 -0
- warp/tests/test_tile.py +134 -191
- warp/tests/test_tile_load.py +356 -0
- warp/tests/test_tile_mathdx.py +61 -8
- warp/tests/test_tile_mlp.py +17 -17
- warp/tests/test_tile_reduce.py +24 -18
- warp/tests/test_tile_shared_memory.py +66 -17
- warp/tests/test_tile_view.py +165 -0
- warp/tests/test_torch.py +35 -0
- warp/tests/test_utils.py +36 -24
- warp/tests/test_vec.py +110 -0
- warp/tests/unittest_suites.py +29 -4
- warp/tests/unittest_utils.py +30 -11
- warp/thirdparty/unittest_parallel.py +2 -2
- warp/types.py +409 -99
- warp/utils.py +9 -5
- {warp_lang-1.5.1.dist-info → warp_lang-1.6.0.dist-info}/METADATA +68 -44
- {warp_lang-1.5.1.dist-info → warp_lang-1.6.0.dist-info}/RECORD +121 -110
- {warp_lang-1.5.1.dist-info → warp_lang-1.6.0.dist-info}/WHEEL +1 -1
- warp/examples/benchmarks/benchmark_tile.py +0 -179
- warp/native/tile_gemm.h +0 -341
- {warp_lang-1.5.1.dist-info → warp_lang-1.6.0.dist-info}/LICENSE.md +0 -0
- {warp_lang-1.5.1.dist-info → warp_lang-1.6.0.dist-info}/top_level.txt +0 -0
warp/native/tile.h
CHANGED
|
@@ -35,10 +35,6 @@
|
|
|
35
35
|
#endif
|
|
36
36
|
|
|
37
37
|
#define WP_USE_ASYNC_PIPELINE 0
|
|
38
|
-
#if WP_USE_ASYNC_PIPELINE
|
|
39
|
-
#include "cuda_pipeline_primitives.h"
|
|
40
|
-
#endif // WP_USE_ASYNC_PIPELINE
|
|
41
|
-
|
|
42
38
|
#define WP_USE_REGISTER_GEMM 0
|
|
43
39
|
|
|
44
40
|
/* Tile Expressions
|
|
@@ -171,50 +167,300 @@ struct is_same<T, T> {
|
|
|
171
167
|
};
|
|
172
168
|
|
|
173
169
|
|
|
174
|
-
template <
|
|
175
|
-
|
|
170
|
+
template <int N>
|
|
171
|
+
struct tile_coord_t
|
|
172
|
+
{
|
|
173
|
+
int indices[N];
|
|
174
|
+
|
|
175
|
+
CUDA_CALLABLE inline int operator[](int i) const { assert(0 <= 1 && i < N); return indices[i]; }
|
|
176
|
+
CUDA_CALLABLE inline int& operator[](int i) { assert(0 <= 1 && i < N); return indices[i]; }
|
|
177
|
+
|
|
178
|
+
CUDA_CALLABLE inline tile_coord_t<N> operator + (const tile_coord_t<N>& c) const
|
|
179
|
+
{
|
|
180
|
+
tile_coord_t<N> out;
|
|
181
|
+
for (int i=0; i < N; ++i)
|
|
182
|
+
{
|
|
183
|
+
out.indices[i] = indices[i] + c.indices[i];
|
|
184
|
+
}
|
|
185
|
+
return out;
|
|
186
|
+
}
|
|
187
|
+
};
|
|
188
|
+
|
|
189
|
+
// This function deduces N = sizeof...(Ints)
|
|
190
|
+
template <typename... Ints>
|
|
191
|
+
constexpr tile_coord_t<sizeof...(Ints)> tile_coord(Ints... idxs)
|
|
192
|
+
{
|
|
193
|
+
constexpr int N = sizeof...(Ints);
|
|
194
|
+
|
|
195
|
+
// Create the result
|
|
196
|
+
tile_coord_t<N> result{};
|
|
197
|
+
|
|
198
|
+
// Capture all arguments in a local array
|
|
199
|
+
int arr[] = { static_cast<int>(idxs)... };
|
|
200
|
+
|
|
201
|
+
// C++14 or later: 'for' is allowed in a constexpr context
|
|
202
|
+
for (int i = 0; i < N; ++i)
|
|
203
|
+
{
|
|
204
|
+
result.indices[i] = arr[i];
|
|
205
|
+
}
|
|
176
206
|
|
|
177
|
-
|
|
178
|
-
|
|
207
|
+
return result;
|
|
208
|
+
}
|
|
209
|
+
|
|
210
|
+
// helpers to construct a coord from a set of indices
|
|
211
|
+
auto tile_coord(int i)
|
|
212
|
+
{
|
|
213
|
+
auto c = tile_coord_t<1>();
|
|
214
|
+
c.indices[0] = i;
|
|
215
|
+
return c;
|
|
216
|
+
}
|
|
217
|
+
|
|
218
|
+
auto tile_coord(int i, int j)
|
|
219
|
+
{
|
|
220
|
+
auto c = tile_coord_t<2>();
|
|
221
|
+
c.indices[0] = i;
|
|
222
|
+
c.indices[1] = j;
|
|
223
|
+
return c;
|
|
179
224
|
}
|
|
180
225
|
|
|
181
|
-
|
|
226
|
+
auto tile_coord(int i, int j, int k)
|
|
227
|
+
{
|
|
228
|
+
auto c = tile_coord_t<3>();
|
|
229
|
+
c.indices[0] = i;
|
|
230
|
+
c.indices[1] = j;
|
|
231
|
+
c.indices[2] = k;
|
|
232
|
+
return c;
|
|
233
|
+
}
|
|
234
|
+
|
|
235
|
+
auto tile_coord(int i, int j, int k, int l)
|
|
182
236
|
{
|
|
183
|
-
|
|
184
|
-
|
|
237
|
+
auto c = tile_coord_t<4>();
|
|
238
|
+
c.indices[0] = i;
|
|
239
|
+
c.indices[1] = j;
|
|
240
|
+
c.indices[2] = k;
|
|
241
|
+
c.indices[3] = l;
|
|
242
|
+
return c;
|
|
243
|
+
}
|
|
244
|
+
|
|
245
|
+
// represents a compile time int tuple for strides/shapes/coords
|
|
246
|
+
template <int... V>
|
|
247
|
+
struct tile_tuple_t
|
|
248
|
+
{
|
|
249
|
+
static constexpr int N = sizeof...(V);
|
|
250
|
+
static_assert(N > 0);
|
|
251
|
+
|
|
252
|
+
static constexpr int data[N] = { V... };
|
|
253
|
+
|
|
254
|
+
static constexpr int dim(int i) { assert(i < N); return data[i]; }
|
|
255
|
+
static constexpr int size()
|
|
256
|
+
{
|
|
257
|
+
int res = data[0];
|
|
258
|
+
for (int i=1; i < N; ++i)
|
|
259
|
+
res *= data[i];
|
|
260
|
+
|
|
261
|
+
return res;
|
|
262
|
+
}
|
|
185
263
|
};
|
|
186
264
|
|
|
265
|
+
// simple helper to compute strides from a shape up to 4d
|
|
266
|
+
template <typename Shape>
|
|
267
|
+
struct compute_strides;
|
|
268
|
+
|
|
269
|
+
// 1D
|
|
270
|
+
template <int D0>
|
|
271
|
+
struct compute_strides< tile_tuple_t<D0> > { using Stride = tile_tuple_t<1>; };
|
|
272
|
+
// 2D
|
|
273
|
+
template <int D0, int D1>
|
|
274
|
+
struct compute_strides< tile_tuple_t<D0, D1> > { using Stride = tile_tuple_t<D1, 1>; };
|
|
275
|
+
// 3D
|
|
276
|
+
template <int D0, int D1, int D2>
|
|
277
|
+
struct compute_strides< tile_tuple_t<D0, D1, D2> > { using Stride = tile_tuple_t<(D1 * D2), D2, 1>; };
|
|
278
|
+
// 4D
|
|
279
|
+
template <int D0, int D1, int D2, int D3>
|
|
280
|
+
struct compute_strides< tile_tuple_t<D0, D1, D2, D3> > { using Stride = tile_tuple_t<(D1 * D2 * D3), (D2 * D3), D3, 1>; };
|
|
281
|
+
|
|
282
|
+
|
|
283
|
+
// alias of tuple to represent shapes
|
|
284
|
+
template <int... V>
|
|
285
|
+
using tile_shape_t = tile_tuple_t<V...>;
|
|
286
|
+
|
|
287
|
+
// alias of tuple to represent stride
|
|
288
|
+
template <int... V>
|
|
289
|
+
using tile_stride_t = tile_tuple_t<V...>;
|
|
290
|
+
|
|
187
291
|
|
|
188
292
|
// represents a tile stored in global memory with dynamic strides
|
|
189
|
-
//
|
|
190
|
-
template <typename T>
|
|
191
|
-
struct tile_global_t
|
|
293
|
+
// used to represent the source and offset for tile loads to register/shared
|
|
294
|
+
template <typename T, typename Shape_>
|
|
295
|
+
struct tile_global_t
|
|
192
296
|
{
|
|
193
297
|
using Type = T;
|
|
298
|
+
using Shape = Shape_;
|
|
299
|
+
using Coord = tile_coord_t<Shape::N>;
|
|
194
300
|
|
|
195
301
|
array_t<T> data;
|
|
196
|
-
|
|
197
|
-
|
|
302
|
+
Coord offset;
|
|
303
|
+
|
|
304
|
+
tile_global_t(array_t<T>& a, const Coord& c) : data(a), offset(c)
|
|
305
|
+
{
|
|
306
|
+
}
|
|
307
|
+
|
|
308
|
+
inline CUDA_CALLABLE int index_from_coord(const Coord& coord) const
|
|
309
|
+
{
|
|
310
|
+
// element index
|
|
311
|
+
int index = 0;
|
|
312
|
+
|
|
313
|
+
WP_PRAGMA_UNROLL
|
|
314
|
+
for (int i=0; i < Shape::N; ++i)
|
|
315
|
+
{
|
|
316
|
+
// global = offset + coord
|
|
317
|
+
int c = offset[i] + coord[i];
|
|
318
|
+
index += data.strides[i]*c;
|
|
319
|
+
}
|
|
320
|
+
|
|
321
|
+
return index/sizeof(T);
|
|
322
|
+
}
|
|
323
|
+
|
|
324
|
+
inline CUDA_CALLABLE bool index(const Coord& coord, int& out) const
|
|
325
|
+
{
|
|
326
|
+
// element index
|
|
327
|
+
int index = 0;
|
|
328
|
+
|
|
329
|
+
WP_PRAGMA_UNROLL
|
|
330
|
+
for (int i=0; i < Shape::N; ++i)
|
|
331
|
+
{
|
|
332
|
+
// global = offset + coord
|
|
333
|
+
int c = offset[i] + coord[i];
|
|
334
|
+
|
|
335
|
+
// handle out of bounds case
|
|
336
|
+
if (c >= data.shape[i])
|
|
337
|
+
return false;
|
|
338
|
+
else
|
|
339
|
+
index += data.strides[i]*c;
|
|
340
|
+
}
|
|
341
|
+
|
|
342
|
+
// array strides are in bytes so we convert to elements
|
|
343
|
+
out = index / sizeof(T);
|
|
344
|
+
return true;
|
|
345
|
+
}
|
|
346
|
+
|
|
347
|
+
inline CUDA_CALLABLE T load(const Coord& coord) const
|
|
348
|
+
{
|
|
349
|
+
int i;
|
|
350
|
+
if (index(coord, i))
|
|
351
|
+
return data.data[i];
|
|
352
|
+
else
|
|
353
|
+
return T(0);
|
|
354
|
+
}
|
|
198
355
|
|
|
199
|
-
|
|
356
|
+
inline CUDA_CALLABLE T load_grad(const Coord& coord) const
|
|
200
357
|
{
|
|
358
|
+
int i;
|
|
359
|
+
if (index(coord, i))
|
|
360
|
+
return data.grad[i];
|
|
361
|
+
else
|
|
362
|
+
return T(0);
|
|
363
|
+
}
|
|
364
|
+
|
|
365
|
+
inline CUDA_CALLABLE void store(const Coord& coord, const T& x) const
|
|
366
|
+
{
|
|
367
|
+
int i;
|
|
368
|
+
if (index(coord, i))
|
|
369
|
+
data.data[i] = x;
|
|
370
|
+
}
|
|
371
|
+
|
|
372
|
+
inline CUDA_CALLABLE T atomic_add(const Coord& coord, const T& value) const
|
|
373
|
+
{
|
|
374
|
+
int i;
|
|
375
|
+
if (index(coord, i))
|
|
376
|
+
return wp::atomic_add(&data.data[i], value);
|
|
377
|
+
else
|
|
378
|
+
return T(0);
|
|
379
|
+
}
|
|
380
|
+
|
|
381
|
+
inline CUDA_CALLABLE T atomic_add_grad(const Coord& coord, const T& grad) const
|
|
382
|
+
{
|
|
383
|
+
int i;
|
|
384
|
+
if (index(coord, i))
|
|
385
|
+
return wp::atomic_add(&data.grad[i], grad);
|
|
386
|
+
else
|
|
387
|
+
return T(0);
|
|
201
388
|
}
|
|
202
389
|
};
|
|
203
390
|
|
|
391
|
+
template <typename Shape_>
|
|
392
|
+
struct tile_layout_register_t
|
|
393
|
+
{
|
|
394
|
+
using Shape = Shape_;
|
|
395
|
+
using Coord = tile_coord_t<Shape::N>;
|
|
396
|
+
|
|
397
|
+
static constexpr int Size = Shape::size();
|
|
398
|
+
static constexpr int NumRegs = (Size + WP_TILE_BLOCK_DIM - 1) / WP_TILE_BLOCK_DIM;
|
|
399
|
+
static constexpr bool Aligned = Size%WP_TILE_BLOCK_DIM == 0;
|
|
400
|
+
|
|
401
|
+
static inline CUDA_CALLABLE int linear_from_register(int reg)
|
|
402
|
+
{
|
|
403
|
+
return threadIdx.x + reg*WP_TILE_BLOCK_DIM;
|
|
404
|
+
}
|
|
405
|
+
|
|
406
|
+
static inline CUDA_CALLABLE int linear_from_coord(Coord c)
|
|
407
|
+
{
|
|
408
|
+
int linear = 0;
|
|
409
|
+
int stride = 1;
|
|
410
|
+
|
|
411
|
+
WP_PRAGMA_UNROLL
|
|
412
|
+
for (int i=Shape::N-1; i >= 0; --i)
|
|
413
|
+
{
|
|
414
|
+
linear += c[i] * stride;
|
|
415
|
+
stride *= Shape::dim(i);
|
|
416
|
+
}
|
|
417
|
+
return linear;
|
|
418
|
+
}
|
|
419
|
+
|
|
420
|
+
static inline CUDA_CALLABLE auto coord_from_linear(int linear)
|
|
421
|
+
{
|
|
422
|
+
Coord c;
|
|
423
|
+
|
|
424
|
+
WP_PRAGMA_UNROLL
|
|
425
|
+
for (int i=Shape::N-1; i >= 0; --i)
|
|
426
|
+
{
|
|
427
|
+
c[i] = linear%Shape::dim(i);
|
|
428
|
+
linear /= Shape::dim(i);
|
|
429
|
+
}
|
|
430
|
+
|
|
431
|
+
return c;
|
|
432
|
+
}
|
|
433
|
+
|
|
434
|
+
static inline CUDA_CALLABLE int thread_from_linear(int linear)
|
|
435
|
+
{
|
|
436
|
+
const int thread = linear%WP_TILE_BLOCK_DIM;
|
|
437
|
+
return thread;
|
|
438
|
+
}
|
|
439
|
+
|
|
440
|
+
static inline CUDA_CALLABLE int register_from_linear(int linear)
|
|
441
|
+
{
|
|
442
|
+
const int reg = linear/WP_TILE_BLOCK_DIM;
|
|
443
|
+
return reg;
|
|
444
|
+
}
|
|
445
|
+
|
|
446
|
+
static inline CUDA_CALLABLE bool valid(int linear)
|
|
447
|
+
{
|
|
448
|
+
if (Aligned || linear < Size)
|
|
449
|
+
return true;
|
|
450
|
+
else
|
|
451
|
+
return false;
|
|
452
|
+
}
|
|
453
|
+
|
|
454
|
+
};
|
|
455
|
+
|
|
204
456
|
// represents a tile stored in registers across a block
|
|
205
|
-
template <typename T,
|
|
457
|
+
template <typename T, typename L>
|
|
206
458
|
struct tile_register_t
|
|
207
459
|
{
|
|
208
460
|
using Type = T;
|
|
209
|
-
|
|
210
|
-
static constexpr int N = N_;
|
|
211
|
-
static constexpr int Size = M*N;
|
|
461
|
+
using Layout = L;
|
|
212
462
|
|
|
213
|
-
|
|
214
|
-
|
|
215
|
-
static constexpr bool Aligned = Size%WP_TILE_BLOCK_DIM == 0;
|
|
216
|
-
|
|
217
|
-
T data[NumRegs];
|
|
463
|
+
T data[Layout::NumRegs];
|
|
218
464
|
|
|
219
465
|
inline CUDA_CALLABLE tile_register_t(T value=T(0.0))
|
|
220
466
|
{
|
|
@@ -224,52 +470,34 @@ struct tile_register_t
|
|
|
224
470
|
// in backwards pass and letting default constructor
|
|
225
471
|
// avoid initialization
|
|
226
472
|
|
|
227
|
-
for (int i=0; i < NumRegs; ++i)
|
|
473
|
+
for (int i=0; i < Layout::NumRegs; ++i)
|
|
228
474
|
data[i] = value;
|
|
229
475
|
}
|
|
230
476
|
|
|
231
|
-
inline CUDA_CALLABLE auto& operator=(const tile_global_t<T>& t)
|
|
477
|
+
inline CUDA_CALLABLE auto& operator=(const tile_global_t<T, typename Layout::Shape>& t)
|
|
232
478
|
{
|
|
233
|
-
|
|
234
|
-
copy_from_global(t.data, t.x); // 1d load
|
|
235
|
-
else
|
|
236
|
-
copy_from_global(t.data, t.x, t.y); // 2d load
|
|
237
|
-
|
|
479
|
+
copy_from_global(t);
|
|
238
480
|
return *this;
|
|
239
|
-
|
|
240
481
|
}
|
|
241
482
|
|
|
242
483
|
// define the += operator which is used during backward pass codegen
|
|
243
484
|
// when returning a register tile from a user defined function
|
|
244
|
-
inline CUDA_CALLABLE auto& operator += (tile_register_t<T,
|
|
485
|
+
inline CUDA_CALLABLE auto& operator += (tile_register_t<T, Layout>& rhs)
|
|
245
486
|
{
|
|
246
|
-
|
|
487
|
+
grad_add(rhs);
|
|
247
488
|
return *this;
|
|
248
489
|
}
|
|
249
490
|
|
|
250
|
-
inline CUDA_CALLABLE T& operator()(int
|
|
491
|
+
inline CUDA_CALLABLE T& operator()(int reg)
|
|
251
492
|
{
|
|
252
|
-
assert(
|
|
253
|
-
return data[
|
|
493
|
+
assert(reg < Layout::NumRegs);
|
|
494
|
+
return data[reg];
|
|
254
495
|
}
|
|
255
496
|
|
|
256
|
-
inline CUDA_CALLABLE const T& operator()(int
|
|
497
|
+
inline CUDA_CALLABLE const T& operator()(int reg) const
|
|
257
498
|
{
|
|
258
|
-
assert(
|
|
259
|
-
return data[
|
|
260
|
-
}
|
|
261
|
-
|
|
262
|
-
|
|
263
|
-
// compute linear tile index from a local register index
|
|
264
|
-
inline CUDA_CALLABLE int index(int reg) const
|
|
265
|
-
{
|
|
266
|
-
return threadIdx.x + reg*WP_TILE_BLOCK_DIM;
|
|
267
|
-
}
|
|
268
|
-
|
|
269
|
-
// compute tile coordinate from linear index
|
|
270
|
-
inline CUDA_CALLABLE coord_t coord(int index) const
|
|
271
|
-
{
|
|
272
|
-
return {index/N, index%N};
|
|
499
|
+
assert(reg < Layout::NumRegs);
|
|
500
|
+
return data[reg];
|
|
273
501
|
}
|
|
274
502
|
|
|
275
503
|
// Returns the number of valid registers for this tile
|
|
@@ -278,29 +506,29 @@ struct tile_register_t
|
|
|
278
506
|
// some of the trailing registers may lie outside the valid range
|
|
279
507
|
inline CUDA_CALLABLE int valid() const
|
|
280
508
|
{
|
|
281
|
