warp-lang 1.5.0__py3-none-win_amd64.whl → 1.6.0__py3-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +5 -0
- warp/autograd.py +414 -191
- warp/bin/warp-clang.dll +0 -0
- warp/bin/warp.dll +0 -0
- warp/build.py +40 -12
- warp/build_dll.py +13 -6
- warp/builtins.py +1124 -497
- warp/codegen.py +261 -136
- warp/config.py +1 -1
- warp/context.py +357 -119
- warp/examples/assets/square_cloth.usd +0 -0
- warp/examples/benchmarks/benchmark_gemm.py +27 -18
- warp/examples/benchmarks/benchmark_interop_paddle.py +3 -3
- warp/examples/benchmarks/benchmark_interop_torch.py +3 -3
- warp/examples/core/example_torch.py +18 -34
- warp/examples/fem/example_apic_fluid.py +1 -0
- warp/examples/fem/example_mixed_elasticity.py +1 -1
- warp/examples/optim/example_bounce.py +1 -1
- warp/examples/optim/example_cloth_throw.py +1 -1
- warp/examples/optim/example_diffray.py +4 -15
- warp/examples/optim/example_drone.py +1 -1
- warp/examples/optim/example_softbody_properties.py +392 -0
- warp/examples/optim/example_trajectory.py +1 -3
- warp/examples/optim/example_walker.py +5 -0
- warp/examples/sim/example_cartpole.py +0 -2
- warp/examples/sim/example_cloth.py +3 -1
- warp/examples/sim/example_cloth_self_contact.py +260 -0
- warp/examples/sim/example_granular_collision_sdf.py +4 -5
- warp/examples/sim/example_jacobian_ik.py +0 -2
- warp/examples/sim/example_quadruped.py +5 -2
- warp/examples/tile/example_tile_cholesky.py +79 -0
- warp/examples/tile/example_tile_convolution.py +2 -2
- warp/examples/tile/example_tile_fft.py +2 -2
- warp/examples/tile/example_tile_filtering.py +3 -3
- warp/examples/tile/example_tile_matmul.py +4 -4
- warp/examples/tile/example_tile_mlp.py +12 -12
- warp/examples/tile/example_tile_nbody.py +180 -0
- warp/examples/tile/example_tile_walker.py +319 -0
- warp/fem/geometry/geometry.py +0 -2
- warp/math.py +147 -0
- warp/native/array.h +12 -0
- warp/native/builtin.h +0 -1
- warp/native/bvh.cpp +149 -70
- warp/native/bvh.cu +287 -68
- warp/native/bvh.h +195 -85
- warp/native/clang/clang.cpp +5 -1
- warp/native/coloring.cpp +5 -1
- warp/native/cuda_util.cpp +91 -53
- warp/native/cuda_util.h +5 -0
- warp/native/exports.h +40 -40
- warp/native/intersect.h +17 -0
- warp/native/mat.h +41 -0
- warp/native/mathdx.cpp +19 -0
- warp/native/mesh.cpp +25 -8
- warp/native/mesh.cu +153 -101
- warp/native/mesh.h +482 -403
- warp/native/quat.h +40 -0
- warp/native/solid_angle.h +7 -0
- warp/native/sort.cpp +85 -0
- warp/native/sort.cu +34 -0
- warp/native/sort.h +3 -1
- warp/native/spatial.h +11 -0
- warp/native/tile.h +1187 -669
- warp/native/tile_reduce.h +8 -6
- warp/native/vec.h +41 -0
- warp/native/warp.cpp +8 -1
- warp/native/warp.cu +263 -40
- warp/native/warp.h +19 -5
- warp/optim/linear.py +22 -4
- warp/render/render_opengl.py +130 -64
- warp/sim/__init__.py +6 -1
- warp/sim/collide.py +270 -26
- warp/sim/import_urdf.py +8 -8
- warp/sim/integrator_euler.py +25 -7
- warp/sim/integrator_featherstone.py +154 -35
- warp/sim/integrator_vbd.py +842 -40
- warp/sim/model.py +134 -72
- warp/sparse.py +1 -1
- warp/stubs.py +265 -132
- warp/tape.py +28 -30
- warp/tests/aux_test_module_unload.py +15 -0
- warp/tests/{test_sim_grad.py → flaky_test_sim_grad.py} +104 -63
- warp/tests/test_array.py +74 -0
- warp/tests/test_assert.py +242 -0
- warp/tests/test_codegen.py +14 -61
- warp/tests/test_collision.py +2 -2
- warp/tests/test_coloring.py +12 -2