-
return (Size - threadIdx.x)/WP_TILE_BLOCK_DIM;
|
|
509
|
+
return (int)floor(float(Size - threadIdx.x - 1)/WP_TILE_BLOCK_DIM) + 1;
|
|
282
510
|
}
|
|
283
511
|
|
|
284
|
-
inline CUDA_CALLABLE void assign(const tile_register_t<T,
|
|
512
|
+
inline CUDA_CALLABLE void assign(const tile_register_t<T, Layout>& tile)
|
|
285
513
|
{
|
|
286
|
-
for (int i=0; i < NumRegs; ++i)
|
|
514
|
+
for (int i=0; i < Layout::NumRegs; ++i)
|
|
287
515
|
data[i] = tile.data[i];
|
|
288
516
|
}
|
|
289
517
|
|
|
290
518
|
inline CUDA_CALLABLE void zero()
|
|
291
519
|
{
|
|
292
|
-
for (int i=0; i < NumRegs; ++i)
|
|
293
|
-
data[i] = T(0);
|
|
520
|
+
for (int i=0; i < Layout::NumRegs; ++i)
|
|
521
|
+
data[i] = T(0);
|
|
294
522
|
}
|
|
295
523
|
|
|
296
524
|
// extract a single tile element to a native type
|
|
297
|
-
|
|
525
|
+
template <typename Coord>
|
|
526
|
+
inline CUDA_CALLABLE Type extract(const Coord& c)
|
|
298
527
|
{
|
|
299
528
|
// map from logical coords (i, j) -> (thread, reg)
|
|
300
|
-
const int linear =
|
|
301
|
-
|
|
302
|
-
const int
|
|
303
|
-
const int reg = linear%NumRegs;
|
|
529
|
+
const int linear = Layout::linear_from_coord(c);
|
|
530
|
+
const int thread = Layout::thread_from_linear(linear);
|
|
531
|
+
const int reg = Layout::register_from_linear(linear);
|
|
304
532
|
|
|
305
533
|
WP_TILE_SHARED Type scratch;
|
|
306
534
|
|
|
@@ -320,13 +548,13 @@ struct tile_register_t
|
|
|
320
548
|
|
|
321
549
|
|
|
322
550
|
// backward version of scalar extract
|
|
323
|
-
|
|
551
|
+
template <typename Coord>
|
|
552
|
+
inline CUDA_CALLABLE void adj_extract(const Coord& c, Type adj_ret)
|
|
324
553
|
{
|
|
325
554
|
// map from logical coords (i, j) -> (thread, reg)
|
|
326
|
-
const int linear =
|
|
327
|
-
|
|
328
|
-
const int
|
|
329
|
-
const int reg = linear%NumRegs;
|
|
555
|
+
const int linear = Layout::linear_from_coord(c);
|
|
556
|
+
const int thread = Layout::thread_from_linear(linear);
|
|
557
|
+
const int reg = Layout::register_from_linear(linear);
|
|
330
558
|
|
|
331
559
|
if (threadIdx.x == thread)
|
|
332
560
|
{
|
|
@@ -348,6 +576,24 @@ struct tile_register_t
|
|
|
348
576
|
return *this;
|
|
349
577
|
}
|
|
350
578
|
|
|
579
|
+
// apply a lambda to all valid entries in the tile
|
|
580
|
+
// Op should be a functor that takes a register index and tile_coord_t as input
|
|
581
|
+
template <typename Op>
|
|
582
|
+
void apply(Op op)
|
|
583
|
+
{
|
|
584
|
+
WP_PRAGMA_UNROLL
|
|
585
|
+
for (int i=0; i < Layout::NumRegs; ++i)
|
|
586
|
+
{
|
|
587
|
+
int linear = Layout::linear_from_register(i);
|
|
588
|
+
if (!Layout::valid(linear))
|
|
589
|
+
break;
|
|
590
|
+
|
|
591
|
+
auto c = Layout::coord_from_linear(linear);
|
|
592
|
+
op(i, c);
|
|
593
|
+
}
|
|
594
|
+
}
|
|
595
|
+
|
|
596
|
+
|
|
351
597
|
// in-place gradient zero
|
|
352
598
|
inline CUDA_CALLABLE void grad_zero()
|
|
353
599
|
{
|
|
@@ -355,118 +601,77 @@ struct tile_register_t
|
|
|
355
601
|
}
|
|
356
602
|
|
|
357
603
|
// accumulate gradients onto this tile
|
|
358
|
-
inline CUDA_CALLABLE void grad_add(const tile_register_t<T,
|
|
604
|
+
inline CUDA_CALLABLE void grad_add(const tile_register_t<T, Layout>& tile)
|
|
359
605
|
{
|
|
360
|
-
for (int i=0; i < NumRegs; ++i)
|
|
606
|
+
for (int i=0; i < Layout::NumRegs; ++i)
|
|
361
607
|
data[i] += tile.data[i];
|
|
362
608
|
}
|
|
363
609
|
|
|
364
|
-
|
|
610
|
+
CUDA_CALLABLE void grad_add(const tile_global_t<T, typename Layout::Shape>& global)
|
|
611
|
+
{
|
|
612
|
+
apply([&](int reg, auto c) {data[reg] = global.load_grad(c);});
|
|
613
|
+
|
|
614
|
+
}
|
|
615
|
+
|
|
365
616
|
inline CUDA_CALLABLE auto& grad_to_register()
|
|
366
617
|
{
|
|
618
|
+
// nop for register tiles
|
|
367
619
|
return *this;
|
|
368
620
|
}
|
|
369
621
|
|
|
370
|
-
|
|
622
|
+
template <typename Global>
|
|
623
|
+
inline CUDA_CALLABLE void copy_to_global(const Global& dest)
|
|
371
624
|
{
|
|
372
|
-
|
|
373
|
-
|
|
374
|
-
const int tile_i = x*N;
|
|
375
|
-
|
|
376
|
-
WP_PRAGMA_UNROLL
|
|
377
|
-
for (int i=0; i < NumRegs; ++i)
|
|
378
|
-
{
|
|
379
|
-
// handle case where tile size is not
|
|
380
|
-
// aligned to block dimensions
|
|
381
|
-
int linear = index(i);
|
|
382
|
-
if (!Aligned && linear >= Size)
|
|
383
|
-
break;
|
|
384
|
-
|
|
385
|
-
wp::index(dest, tile_i + linear) = data[i];
|
|
386
|
-
}
|
|
625
|
+
apply([&](int reg, auto c) { dest.store(c, data[reg]); });
|
|
387
626
|
}
|
|
388
627
|
|
|
389
|
-
|
|
628
|
+
template <typename Global>
|
|
629
|
+
inline CUDA_CALLABLE void copy_from_global(const Global& src)
|
|
390
630
|
{
|
|
391
|
-
|
|
392
|
-
|
|
393
|
-
const int tile_i = x*M;
|
|
394
|
-
const int tile_j = y*N;
|
|
395
|
-
|
|
396
|
-
// wp.array() indexing generates poor code due to char* casting
|
|
397
|
-
// here we unroll some of the ops, note this assumes byte strides are
|
|
398
|
-
// aligned to the element size
|
|
399
|
-
T* ptr = &wp::index(dest, tile_i, tile_j);
|
|
400
|
-
const int stride_i = dest.strides[0]/sizeof(T);
|
|
401
|
-
const int stride_j = dest.strides[1]/sizeof(T);
|
|
402
|
-
|
|
403
|
-
WP_PRAGMA_UNROLL
|
|
404
|
-
for (int i=0; i < NumRegs; ++i)
|
|
405
|
-
{
|
|
406
|
-
// handle case where tile size is not
|
|
407
|
-
// aligned to block dimensions
|
|
408
|
-
int linear = index(i);
|
|
409
|
-
if (!Aligned && linear >= Size)
|
|
410
|
-
break;
|
|
411
|
-
|
|
412
|
-
coord_t c = coord(linear);
|
|
413
|
-
ptr[c.i*stride_i + c.j*stride_j] = data[i];
|
|
414
|
-
}
|
|
631
|
+
apply([&](int reg, auto c) { data[reg] = src.load(c); });
|
|
415
632
|
}
|
|
416
633
|
|
|
417
|
-
|
|
634
|
+
// add a register tile to a global array
|
|
635
|
+
template <typename Global>
|
|
636
|
+
inline CUDA_CALLABLE auto atomic_add(const Global& dest)
|
|
418
637
|
{
|
|
419
|
-
//
|
|
420
|
-
|
|
421
|
-
|
|
422
|
-
WP_PRAGMA_UNROLL
|
|
423
|
-
for (int i=0; i < NumRegs; ++i)
|
|
424
|
-
{
|
|
425
|
-
int linear = index(i);
|
|
426
|
-
if (!Aligned && linear >= Size)
|
|
427
|
-
break;
|
|
638
|
+
// allocate a tile to hold previous dest value
|
|
639
|
+
auto previous = *this;
|
|
428
640
|
|
|
429
|
-
|
|
430
|
-
|
|
641
|
+
apply([&](int reg, auto c) { previous.data[reg] = dest.atomic_add(c, data[reg]); });
|
|
642
|
+
return previous;
|
|
431
643
|
}
|
|
432
644
|
|
|
433
|
-
|
|
645
|
+
// add a register tile to the gradient of a global array
|
|
646
|
+
template <typename Global>
|
|
647
|
+
inline CUDA_CALLABLE auto atomic_add_grad(const Global& dest)
|
|
434
648
|
{
|
|
435
|
-
//
|
|
436
|
-
|
|
437
|
-
const int tile_j = y*N;
|
|
438
|
-
|
|
439
|
-
// wp.array() indexing generates poor code due to char* casting
|
|
440
|
-
// here we unroll some of the ops, note this assumes array byte strides are
|
|
441
|
-
// aligned to the element size
|
|
442
|
-
const T* ptr = &wp::index(src, tile_i, tile_j);
|
|
443
|
-
|
|
444
|
-
assert(src.strides[0]%sizeof(T) == 0);
|
|
445
|
-
assert(src.strides[1]%sizeof(T) == 0);
|
|
446
|
-
|
|
447
|
-
const int stride_i = src.strides[0]/sizeof(T);
|
|
448
|
-
const int stride_j = src.strides[1]/sizeof(T);
|
|
649
|
+
// allocate a tile to hold previous dest value
|
|
650
|
+
auto previous = *this;
|
|
449
651
|
|
|
450
|
-
|
|
451
|
-
|
|
452
|
-
|
|
453
|
-
int linear = index(i);
|
|
454
|
-
if (!Aligned && linear >= Size)
|
|
455
|
-
break;
|
|
456
|
-
|
|
457
|
-
coord_t c = coord(linear);
|
|
458
|
-
data[i] = ptr[c.i*stride_i + c.j*stride_j];
|
|
459
|
-
}
|
|
460
|
-
}
|
|
652
|
+
apply([&](int reg, auto c) { previous.data[reg] = dest.atomic_add_grad(c, data[reg]); });
|
|
653
|
+
return previous;
|
|
654
|
+
}
|
|
461
655
|
};
|
|
462
656
|
|
|
657
|
+
|
|
463
658
|
// helper to allocate a register tile like another tile
|
|
659
|
+
// users can either specify a template explicitly or
|
|
660
|
+
// pass in another concrete instance
|
|
464
661
|
template<typename Tile>
|
|
465
|
-
auto tile_register_like()
|
|
662
|
+
auto tile_register_like(Tile* t=NULL)
|
|
466
663
|
{
|
|
467
664
|
using T = typename Tile::Type;
|
|
665
|
+
using L = typename Tile::Layout;
|
|
666
|
+
|
|
667
|
+
return tile_register_t<T, tile_layout_register_t<typename L::Shape>>(T(0.0));
|
|
668
|
+
}
|
|
468
669
|
|
|
469
|
-
|
|
670
|
+
// helper to construct a register tile from a type and a list of dims
|
|
671
|
+
template <typename T, int... Dims>
|
|
672
|
+
auto tile_register()
|
|
673
|
+
{
|
|
674
|
+
return tile_register_t<T, tile_layout_register_t<tile_shape_t<Dims...>>>();
|
|
470
675
|
}
|
|
471
676
|
|
|
472
677
|
inline CUDA_CALLABLE int tile_align(int num_bytes)
|
|
@@ -474,7 +679,10 @@ inline CUDA_CALLABLE int tile_align(int num_bytes)
|
|
|
474
679
|
// note this much match value in Python types.py
|
|
475
680
|
const int alignment = 16;
|
|
476
681
|
|
|
477
|
-
|
|
682
|
+
const int num_bytes_abs = num_bytes < 0 ? - num_bytes : num_bytes;
|
|
683
|
+
const int sign = num_bytes < 0 ? - 1 : 1;
|
|
684
|
+
|
|
685
|
+
return sign * ((num_bytes_abs + alignment - 1) / alignment) * alignment;
|
|
478
686
|
}
|
|
479
687
|
|
|
480
688
|
inline CUDA_CALLABLE void* tile_alloc_shared(int num_bytes, bool init=false)
|
|
@@ -502,20 +710,78 @@ inline CUDA_CALLABLE void* tile_alloc_shared(int num_bytes, bool init=false)
|
|
|
502
710
|
}
|
|
503
711
|
|
|
504
712
|
|
|
505
|
-
|
|
506
|
-
|
|
507
|
-
struct tile_shared_t
|
|
713
|
+
template <typename Shape_, typename Stride_= typename compute_strides<Shape_>::Stride>
|
|
714
|
+
struct tile_layout_strided_t
|
|
508
715
|
{
|
|
509
|
-
using
|
|
510
|
-
|
|
511
|
-
|
|
512
|
-
static constexpr int Size = M*N;
|
|
716
|
+
using Shape = Shape_;
|
|
717
|
+
using Stride = Stride_;
|
|
718
|
+
using Coord = tile_coord_t<Shape::N>;
|
|
513
719
|
|
|
514
|
-
static constexpr int
|
|
515
|
-
static constexpr int StrideN = StrideN_;
|
|
516
|
-
|
|
720
|
+
static constexpr int Size = Shape::size();
|
|
517
721
|
static constexpr bool Aligned = Size%WP_TILE_BLOCK_DIM == 0;
|
|
518
|
-
|
|
722
|
+
|
|
723
|
+
static inline CUDA_CALLABLE auto coord_from_linear(int linear)
|
|
724
|
+
{
|
|
725
|
+
assert(linear < Size);
|
|
726
|
+
|
|
727
|
+
Coord c;
|
|
728
|
+
|
|
729
|
+
WP_PRAGMA_UNROLL
|
|
730
|
+
for (int d=Shape::N-1; d >= 0; --d)
|
|
731
|
+
{
|
|
732
|
+
c[d] = linear%Shape::dim(d);
|
|
733
|
+
linear /= Shape::dim(d);
|
|
734
|
+
}
|
|
735
|
+
|
|
736
|
+
return c;
|
|
737
|
+
}
|
|
738
|
+
|
|
739
|
+
static inline CUDA_CALLABLE int index_from_coord(Coord c)
|
|
740
|
+
{
|
|
741
|
+
int index = 0;
|
|
742
|
+
|
|
743
|
+
WP_PRAGMA_UNROLL
|
|
744
|
+
for (int d=0; d < Shape::N; ++d)
|
|
745
|
+
{
|
|
746
|
+
assert(c[d] < Shape::dim(d));
|
|
747
|
+
|
|
748
|
+
index += c[d]*Stride::dim(d);
|
|
749
|
+
}
|
|
750
|
+
|
|
751
|
+
return index;
|
|
752
|
+
}
|
|
753
|
+
|
|
754
|
+
// checks whether a strided layout is unique, i.e.: if memory locations are only
|
|
755
|
+
// every referred to by one element in the tile, this is a basic test that only
|
|
756
|
+
// checks for broadcast dimensions, it would be possible to do the full check
|
|
757
|
+
// using sorted shape/strides in Python and add it as a template parameter to the type
|
|
758
|
+
static constexpr bool is_unique()
|
|
759
|
+
{
|
|
760
|
+
constexpr int N = Shape::N;
|
|
761
|
+
|
|
762
|
+
// check for any broadcast dimensions
|
|
763
|
+
for (int i=0; i < N; ++i)
|
|
764
|
+
if (Stride::dim(i) == 0)
|
|
765
|
+
return false;
|
|
766
|
+
|
|
767
|
+
return true;
|
|
768
|
+
}
|
|
769
|
+
|
|
770
|
+
static constexpr bool Unique = is_unique();
|
|
771
|
+
|
|
772
|
+
static inline CUDA_CALLABLE bool valid(int linear)
|
|
773
|
+
{
|
|
774
|
+
return linear < Size;
|
|
775
|
+
}
|
|
776
|
+
|
|
777
|
+
};
|
|
778
|
+
|
|
779
|
+
|
|
780
|
+
template <typename T, typename L, bool Owner_=true>
|
|
781
|
+
struct tile_shared_t
|
|
782
|
+
{
|
|
783
|
+
using Type = T;
|
|
784
|
+
using Layout = L;
|
|
519
785
|
static constexpr bool Owner = Owner_;
|
|
520
786
|
|
|
521
787
|
struct Storage
|
|
@@ -524,55 +790,60 @@ struct tile_shared_t
|
|
|
524
790
|
|
|
525
791
|
Storage(T* p) : ptr(p) {}
|
|
526
792
|
|
|
527
|
-
inline CUDA_CALLABLE T& operator()(
|
|
793
|
+
inline CUDA_CALLABLE T& operator()(typename Layout::Coord c)
|
|
528
794
|
{
|
|
529
|
-
assert(
|
|
530
|
-
assert(j < N);
|
|
795
|
+
assert(ptr);
|
|
531
796
|
|
|
532
|
-
|
|
797
|
+
int index = Layout::index_from_coord(c);
|
|
798
|
+
return ptr[index];
|
|
533
799
|
}
|
|
534
800
|
|
|
535
|
-
inline CUDA_CALLABLE const T& operator()(
|
|
536
|
-
{
|
|
537
|
-
assert(
|
|
538
|
-
assert(j < N);
|
|
801
|
+
inline CUDA_CALLABLE const T& operator()(typename Layout::Coord c) const
|
|
802
|
+
{
|
|
803
|
+
assert(ptr);
|
|
539
804
|
|
|
540
|
-
|
|
805
|
+
int index = Layout::index_from_coord(c);
|
|
806
|
+
return ptr[index];
|
|
541
807
|
}
|
|
542
808
|
|
|
543
|
-
inline CUDA_CALLABLE T& operator()(int
|
|
809
|
+
inline CUDA_CALLABLE T& operator()(int linear)
|
|
544
810
|
{
|
|
545
|
-
assert(
|
|
546
|
-
|
|
547
|
-
// unravel
|
|
548
|
-
int i = index/N;
|
|
549
|
-
int j = index%N;
|
|
811
|
+
assert(ptr);
|
|
812
|
+
assert(Layout::valid(linear));
|
|
550
813
|
|
|
551
|
-
|
|
814
|
+
auto c = Layout::coord_from_linear(linear);
|
|
815
|
+
return (*this)(c);
|
|
552
816
|
}
|
|
553
817
|
|
|
554
|
-
inline CUDA_CALLABLE const T& operator()(int
|
|
818
|
+
inline CUDA_CALLABLE const T& operator()(int linear) const
|
|
555
819
|
{
|
|
556
|
-
assert(
|
|
557
|
-
|
|
558
|
-
// unravel
|
|
559
|
-
int i = index/N;
|
|
560
|
-
int j = index%N;
|
|
820
|
+
assert(ptr);
|
|
821
|
+
assert(Layout::valid(linear));
|
|
561
822
|
|
|
562
|
-
|
|
823
|
+
auto c = Layout::coord_from_linear(linear);
|
|
824
|
+
return (*this)(c);
|
|
563
825
|
}
|
|
564
826
|
};
|
|
565
827
|
|
|
566
828
|
Storage data;
|
|
567
829
|
Storage grad;
|
|
568
830
|
|
|
831
|
+
// we need to track whether or not this tile's data has been initialized.
|
|
832
|
+
// once true, any re-initialization of data that follows needs a WP_TILE_SYNC()
|
|
833
|
+
// call to precede it, to allow threads that are still reading from this tile
|
|
834
|
+
// to complete their work. e.g, in a dynamic loop:
|
|
835
|
+
// for i in range(x):
|
|
836
|
+
// tile = wp.tile_load(arr, i, TILE_SIZE, storage="shared")
|
|
837
|
+
// # read from tile...
|
|
838
|
+
bool initialized;
|
|
839
|
+
|
|
569
840
|
// default initialization (non-initialized)
|
|
570
|
-
inline CUDA_CALLABLE tile_shared_t() : data(NULL), grad(NULL)
|
|
841
|
+
inline CUDA_CALLABLE tile_shared_t() : data(NULL), grad(NULL), initialized(false)
|
|
571
842
|
{
|
|
572
843
|
}
|
|
573
844
|
|
|
574
845
|
// initialize from an existing tile's memory
|
|
575
|
-
inline CUDA_CALLABLE tile_shared_t(T* data, T* grad=NULL) : data(data), grad(grad)
|
|
846
|
+
inline CUDA_CALLABLE tile_shared_t(T* data, T* grad=NULL, bool initialized=true) : data(data), grad(grad), initialized(initialized)
|
|
576
847
|
{
|
|
577
848
|
}
|
|
578
849
|
|
|
@@ -582,10 +853,10 @@ struct tile_shared_t
|
|
|
582
853
|
{
|
|
583
854
|
// update our per-thread shared memory allocator
|
|
584
855
|
if (data.ptr)
|
|
585
|
-
tile_alloc_shared(-
|
|
856
|
+
tile_alloc_shared(-Layout::Size*int(sizeof(T)));
|
|
586
857
|
|
|
587
858
|
if (grad.ptr)
|
|
588
|
-
tile_alloc_shared(-
|
|
859
|
+
tile_alloc_shared(-Layout::Size*int(sizeof(T)));
|
|
589
860
|
}
|
|
590
861
|
}
|
|
591
862
|
|
|
@@ -597,12 +868,13 @@ struct tile_shared_t
|
|
|
597
868
|
return *this;
|
|
598
869
|
}
|
|
599
870
|
|
|
871
|
+
|
|
600
872
|
// construct from another shared tile, this constructor
|
|
601
873
|
// is invoked for reshape operations like `wp.tile_transpose()`
|
|
602
|
-
template <typename OtherT,
|
|
603
|
-
inline CUDA_CALLABLE auto& operator=(const tile_shared_t<OtherT,
|
|
874
|
+
template <typename OtherT, typename OtherLayout>
|
|
875
|
+
inline CUDA_CALLABLE auto& operator=(const tile_shared_t<OtherT, OtherLayout>& rhs)
|
|
604
876
|
{
|
|
605
|
-
using OtherTile = tile_shared_t<OtherT,
|
|
877
|
+
using OtherTile = tile_shared_t<OtherT, OtherLayout>;
|
|
606
878
|
|
|
607
879
|
// check dimensions are compatible
|
|
608
880
|
static_assert(Size == OtherTile::Size);
|
|
@@ -610,89 +882,89 @@ struct tile_shared_t
|
|
|
610
882
|
// alias tile directly
|
|
611
883
|
data = rhs.data;
|
|
612
884
|
grad = rhs.grad;
|
|
885
|
+
initialized = rhs.initialized;
|
|
613
886
|
|
|
614
887
|
return *this;
|
|
615
888
|
}
|
|
616
889
|
|
|
617
890
|
// assign from a global tile (load)
|
|
618
|
-
inline CUDA_CALLABLE auto& operator=(const tile_global_t<T>& t)
|
|
891
|
+
inline CUDA_CALLABLE auto& operator=(const tile_global_t<T, typename Layout::Shape>& t)
|
|
619
892
|
{
|
|
620
|
-
|
|
621
|
-
copy_from_global(t.data, t.x); // 1d load
|
|
622
|
-
else
|
|
623
|
-
copy_from_global(t.data, t.x, t.y); // 2d load
|
|
624
|
-
|
|
625
|
-
// synchronization happens in copy functions above
|
|
626
|
-
|
|
893
|
+
copy_from_global(t);
|
|
627
894
|
return *this;
|
|
628
895
|
}
|
|
629
896
|
|
|
630
897
|
// assign from a constant value
|
|
631
898
|
inline CUDA_CALLABLE auto& operator=(const T& x)
|
|
632
899
|
{
|
|
633
|
-
|
|
900
|
+
// sync if we are re-initializing data so that any threads that are still
|
|
901
|
+
// reading from this tile can complete their work, e.g.: if re-assigning
|
|
902
|
+
// to a tile during a dynamic loop
|
|
903
|
+
if (initialized)
|
|
904
|
+
WP_TILE_SYNC();
|
|
905
|
+
|
|
906
|
+
for (int i=threadIdx.x; i < Layout::Size; i+= WP_TILE_BLOCK_DIM)
|
|
634
907
|
data(i) = x;
|
|
635
908
|
|
|
909
|
+
initialized = true;
|
|
636
910
|
WP_TILE_SYNC();
|
|
637
911
|
return *this;
|
|
638
912
|
}
|
|
639
913
|
|
|
640
|
-
|
|
641
|
-
// compute tile coordinate from linear index
|
|
642
|
-
inline CUDA_CALLABLE coord_t coord(int index) const
|
|
643
|
-
{
|
|
644
|
-
return {index/N, index%N};
|
|
645
|
-
}
|
|
646
|
-
|
|
647
914
|
// in-place zero
|
|
648
915
|
inline CUDA_CALLABLE void zero()
|
|
649
916
|
{
|
|
650
|
-
for (int i=threadIdx.x; i <
|
|
917
|
+
for (int i=threadIdx.x; i < Layout::Size; i+= WP_TILE_BLOCK_DIM)
|
|
651
918
|
data(i) = T(0);
|
|
652
919
|
|
|
653
920
|
WP_TILE_SYNC();
|
|
654
921
|
}
|
|
655
922
|
|
|
656
923
|
// extract a single tile element to a native type
|
|
657
|
-
inline CUDA_CALLABLE Type extract(
|
|
924
|
+
inline CUDA_CALLABLE Type extract(const typename Layout::Coord& c)
|
|
658
925
|
{
|
|
659
|
-
return data(
|
|
926
|
+
return data(c);
|
|
660
927
|
}
|
|
661
928
|
|
|
662
929
|
// backward of scalar extraction
|
|
663
|
-
inline CUDA_CALLABLE void adj_extract(
|
|
930
|
+
inline CUDA_CALLABLE void adj_extract(const typename Layout::Coord& c, Type adj_ret)
|
|
664
931
|
{
|
|
665
|
-
|
|
666
|
-
|
|
667
|
-
|
|
668
|
-
|
|
932
|
+
// since multiple threads may extract the same element
|
|
933
|
+
// we need to accumulate using atomic operations
|
|
934
|
+
wp::atomic_add(&grad(c), adj_ret);
|
|
935
|
+
|
|
936
|
+
WP_TILE_SYNC();
|
|
669
937
|
}
|
|
670
938
|
|
|
671
939
|
|
|
672
940
|
// copy register tile to shared
|
|
673
|
-
|
|
941
|
+
template <typename Tile>
|
|
942
|
+
inline CUDA_CALLABLE void assign(const Tile& tile)
|
|
674
943
|
{
|
|
944
|
+
if (initialized)
|
|
945
|
+
WP_TILE_SYNC();
|
|
946
|
+
|
|
675
947
|
WP_PRAGMA_UNROLL
|
|
676
|
-
for (int i=0; i <
|
|
948
|
+
for (int i=0; i < Tile::Layout::NumRegs; ++i)
|
|
677
949
|
{
|
|
678
|
-
const int linear =
|
|
950
|
+
const int linear = Tile::Layout::linear_from_register(i);
|
|
679
951
|
|
|
680
952
|
// handle case where tile size is not
|
|
681
953
|
// aligned to block dimensions
|
|
682
|
-
if (!
|
|
683
|
-
break;
|
|
954
|
+
if (!Tile::Layout::valid(linear))
|
|
955
|
+
break;
|
|
684
956
|
|
|
685
957
|
data(linear) = tile.data[i];
|
|
686
958
|
}
|
|
687
959
|
|
|
960
|
+
initialized = true;
|
|
688
961
|
WP_TILE_SYNC();
|
|
689
962
|
}
|
|
690
963
|
|
|
691
964
|
// in-place gradient zero
|
|
692
965
|
inline CUDA_CALLABLE void grad_zero()
|
|
693
966
|
{
|
|
694
|
-
|
|
695
|
-
for (int i=threadIdx.x; i < M*N; i+= WP_TILE_BLOCK_DIM)
|
|
967
|
+
for (int i=threadIdx.x; i < Layout::Size; i+= WP_TILE_BLOCK_DIM)
|
|
696
968
|
grad(i) = T(0);
|
|
697
969
|
|
|
698
970
|
WP_TILE_SYNC();
|
|
@@ -700,44 +972,73 @@ struct tile_shared_t
|
|
|
700
972
|
|
|
701
973
|
|
|
702
974
|
// accumulate gradients onto this tile
|
|
703
|
-
|
|
975
|
+
template <typename Tile>
|
|
976
|
+
inline CUDA_CALLABLE void grad_add(const Tile& tile)
|
|
704
977
|
{
|
|
705
978
|
WP_PRAGMA_UNROLL
|
|
706
|
-
for (int i=0; i <
|
|
979
|
+
for (int i=0; i < Tile::Layout::NumRegs; ++i)
|
|
707
980
|
{
|
|
708
|
-
const int linear =
|
|
981
|
+
const int linear = Tile::Layout::linear_from_register(i);
|
|
709
982
|
|
|
710
983
|
// handle case where tile size is not
|
|
711
984
|
// aligned to block dimensions
|
|
712
|
-
if (!