- warp/tests/test_examples.py +12 -1
- warp/tests/test_func.py +21 -4
- warp/tests/test_grad_debug.py +87 -2
- warp/tests/test_hash_grid.py +1 -1
- warp/tests/test_ipc.py +116 -0
- warp/tests/test_lerp.py +13 -87
- warp/tests/test_mat.py +138 -167
- warp/tests/test_math.py +47 -1
- warp/tests/test_matmul.py +17 -16
- warp/tests/test_matmul_lite.py +10 -15
- warp/tests/test_mesh.py +84 -60
- warp/tests/test_mesh_query_aabb.py +165 -0
- warp/tests/test_mesh_query_point.py +328 -286
- warp/tests/test_mesh_query_ray.py +134 -121
- warp/tests/test_mlp.py +2 -2
- warp/tests/test_operators.py +43 -0
- warp/tests/test_overwrite.py +47 -2
- warp/tests/test_quat.py +77 -0
- warp/tests/test_reload.py +29 -0
- warp/tests/test_sim_grad_bounce_linear.py +204 -0
- warp/tests/test_smoothstep.py +17 -83
- warp/tests/test_static.py +19 -3
- warp/tests/test_tape.py +25 -0
- warp/tests/test_tile.py +178 -191
- warp/tests/test_tile_load.py +356 -0
- warp/tests/test_tile_mathdx.py +61 -8
- warp/tests/test_tile_mlp.py +17 -17
- warp/tests/test_tile_reduce.py +24 -18
- warp/tests/test_tile_shared_memory.py +66 -17
- warp/tests/test_tile_view.py +165 -0
- warp/tests/test_torch.py +35 -0
- warp/tests/test_utils.py +36 -24
- warp/tests/test_vec.py +110 -0
- warp/tests/unittest_suites.py +29 -4
- warp/tests/unittest_utils.py +30 -13
- warp/thirdparty/unittest_parallel.py +2 -2
- warp/types.py +411 -101
- warp/utils.py +10 -7
- {warp_lang-1.5.0.dist-info → warp_lang-1.6.0.dist-info}/METADATA +92 -69
- {warp_lang-1.5.0.dist-info → warp_lang-1.6.0.dist-info}/RECORD +130 -119
- {warp_lang-1.5.0.dist-info → warp_lang-1.6.0.dist-info}/WHEEL +1 -1
- warp/examples/benchmarks/benchmark_tile.py +0 -179
- warp/native/tile_gemm.h +0 -341
- {warp_lang-1.5.0.dist-info → warp_lang-1.6.0.dist-info}/LICENSE.md +0 -0
- {warp_lang-1.5.0.dist-info → warp_lang-1.6.0.dist-info}/top_level.txt +0 -0
warp/native/tile.h
CHANGED
|
@@ -35,10 +35,6 @@
|
|
|
35
35
|
#endif
|
|
36
36
|
|
|
37
37
|
#define WP_USE_ASYNC_PIPELINE 0
|
|
38
|
-
#if WP_USE_ASYNC_PIPELINE
|
|
39
|
-
#include "cuda_pipeline_primitives.h"
|
|
40
|
-
#endif // WP_USE_ASYNC_PIPELINE
|
|
41
|
-
|
|
42
38
|
#define WP_USE_REGISTER_GEMM 0
|
|
43
39
|
|
|
44
40
|
/* Tile Expressions
|
|
@@ -171,50 +167,300 @@ struct is_same<T, T> {
|
|
|
171
167
|
};
|
|
172
168
|
|
|
173
169
|
|
|
174
|
-
template <
|
|
175
|
-
|
|
170
|
+
template <int N>
|
|
171
|
+
struct tile_coord_t
|
|
172
|
+
{
|
|
173
|
+
int indices[N];
|
|
174
|
+
|
|
175
|
+
CUDA_CALLABLE inline int operator[](int i) const { assert(0 <= 1 && i < N); return indices[i]; }
|
|
176
|
+
CUDA_CALLABLE inline int& operator[](int i) { assert(0 <= 1 && i < N); return indices[i]; }
|
|
177
|
+
|
|
178
|
+
CUDA_CALLABLE inline tile_coord_t<N> operator + (const tile_coord_t<N>& c) const
|
|
179
|
+
{
|
|
180
|
+
tile_coord_t<N> out;
|
|
181
|
+
for (int i=0; i < N; ++i)
|
|
182
|
+
{
|
|
183
|
+
out.indices[i] = indices[i] + c.indices[i];
|
|
184
|
+
}
|
|
185
|
+
return out;
|
|
186
|
+
}
|
|
187
|
+
};
|
|
188
|
+
|
|
189
|
+
// This function deduces N = sizeof...(Ints)
|
|
190
|
+
template <typename... Ints>
|
|
191
|
+
constexpr tile_coord_t<sizeof...(Ints)> tile_coord(Ints... idxs)
|
|
192
|
+
{
|
|
193
|
+
constexpr int N = sizeof...(Ints);
|
|
194
|
+
|
|
195
|
+
// Create the result
|
|
196
|
+
tile_coord_t<N> result{};
|
|
197
|
+
|
|
198