|
|
985
|
+
if (!Tile::Layout::valid(linear))
|
|
713
986
|
break;
|
|
714
987
|
|
|
715
|
-
if (
|
|
988
|
+
// if the destination layout is unique (no broadcast dimensions)
|
|
989
|
+
// then we can use regular non-atomic accmulation
|
|
990
|
+
if (Layout::Unique)
|
|
716
991
|
grad(linear) += tile.data[i];
|
|
717
992
|
else
|
|
718
993
|
// use shared memory atomics to accumulate gradients
|
|
719
994
|
// since for broadcast tiles (e.g.: a bias vector) multiple incoming threads
|
|
720
995
|
// may map to a single location in shared memory
|
|
721
|
-
atomic_add(&grad(linear), tile.data[i]);
|
|
996
|
+
wp::atomic_add(&grad(linear), tile.data[i]);
|
|
722
997
|
|
|
723
998
|
}
|
|
724
999
|
|
|
725
1000
|
WP_TILE_SYNC();
|
|
726
1001
|
}
|
|
727
1002
|
|
|
1003
|
+
// accumulate gradient onto this tile from a global array
|
|
1004
|
+
CUDA_CALLABLE void grad_add(const tile_global_t<T, typename Layout::Shape>& global)
|
|
1005
|
+
{
|
|
1006
|
+
WP_PRAGMA_UNROLL
|
|
1007
|
+
for (int i=threadIdx.x; i < Layout::Size; i += WP_TILE_BLOCK_DIM)
|
|
1008
|
+
{
|
|
1009
|
+
auto c = Layout::coord_from_linear(i);
|
|
1010
|
+
T g = global.load_grad(c);
|
|
1011
|
+
|
|
1012
|
+
if (Layout::Unique)
|
|
1013
|
+
{
|
|
1014
|
+
// if the destination layout is unique (no broadcast dimensions)
|
|
1015
|
+
// then we can use regular non-atomic accumulation
|
|
1016
|
+
grad(c) += g;
|
|
1017
|
+
}
|
|
1018
|
+
else
|
|
1019
|
+
{
|
|
1020
|
+
// use shared memory atomics to accumulate gradients
|
|
1021
|
+
// since for broadcast tiles (e.g.: a bias vector) multiple incoming threads
|
|
1022
|
+
// may map to a single location in shared memory
|
|
1023
|
+
wp::atomic_add(&grad(c), g);
|
|
1024
|
+
}
|
|
1025
|
+
}
|
|
1026
|
+
|
|
1027
|
+
WP_TILE_SYNC();
|
|
1028
|
+
}
|
|
1029
|
+
|
|
728
1030
|
// copy shared tile to register
|
|
729
|
-
inline CUDA_CALLABLE
|
|
1031
|
+
inline CUDA_CALLABLE auto grad_to_register()
|
|
730
1032
|
{
|
|
731
|
-
tile_register_t<T,
|
|
1033
|
+
using Tile = tile_register_t<T, tile_layout_register_t<typename Layout::Shape>>;
|
|
1034
|
+
Tile out;
|
|
732
1035
|
|
|
733
1036
|
WP_PRAGMA_UNROLL
|
|
734
|
-
for (int i=0; i <
|
|
1037
|
+
for (int i=0; i < Tile::Layout::NumRegs; ++i)
|
|
735
1038
|
{
|
|
736
|
-
const int linear =
|
|
1039
|
+
const int linear = Tile::Layout::linear_from_register(i);
|
|
737
1040
|
|
|
738
|
-
|
|
739
|
-
// aligned to block dimensions
|
|
740
|
-
if (!Aligned && linear >= Size)
|
|
1041
|
+
if (!Tile::Layout::valid(linear))
|
|
741
1042
|
break;
|
|
742
1043
|
|
|
743
1044
|
out(i) = grad(linear);
|
|
@@ -746,40 +1047,20 @@ struct tile_shared_t
|
|
|
746
1047
|
return out;
|
|
747
1048
|
}
|
|
748
1049
|
|
|
749
|
-
inline CUDA_CALLABLE void print() const
|
|
750
|
-
{
|
|
751
|
-
if (threadIdx.x == 0)
|
|
752
|
-
{
|
|
753
|
-
printf("tile(m=%d, n=%d, storage=shared) = [", M, N);
|
|
754
|
-
for (int i=0; i < M; ++i)
|
|
755
|
-
{
|
|
756
|
-
printf("%*s[", i>0, "");
|
|
757
|
-
for (int j=0; j < N; ++j)
|
|
758
|
-
{
|
|
759
|
-
printf("%g ", double(data(i, j)));
|
|
760
|
-
}
|
|
761
|
-
|
|
762
|
-
if (i == M-1)
|
|
763
|
-
printf("]]\n");
|
|
764
|
-
else
|
|
765
|
-
printf("]\n");
|
|
766
|
-
}
|
|
767
|
-
}
|
|
768
|
-
}
|
|
769
|
-
|
|
770
1050
|
// copy shared tile to register
|
|
771
|
-
inline CUDA_CALLABLE
|
|
1051
|
+
inline CUDA_CALLABLE auto copy_to_register() const
|
|
772
1052
|
{
|
|
773
|
-
|
|
1053
|
+
|
|
1054
|
+
auto out = tile_register_like(this);
|
|
1055
|
+
|
|
1056
|
+
using Layout = typename decltype(out)::Layout;
|
|
774
1057
|
|
|
775
1058
|
WP_PRAGMA_UNROLL
|
|
776
|
-
for (int i=0; i <
|
|
1059
|
+
for (int i=0; i < Layout::NumRegs; ++i)
|
|
777
1060
|
{
|
|
778
|
-
const int linear =
|
|
1061
|
+
const int linear = Layout::linear_from_register(i);
|
|
779
1062
|
|
|
780
|
-
|
|
781
|
-
// aligned to block dimensions
|
|
782
|
-
if (!Aligned && linear >= Size)
|
|
1063
|
+
if (!Layout::valid(linear))
|
|
783
1064
|
break;
|
|
784
1065
|
|
|
785
1066
|
out(i) = data(linear);
|
|
@@ -788,220 +1069,354 @@ struct tile_shared_t
|
|
|
788
1069
|
return out;
|
|
789
1070
|
}
|
|
790
1071
|
|
|
791
|
-
|
|
792
|
-
|
|
793
|
-
|
|
1072
|
+
template <typename Global>
|
|
1073
|
+
inline CUDA_CALLABLE void copy_to_global(const Global& dest)
|
|
1074
|
+
{
|
|
1075
|
+
// vectorized loads for specific input/output shapes
|
|
1076
|
+
if constexpr (Layout::Shape::N == 2)
|
|
1077
|
+
{
|
|
1078
|
+
constexpr int lastdim = Layout::Shape::N-1;
|
|
1079
|
+
constexpr bool contiguous_src = Layout::Stride::dim(lastdim) == 1;
|
|
1080
|
+
const bool contiguous_dest = dest.data.strides[lastdim] == sizeof(T);
|
|
1081
|
+
const int elements = (dest.data.shape[lastdim] - dest.offset[lastdim]);
|
|
1082
|
+
const bool aligned = (elements*sizeof(T))%sizeof(float4) == 0;
|
|
1083
|
+
|
|
1084
|
+
if (contiguous_dest && contiguous_src && aligned)
|
|
1085
|
+
{
|
|
1086
|
+
constexpr int M = Layout::Shape::dim(0);
|
|
1087
|
+
constexpr int N = (Layout::Shape::dim(1)*sizeof(T))/sizeof(float4);
|
|
1088
|
+
|
|
1089
|
+
// alias of shared tile with 128bit type
|
|
1090
|
+
using SrcLayout = tile_layout_strided_t<tile_shape_t<M, N>>;
|
|
1091
|
+
tile_shared_t<float4, SrcLayout> src128((float4*)data.ptr);
|
|
1092
|
+
float4* dest128 = (float4*)&dest.data.data[dest.index_from_coord(tile_coord(0,0))];
|
|
1093
|
+
|
|
1094
|
+
assert(((uint64_t)(data.ptr))%sizeof(float4) == 0);
|
|
1095
|
+
assert(((uint64_t)(ptr))%sizeof(float4) == 0);
|
|
1096
|
+
|
|
1097
|
+
const int stride_i = dest.data.strides[0]/sizeof(float4);
|
|
1098
|
+
const int stride_j = 1;
|
|
1099
|
+
|
|
1100
|
+
WP_PRAGMA_UNROLL
|
|
1101
|
+
for (int i=threadIdx.x; i < SrcLayout::Size; i += WP_TILE_BLOCK_DIM)
|
|
1102
|
+
{
|
|
1103
|
+
auto c = SrcLayout::coord_from_linear(i);
|
|
1104
|
+
|
|
1105
|
+
dest128[stride_i*c[0] + stride_j*c[1]] = src128.data(i);
|
|
1106
|
+
}
|
|
794
1107
|
|
|
795
|
-
|
|
796
|
-
|
|
1108
|
+
return;
|
|
1109
|
+
}
|
|
1110
|
+
}
|
|
797
1111
|
|
|
1112
|
+
// scalar bounds checked path
|
|
798
1113
|
WP_PRAGMA_UNROLL
|
|
799
|
-
for (int i=threadIdx.x; i < Size; i += WP_TILE_BLOCK_DIM)
|
|
1114
|
+
for (int i=threadIdx.x; i < Layout::Size; i += WP_TILE_BLOCK_DIM)
|
|
800
1115
|
{
|
|
801
|
-
|
|
1116
|
+
auto c = Layout::coord_from_linear(i);
|
|
1117
|
+
dest.store(c, data(i));
|
|
802
1118
|
}
|
|
803
1119
|
}
|
|
804
1120
|
|
|
805
|
-
|
|
1121
|
+
__device__ __forceinline__
|
|
1122
|
+
void cp_async_global_to_shared_128(float4* shared_dest, const float4* global_src)
|
|
806
1123
|
{
|
|
807
|
-
|
|
808
|
-
|
|
809
|
-
|
|
810
|
-
|
|
811
|
-
|
|
812
|
-
|
|
813
|
-
|
|
814
|
-
|
|
815
|
-
|
|
816
|
-
|
|
817
|
-
|
|
818
|
-
|
|
819
|
-
|
|
820
|
-
|
|
1124
|
+
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800)
|
|
1125
|
+
|
|
1126
|
+
unsigned long long saddr = 0ULL;
|
|
1127
|
+
unsigned long long gaddr = 0ULL;
|
|
1128
|
+
|
|
1129
|
+
asm volatile("cvta.to.shared.u64 %0, %1;" : "=l"(saddr) : "l"(shared_dest));
|
|
1130
|
+
asm volatile("cvta.to.global.u64 %0, %1;" : "=l"(gaddr) : "l"(global_src));
|
|
1131
|
+
|
|
1132
|
+
// Use cp.async on newer architectures
|
|
1133
|
+
asm volatile(
|
|
1134
|
+
"cp.async.ca.shared.global [%0], [%1], 16;\n"
|
|
1135
|
+
:
|
|
1136
|
+
: "l"(saddr), "l"(gaddr)
|
|
1137
|
+
);
|
|
1138
|
+
#else
|
|
1139
|
+
// use regular load/store through register on older arches
|
|
1140
|
+
*shared_dest = *global_src;
|
|
1141
|
+
#endif
|
|
1142
|
+
}
|
|
821
1143
|
|
|
822
|
-
|
|
823
|
-
|
|
1144
|
+
__device__ __forceinline__
|
|
1145
|
+
void cp_async_commit_and_wait_all_128()
|
|
1146
|
+
{
|
|
1147
|
+
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800)
|
|
1148
|
+
asm volatile(
|
|
1149
|
+
"cp.async.commit_group;\n"
|
|
1150
|
+
"cp.async.wait_group 0;\n" ::);
|
|
1151
|
+
#endif
|
|
1152
|
+
}
|
|
1153
|
+
|
|
1154
|
+
template <typename Global>
|
|
1155
|
+
inline CUDA_CALLABLE void copy_from_global(const Global& src)
|
|
1156
|
+
{
|
|
1157
|
+
if (initialized)
|
|
1158
|
+
WP_TILE_SYNC();
|
|
1159
|
+
|
|
1160
|
+
// vectorized loads for specific input/output shapes
|
|
1161
|
+
if constexpr (Layout::Shape::N == 2)
|
|
1162
|
+
{
|
|
1163
|
+
constexpr int lastdim = Layout::Shape::N-1;
|
|
1164
|
+
constexpr bool contiguous_dest = Layout::Stride::dim(lastdim) == 1;
|
|
1165
|
+
const bool contiguous_src = src.data.strides[lastdim] == sizeof(T);
|
|
1166
|
+
const int elements = (src.data.shape[lastdim] - src.offset[lastdim]);
|
|
1167
|
+
const bool aligned = (elements*sizeof(T))%sizeof(float4) == 0;
|
|
1168
|
+
|
|
1169
|
+
if (contiguous_dest && contiguous_src && aligned)
|
|
1170
|
+
{
|
|
1171
|
+
constexpr int M = Layout::Shape::dim(0);
|
|
1172
|
+
constexpr int N = (Layout::Shape::dim(1)*sizeof(T))/sizeof(float4);
|
|
1173
|
+
|
|
1174
|
+
// alias of shared tile with 128bit type
|
|
1175
|
+
using DestLayout = tile_layout_strided_t<tile_shape_t<M, N>>;
|
|
1176
|
+
tile_shared_t<float4, DestLayout> dest128((float4*)data.ptr);
|
|
1177
|
+
float4* src128 = (float4*)&src.data.data[src.index_from_coord(tile_coord(0,0))];
|
|
1178
|
+
|
|
1179
|
+
assert(((uint64_t)(dest128.data.ptr))%sizeof(float4) == 0);
|
|
1180
|
+
assert(((uint64_t)(src128))%sizeof(float4) == 0);
|
|
1181
|
+
|
|
1182
|
+
const int stride_i = src.data.strides[0]/sizeof(float4);
|
|
1183
|
+
const int stride_j = 1;
|
|
1184
|
+
|
|
1185
|
+
WP_PRAGMA_UNROLL
|
|
1186
|
+
for (int i=threadIdx.x; i < DestLayout::Size; i += WP_TILE_BLOCK_DIM)
|
|
1187
|
+
{
|
|
1188
|
+
auto c = DestLayout::coord_from_linear(i);
|
|
1189
|
+
|
|
1190
|
+
#if WP_USE_ASYNC_PIPELINE
|
|
1191
|
+
cp_async_global_to_shared_128(&dest128.data(i), &src128[stride_i*c[0] + stride_j*c[1]]);
|
|
1192
|
+
#else
|
|
1193
|
+
dest128.data(i) = src128[stride_i*c[0] + stride_j*c[1]];
|
|
1194
|
+
#endif // WP_USE_ASYNC_PIPELINE
|
|
1195
|
+
}
|
|
824
1196
|
|
|
825
|
-
|
|
826
|
-
|
|
1197
|
+
#if WP_USE_ASYNC_PIPELINE
|
|
1198
|
+
cp_async_commit_and_wait_all_128();
|
|
1199
|
+
#endif // WP_USE_ASYNC_PIPELINE
|
|
827
1200
|
|
|
828
|
-
|
|
829
|
-
|
|
830
|
-
|
|
831
|
-
coord_t c = src128.coord(i);
|
|
832
|
-
ptr[c.i*stride_i + c.j*stride_j] = src128.data(i);
|
|
1201
|
+
initialized = true;
|
|
1202
|
+
WP_TILE_SYNC();
|
|
1203
|
+
return;
|
|
833
1204
|
}
|
|
834
1205
|
}
|
|
835
|
-
else
|
|
836
|
-
{
|
|
837
|
-
// wp.array() indexing generates poor code due to char* casting
|
|
838
|
-
// here we unroll some of the ops, note this assumes byte strides are
|
|
839
|
-
// aligned to the element size
|
|
840
|
-
T* ptr = &wp::index(dest, tile_i, tile_j);
|
|
841
|
-
const int stride_i = dest.strides[0]/sizeof(T);
|
|
842
|
-
const int stride_j = dest.strides[1]/sizeof(T);
|
|
843
|
-
|
|
844
|
-
WP_PRAGMA_UNROLL
|
|
845
|
-
for (int i=threadIdx.x; i < Size; i += WP_TILE_BLOCK_DIM)
|
|
846
|
-
{
|
|
847
|
-
coord_t c = coord(i);
|
|
848
|
-
ptr[c.i*stride_i + c.j*stride_j] = data(c.i, c.j);
|
|
849
|
-
}
|
|
850
|
-
}
|
|
851
|
-
}
|
|
852
|
-
|
|
853
|
-
inline CUDA_CALLABLE void copy_from_global(const array_t<T>& src, int x)
|
|
854
|
-
{
|
|
855
|
-
// todo: use async pipelines or TMA here
|
|
856
|
-
const int tile_i = x*N;
|
|
857
1206
|
|
|
1207
|
+
// scalar bounds checked path
|
|
858
1208
|
WP_PRAGMA_UNROLL
|
|
859
|
-
for (int i=threadIdx.x; i < Size; i += WP_TILE_BLOCK_DIM)
|
|
1209
|
+
for (int i=threadIdx.x; i < Layout::Size; i += WP_TILE_BLOCK_DIM)
|
|
860
1210
|
{
|
|
861
|
-
|
|
1211
|
+
auto c = Layout::coord_from_linear(i);
|
|
1212
|
+
data(i) = src.load(c);
|
|
862
1213
|
}
|
|
863
1214
|
|
|
1215
|
+
initialized = true;
|
|
864
1216
|
WP_TILE_SYNC();
|
|
865
1217
|
}
|
|
866
1218
|
|
|
867
|
-
|
|
1219
|
+
template <typename Global>
|
|
1220
|
+
inline CUDA_CALLABLE auto atomic_add(Global& dest)
|
|
868
1221
|
{
|
|
869
|
-
|
|
870
|
-
|
|
871
|
-
const int tile_j = y*N;
|
|
1222
|
+
copy_to_register().atomic_add(dest);
|
|
1223
|
+
}
|
|
872
1224
|
|
|
873
|
-
|
|
874
|
-
|
|
875
|
-
|
|
876
|
-
|
|
877
|
-
|
|
1225
|
+
template <typename Global>
|
|
1226
|
+
inline CUDA_CALLABLE auto atomic_add_grad(Global& dest)
|
|
1227
|
+
{
|
|
1228
|
+
grad_to_register().atomic_add_grad(dest);
|
|
1229
|
+
}
|
|
878
1230
|
|
|
879
|
-
|
|
880
|
-
|
|
1231
|
+
// overload for integral types
|
|
1232
|
+
inline CUDA_CALLABLE void print_value(int x) const
|
|
1233
|
+
{
|
|
1234
|
+
printf("%d", x);
|
|
1235
|
+
}
|
|
881
1236
|
|
|
882
|
-
|
|
1237
|
+
// overload for floating point types
|
|
1238
|
+
template <typename ValueType>
|
|
1239
|
+
inline CUDA_CALLABLE void print_value(ValueType x) const
|
|
1240
|
+
{
|
|
1241
|
+
printf("%g", x);
|
|
1242
|
+
}
|
|
883
1243
|
|
|
884
|
-
|
|
885
|
-
|
|
1244
|
+
template <int Level = 0>
|
|
1245
|
+
inline CUDA_CALLABLE void print_values(const Storage& storage, int index=0) const
|
|
1246
|
+
{
|
|
1247
|
+
using Shape = typename Layout::Shape;
|
|
886
1248
|
|
|
887
|
-
|
|
888
|
-
|
|
1249
|
+
if constexpr (Level < Shape::N)
|
|
1250
|
+
{
|
|
1251
|
+
if constexpr (Level == Shape::N - 1)
|
|
1252
|
+
{
|
|
1253
|
+
// Special handling for 1D case
|
|
1254
|
+
printf("[");
|
|
1255
|
+
for (int i = 0; i < Shape::dim(Level); ++i)
|
|
1256
|
+
{
|
|
1257
|
+
print_value(storage(index + i));
|
|
889
1258
|
|
|
890
|
-
|
|
891
|
-
|
|
892
|
-
|
|
893
|
-
|
|
894
|
-
|
|
895
|
-
|
|
896
|
-
|
|
897
|
-
|
|
898
|
-
|
|
899
|
-
|
|
900
|
-
|
|
901
|
-
|
|
1259
|
+
if (i < Shape::dim(Level) - 1)
|
|
1260
|
+
{
|
|
1261
|
+
printf(" ");
|
|
1262
|
+
}
|
|
1263
|
+
}
|
|
1264
|
+
printf("]");
|
|
1265
|
+
}
|
|
1266
|
+
else if constexpr (Level == Shape::N - 2)
|
|
1267
|
+
{
|
|
1268
|
+
// Special handling for 2D case
|
|
1269
|
+
printf("[");
|
|
1270
|
+
for (int i = 0; i < Shape::dim(Level); ++i)
|
|
1271
|
+
{
|
|
1272
|
+
printf("[");
|
|
1273
|
+
for (int j=0; j < Shape::dim(Level+1); ++j)
|
|
1274
|
+
{
|
|
1275
|
+
print_value(storage(index));
|
|
1276
|
+
|
|
1277
|
+
if (j < Shape::dim(Level+1) - 1)
|
|
1278
|
+
{
|
|
1279
|
+
printf(" ");
|
|
1280
|
+
}
|
|
1281
|
+
|
|
1282
|
+
++index;
|
|
1283
|
+
}
|
|
1284
|
+
|
|
1285
|
+
printf("]");
|
|
1286
|
+
|
|
1287
|
+
// next row
|
|
1288
|
+
if (i < Shape::dim(Level)-1)
|
|
1289
|
+
{
|
|
1290
|
+
printf("\n");
|
|
1291
|
+
|
|
1292
|
+
// indent next row
|
|
1293
|
+
for (int i=0; i <= Shape::N-2; ++i)
|
|
1294
|
+
printf(" ");
|
|
1295
|
+
|
|
1296
|
+
}
|
|
1297
|
+
}
|
|
1298
|
+
printf("]");
|
|
1299
|
+
}
|
|
1300
|
+
else
|
|
1301
|
+
{
|
|
1302
|
+
printf("[");
|
|
1303
|
+
for (int i = 0; i < Shape::dim(Level); ++i)
|
|
1304
|
+
{
|
|
1305
|
+
print_values<Level + 1>(storage, index + i * Shape::dim(Level));
|
|
1306
|
+
if (i < Shape::dim(Level) - 1)
|
|
1307
|
+
{
|
|
1308
|
+
printf("\n\n");
|
|
1309
|
+
|
|
1310
|
+
// indent next row
|
|
1311
|
+
for (int i=0; i <= Level; ++i)
|
|
1312
|
+
printf(" ");
|
|
1313
|
+
}
|
|
1314
|
+
}
|
|
1315
|
+
printf("]");
|
|
902
1316
|
}
|
|
1317
|
+
}
|
|
1318
|
+
}
|
|
903
1319
|
|
|
904
|
-
|
|
905
|
-
|
|
906
|
-
|
|
1320
|
+
inline CUDA_CALLABLE void print(bool reverse=false) const
|
|
1321
|
+
{
|
|
1322
|
+
if (threadIdx.x != 0)
|
|
1323
|
+
return;
|
|
907
1324
|
|
|
908
|
-
|
|
1325
|
+
if (reverse)
|
|
1326
|
+
print_values(grad);
|
|
909
1327
|
else
|
|
1328
|
+
print_values(data);
|
|
1329
|
+
|
|
1330
|
+
printf(" = tile(shape=(");
|
|
1331
|
+
for (int i=0; i < Layout::Shape::N; ++i)
|
|
910
1332
|
{
|
|
911
|
-
|
|
912
|
-
|
|
913
|
-
|
|
914
|
-
const T* ptr = &wp::index(src, tile_i, tile_j);
|
|
915
|
-
|
|
916
|
-
assert(src.strides[0]%sizeof(T) == 0);
|
|
917
|
-
assert(src.strides[1]%sizeof(T) == 0);
|
|
918
|
-
|
|
919
|
-
const int stride_i = src.strides[0]/sizeof(T);
|
|
920
|
-
const int stride_j = src.strides[1]/sizeof(T);
|
|
921
|
-
|
|
922
|
-
WP_PRAGMA_UNROLL
|
|
923
|
-
for (int i=threadIdx.x; i < Size; i += WP_TILE_BLOCK_DIM)
|
|
924
|
-
{
|
|
925
|
-
coord_t c = coord(i);
|
|
926
|
-
data(c.i, c.j) = ptr[c.i*stride_i + c.j*stride_j];
|
|
927
|
-
}
|
|
1333
|
+
printf("%d", Layout::Shape::dim(i));
|
|
1334
|
+
if (i != Layout::Shape::N-1)
|
|
1335
|
+
printf(",");
|
|
928
1336
|
}
|
|
929
1337
|
|
|
930
|
-
|
|
931
|
-
|
|
932
|
-
#endif
|
|
933
|
-
|
|
934
|
-
}
|
|
1338
|
+
printf("), storage=shared)\n");
|
|
1339
|
+
}
|
|
935
1340
|
};
|
|
936
1341
|
|
|
937
|
-
|
|
938
|
-
|
|
1342
|
+
|
|
1343
|
+
template <typename T, typename L>
|
|
1344
|
+
void tile_register_t<T, L>::print() const
|
|
939
1345
|
{
|
|
940
1346
|
// create a temporary shared tile so that
|
|
941
1347
|
// we can print it deterministically
|
|
942
|
-
WP_TILE_SHARED T smem[
|
|
943
|
-
|
|
944
|
-
|
|
1348
|
+
WP_TILE_SHARED T smem[L::Size];
|
|
1349
|
+
tile_shared_t<T, tile_layout_strided_t<typename L::Shape>> scratch(smem, NULL);
|
|
1350
|
+
|
|
945
1351
|
scratch.assign(*this);
|
|
946
1352
|
|
|
947
1353
|
WP_TILE_SYNC();
|
|
948
1354
|
|
|
949
1355
|
if (threadIdx.x == 0)
|
|
950
1356
|
{
|
|
951
|
-
|
|
952
|
-
for (int i=0; i < M; ++i)
|
|
953
|
-
{
|
|
954
|
-
printf("%*s[", i>0, "");
|
|
955
|
-
for (int j=0; j < N; ++j)
|
|
956
|
-
{
|
|
957
|
-
printf("%g ", double(scratch.data(i, j)));
|
|
958
|
-
}
|
|
1357
|
+
scratch.print_values(scratch.data, 0);
|
|
959
1358
|
|
|
960
|
-
|
|
961
|
-
|
|
962
|
-
|
|
963
|
-
|
|
1359
|
+
printf(" = tile(shape=(");
|
|
1360
|
+
for (int i=0; i < L::Shape::N; ++i)
|
|
1361
|
+
{
|
|
1362
|
+
printf("%d", L::Shape::dim(i));
|
|
1363
|
+
if (i != L::Shape::N-1)
|
|
1364
|
+
printf(",");
|
|
964
1365
|
}
|
|
1366
|
+
|
|
1367
|
+
printf("), storage=register)\n");
|
|
965
1368
|
}
|
|
966
1369
|
|
|
967
1370
|
WP_TILE_SYNC();
|
|
968
1371
|
}
|
|
969
1372
|
|
|
970
|
-
|
|
971
|
-
|
|
1373
|
+
// print entry points
|
|
1374
|
+
template <typename T, typename L>
|
|
1375
|
+
inline CUDA_CALLABLE void print(const tile_register_t<T, L>& t) { t.print(); }
|
|
1376
|
+
template <typename T, typename L, bool Owner>
|
|
1377
|
+
inline CUDA_CALLABLE void print(const tile_shared_t<T, L, Owner>& t) { t.print(); }
|
|
1378
|
+
|
|
1379
|
+
template <typename T, typename L, bool O>
|
|
1380
|
+
inline CUDA_CALLABLE int len(const tile_shared_t<T, L, O>& t)
|
|
972
1381
|
{
|
|
973
|
-
|
|
1382
|
+
return Tile::Layout::Shape::dim(0);
|
|
974
1383
|
}
|
|
975
1384
|
|
|
976
|
-
template <typename T,
|
|
977
|
-
inline CUDA_CALLABLE void
|
|
1385
|
+
template <typename T, typename L, bool O, typename AdjTile>
|
|
1386
|
+
inline CUDA_CALLABLE void adj_len(const tile_shared_t<T,L,O>& t, const AdjTile& a, int& adj_ret)
|
|
978
1387
|
{
|
|
979
|
-
a.print();
|
|
980
1388
|
}
|
|
981
1389
|
|
|
982
|
-
template <typename T,
|
|
983
|
-
inline CUDA_CALLABLE
|
|
1390
|
+
template <typename T, typename L>
|
|
1391
|
+
inline CUDA_CALLABLE int len(const tile_register_t<T, L>& t)
|
|
984
1392
|
{
|
|
985
|
-
|
|
1393
|
+
return Tile::Layout::Shape::dim(0);
|
|
986
1394
|
}
|
|
987
1395
|
|
|
988
|
-
template <typename T,
|
|
989
|
-
inline CUDA_CALLABLE void
|
|
1396
|
+
template <typename T, typename L, typename AdjTile>
|
|
1397
|
+
inline CUDA_CALLABLE void adj_len(const tile_register_t<T,L>& t, const AdjTile& a, int& adj_ret)
|
|
990
1398
|
{
|
|
991
|
-
a.print();
|
|
992
1399
|
}
|
|
993
1400
|
|
|
1401
|
+
|
|
1402
|
+
template <typename T, typename L>
|
|
1403
|
+
inline CUDA_CALLABLE void adj_print(const tile_register_t<T, L>& t, const tile_register_t<T, L>& a) { a.print(); }
|
|
1404
|
+
template <typename T, typename L, bool Owner>
|
|
1405
|
+
inline CUDA_CALLABLE void adj_print(const tile_shared_t<T, L, Owner>& t, const tile_shared_t<T, L, Owner>& a) { a.print(true); }
|
|
1406
|
+
|
|
1407
|
+
|
|
1408
|
+
|
|
994
1409
|
// helpers to allocate shared tiles
|
|
995
|
-
template <typename T,
|
|
1410
|
+
template <typename T, typename Shape, bool RequiresGrad>
|
|
996
1411
|
inline CUDA_CALLABLE auto tile_alloc_empty()
|
|
997
1412
|
|
|
998
|
-
{ constexpr int
|
|
999
|
-
T* data = (T*)tile_alloc_shared(
|
|
1413
|
+
{ constexpr int size = Shape::size();
|
|
1414
|
+
T* data = (T*)tile_alloc_shared(size*sizeof(T));
|
|
1000
1415
|
T* grad = NULL;
|
|
1001
1416
|
|
|
1002
1417
|
#if FP_CHECK
|
|
1003
1418
|
|
|
1004
|
-
for (int i=threadIdx.x; i <
|
|
1419
|
+
for (int i=threadIdx.x; i < size; i+= WP_TILE_BLOCK_DIM)
|
|
1005
1420
|
data[i] = T(nanf(""));
|
|
1006
1421
|
|
|
1007
1422
|
WP_TILE_SYNC();
|
|
@@ -1011,15 +1426,15 @@ inline CUDA_CALLABLE auto tile_alloc_empty()
|
|
|
1011
1426
|
|
|
1012
1427
|
if (RequiresGrad)
|
|
1013
1428
|
{
|
|
1014
|
-
grad = (T*)tile_alloc_shared(
|
|
1429
|
+
grad = (T*)tile_alloc_shared(size*sizeof(T));
|
|
1015
1430
|
|
|
1016
|
-
for (int i=threadIdx.x; i <
|
|
1431
|
+
for (int i=threadIdx.x; i < size; i+= WP_TILE_BLOCK_DIM)
|
|
1017
1432
|
grad[i] = T(0);
|
|
1018
1433
|
|
|
1019
1434
|
WP_TILE_SYNC();
|
|
1020
1435
|
}
|
|
1021
1436
|
|
|
1022
|
-
return tile_shared_t<T,
|
|
1437
|
+
return tile_shared_t<T, tile_layout_strided_t<Shape>>(data, grad);
|
|
1023
1438
|
}
|
|
1024
1439
|
|
|
1025
1440
|
template <typename T, int M, int N, bool RequiresGrad>
|
|
@@ -1043,7 +1458,7 @@ inline CUDA_CALLABLE auto tile_alloc_zeros()
|
|
|
1043
1458
|
|
|
1044
1459
|
WP_TILE_SYNC();
|
|
1045
1460
|
|
|
1046
|
-
return tile_shared_t<T, M, N
|
|
1461
|
+
return tile_shared_t<T, tile_layout_strided_t<tile_shape_t<M, N>>(data, grad);
|
|
1047
1462
|
}
|
|
1048
1463
|
|
|
1049
1464
|
|
|
@@ -1054,9 +1469,10 @@ inline CUDA_CALLABLE auto tile_alloc_zeros()
|
|
|
1054
1469
|
template <typename T>
|
|
1055
1470
|
inline CUDA_CALLABLE auto tile(const T& x)
|
|
1056
1471
|
{
|
|
1057
|
-
tile_register_t<T,
|
|
1472
|
+
tile_register_t<T, tile_layout_register_t<tile_shape_t<WP_TILE_BLOCK_DIM>>> result;
|
|
1058
1473
|
|
|
1059
|
-
|
|
1474
|
+
using Layout = typename decltype(result)::Layout;
|
|
1475
|
+
static_assert(Layout::NumRegs == 1);
|
|
1060
1476
|
|
|
1061
1477
|
result.data[0] = x;
|
|
1062
1478
|
return result;
|
|
@@ -1066,9 +1482,10 @@ inline CUDA_CALLABLE auto tile(const T& x)
|
|
|
1066
1482
|
template <typename T, unsigned Length>
|
|
1067
1483
|
inline CUDA_CALLABLE auto tile(const wp::vec_t<Length, T>& x)
|
|
1068
1484
|
{
|
|
1069
|
-
tile_register_t<T, Length, WP_TILE_BLOCK_DIM
|
|
1485
|
+
tile_register_t<T, tile_layout_register_t<tile_shape_t<Length, WP_TILE_BLOCK_DIM>>> result;
|
|
1070
1486
|
|
|
1071
|
-
|
|
1487
|
+
using Layout = typename decltype(result)::Layout;
|
|
1488
|
+
static_assert(Layout::NumRegs == Length);
|
|
1072
1489
|
|
|
1073
1490
|
for (int i=0; i < Length; ++i)
|
|
1074
1491
|
result.data[i] = x[i];
|
|
@@ -1080,8 +1497,8 @@ inline CUDA_CALLABLE auto tile(const wp::vec_t<Length, T>& x)
|
|
|
1080
1497
|
template <typename T, typename AdjTile>
|
|
1081
1498
|
inline CUDA_CALLABLE void adj_tile(const T& x, T& adj_x, AdjTile& adj_ret)
|
|
1082
1499
|
{
|
|
1083
|
-
static_assert(AdjTile::
|
|
1084
|
-
static_assert(AdjTile::
|
|
1500
|
+
static_assert(AdjTile::Layout::Shape::N == 1);
|
|
1501
|
+
static_assert(AdjTile::Layout::Shape::dim(0) == WP_TILE_BLOCK_DIM);
|
|
1085
1502
|
|
|
1086
1503
|
auto adj_reg = adj_ret.copy_to_register();
|
|
1087
1504
|
|
|
@@ -1091,8 +1508,9 @@ inline CUDA_CALLABLE void adj_tile(const T& x, T& adj_x, AdjTile& adj_ret)
|
|
|
1091
1508
|
template <typename T, unsigned Length, typename AdjTile>
|
|
1092
1509
|
inline CUDA_CALLABLE void adj_tile(const wp::vec_t<Length, T>& x, wp::vec_t<Length, T>& adj_x, AdjTile& adj_ret)
|
|
1093
1510
|
{
|
|
1094
|
-
static_assert(AdjTile::
|
|
1095
|
-
static_assert(AdjTile::
|
|
1511
|
+
static_assert(AdjTile::Layout::Shape::N == 2);
|
|
1512
|
+
static_assert(AdjTile::Layout::Shape::dim(0) == Length);
|
|
1513
|
+
static_assert(AdjTile::Layout::Shape::dim(1) == WP_TILE_BLOCK_DIM);
|
|
1096
1514
|
|
|
1097
1515
|
auto adj_reg = adj_ret.copy_to_register();
|
|
1098
1516
|
|
|
@@ -1108,17 +1526,20 @@ inline CUDA_CALLABLE auto untile(Tile& tile)
|
|
|
1108
1526
|
// there is exactly one value per-thread
|
|
1109
1527
|
auto reg = tile.copy_to_register();
|
|
1110
1528
|
|
|
1529
|
+
constexpr int N = Tile::Layout::Shape::N;
|
|
1530
|
+
|
|
1111
1531
|
// scalar case
|
|
1112
|
-
if constexpr(
|
|
1532
|
+
if constexpr(N == 1)
|
|
1113
1533
|
{
|
|
1114
1534
|
return reg.data[0];
|
|
1115
1535
|
}
|
|
1116
1536
|
|
|
1117
1537
|
// vector case
|
|
1118
|
-
if constexpr(
|
|
1538
|
+
if constexpr(N == 2)
|
|
1119
1539
|
{
|
|
1120
|
-
|
|
1121
|
-
|
|
1540
|
+
constexpr int Length = Tile::Layout::Shape::dim(0);
|
|
1541
|
+
wp::vec_t<Length, typename Tile::Type> v;
|
|
1542
|
+
for (int i=0; i < Length; ++i)
|
|
1122
1543
|
v[i] = reg.data[i];
|
|
1123
1544
|
|
|
1124
1545
|
return v;
|
|
@@ -1130,24 +1551,27 @@ inline CUDA_CALLABLE void adj_untile(Tile& tile, Tile& adj_tile, Value& adj_ret)
|
|
|
1130
1551
|
{
|
|
1131
1552
|
auto adj = adj_tile.copy_to_register();
|
|
1132
1553
|
|
|
1554
|
+
constexpr int N = Tile::Layout::Shape::N;
|
|
1555
|
+
|
|
1133
1556
|
// scalar case
|
|
1134
|
-
if constexpr(
|
|
1557
|
+
if constexpr(N == 1)
|
|
1135
1558
|
{
|
|
1136
1559
|
adj.data[0] += adj_ret;
|
|
1137
1560
|
}
|
|
1138
1561
|
|
|
1139
1562
|
// vector case
|
|
1140
|
-
if constexpr(
|
|
1563
|
+
if constexpr(N == 2)
|
|
1141
1564
|
{
|
|
1142
|
-
|
|
1143
|
-
|
|
1565
|
+
constexpr int Length = Tile::Layout::Shape::dim(0);
|
|
1566
|
+
for (int i=0; i < Length; ++i)
|
|
1567
|
+
adj.data[i] += adj_ret[i];
|
|
1144
1568
|
}
|
|
1145
1569
|
|
|
1146
1570
|
adj_tile.assign(adj);
|
|
1147
1571
|
}
|
|
1148
1572
|
|
|
1149
1573
|
// zero initialized tile
|
|
1150
|
-
template <typename T,
|
|
1574
|
+
template <typename T, unsigned... Shape>
|
|
1151
1575
|
inline CUDA_CALLABLE auto tile_zeros()
|
|
1152
1576
|
{
|
|
1153
1577
|
// tile variable assignment operator will handle initialization (since lhs could be shared/register tile)
|
|
@@ -1155,7 +1579,7 @@ inline CUDA_CALLABLE auto tile_zeros()
|
|
|
1155
1579
|
}
|
|
1156
1580
|
|
|
1157
1581
|
// one-initialized tile
|
|
1158
|
-
template <typename T,
|
|
1582
|
+
template <typename T, unsigned... Shape>
|
|
1159
1583
|
inline CUDA_CALLABLE auto tile_ones()
|
|
1160
1584
|
{
|
|
1161
1585
|
// tile variable assignment operator will handle initialization (since lhs could be shared/register tile)
|
|
@@ -1163,19 +1587,21 @@ inline CUDA_CALLABLE auto tile_ones()
|
|
|
1163
1587
|
}
|
|
1164
1588
|
|
|
1165
1589
|
// tile with evenly spaced values
|
|
1166
|
-
template <typename T, int
|
|
1590
|
+
template <typename T, int Len>
|
|
1167
1591
|
inline CUDA_CALLABLE auto tile_arange(T start, T stop, T step)
|
|
1168
1592
|
{
|
|
1169
|
-
|
|
1593
|
+
auto out = tile_register<T, Len>();
|
|
1594
|
+
|
|
1595
|
+
using Layout = typename decltype(out)::Layout;
|
|
1170
1596
|
|
|
1171
1597
|
WP_PRAGMA_UNROLL
|
|
1172
|
-
for (int i=0; i <
|
|
1598
|
+
for (int i=0; i < Layout::NumRegs; ++i)
|
|
1173
1599
|
{
|
|
1174
|
-
const int linear =
|
|
1600
|
+
const int linear = Layout::linear_from_register(i);
|
|
1175
1601
|
|
|
1176
1602
|
// handle case where tile size is not
|
|
1177
1603
|
// aligned to block dimensions
|
|
1178
|
-
if (!