|
+
// Capture all arguments in a local array
|
|
199
|
+
int arr[] = { static_cast<int>(idxs)... };
|
|
200
|
+
|
|
201
|
+
// C++14 or later: 'for' is allowed in a constexpr context
|
|
202
|
+
for (int i = 0; i < N; ++i)
|
|
203
|
+
{
|
|
204
|
+
result.indices[i] = arr[i];
|
|
205
|
+
}
|
|
176
206
|
|
|
177
|
-
|
|
178
|
-
|
|
207
|
+
return result;
|
|
208
|
+
}
|
|
209
|
+
|
|
210
|
+
// helpers to construct a coord from a set of indices
|
|
211
|
+
auto tile_coord(int i)
|
|
212
|
+
{
|
|
213
|
+
auto c = tile_coord_t<1>();
|
|
214
|
+
c.indices[0] = i;
|
|
215
|
+
return c;
|
|
216
|
+
}
|
|
217
|
+
|
|
218
|
+
auto tile_coord(int i, int j)
|
|
219
|
+
{
|
|
220
|
+
auto c = tile_coord_t<2>();
|
|
221
|
+
c.indices[0] = i;
|
|
222
|
+
c.indices[1] = j;
|
|
223
|
+
return c;
|
|
179
224
|
}
|
|
180
225
|
|
|
181
|
-
|
|
226
|
+
auto tile_coord(int i, int j, int k)
|
|
227
|
+
{
|
|
228
|
+
auto c = tile_coord_t<3>();
|
|
229
|
+
c.indices[0] = i;
|
|
230
|
+
c.indices[1] = j;
|
|
231
|
+
c.indices[2] = k;
|
|
232
|
+
return c;
|
|
233
|
+
}
|
|
234
|
+
|
|
235
|
+
auto tile_coord(int i, int j, int k, int l)
|
|
182
236
|
{
|
|
183
|
-
|
|
184
|
-
|
|
237
|
+
auto c = tile_coord_t<4>();
|
|
238
|
+
c.indices[0] = i;
|
|
239
|
+
c.indices[1] = j;
|
|
240
|
+
c.indices[2] = k;
|
|
241
|
+
c.indices[3] = l;
|
|
242
|
+
return c;
|
|
243
|
+
}
|
|
244
|
+
|
|
245
|
+
// represents a compile time int tuple for strides/shapes/coords
|
|
246
|
+
template <int... V>
|
|
247
|
+
struct tile_tuple_t
|
|
248
|
+
{
|
|
249
|
+
static constexpr int N = sizeof...(V);
|
|
250
|
+
static_assert(N > 0);
|
|
251
|
+
|
|
252
|
+
static constexpr int data[N] = { V... };
|
|
253
|
+
|
|
254
|
+
static constexpr int dim(int i) { assert(i < N); return data[i]; }
|
|
255
|
+
static constexpr int size()
|
|
256
|
+
{
|
|
257
|
+
int res = data[0];
|
|
258
|
+
for (int i=1; i < N; ++i)
|
|
259
|
+
res *= data[i];
|
|
260
|
+
|
|
261
|
+
return res;
|
|
262
|
+
}
|
|
185
263
|
};
|
|
186
264
|
|
|
265
|
+
// simple helper to compute strides from a shape up to 4d
|
|
266
|
+
template <typename Shape>
|
|
267
|
+
struct compute_strides;
|
|
268
|
+
|
|
269
|
+
// 1D
|
|
270
|
+
template <int D0>
|
|
271
|
+
struct compute_strides< tile_tuple_t<D0> > { using Stride = tile_tuple_t<1>; };
|
|
272
|
+
// 2D
|
|
273
|
+
template <int D0, int D1>
|
|
274
|
+
struct compute_strides< tile_tuple_t<D0, D1> > { using Stride = tile_tuple_t<D1, 1>; };
|
|
275
|
+
// 3D
|
|
276
|
+
template <int D0, int D1, int D2>
|
|
277
|
+
struct compute_strides< tile_tuple_t<D0, D1, D2> > { using Stride = tile_tuple_t<(D1 * D2), D2, 1>; };
|
|
278
|
+
// 4D
|
|
279
|
+
template <int D0, int D1, int D2, int D3>
|
|
280
|
+
struct compute_strides< tile_tuple_t<D0, D1, D2, D3> > { using Stride = tile_tuple_t<(D1 * D2 * D3), (D2 * D3), D3, 1>; };
|
|
281
|
+
|
|
282
|
+
|
|
283
|
+
// alias of tuple to represent shapes
|
|
284
|
+
template <int... V>
|
|
285
|
+
using tile_shape_t = tile_tuple_t<V...>;
|
|
286
|
+
|
|
287
|
+
// alias of tuple to represent stride
|
|
288
|
+
template <int... V>
|
|
289
|
+
using tile_stride_t = tile_tuple_t<V...>;
|
|
290
|
+
|
|
187
291
|
|
|
188
292
|
// represents a tile stored in global memory with dynamic strides
|
|
189
|
-
//
|
|
190
|
-
template <typename T>
|
|
191
|
-
struct tile_global_t
|
|
293
|
+