|
|
1604
|
+
if (!Layout::valid(linear))
|
|
1179
1605
|
break;
|
|
1180
1606
|
|
|
1181
1607
|
out.data[i] = start + linear*step;
|
|
@@ -1188,191 +1614,106 @@ template <typename T, typename AdjTile>
|
|
|
1188
1614
|
inline CUDA_CALLABLE void adj_tile_arange(T start, T stop, T step,
|
|
1189
1615
|
T& adj_start, T& adj_stop, T& adj_step, AdjTile& adj_ret) {}
|
|
1190
1616
|
|
|
1191
|
-
// entry point for
|
|
1192
|
-
template <typename
|
|
1193
|
-
inline CUDA_CALLABLE auto tile_load(array_t<T>& src,
|
|
1617
|
+
// entry point for load operations, these just return a reference to a global memory array + coordinate
|
|
1618
|
+
template <unsigned... Shape, typename... Indices, typename T>
|
|
1619
|
+
inline CUDA_CALLABLE auto tile_load(array_t<T>& src, Indices... offset)
|
|
1194
1620
|
{
|
|
1195
|
-
return tile_global_t<T
|
|
1621
|
+
return tile_global_t<T, tile_shape_t<Shape...>>(src, tile_coord(offset...));
|
|
1196
1622
|
}
|
|
1197
1623
|
|
|
1198
|
-
// entry point for
|
|
1199
|
-
template <typename
|
|
1200
|
-
inline CUDA_CALLABLE
|
|
1201
|
-
{
|
|
1202
|
-
|
|
1203
|
-
}
|
|
1624
|
+
// // entry point for tile store operations
|
|
1625
|
+
// template <typename... Indices, typename T, typename Tile>
|
|
1626
|
+
// inline CUDA_CALLABLE void tile_store(array_t<T>& dest, Tile& src, Indices... x)
|
|
1627
|
+
// {
|
|
1628
|
+
// src.copy_to_global(tile_global_t<T, typename Tile::Layout::Shape>(dest, tile_coord(x)));
|
|
1629
|
+
// }
|
|
1204
1630
|
|
|
1205
|
-
// entry point for
|
|
1631
|
+
// entry point for tile store operations
|
|
1206
1632
|
template <typename T, typename Tile>
|
|
1207
|
-
inline CUDA_CALLABLE void tile_store(array_t<T>& dest, int x, Tile& src)
|
|
1208
|
-
{
|
|
1209
|
-
// dispatch to tile type
|
|
1210
|
-
src.copy_to_global(dest, x);
|
|
1211
|
-
}
|
|
1212
|
-
|
|
1213
|
-
// entry point for 2d store
|
|
1633
|
+
inline CUDA_CALLABLE void tile_store(array_t<T>& dest, int x, Tile& src) { src.copy_to_global(tile_global_t<T, typename Tile::Layout::Shape>(dest, tile_coord(x))); }
|
|
1214
1634
|
template <typename T, typename Tile>
|
|
1215
|
-
inline CUDA_CALLABLE void tile_store(array_t<T>& dest, int x, int y, Tile& src)
|
|
1216
|
-
{
|
|
1217
|
-
// dispatch to tile type
|
|
1218
|
-
src.copy_to_global(dest, x, y);
|
|
1219
|
-
}
|
|
1220
|
-
|
|
1635
|
+
inline CUDA_CALLABLE void tile_store(array_t<T>& dest, int x, int y, Tile& src) { src.copy_to_global(tile_global_t<T, typename Tile::Layout::Shape>(dest, tile_coord(x, y))); }
|
|
1221
1636
|
template <typename T, typename Tile>
|
|
1222
|
-
inline CUDA_CALLABLE
|
|
1223
|
-
|
|
1224
|
-
|
|
1225
|
-
|
|
1226
|
-
const int tile_i = x*src_reg.M;
|
|
1227
|
-
const int tile_j = y*src_reg.N;
|
|
1228
|
-
|
|
1229
|
-
tile_register_t<T, src_reg.M, src_reg.N> previous;
|
|
1230
|
-
|
|
1231
|
-
WP_PRAGMA_UNROLL
|
|
1232
|
-
for (int i=0; i < src_reg.NumRegs; ++i)
|
|
1233
|
-
{
|
|
1234
|
-
// handle case where tile size is not
|
|
1235
|
-
// aligned to block dimensions
|
|
1236
|
-
int linear = src_reg.index(i);
|
|
1237
|
-
if (!src_reg.Aligned && linear >= src_reg.Size)
|
|
1238
|
-
break;
|
|
1637
|
+
inline CUDA_CALLABLE void tile_store(array_t<T>& dest, int x, int y, int z, Tile& src) { src.copy_to_global(tile_global_t<T, typename Tile::Layout::Shape>(dest, tile_coord(x, y, z))); }
|
|
1638
|
+
template <typename T, typename Tile>
|
|
1639
|
+
inline CUDA_CALLABLE void tile_store(array_t<T>& dest, int x, int y, int z, int w, Tile& src) { src.copy_to_global(tile_global_t<T, typename Tile::Layout::Shape>(dest, tile_coord(x, y, z, w))); }
|
|
1239
1640
|
|
|
1240
|
-
coord_t c = src_reg.coord(linear);
|
|
1241
|
-
previous.data[i] = atomic_add(dest, tile_i + c.i, tile_j + c.j, src_reg.data[i]);
|
|
1242
|
-
}
|
|
1243
1641
|
|
|
1244
|
-
return previous;
|
|
1245
|
-
}
|
|
1246
1642
|
|
|
1643
|
+
template <typename T, typename Tile>
|
|
1644
|
+
inline CUDA_CALLABLE auto tile_atomic_add(array_t<T>& dest, int x, Tile& src) { return src.atomic_add(tile_global_t<T, typename Tile::Layout::Shape>(dest, tile_coord(x))); }
|
|
1645
|
+
template <typename T, typename Tile>
|
|
1646
|
+
inline CUDA_CALLABLE auto tile_atomic_add(array_t<T>& dest, int x, int y, Tile& src) { return src.atomic_add(tile_global_t<T, typename Tile::Layout::Shape>(dest, tile_coord(x, y)));}
|
|
1647
|
+
template <typename T, typename Tile>
|
|
1648
|
+
inline CUDA_CALLABLE auto tile_atomic_add(array_t<T>& dest, int x, int y, int z, Tile& src) { return src.atomic_add(tile_global_t<T, typename Tile::Layout::Shape>(dest, tile_coord(x, y, z)));}
|
|
1649
|
+
template <typename T, typename Tile>
|
|
1650
|
+
inline CUDA_CALLABLE auto tile_atomic_add(array_t<T>& dest, int x, int y, int z, int w, Tile& src) { return src.atomic_add(tile_global_t<T, typename Tile::Layout::Shape>(dest, tile_coord(x, y, z, w)));}
|
|
1247
1651
|
|
|
1248
1652
|
|
|
1249
1653
|
//-------------------------------------
|
|
1250
1654
|
// Adjoints
|
|
1251
1655
|
|
|
1252
|
-
template <typename T, typename AdjTile>
|
|
1253
|
-
inline CUDA_CALLABLE void adj_tile_load(array_t<T>& src,
|
|
1254
|
-
array_t<T>& adj_src,
|
|
1656
|
+
template <typename T, typename AdjTile, typename Coord>
|
|
1657
|
+
inline CUDA_CALLABLE void adj_tile_load(array_t<T>& src, Coord c,
|
|
1658
|
+
array_t<T>& adj_src, Coord adj_c,
|
|
1255
1659
|
AdjTile& adj_ret)
|
|
1256
1660
|
{
|
|
1257
|
-
|
|
1258
|
-
|
|
1259
|
-
//
|
|
1260
|
-
|
|
1261
|
-
|
|
1262
|
-
|
|
1263
|
-
const int tile_i = x*adj_reg.N;
|
|
1264
|
-
|
|
1265
|
-
// add gradients to src array
|
|
1266
|
-
WP_PRAGMA_UNROLL
|
|
1267
|
-
for (int i=0; i < adj_reg.NumRegs; ++i)
|
|
1268
|
-
{
|
|
1269
|
-
int linear = adj_reg.index(i);
|
|
1270
|
-
if (!adj_reg.Aligned && linear >= adj_reg.Size)
|
|
1271
|
-
break;
|
|
1272
|
-
|
|
1273
|
-
auto grad = adj_reg.data[i];
|
|
1661
|
+
tile_global_t<T, typename AdjTile::Layout::Shape> dest(src, c);
|
|
1662
|
+
|
|
1663
|
+
// we allow users to override grad of src
|
|
1664
|
+
if (adj_src.data)
|
|
1665
|
+
dest.data.grad = adj_src.data;
|
|
1274
1666
|
|
|
1275
|
-
|
|
1276
|
-
adj_atomic_add(&index(adj_src, tile_i + linear), grad);
|
|
1277
|
-
else if (src.grad)
|
|
1278
|
-
adj_atomic_add(&index_grad(src, tile_i + linear), grad);
|
|
1279
|
-
}
|
|
1667
|
+
adj_ret.atomic_add_grad(dest);
|
|
1280
1668
|
}
|
|
1281
1669
|
|
|
1282
|
-
template <typename T, typename AdjTile>
|
|
1283
|
-
inline CUDA_CALLABLE void adj_tile_load(array_t<T>& src, int x, int y,
|
|
1284
|
-
array_t<T>& adj_src, int adj_x, int adj_y,
|
|
1285
|
-
AdjTile& adj_ret)
|
|
1286
|
-
{
|
|
1287
|
-
// early out
|
|
1288
|
-
// if (!src.grad)
|
|
1289
|
-
// return;
|
|
1290
|
-
|
|
1291
|
-
auto adj_reg = adj_ret.grad_to_register();
|
|
1292
|
-
|
|
1293
|
-
const int tile_i = x*adj_reg.M;
|
|
1294
|
-
const int tile_j = y*adj_reg.N;
|
|
1295
|
-
|
|
1296
|
-
// add gradients to src array
|
|
1297
|
-
WP_PRAGMA_UNROLL
|
|
1298
|
-
for (int i=0; i < adj_reg.NumRegs; ++i)
|
|
1299
|
-
{
|
|
1300
|
-
int linear = adj_reg.index(i);
|
|
1301
|
-
if (!adj_reg.Aligned && linear >= adj_reg.Size)
|
|
1302
|
-
break;
|
|
1303
|
-
|
|
1304
|
-
coord_t coord = adj_reg.coord(linear);
|
|
1305
1670
|
|
|
1306
|
-
|
|
1671
|
+
template <typename T, typename AdjTile>
|
|
1672
|
+
inline CUDA_CALLABLE void adj_tile_load(array_t<T>& src, int x, array_t<T>& adj_src, int adj_x, AdjTile& adj_ret) { adj_tile_load( src, tile_coord(x), adj_src, tile_coord(0), adj_ret); }
|
|
1673
|
+
template <typename T, typename AdjTile>
|
|
1674
|
+
inline CUDA_CALLABLE void adj_tile_load(array_t<T>& src, int x, int y, array_t<T>& adj_src, int adj_x, int adj_y, AdjTile& adj_ret) { adj_tile_load( src, tile_coord(x, y), adj_src, tile_coord(0,0), adj_ret); }
|
|
1675
|
+
template <typename T, typename AdjTile>
|
|
1676
|
+
inline CUDA_CALLABLE void adj_tile_load(array_t<T>& src, int x, int y, int z, array_t<T>& adj_src, int adj_x, int adj_y, int adj_z, AdjTile& adj_ret) { adj_tile_load( src, tile_coord(x, y, z), adj_src, tile_coord(0,0,0), adj_ret); }
|
|
1677
|
+
template <typename T, typename AdjTile>
|
|
1678
|
+
inline CUDA_CALLABLE void adj_tile_load(array_t<T>& src, int x, int y, int z, int w, array_t<T>& adj_src, int adj_x, int adj_y, int adj_z, int adj_w, AdjTile& adj_ret) { adj_tile_load( src, tile_coord(x, y, z, w), adj_src, tile_coord(0,0,0,0), adj_ret); }
|
|
1307
1679
|
|
|
1308
|
-
if (adj_src.data)
|
|
1309
|
-
adj_atomic_add(&index(adj_src, tile_i + coord.i, tile_j + coord.j), grad);
|
|
1310
|
-
else if (src.grad)
|
|
1311
|
-
adj_atomic_add(&index_grad(src, tile_i + coord.i, tile_j + coord.j), grad);
|
|
1312
|
-
}
|
|
1313
|
-
}
|
|
1314
1680
|
|
|
1315
1681
|
|
|
1316
|
-
template <typename T, typename Tile, typename AdjTile>
|
|
1317
|
-
inline CUDA_CALLABLE void adj_tile_store(array_t<T>& dest,
|
|
1682
|
+
template <typename T, typename Tile, typename AdjTile, typename Coord>
|
|
1683
|
+
inline CUDA_CALLABLE void adj_tile_store(array_t<T>& dest, Coord c, Tile& t, array_t<T>& adj_dest, Coord adj_c, AdjTile& adj_t)
|
|
1318
1684
|
{
|
|
1319
|
-
|
|
1320
|
-
|
|
1321
|
-
|
|
1322
|
-
|
|
1323
|
-
|
|
1324
|
-
// load gradients from output
|
|
1325
|
-
WP_PRAGMA_UNROLL
|
|
1326
|
-
for (int i=0; i < adj_reg.NumRegs; ++i)
|
|
1327
|
-
{
|
|
1328
|
-
int linear = adj_reg.index(i);
|
|
1329
|
-
if (!adj_reg.Aligned && linear >= adj_reg.Size)
|
|
1330
|
-
break;
|
|
1685
|
+
tile_global_t<T, typename AdjTile::Layout::Shape> src(dest, c);
|
|
1686
|
+
|
|
1687
|
+
// we allow users to override grad of src
|
|
1688
|
+
if (adj_dest.data)
|
|
1689
|
+
src.data.grad = adj_dest.data;
|
|
1331
1690
|
|
|
1332
|
-
|
|
1333
|
-
|
|
1334
|
-
else if (dest.grad)
|
|
1335
|
-
adj_reg.data[i] = index_grad(dest, tile_i + linear);
|
|
1336
|
-
}
|
|
1691
|
+
if (src.data.grad == NULL)
|
|
1692
|
+
return;
|
|
1337
1693
|
|
|
1338
|
-
|
|
1339
|
-
adj_t.grad_add(adj_reg);
|
|
1694
|
+
adj_t.grad_add(src);
|
|
1340
1695
|
}
|
|
1341
1696
|
|
|
1342
1697
|
template <typename T, typename Tile, typename AdjTile>
|
|
1343
|
-
inline CUDA_CALLABLE void adj_tile_store(array_t<T>& dest, int x,
|
|
1344
|
-
|
|
1345
|
-
|
|
1346
|
-
|
|
1347
|
-
|
|
1348
|
-
|
|
1349
|
-
|
|
1350
|
-
|
|
1351
|
-
// load gradients from output
|
|
1352
|
-
WP_PRAGMA_UNROLL
|
|
1353
|
-
for (int i=0; i < adj_reg.NumRegs; ++i)
|
|
1354
|
-
{
|
|
1355
|
-
int linear = adj_reg.index(i);
|
|
1356
|
-
if (!adj_reg.Aligned && linear >= adj_reg.Size)
|
|
1357
|
-
break;
|
|
1358
|
-
|
|
1359
|
-
coord_t coord = adj_reg.coord(linear);
|
|
1698
|
+
inline CUDA_CALLABLE void adj_tile_store(array_t<T>& dest, int x, Tile& t, array_t<T>& adj_dest, int adj_x, AdjTile& adj_t) { adj_tile_store(dest, tile_coord(x), t, adj_dest, tile_coord(0), adj_t); }
|
|
1699
|
+
template <typename T, typename Tile, typename AdjTile>
|
|
1700
|
+
inline CUDA_CALLABLE void adj_tile_store(array_t<T>& dest, int x, int y, Tile& t, array_t<T>& adj_dest, int adj_x, int adj_y, AdjTile& adj_t) { adj_tile_store(dest, tile_coord(x, y), t, adj_dest, tile_coord(0,0), adj_t); }
|
|
1701
|
+
template <typename T, typename Tile, typename AdjTile>
|
|
1702
|
+
inline CUDA_CALLABLE void adj_tile_store(array_t<T>& dest, int x, int y, int z, Tile& t, array_t<T>& adj_dest, int adj_x, int adj_y, int adj_z, AdjTile& adj_t) { adj_tile_store(dest, tile_coord(x, y, z), t, adj_dest, tile_coord(0,0,0), adj_t); }
|
|
1703
|
+
template <typename T, typename Tile, typename AdjTile>
|
|
1704
|
+
inline CUDA_CALLABLE void adj_tile_store(array_t<T>& dest, int x, int y, int z, int w, Tile& t, array_t<T>& adj_dest, int adj_x, int adj_y, int adj_z, int adj_w, AdjTile& adj_t) { adj_tile_store(dest, tile_coord(x, y, z, w), t, adj_dest, tile_coord(0,0,0,0), adj_t); }
|
|
1360
1705
|
|
|
1361
|
-
if (adj_dest.data)
|
|
1362
|
-
adj_reg.data[i] = index(adj_dest, tile_i + coord.i, tile_j + coord.j);
|
|
1363
|
-
else if (dest.grad)
|
|
1364
|
-
adj_reg.data[i] = index_grad(dest, tile_i + coord.i, tile_j + coord.j);
|
|
1365
|
-
}
|
|
1366
1706
|
|
|
1367
|
-
// store adjoint back to tile
|
|
1368
|
-
adj_t.grad_add(adj_reg);
|
|
1369
|
-
}
|
|
1370
1707
|
|
|
1708
|
+
// adj_tile_atomic_add is an alias for adj_tile_store
|
|
1371
1709
|
template <typename T, typename Tile, typename AdjTile, typename AdjRet>
|
|
1372
|
-
inline CUDA_CALLABLE void adj_tile_atomic_add(array_t<T>& dest, int x,
|
|
1373
|
-
|
|
1374
|
-
|
|
1375
|
-
|
|
1710
|
+
inline CUDA_CALLABLE void adj_tile_atomic_add(array_t<T>& dest, int x, Tile& t, array_t<T>& adj_dest, int adj_x, AdjTile& adj_t, AdjRet& adj_ret) { adj_tile_store(dest, tile_coord(x), t, adj_dest, tile_coord(adj_x), adj_t); }
|
|
1711
|
+