// used to represent the source and offset for tile loads to register/shared
|
|
294
|
+
template <typename T, typename Shape_>
|
|
295
|
+
struct tile_global_t
|
|
192
296
|
{
|
|
193
297
|
using Type = T;
|
|
298
|
+
using Shape = Shape_;
|
|
299
|
+
using Coord = tile_coord_t<Shape::N>;
|
|
194
300
|
|
|
195
301
|
array_t<T> data;
|
|
196
|
-
|
|
197
|
-
|
|
302
|
+
Coord offset;
|
|
303
|
+
|
|
304
|
+
tile_global_t(array_t<T>& a, const Coord& c) : data(a), offset(c)
|
|
305
|
+
{
|
|
306
|
+
}
|
|
307
|
+
|
|
308
|
+
inline CUDA_CALLABLE int index_from_coord(const Coord& coord) const
|
|
309
|
+
{
|
|
310
|
+
// element index
|
|
311
|
+
int index = 0;
|
|
312
|
+
|
|
313
|
+
WP_PRAGMA_UNROLL
|
|
314
|
+
for (int i=0; i < Shape::N; ++i)
|
|
315
|
+
{
|
|
316
|
+
// global = offset + coord
|
|
317
|
+
int c = offset[i] + coord[i];
|
|
318
|
+
index += data.strides[i]*c;
|
|
319
|
+
}
|
|
198
320
|
|
|
199
|
-
|
|
321
|
+
return index/sizeof(T);
|
|
322
|
+
}
|
|
323
|
+
|
|
324
|
+
inline CUDA_CALLABLE bool index(const Coord& coord, int& out) const
|
|
200
325
|
{
|
|
326
|
+
// element index
|
|
327
|
+
int index = 0;
|
|
328
|
+
|
|
329
|
+
WP_PRAGMA_UNROLL
|
|
330
|
+
for (int i=0; i < Shape::N; ++i)
|
|
331
|
+
{
|
|
332
|
+
// global = offset + coord
|
|
333
|
+
int c = offset[i] + coord[i];
|
|
334
|
+
|
|
335
|
+
// handle out of bounds case
|
|
336
|
+
if (c >= data.shape[i])
|
|
337
|
+
return false;
|
|
338
|
+
else
|
|
339
|
+
index += data.strides[i]*c;
|
|
340
|
+
}
|
|
341
|
+
|
|
342
|
+
// array strides are in bytes so we convert to elements
|
|
343
|
+
out = index / sizeof(T);
|
|
344
|
+
return true;
|
|
345
|
+
}
|
|
346
|
+
|
|
347
|
+
inline CUDA_CALLABLE T load(const Coord& coord) const
|
|
348
|
+
{
|
|
349
|
+
int i;
|
|
350
|
+
if (index(coord, i))
|
|
351
|
+
return data.data[i];
|
|
352
|
+
else
|
|
353
|
+
return T(0);
|
|
354
|
+
}
|
|
355
|
+
|
|
356
|
+
inline CUDA_CALLABLE T load_grad(const Coord& coord) const
|
|
357
|
+
{
|
|
358
|
+
int i;
|
|
359
|
+
if (index(coord, i))
|
|
360
|
+
return data.grad[i];
|
|
361
|
+
else
|
|
362
|
+
return T(0);
|
|
363
|
+
}
|
|
364
|
+
|
|
365
|
+
inline CUDA_CALLABLE void store(const Coord& coord, const T& x) const
|
|
366
|
+
{
|
|
367
|
+
int i;
|
|
368
|
+
if (index(coord, i))
|
|
369
|
+
data.data[i] = x;
|
|
370
|
+
}
|
|
371
|
+
|
|
372
|
+
inline CUDA_CALLABLE T atomic_add(const Coord& coord, const T& value) const
|
|
373
|
+
{
|
|
374
|
+
int i;
|
|
375
|
+
if (index(coord, i))
|
|
376
|
+
return wp::atomic_add(&data.data[i], value);
|
|
377
|
+
else
|
|
378
|
+
return T(0);
|
|
379
|
+
}
|
|
380
|
+
|
|
381
|
+
inline CUDA_CALLABLE T atomic_add_grad(const Coord& coord, const T& grad) const
|
|
382
|
+
{
|
|
383
|
+
int i;
|
|
384
|
+
if (index(coord, i))
|
|
385
|
+
return wp::atomic_add(&data.grad[i], grad);
|
|
386
|
+
else
|
|
387
|
+
return T(0);
|
|
201
388
|
}
|
|
202
389
|
};
|
|
203
390
|
|
|
391
|
+
template <typename Shape_>
|
|
392
|
+
struct tile_layout_register_t
|
|
393
|
+
{
|
|
394
|
+
using Shape = Shape_;
|
|
395
|
+
using Coord = tile_coord_t<Shape::N>;
|
|
396
|
+
|
|
397
|
+
static constexpr int Size = Shape::size();
|
|
398
|
+
static constexpr int NumRegs = (Size + WP_TILE_BLOCK_DIM - 1) / WP_TILE_BLOCK_DIM;
|
|
399
|
+
static constexpr bool Aligned = Size%WP_TILE_BLOCK_DIM == 0;
|
|
400
|
+
|
|
401
|
+
static inline CUDA_CALLABLE int linear_from_register(int reg)