template <typename T, typename Tile, typename AdjTile, typename AdjRet>
|
|
1712
|
+
inline CUDA_CALLABLE void adj_tile_atomic_add(array_t<T>& dest, int x, int y, Tile& t, array_t<T>& adj_dest, int adj_x, int adj_y, AdjTile& adj_t, AdjRet& adj_ret) { adj_tile_store(dest, tile_coord(x, y), t, adj_dest, tile_coord(adj_x, adj_y), adj_t); }
|
|
1713
|
+
template <typename T, typename Tile, typename AdjTile, typename AdjRet>
|
|
1714
|
+
inline CUDA_CALLABLE void adj_tile_atomic_add(array_t<T>& dest, int x, int y, int z, Tile& t, array_t<T>& adj_dest, int adj_x, int adj_y, int adj_z, AdjTile& adj_t, AdjRet& adj_ret) { adj_tile_store(dest, tile_coord(x, y, z), t, adj_dest, tile_coord(adj_x, adj_y, adj_z), adj_t); }
|
|
1715
|
+
template <typename T, typename Tile, typename AdjTile, typename AdjRet>
|
|
1716
|
+
inline CUDA_CALLABLE void adj_tile_atomic_add(array_t<T>& dest, int x, int y, int z, int w, Tile& t, array_t<T>& adj_dest, int adj_x, int adj_y, int adj_z, int adj_w, AdjTile& adj_t, AdjRet& adj_ret) { adj_tile_store(dest, tile_coord(x, y, z, w), t, adj_dest, tile_coord(adj_x, adj_y, adj_z, adj_w), adj_t); }
|
|
1376
1717
|
|
|
1377
1718
|
|
|
1378
1719
|
// unary map
|
|
@@ -1380,11 +1721,13 @@ template <typename Tile, typename Fwd>
|
|
|
1380
1721
|
inline CUDA_CALLABLE auto tile_map(Fwd op,
|
|
1381
1722
|
Tile &a)
|
|
1382
1723
|
{
|
|
1383
|
-
auto out =
|
|
1724
|
+
auto out = tile_register_like<Tile>();
|
|
1384
1725
|
auto a_reg = a.copy_to_register();
|
|
1726
|
+
|
|
1727
|
+
using Layout = typename decltype(out)::Layout;
|
|
1385
1728
|
|
|
1386
1729
|
WP_PRAGMA_UNROLL
|
|
1387
|
-
for (int i=0; i <
|
|
1730
|
+
for (int i=0; i < Layout::NumRegs; ++i)
|
|
1388
1731
|
{
|
|
1389
1732
|
out.data[i] = op(a_reg.data[i]);
|
|
1390
1733
|
}
|
|
@@ -1404,8 +1747,10 @@ inline CUDA_CALLABLE void adj_tile_map(Fwd op,
|
|
|
1404
1747
|
auto adj_a_reg = tile_register_like<Tile>();
|
|
1405
1748
|
auto adj_ret_reg = adj_ret.grad_to_register();
|
|
1406
1749
|
|
|
1750
|
+
using Layout = typename decltype(a_reg)::Layout;
|
|
1751
|
+
|
|
1407
1752
|
WP_PRAGMA_UNROLL
|
|
1408
|
-
for (int i=0; i <
|
|
1753
|
+
for (int i=0; i < Layout::NumRegs; ++i)
|
|
1409
1754
|
{
|
|
1410
1755
|
adj_op(a_reg.data[i], adj_a_reg.data[i], adj_ret_reg.data[i]);
|
|
1411
1756
|
}
|
|
@@ -1420,14 +1765,18 @@ inline CUDA_CALLABLE auto tile_map(Fwd op,
|
|
|
1420
1765
|
TileA& a,
|
|
1421
1766
|
TileB& b)
|
|
1422
1767
|
{
|
|
1423
|
-
auto out =
|
|
1768
|
+
auto out = tile_register_like<TileA>();
|
|
1424
1769
|
|
|
1425
1770
|
auto a_reg = a.copy_to_register();
|
|
1426
1771
|
auto b_reg = b.copy_to_register();
|
|
1427
1772
|
|
|
1773
|
+
using Layout = typename decltype(out)::Layout;
|
|
1774
|
+
|
|
1428
1775
|
WP_PRAGMA_UNROLL
|
|
1429
|
-
for (int i=0; i <
|
|
1776
|
+
for (int i=0; i < Layout::NumRegs; ++i)
|
|
1777
|
+
{
|
|
1430
1778
|
out.data[i] = op(a_reg.data[i], b_reg.data[i]);
|
|
1779
|
+
}
|
|
1431
1780
|
|
|
1432
1781
|
return out;
|
|
1433
1782
|
}
|
|
@@ -1451,8 +1800,10 @@ inline CUDA_CALLABLE void adj_tile_map(Fwd op,
|
|
|
1451
1800
|
|
|
1452
1801
|
auto adj_ret_reg = adj_ret.grad_to_register();
|
|
1453
1802
|
|
|
1803
|
+
using Layout = typename decltype(a_reg)::Layout;
|
|
1804
|
+
|
|
1454
1805
|
WP_PRAGMA_UNROLL
|
|
1455
|
-
for (int i=0; i <
|
|
1806
|
+
for (int i=0; i < Layout::NumRegs; ++i)
|
|
1456
1807
|
{
|
|
1457
1808
|
adj_op(a_reg.data[i], b_reg.data[i], adj_a_reg.data[i], adj_b_reg.data[i], adj_ret_reg.data[i]);
|
|
1458
1809
|
}
|
|
@@ -1485,26 +1836,32 @@ inline CUDA_CALLABLE auto tile_add(TileA& a, TileB& b)
|
|
|
1485
1836
|
return tile_binary_map(add, a, b);
|
|
1486
1837
|
}
|
|
1487
1838
|
|
|
1488
|
-
// // tile + tile, we implement this
|
|
1489
|
-
// template <typename TileA, typename TileB>
|
|
1490
|
-
// inline CUDA_CALLABLE auto add(TileA& a, TileB& b)
|
|
1491
|
-
// {
|
|
1492
|
-
// return tile_binary_map(add, a, b);
|
|
1493
|
-
// }
|
|
1494
|
-
|
|
1495
|
-
|
|
1496
1839
|
template <typename TileA, typename TileB, typename AdjTileA, typename AdjTileB, typename AdjTile>
|
|
1497
1840
|
inline CUDA_CALLABLE void adj_tile_add(TileA& a, TileB& b, AdjTileA& adj_a, AdjTileB& adj_b, AdjTile& adj_c)
|
|
1498
1841
|
{
|
|
1499
1842
|
adj_tile_binary_map(add, a, b, adj_add, adj_a, adj_b, adj_c);
|
|
1500
1843
|
}
|
|
1501
1844
|
|
|
1845
|
+
// tile - tile
|
|
1846
|
+
template <typename TileA, typename TileB>
|
|
1847
|
+
inline CUDA_CALLABLE auto tile_sub(TileA& a, TileB& b)
|
|
1848
|
+
{
|
|
1849
|
+
return tile_binary_map(sub, a, b);
|
|
1850
|
+
}
|
|
1851
|
+
|
|
1852
|
+
template <typename TileA, typename TileB, typename AdjTileA, typename AdjTileB, typename AdjTile>
|
|
1853
|
+
inline CUDA_CALLABLE void adj_tile_sub(TileA& a, TileB& b, AdjTileA& adj_a, AdjTileB& adj_b, AdjTile& adj_c)
|
|
1854
|
+
{
|
|
1855
|
+
adj_tile_binary_map(sub, a, b, adj_sub, adj_a, adj_b, adj_c);
|
|
1856
|
+
}
|
|
1857
|
+
|
|
1858
|
+
|
|
1502
1859
|
// tile*scalar
|
|
1503
1860
|
template <typename Tile>
|
|
1504
1861
|
inline CUDA_CALLABLE auto tile_mul(Tile& a, const typename Tile::Type& s)
|
|
1505
1862
|
{
|
|
1506
1863
|
// promote scalar to a constant tile
|
|
1507
|
-
auto s_tile = tile_register_t<typename Tile::Type,
|
|
1864
|
+
auto s_tile = tile_register_t<typename Tile::Type, tile_layout_register_t<typename Tile::Layout::Shape>>(s);
|
|
1508
1865
|
|
|
1509
1866
|
return tile_binary_map(mul, a, s_tile);
|
|
1510
1867
|
}
|
|
@@ -1514,12 +1871,17 @@ inline CUDA_CALLABLE void adj_tile_mul(Tile& a, const typename Tile::Type& s,
|
|
|
1514
1871
|
Tile& adj_a, typename Tile::Type& adj_s,
|
|
1515
1872
|
AdjTile& adj_c)
|
|
1516
1873
|
{
|
|
1517
|
-
auto s_tile =
|
|
1518
|
-
auto adj_s_tile =
|
|
1874
|
+
auto s_tile = tile_register_like<Tile>();
|
|
1875
|
+
auto adj_s_tile = tile_register_like<Tile>();
|
|
1876
|
+
|
|
1877
|
+
using Layout = typename decltype(adj_s_tile)::Layout;
|
|
1878
|
+
|
|
1879
|
+
// initialize to constant
|
|
1880
|
+
s_tile = s;
|
|
1519
1881
|
|
|
1520
1882
|
adj_tile_binary_map(mul, a, s_tile, adj_mul, adj_a, adj_s_tile, adj_c);
|
|
1521
1883
|
|
|
1522
|
-
for (int i=0; i <
|
|
1884
|
+
for (int i=0; i < Layout::NumRegs; ++i)
|
|
1523
1885
|
{
|
|
1524
1886
|
adj_s += adj_s_tile.data[i];
|
|
1525
1887
|
}
|
|
@@ -1530,10 +1892,7 @@ inline CUDA_CALLABLE void adj_tile_mul(Tile& a, const typename Tile::Type& s,
|
|
|
1530
1892
|
template <typename Tile>
|
|
1531
1893
|
inline CUDA_CALLABLE auto tile_mul(const typename Tile::Type& s, Tile& a)
|
|
1532
1894
|
{
|
|
1533
|
-
|
|
1534
|
-
auto s_tile = tile_register_t<typename Tile::Type, Tile::M, Tile::N>(s);
|
|
1535
|
-
|
|
1536
|
-
return tile_binary_map(mul, s_tile, a);
|
|
1895
|
+
return tile_mul(a, s);
|
|
1537
1896
|
}
|
|
1538
1897
|
|
|
1539
1898
|
template <typename Tile, typename AdjTile>
|
|
@@ -1541,36 +1900,30 @@ inline CUDA_CALLABLE void adj_tile_mul(const typename Tile::Type& s, Tile& a,
|
|
|
1541
1900
|
typename Tile::Type& adj_s, Tile& adj_a,
|
|
1542
1901
|
AdjTile& adj_c)
|
|
1543
1902
|
{
|
|
1544
|
-
|
|
1545
|
-
auto adj_s_tile = tile_register_t<typename Tile::Type, Tile::M, Tile::N>();
|
|
1546
|
-
|
|
1547
|
-
adj_tile_binary_map(mul, s_tile, a, adj_mul, adj_s_tile, adj_a, adj_c);
|
|
1548
|
-
|
|
1549
|
-
for (int i=0; i < adj_s_tile.NumRegs; ++i)
|
|
1550
|
-
{
|
|
1551
|
-
adj_s += adj_s_tile.data[i];
|
|
1552
|
-
}
|
|
1903
|
+
adj_tile_mul(a, s, adj_a, adj_s, adj_c);
|
|
1553
1904
|
}
|
|
1554
1905
|
|
|
1555
1906
|
|
|
1556
|
-
|
|
1557
1907
|
template<typename Tile>
|
|
1558
|
-
typename Tile::Type tile_extract(Tile& t, int i
|
|
1559
|
-
|
|
1560
|
-
|
|
1561
|
-
|
|
1908
|
+
typename Tile::Type tile_extract(Tile& t, int i) { return t.extract(tile_coord(i)); }
|
|
1909
|
+
template<typename Tile>
|
|
1910
|
+
typename Tile::Type tile_extract(Tile& t, int i, int j) { return t.extract(tile_coord(i,j)); }
|
|
1911
|
+
template<typename Tile>
|
|
1912
|
+
typename Tile::Type tile_extract(Tile& t, int i, int j, int k) { return t.extract(tile_coord(i,j,k)); }
|
|
1913
|
+
template<typename Tile>
|
|
1914
|
+
typename Tile::Type tile_extract(Tile& t, int i, int j, int k, int l) { return t.extract(tile_coord(i,j,k,l)); }
|
|
1562
1915
|
|
|
1563
|
-
return t.extract(i, j);
|
|
1564
|
-
}
|
|
1565
1916
|
|
|
1566
1917
|
template<typename Tile, typename AdjTile>
|
|
1567
|
-
void adj_tile_extract(Tile& t, int i,
|
|
1568
|
-
|
|
1569
|
-
|
|
1570
|
-
|
|
1918
|
+
void adj_tile_extract(Tile& t, int i, AdjTile& adj_t, int adj_i, typename Tile::Type adj_ret) { adj_t.adj_extract(tile_coord(i), adj_ret); }
|
|
1919
|
+
template<typename Tile, typename AdjTile>
|
|
1920
|
+
void adj_tile_extract(Tile& t, int i, int j, AdjTile& adj_t, int adj_i, int adj_j, typename Tile::Type adj_ret) { adj_t.adj_extract(tile_coord(i, j), adj_ret); }
|
|
1921
|
+
template<typename Tile, typename AdjTile>
|
|
1922
|
+
void adj_tile_extract(Tile& t, int i, int j, int k, AdjTile& adj_t, int adj_i, int adj_j, int adj_k, typename Tile::Type adj_ret) { adj_t.adj_extract(tile_coord(i, j, k), adj_ret); }
|
|
1923
|
+
template<typename Tile, typename AdjTile>
|
|
1924
|
+
void adj_tile_extract(Tile& t, int i, int j, int k, int l, AdjTile& adj_t, int adj_i, int adj_j, int adj_k, int adj_l, typename Tile::Type adj_ret) { adj_t.adj_extract(tile_coord(i, j, k, l), adj_ret); }
|
|
1571
1925
|
|
|
1572
|
-
|
|
1573
|
-
}
|
|
1926
|
+
#if WP_USE_REGISTER_GEMM
|
|
1574
1927
|
|
|
1575
1928
|
namespace partitioned_gemm
|
|
1576
1929
|
{
|
|
@@ -1592,7 +1945,7 @@ struct partition_t
|
|
|
1592
1945
|
{
|
|
1593
1946
|
static constexpr int M = PartitionM;
|
|
1594
1947
|
static constexpr int N = PartitionN;
|
|
1595
|
-
static constexpr int Stride = Tile::
|
|
1948
|
+
static constexpr int Stride = Tile::Layout::Shape::dim(1);
|
|
1596
1949
|
|
|
1597
1950
|
using T = typename Tile::Type;
|
|
1598
1951
|
|
|
@@ -1601,8 +1954,8 @@ struct partition_t
|
|
|
1601
1954
|
data = A.data.ptr;
|
|
1602
1955
|
|
|
1603
1956
|
// todo: do ceil div for non-multiples of M,N
|
|
1604
|
-
shape[0] = Tile::
|
|
1605
|
-
shape[1] = Tile::
|
|
1957
|
+
shape[0] = Tile::Layout::Shape::dim(0)/PartitionM;
|
|
1958
|
+
shape[1] = Tile::Layout::Shape::dim(1)/PartitionN;
|
|
1606
1959
|
}
|
|
1607
1960
|
|
|
1608
1961
|
// underlying data
|
|
@@ -1640,7 +1993,7 @@ inline auto partition_load(const Partition& tile, int i, int j)
|
|
|
1640
1993
|
WP_PRAGMA_UNROLL
|
|
1641
1994
|
for (int j=0; j < Partition::N; ++j)
|
|
1642
1995
|
{
|
|
1643
|
-
out.data[i][j] = index(tile.data, tile_i + i, tile_j + j, Partition::Stride);
|
|
1996
|
+
out.data[i][j] = partitioned_gemm::index(tile.data, tile_i + i, tile_j + j, Partition::Stride);
|
|
1644
1997
|
}
|
|
1645
1998
|
}
|
|
1646
1999
|
|
|
@@ -1664,6 +2017,7 @@ inline void partition_store(const Partition& tile, int i, int j, const Value& va
|
|
|
1664
2017
|
}
|
|
1665
2018
|
}
|
|
1666
2019
|
|
|
2020
|
+
|
|
1667
2021
|
template <typename TileA, typename TileB, typename TileC>
|
|
1668
2022
|
inline CUDA_CALLABLE void matmul(TileA& A, TileB& B, TileC& out)
|
|
1669
2023
|
{
|
|
@@ -1700,15 +2054,26 @@ inline CUDA_CALLABLE void matmul(TileA& A, TileB& B, TileC& out)
|
|
|
1700
2054
|
|
|
1701
2055
|
} // namespace partition_gemm
|
|
1702
2056
|
|
|
2057
|
+
#endif // WP_USE_REGISTER_GEMM
|
|
2058
|
+
|
|
2059
|
+
|
|
1703
2060
|
template <int Add, typename Fwd, typename AdjA, typename AdjB, typename TileA, typename TileB, typename TileC>
|
|
1704
2061
|
TileC& tile_matmul(Fwd fun_forward, AdjA fun_backward_A, AdjB fun_backward_B, TileA& A, TileB& B, TileC& C)
|
|
1705
2062
|
{
|
|
1706
|
-
using
|
|
2063
|
+
using ShapeA = typename TileA::Layout::Shape;
|
|
2064
|
+
using ShapeB = typename TileB::Layout::Shape;
|
|
2065
|
+
using ShapeC = typename TileC::Layout::Shape;
|
|
1707
2066
|
|
|
1708
|
-
|
|
1709
|
-
|
|
1710
|
-
|
|
1711
|
-
|
|
2067
|
+
static_assert(ShapeA::N == 2);
|
|
2068
|
+
static_assert(ShapeB::N == 2);
|
|
2069
|
+
static_assert(ShapeC::N == 2);
|
|
2070
|
+
|
|
2071
|
+
static_assert(ShapeA::dim(1) == ShapeB::dim(0));
|
|
2072
|
+
static_assert(ShapeC::dim(0) == ShapeA::dim(0));
|
|
2073
|
+
static_assert(ShapeC::dim(1) == ShapeB::dim(1));
|
|
2074
|
+
|
|
2075
|
+
|
|
2076
|
+
using T = typename TileA::Type;
|
|
1712
2077
|
|
|
1713
2078
|
#if WP_USE_REGISTER_GEMM
|
|
1714
2079
|
partitioned_gemm::matmul(A, B, C);
|
|
@@ -1746,11 +2111,11 @@ void adj_tile_matmul(Fwd fun_forward, AdjA fun_backward_A, AdjB fun_backward_B,
|
|
|
1746
2111
|
}
|
|
1747
2112
|
|
|
1748
2113
|
// TODO(lcambier): use a properly overaligned complex type that matches cuFFTDx's expectation
|
|
1749
|
-
//
|
|
2114
|
+
// and remove the need for __align__(16) dtypes data[...]