|
|
402
|
+
{
|
|
403
|
+
return threadIdx.x + reg*WP_TILE_BLOCK_DIM;
|
|
404
|
+
}
|
|
405
|
+
|
|
406
|
+
static inline CUDA_CALLABLE int linear_from_coord(Coord c)
|
|
407
|
+
{
|
|
408
|
+
int linear = 0;
|
|
409
|
+
int stride = 1;
|
|
410
|
+
|
|
411
|
+
WP_PRAGMA_UNROLL
|
|
412
|
+
for (int i=Shape::N-1; i >= 0; --i)
|
|
413
|
+
{
|
|
414
|
+
linear += c[i] * stride;
|
|
415
|
+
stride *= Shape::dim(i);
|
|
416
|
+
}
|
|
417
|
+
return linear;
|
|
418
|
+
}
|
|
419
|
+
|
|
420
|
+
static inline CUDA_CALLABLE auto coord_from_linear(int linear)
|
|
421
|
+
{
|
|
422
|
+
Coord c;
|
|
423
|
+
|
|
424
|
+
WP_PRAGMA_UNROLL
|
|
425
|
+
for (int i=Shape::N-1; i >= 0; --i)
|
|
426
|
+
{
|
|
427
|
+
c[i] = linear%Shape::dim(i);
|
|
428
|
+
linear /= Shape::dim(i);
|
|
429
|
+
}
|
|
430
|
+
|
|
431
|
+
return c;
|
|
432
|
+
}
|
|
433
|
+
|
|
434
|
+
static inline CUDA_CALLABLE int thread_from_linear(int linear)
|
|
435
|
+
{
|
|
436
|
+
const int thread = linear%WP_TILE_BLOCK_DIM;
|
|
437
|
+
return thread;
|
|
438
|
+
}
|
|
439
|
+
|
|
440
|
+
static inline CUDA_CALLABLE int register_from_linear(int linear)
|
|
441
|
+
{
|
|
442
|
+
const int reg = linear/WP_TILE_BLOCK_DIM;
|
|
443
|
+
return reg;
|
|
444
|
+
}
|
|
445
|
+
|
|
446
|
+
static inline CUDA_CALLABLE bool valid(int linear)
|
|
447
|
+
{
|
|
448
|
+
if (Aligned || linear < Size)
|
|
449
|
+
return true;
|
|
450
|
+
else
|
|
451
|
+
return false;
|
|
452
|
+
}
|
|
453
|
+
|
|
454
|
+
};
|
|
455
|
+
|
|
204
456
|
// represents a tile stored in registers across a block
|
|
205
|
-
template <typename T,
|
|
457
|
+
template <typename T, typename L>
|
|
206
458
|
struct tile_register_t
|
|
207
459
|
{
|
|
208
460
|
using Type = T;
|
|
209
|
-
|
|
210
|
-
static constexpr int N = N_;
|
|
211
|
-
static constexpr int Size = M*N;
|
|
212
|
-
|
|
213
|
-
static constexpr int NumRegs = tile_regcount(M, N);
|
|
461
|
+
using Layout = L;
|
|
214
462
|
|
|
215
|
-
|
|
216
|
-
|
|
217
|
-
T data[NumRegs];
|
|
463
|
+
T data[Layout::NumRegs];
|
|
218
464
|
|
|
219
465
|
inline CUDA_CALLABLE tile_register_t(T value=T(0.0))
|
|
220
466
|
{
|
|
@@ -224,52 +470,34 @@ struct tile_register_t
|
|
|
224
470
|
// in backwards pass and letting default constructor
|
|
225
471
|
// avoid initialization
|
|
226
472
|
|
|
227
|
-
for (int i=0; i < NumRegs; ++i)
|
|
473
|
+
for (int i=0; i < Layout::NumRegs; ++i)
|
|
228
474
|
data[i] = value;
|
|
229
475
|
}
|
|
230
476
|
|
|
231
|
-
inline CUDA_CALLABLE auto& operator=(const tile_global_t<T>& t)
|
|
477
|
+
inline CUDA_CALLABLE auto& operator=(const tile_global_t<T, typename Layout::Shape>& t)
|
|
232
478
|
{
|
|
233
|
-
|
|
234
|
-
copy_from_global(t.data, t.x); // 1d load
|
|
235
|
-
else
|
|
236
|
-
copy_from_global(t.data, t.x, t.y); // 2d load
|
|
237
|
-
|
|
479
|
+
copy_from_global(t);
|
|
238
480
|
return *this;
|
|
239
|
-
|
|
240
481
|
}
|
|
241
482
|
|
|
242
483
|
// define the += operator which is used during backward pass codegen
|
|
243
484
|
// when returning a register tile from a user defined function
|
|
244
|
-
inline CUDA_CALLABLE auto& operator += (tile_register_t<T,
|
|
485
|
+
inline CUDA_CALLABLE auto& operator += (tile_register_t<T, Layout>& rhs)
|
|
245
486
|
{
|
|
246
|
-
|
|
487
|
+
grad_add(rhs);
|
|
247
488
|
return *this;
|
|
248
489
|
}
|
|
249
490
|
|
|
250
|
-