|
|
1750
2115
|
#define tile_fft(function_name, dtype, shared_memory_size, batch_size, ept, Xinout) \
|
|
1751
2116
|
do { \
|
|
1752
2117
|
void function_name(dtype*, dtype*); \
|
|
1753
|
-
|
|
2118
|
+
char* buffer = (char*)wp::tile_alloc_shared(shared_memory_size); \
|
|
1754
2119
|
__align__(16) dtype data[ept]; \
|
|
1755
2120
|
for(int b = 0; b < (int)batch_size; b++) { \
|
|
1756
2121
|
dtype* inout = Xinout.data + (int)b * (int)ept; \
|
|
@@ -1759,6 +2124,7 @@ void adj_tile_matmul(Fwd fun_forward, AdjA fun_backward_A, AdjB fun_backward_B,
|
|
|
1759
2124
|
memcpy(inout, data, sizeof(dtype) * ept); \
|
|
1760
2125
|
WP_TILE_SYNC(); \
|
|
1761
2126
|
} \
|
|
2127
|
+
wp::tile_alloc_shared(-shared_memory_size); \
|
|
1762
2128
|
} while (0)
|
|
1763
2129
|
|
|
1764
2130
|
#define tile_ifft tile_fft
|
|
@@ -1779,12 +2145,78 @@ void adj_tile_matmul(Fwd fun_forward, AdjA fun_backward_A, AdjB fun_backward_B,
|
|
|
1779
2145
|
tile_fft(function_name, dtype, shared_memory_size, batch_size, ept, adj_Xinout); \
|
|
1780
2146
|
} while (0)
|
|
1781
2147
|
|
|
2148
|
+
template <typename Fwd, typename TileA, typename TileL>
|
|
2149
|
+
TileL& tile_cholesky(Fwd fun_forward, TileA& A, TileL& L)
|
|
2150
|
+
{
|
|
2151
|
+
// Copy to L
|
|
2152
|
+
L = A;
|
|
2153
|
+
|
|
2154
|
+
// Call cholesky on L
|
|
2155
|
+
WP_TILE_SYNC();
|
|
2156
|
+
|
|
2157
|
+
fun_forward(L.data.ptr, TileL::Layout::Shape::dim(0));
|
|
2158
|
+
|
|
2159
|
+
WP_TILE_SYNC();
|
|
2160
|
+
|
|
2161
|
+
// Zero-out the upper triangular part of L
|
|
2162
|
+
|
|
2163
|
+
WP_PRAGMA_UNROLL
|
|
2164
|
+
for (int i=threadIdx.x; i < TileL::Layout::Size; i += WP_TILE_BLOCK_DIM)
|
|
2165
|
+
{
|
|
2166
|
+
auto c = TileL::Layout::coord_from_linear(i);
|
|
2167
|
+
|
|
2168
|
+
if(c[0] < c[1])
|
|
2169
|
+
L.data(c) = 0.0;
|
|
2170
|
+
}
|
|
2171
|
+
|
|
2172
|
+
WP_TILE_SYNC();
|
|
2173
|
+
|
|
2174
|
+
return L;
|
|
2175
|
+
}
|
|
2176
|
+
|
|
2177
|
+
#define adj_tile_cholesky(function_name, A, L, \
|
|
2178
|
+
adj_function_name, adj_A, adj_L, adj_ret) \
|
|
2179
|
+
do { \
|
|
2180
|
+
assert(false); \
|
|
2181
|
+
} while (0)
|
|
2182
|
+
|
|
2183
|
+
template <typename Fwd, typename TileL, typename TileX, typename TileY>
|
|
2184
|
+
TileY& tile_cholesky_solve(Fwd fun_forward, TileL& L, TileX& X, TileY& Y)
|
|
2185
|
+
{
|
|
2186
|
+
// Copy x to y
|
|
2187
|
+
|
|
2188
|
+
Y = X;
|
|
2189
|
+
|
|
2190
|
+
// Call cholesky solve on L & y
|
|
2191
|
+
|
|
2192
|
+
WP_TILE_SYNC();
|
|
2193
|
+
|
|
2194
|
+
fun_forward(L.data.ptr, Y.data.ptr); \
|
|
2195
|
+
|
|
2196
|
+
WP_TILE_SYNC();
|
|
2197
|
+
|
|
2198
|
+
return Y;
|
|
2199
|
+
}
|
|
2200
|
+
|
|
2201
|
+
#define adj_tile_cholesky_solve(function_name, L, X, Y, \
|
|
2202
|
+
adj_function_name, adj_L, adj_X, adj_Y, adj_ret) \
|
|
2203
|
+
do { \
|
|
2204
|
+
assert(false); \
|
|
2205
|
+
} while (0)
|
|
1782
2206
|
|
|
1783
2207
|
template <typename Tile>
|
|
1784
2208
|
inline CUDA_CALLABLE auto tile_transpose(Tile& t)
|
|
1785
2209
|
{
|
|
2210
|
+
static_assert(Tile::Layout::Shape::N == 2);
|
|
2211
|
+
|
|
1786
2212
|
// alias incoming tile
|
|
1787
|
-
|
|
2213
|
+
constexpr int M = Tile::Layout::Shape::dim(0);
|
|
2214
|
+
constexpr int N = Tile::Layout::Shape::dim(1);
|
|
2215
|
+
|
|
2216
|
+
constexpr int StrideM = Tile::Layout::Stride::dim(0);
|
|
2217
|
+
constexpr int StrideN = Tile::Layout::Stride::dim(1);
|
|
2218
|
+
|
|
2219
|
+
return tile_shared_t<typename Tile::Type, tile_layout_strided_t<tile_shape_t<N,M>, tile_stride_t<StrideN, StrideM>>, false>(t.data.ptr, t.grad.ptr);
|
|
1788
2220
|
}
|
|
1789
2221
|
|
|
1790
2222
|
template <typename Tile, typename AdjTile>
|
|
@@ -1800,55 +2232,144 @@ template <int M, int N, int StrideM, int StrideN, typename Tile>
|
|
|
1800
2232
|
inline CUDA_CALLABLE auto tile_broadcast(Tile& t)
|
|
1801
2233
|
{
|
|
1802
2234
|
// alias incoming tile with new strides
|
|
1803
|
-
return tile_shared_t<typename Tile::Type, M, N
|
|
2235
|
+
return tile_shared_t<typename Tile::Type, tile_layout_strided_t<tile_shape_t<M, N>, tile_stride_t<StrideM, StrideN>>, false>(t.data.ptr, t.grad.ptr);
|
|
1804
2236
|
}
|
|
1805
2237
|
|
|
1806
2238
|
template <typename Tile, typename AdjTile>
|
|
1807
2239
|
inline CUDA_CALLABLE void adj_tile_broadcast(Tile& t, Tile& adj_t, AdjTile& adj_ret)
|
|
1808
2240
|
{
|
|
1809
2241
|
// nop, since memory is aliased grads already accumulated
|
|
2242
|
+
}
|
|
2243
|
+
|
|
2244
|
+
template <typename ReturnType, typename Tile, typename... Indices>
|
|
2245
|
+
inline CUDA_CALLABLE auto tile_view(Tile& t, Indices... indices)
|
|
2246
|
+
{
|
|
2247
|
+
auto c = tile_coord(indices...);
|
|
2248
|
+
|
|
2249
|
+
// return new tile with same strides
|
|
2250
|
+
typename Tile::Type* data_ptr = &t.data(c);
|
|
2251
|
+
typename Tile::Type* grad_ptr = NULL;
|
|
2252
|
+
|
|
2253
|
+
if (t.grad.ptr)
|
|
2254
|
+
grad_ptr = &t.grad(c);
|
|
1810
2255
|
|
|
2256
|
+
return ReturnType(data_ptr, grad_ptr);
|
|
1811
2257
|
}
|
|
1812
2258
|
|
|
1813
|
-
|
|
1814
|
-
|
|
1815
|
-
|
|
1816
|
-
|
|
1817
|
-
|
|
2259
|
+
|
|
2260
|
+
template <typename TileA, typename Scalar>
|
|
2261
|
+
inline CUDA_CALLABLE void assign(TileA& dest, int i, const Scalar& src)
|
|
2262
|
+
{
|
|
2263
|
+
dest.data(tile_coord(i)) = src;
|
|
2264
|
+
WP_TILE_SYNC();
|
|
1818
2265
|
}
|
|
1819
2266
|
|
|
1820
|
-
template <typename
|
|
1821
|
-
inline CUDA_CALLABLE void
|
|
2267
|
+
template <typename TileA, typename Scalar>
|
|
2268
|
+
inline CUDA_CALLABLE void assign(TileA& dest, int i, int j, const Scalar& src)
|
|
1822
2269
|
{
|
|
1823
|
-
|
|
2270
|
+
dest.data(tile_coord(i, j)) = src;
|
|
2271
|
+
WP_TILE_SYNC();
|
|
2272
|
+
}
|
|
1824
2273
|
|
|
2274
|
+
template <typename TileA, typename Scalar>
|
|
2275
|
+
inline CUDA_CALLABLE void assign(TileA& dest, int i, int j, int k, const Scalar& src)
|
|
2276
|
+
{
|
|
2277
|
+
dest.data(tile_coord(i, j, k)) = src;
|
|
2278
|
+
WP_TILE_SYNC();
|
|
1825
2279
|
}
|
|
1826
2280
|
|
|
1827
|
-
template <typename TileA, typename
|
|
1828
|
-
inline CUDA_CALLABLE void
|
|
2281
|
+
template <typename TileA, typename Scalar>
|
|
2282
|
+
inline CUDA_CALLABLE void assign(TileA& dest, int i, int j, int k, int l, const Scalar& src)
|
|
2283
|
+
{
|
|
2284
|
+
dest.data(tile_coord(i, j, k, l)) = src;
|
|
2285
|
+
WP_TILE_SYNC();
|
|
2286
|
+
}
|
|
2287
|
+
|
|
2288
|
+
|
|
2289
|
+
|
|
2290
|
+
|
|
2291
|
+
template <typename TileA, typename TileB, typename Coord>
|
|
2292
|
+
inline CUDA_CALLABLE void tile_assign(TileA& dest, TileB& src, const Coord& offset)
|
|
1829
2293
|
{
|
|
1830
|
-
|
|
2294
|
+
using Layout = typename TileB::Layout;
|
|
2295
|
+
|
|
2296
|
+
for (int t=threadIdx.x; t < Layout::Size; t += WP_TILE_BLOCK_DIM)
|
|
1831
2297
|
{
|
|
1832
|
-
|
|
1833
|
-
dest.data(
|
|
2298
|
+
auto c = Layout::coord_from_linear(t);
|
|
2299
|
+
dest.data(c + offset) = src.data(c);
|
|
1834
2300
|
}
|
|
1835
2301
|
|
|
1836
2302
|
WP_TILE_SYNC();
|
|
1837
2303
|
}
|
|
1838
2304
|
|
|
1839
|
-
template <typename TileA, typename TileB, typename AdjTileA, typename AdjTileB>
|
|
1840
|
-
inline CUDA_CALLABLE void adj_tile_assign(TileA& dest,
|
|
1841
|
-
AdjTileA& adj_dest,
|
|
2305
|
+
template <typename TileA, typename TileB, typename AdjTileA, typename AdjTileB, typename Coord, typename AdjCoord>
|
|
2306
|
+
inline CUDA_CALLABLE void adj_tile_assign(TileA& dest, TileB& src, Coord offset,
|
|
2307
|
+
AdjTileA& adj_dest, AdjTileB& adj_src, AdjCoord adj_offset)
|
|
1842
2308
|
{
|
|
1843
|
-
|
|
2309
|
+
using Layout = typename TileB::Layout;
|
|
2310
|
+
|
|
2311
|
+
for (int t=threadIdx.x; t < Layout::Size; t += WP_TILE_BLOCK_DIM)
|
|
1844
2312
|
{
|
|
1845
|
-
|
|
1846
|
-
src.grad(c
|
|
2313
|
+
auto c = Layout::coord_from_linear(t);
|
|
2314
|
+
src.grad(c) += dest.grad(c + offset);
|
|
1847
2315
|
}
|
|
1848
2316
|
|
|
1849
2317
|
WP_TILE_SYNC();
|
|
1850
2318
|
}
|
|
1851
2319
|
|
|
1852
2320
|
|
|
2321
|
+
// codegen entry points, which emit calls like `tile_assign(dest, src, i, j, k)`
|
|
2322
|
+
// a better approach here would be for codegen to just directly generate `tile_assign(dest, src, tile_coord(i, j, k))`
|
|
2323
|
+
// i.e.: call the above implementation methods directly, then we could remove these overloads
|
|
2324
|
+
template <typename TileA, typename TileB>
|
|
2325
|
+
inline CUDA_CALLABLE void tile_assign(TileA& dest, TileB& src, int i) { tile_assign(dest, src, tile_coord(i)); }
|
|
2326
|
+
template <typename TileA, typename TileB>
|
|
2327
|
+
inline CUDA_CALLABLE void tile_assign(TileA& dest, TileB& src, int i, int j) { tile_assign(dest, src, tile_coord(i, j)); }
|
|
2328
|
+
template <typename TileA, typename TileB>
|
|
2329
|
+
inline CUDA_CALLABLE void tile_assign(TileA& dest, TileB& src, int i, int j, int k) { tile_assign(dest, src, tile_coord(i, j, k)); }
|
|
2330
|
+
template <typename TileA, typename TileB>
|
|
2331
|
+
inline CUDA_CALLABLE void tile_assign(TileA& dest, TileB& src, int i, int j, int k, int l) { tile_assign(dest, src, tile_coord(i, j, k, l)); }
|
|
2332
|
+
|
|
2333
|
+
template <typename TileA, typename TileB, typename AdjTileA, typename AdjTileB>
|
|
2334
|
+
inline CUDA_CALLABLE void adj_tile_assign(TileA& dest, TileB& src, int i, AdjTileA& adj_dest, AdjTileB& adj_src, int) { adj_tile_assign(dest, src, tile_coord(i), adj_dest, adj_src, tile_coord(0)); }
|
|
2335
|
+
template <typename TileA, typename TileB, typename AdjTileA, typename AdjTileB>
|
|
2336
|
+
inline CUDA_CALLABLE void adj_tile_assign(TileA& dest, TileB& src, int i, int j, AdjTileA& adj_dest, AdjTileB& adj_src, int, int) { adj_tile_assign(dest, src, tile_coord(i,j), adj_dest, adj_src, tile_coord(0)); }
|
|
2337
|
+
template <typename TileA, typename TileB, typename AdjTileA, typename AdjTileB>
|
|
2338
|
+
inline CUDA_CALLABLE void adj_tile_assign(TileA& dest, TileB& src, int i, int j, int k, AdjTileA& adj_dest, AdjTileB& adj_src, int, int, int) { adj_tile_assign(dest, src, tile_coord(i,j,k), adj_dest, adj_src, tile_coord(0)); }
|
|
2339
|
+
template <typename TileA, typename TileB, typename AdjTileA, typename AdjTileB>
|
|
2340
|
+
inline CUDA_CALLABLE void adj_tile_assign(TileA& dest, TileB& src, int i, int j, int k, int l, AdjTileA& adj_dest, AdjTileB& adj_src, int, int, int, int) { adj_tile_assign(dest, src, tile_coord(i,j,k,l), adj_dest, adj_src, tile_coord(0)); }
|
|
2341
|
+
|
|
2342
|
+
|
|
2343
|
+
template <typename TileA, typename TileB, typename TileC>
|
|
2344
|
+
inline CUDA_CALLABLE TileC& tile_diag_add(TileA& a, TileB& b, TileC& c)
|
|
2345
|
+
{
|
|
2346
|
+
using ShapeA = typename TileA::Layout::Shape;
|
|
2347
|
+
using ShapeB = typename TileB::Layout::Shape;
|
|
2348
|
+
using ShapeC = typename TileC::Layout::Shape;
|
|
2349
|
+
|
|
2350
|
+
static_assert(ShapeA::dim(0) == ShapeA::dim(1));
|
|
2351
|
+
static_assert(ShapeB::dim(0) == ShapeA::dim(0));
|
|
2352
|
+
static_assert(ShapeC::dim(0) == ShapeA::dim(0));
|
|
2353
|
+
static_assert(ShapeC::dim(0) == ShapeC::dim(1));
|
|
2354
|
+
|
|
2355
|
+
c = a;
|
|
2356
|
+
|
|
2357
|
+
for (int t=threadIdx.x; t < ShapeA::dim(0); t += WP_TILE_BLOCK_DIM)
|
|
2358
|
+
{
|
|
2359
|
+
c.data(tile_coord(t, t)) += b.data(tile_coord(t));
|
|
2360
|
+
}
|
|
2361
|
+
|
|
2362
|
+
WP_TILE_SYNC();
|
|
2363
|
+
|
|
2364
|
+
return c;
|
|
2365
|
+
}
|
|
2366
|
+
|
|
2367
|
+
template <typename TileA, typename TileB, typename TileC, typename AdjTileA, typename AdjTileB, typename AdjTileC>
|
|
2368
|
+
inline CUDA_CALLABLE void adj_tile_diag_add(TileA& a, TileB& b, TileC& c, AdjTileA& adj_a, AdjTileB& adj_b, AdjTileC& adj_c, AdjTileC& adj_ret)
|
|
2369
|
+
{
|
|
2370
|
+
assert(false);
|
|
2371
|
+
}
|
|
2372
|
+
|
|
1853
2373
|
|
|
1854
2374
|
} // namespace wp
|
|
2375
|
+
|