inline CUDA_CALLABLE T& operator()(int
|
|
491
|
+
inline CUDA_CALLABLE T& operator()(int reg)
|
|
251
492
|
{
|
|
252
|
-
assert(
|
|
253
|
-
return data[
|
|
493
|
+
assert(reg < Layout::NumRegs);
|
|
494
|
+
return data[reg];
|
|
254
495
|
}
|
|
255
496
|
|
|
256
|
-
inline CUDA_CALLABLE const T& operator()(int
|
|
497
|
+
inline CUDA_CALLABLE const T& operator()(int reg) const
|
|
257
498
|
{
|
|
258
|
-
assert(
|
|
259
|
-
return data[
|
|
260
|
-
}
|
|
261
|
-
|
|
262
|
-
|
|
263
|
-
// compute linear tile index from a local register index
|
|
264
|
-
inline CUDA_CALLABLE int index(int reg) const
|
|
265
|
-
{
|
|
266
|
-
return threadIdx.x + reg*WP_TILE_BLOCK_DIM;
|
|
267
|
-
}
|
|
268
|
-
|
|
269
|
-
// compute tile coordinate from linear index
|
|
270
|
-
inline CUDA_CALLABLE coord_t coord(int index) const
|
|
271
|
-
{
|
|
272
|
-
return {index/N, index%N};
|
|
499
|
+
assert(reg < Layout::NumRegs);
|
|
500
|
+
return data[reg];
|
|
273
501
|
}
|
|
274
502
|
|
|
275
503
|
// Returns the number of valid registers for this tile
|
|
@@ -278,29 +506,29 @@ struct tile_register_t
|
|
|
278
506
|
// some of the trailing registers may lie outside the valid range
|
|
279
507
|
inline CUDA_CALLABLE int valid() const
|
|
280
508
|
{
|
|
281
|
-
return (Size - threadIdx.x)/WP_TILE_BLOCK_DIM;
|
|
509
|
+
return (int)floor(float(Size - threadIdx.x - 1)/WP_TILE_BLOCK_DIM) + 1;
|
|
282
510
|
}
|
|
283
511
|
|
|
284
|
-
inline CUDA_CALLABLE void assign(const tile_register_t<T,
|
|
512
|
+
inline CUDA_CALLABLE void assign(const tile_register_t<T, Layout>& tile)
|
|
285
513
|
{
|
|
286
|
-
for (int i=0; i < NumRegs; ++i)
|
|
514
|
+
for (int i=0; i < Layout::NumRegs; ++i)
|
|
287
515
|
data[i] = tile.data[i];
|
|
288
516
|
}
|
|
289
517
|
|
|
290
518
|
inline CUDA_CALLABLE void zero()
|
|
291
519
|
{
|
|
292
|
-
for (int i=0; i < NumRegs; ++i)
|
|
293
|
-
data[i] = T(0);
|
|
520
|
+
for (int i=0; i < Layout::NumRegs; ++i)
|
|
521
|
+
data[i] = T(0);
|
|
294
522
|
}
|
|
295
523
|
|
|
296
524
|
// extract a single tile element to a native type
|
|
297
|
-
|
|
525
|
+
template <typename Coord>
|
|
526
|
+
inline CUDA_CALLABLE Type extract(const Coord& c)
|
|
298
527
|
{
|
|
299
528
|
// map from logical coords (i, j) -> (thread, reg)
|
|
300
|
-
const int linear =
|
|
301
|
-
|
|
302
|
-
const int
|
|
303
|
-
const int reg = linear%NumRegs;
|
|
529
|
+
const int linear = Layout::linear_from_coord(c);
|
|
530
|
+
const int thread = Layout::thread_from_linear(linear);
|
|
531
|
+
const int reg = Layout::register_from_linear(linear);
|
|
304
532
|
|
|
305
533
|
WP_TILE_SHARED Type scratch;
|
|
306
534
|
|
|
@@ -320,13 +548,13 @@ struct tile_register_t
|
|
|
320
548
|
|
|
321
549
|
|
|
322
550
|
// backward version of scalar extract
|
|
323
|
-
|
|
551
|
+
template <typename Coord>
|
|
552
|
+
inline CUDA_CALLABLE void adj_extract(const Coord& c, Type adj_ret)
|
|
324
553
|
{
|
|
325
554
|
// map from logical coords (i, j) -> (thread, reg)
|
|
326
|
-
const int linear =
|
|
327
|
-
|
|
328
|
-
const int
|
|
329
|
-
const int reg = linear%NumRegs;
|
|
555
|
+
const int linear = Layout::linear_from_coord(c);
|
|
556
|
+
const int thread = Layout::thread_from_linear(linear);
|
|
557
|
+
const int reg = Layout::register_from_linear(linear);
|
|
330
558
|
|
|
331
559
|
if (threadIdx.x == thread)
|
|
332
560
|
{
|
|
@@ -348,6 +576,24 @@ struct tile_register_t
|
|
|
348
576
|
return *this;
|
|
349
577
|
}
|
|
350
578
|
|
|
579
|
+
// apply a lambda to all valid entries in the tile
|
|
580
|
+
// Op should be a functor that takes a register index and tile_coord_t as input
|
|
581
|
+
template <typename Op>
|
|
582
|
+
void apply(Op op)
|
|
583
|
+
{
|
|
584
|
+
WP_PRAGMA_UNROLL
|
|
585
|
+
for (int i=0; i < Layout::NumRegs; ++i)
|
|
586
|
+
{
|
|
587
|
+
int linear = Layout::linear_from_register(i);
|
|
588
|
+
if (!Layout::valid(linear))
|
|
589
|
+
break;
|
|
590
|
+
|
|
591
|
+
auto c = Layout::coord_from_linear(linear);
|
|
592
|
+
op(i, c);
|
|
593
|
+
}
|
|
594
|
+
}
|
|
595
|
+
|
|
596
|
+
|
|
351
597
|
// in-place gradient zero
|
|
352
598
|
inline CUDA_CALLABLE void grad_zero()
|
|
353
599
|
{
|
|
@@ -355,118 +601,77 @@ struct tile_register_t
|
|
|
355
601
|
}
|
|
356
602
|
|
|
357
603
|
// accumulate gradients onto this tile
|
|
358
|
-
inline CUDA_CALLABLE void grad_add(const tile_register_t<T,
|
|
604
|
+
inline CUDA_CALLABLE void grad_add(const tile_register_t<T, Layout>& tile)
|
|
359
605
|
{
|
|
360
|
-
for (int i=0; i < NumRegs; ++i)
|
|
606
|
+
for (int i=0; i < Layout::NumRegs; ++i)
|
|
361
607
|
data[i] += tile.data[i];
|
|
362
608
|
}
|
|
363
609
|
|
|
364
|
-
|
|
610
|
+
CUDA_CALLABLE void grad_add(const tile_global_t<T, typename Layout::Shape>& global)
|
|
611
|
+
{
|
|
612
|
+
apply([&](int reg, auto c) {data[reg] = global.load_grad(c);});
|
|
613
|
+
|
|
614
|
+
}
|
|
615
|
+
|
|
365
616
|
inline CUDA_CALLABLE auto& grad_to_register()
|
|
366
617
|
{
|
|
618
|
+
// nop for register tiles
|
|
367
619
|
return *this;
|
|
368
620
|
}
|
|
369
621
|
|
|
370
|
-
|
|
622
|
+
template <typename Global>
|
|
623
|
+
inline CUDA_CALLABLE void copy_to_global(const Global& dest)
|
|
371
624
|
{
|
|
372
|
-
|
|
373
|
-
|
|
374
|
-
const int tile_i = x*N;
|
|
375
|
-
|
|
376
|
-
WP_PRAGMA_UNROLL
|
|
377
|
-
for (int i=0; i < NumRegs; ++i)
|
|
378
|
-
{
|
|
379
|
-
// handle case where tile size is not
|
|
380
|
-
// aligned to block dimensions
|
|
381
|
-
int linear = index(i);
|
|
382
|
-
if (!Aligned && linear >= Size)
|
|
383
|
-
break;
|
|
384
|
-
|
|
385
|
-
wp::index(dest, tile_i + linear) = data[i];
|
|
386
|
-
}
|
|
625
|
+
apply([&](int reg, auto c) { dest.store(c, data[reg]); });
|
|
387
626
|
}
|
|
388
627
|
|
|
389
|
-
|
|
628
|
+
template <typename Global>
|
|
629
|
+
inline CUDA_CALLABLE void copy_from_global(const Global& src)
|
|
390
630
|
{
|
|
391
|
-
|
|
392
|
-
|
|
393
|
-
const int tile_i = x*M;
|
|
394
|
-
const int tile_j = y*N;
|
|
395
|
-
|
|
396
|
-
// wp.array() indexing generates poor code due to char* casting
|
|
397
|
-
// here we unroll some of the ops, note this assumes byte strides are
|
|
398
|
-
// aligned to the element size
|
|
399
|
-
T* ptr = &wp::index(dest, tile_i, tile_j);
|
|
400
|
-
const int stride_i = dest.strides[0]/sizeof(T);
|
|
401
|
-
const int stride_j = dest.strides[1]/sizeof(T);
|
|
402
|
-
|
|
403
|
-
WP_PRAGMA_UNROLL
|
|
404
|
-
for (int i=0; i < NumRegs; ++i)
|
|
405
|
-
{
|
|
406
|
-
// handle case where tile size is not
|
|
407
|
-
// aligned to block dimensions
|
|
408
|
-
int linear = index(i);
|
|
409
|
-
if (!Aligned && linear >= Size)
|
|
410
|
-
break;
|
|
411
|
-
|
|
412
|
-
coord_t c = coord(linear);
|
|
413
|
-
ptr[c.i*stride_i + c.j*stride_j] = data[i];
|
|
414
|
-
}
|
|
631
|
+
apply([&](int reg, auto c) { data[reg] = src.load(c); });
|
|
415
632
|
}
|
|
416
633
|
|
|
417
|
-
|
|
634
|
+
// add a register tile to a global array
|
|
635
|
+
template <typename Global>
|
|
636
|
+
inline CUDA_CALLABLE auto atomic_add(const Global& dest)
|
|
418
637
|
{
|
|
419
|
-
//
|
|
420
|
-
|
|
638
|
+
// allocate a tile to hold previous dest value
|
|
639
|
+
auto previous = *this;
|
|
421
640
|
|
|
422
|
-
|
|
423
|
-
|
|
424
|
-
{
|
|
425
|
-
int linear = index(i);
|
|
426
|
-
if (!Aligned && linear >= Size)
|
|
427
|
-
break;
|
|
428
|
-
|
|
429
|
-
data[i] = wp::index(src, tile_i + linear);
|
|
430
|
-
}
|
|
641
|
+
apply([&](int reg, auto c) { previous.data[reg] = dest.atomic_add(c, data[reg]); });
|
|
642
|
+
return previous;
|
|
431
643
|
}
|
|
432
644
|
|
|
433
|
-
|
|
645
|
+
// add a register tile to the gradient of a global array
|
|
646
|
+
template <typename Global>
|
|
647
|
+
inline CUDA_CALLABLE auto atomic_add_grad(const Global& dest)
|
|
434
648
|
{
|
|
435
|
-
//
|
|
436
|
-
|
|
437
|
-
const int tile_j = y*N;
|
|
438
|
-
|
|
439
|
-
// wp.array() indexing generates poor code due to char* casting
|
|
440
|
-
// here we unroll some of the ops, note this assumes array byte strides are
|
|
441
|
-
// aligned to the element size
|
|
442
|
-
const T* ptr = &wp::index(src, tile_i, tile_j);
|
|
443
|
-
|
|
444
|
-
assert(src.strides[0]%sizeof(T) == 0);
|
|
445
|
-
assert(src.strides[1]%sizeof(T) == 0);
|
|
446
|
-
|
|
447
|
-
const int stride_i = src.strides[0]/sizeof(T);
|
|
448
|
-
const int stride_j = src.strides[1]/sizeof(T);
|
|
449
|
-
|
|
450
|
-
WP_PRAGMA_UNROLL
|
|
451
|
-
for (int i=0; i < NumRegs; ++i)
|
|
452
|
-
{
|
|
453
|
-
int linear = index(i);
|
|
454
|
-
if (!Aligned && linear >= Size)
|
|
455
|
-
break;
|
|
649
|
+
// allocate a tile to hold previous dest value
|
|
650
|
+
auto previous = *this;
|
|
456
651
|
|
|
457
|
-
|
|
458
|
-
|
|
459
|
-
|
|
460
|
-
}
|
|
652
|
+
apply([&](int reg, auto c) { previous.data[reg] = dest.atomic_add_grad(c, data[reg]); });
|
|
653
|
+
return previous;
|
|
654
|
+
}
|
|
461
655
|
};
|
|
462
656
|
|
|
657
|
+
|
|
463
658
|
// helper to allocate a register tile like another tile
|
|
659
|
+
// users can either specify a template explicitly or
|
|
660
|
+
// pass in another concrete instance
|
|
464
661
|
template<typename Tile>
|
|
465
|
-
auto tile_register_like()
|
|
662
|
+
auto tile_register_like(Tile* t=NULL)
|
|
466
663
|
{
|
|
467
664
|
using T = typename Tile::Type;
|
|
665
|
+
using L = typename Tile::Layout;
|
|
468
666
|
|
|
469
|
-
return tile_register_t<T,
|
|
667
|
+
return tile_register_t<T, tile_layout_register_t<typename L::Shape>>(T(0.0));
|
|
668
|
+
}
|
|
669
|
+
|
|
670
|
+
// helper to construct a register tile from a type and a list of dims
|
|
671
|
+
template <typename T, int... Dims>
|
|
672
|
+
auto tile_register()
|
|
673
|
+
{
|
|
674
|
+
return tile_register_t<T, tile_layout_register_t<tile_shape_t<Dims...>>>();
|
|
470
675
|
}
|
|
471
676
|
|
|
472
677
|
inline CUDA_CALLABLE int tile_align(int num_bytes)
|
|
@@ -474,7 +679,10 @@ inline CUDA_CALLABLE int tile_align(int num_bytes)
|
|
|
474
679
|
// note this much match value in Python types.py
|
|
475
680
|
const int alignment = 16;
|
|
476
681
|
|
|
477
|
-
|
|
682
|
+
const int num_bytes_abs = num_bytes < 0 ? - num_bytes : num_bytes;
|
|
683
|
+
const int sign = num_bytes < 0 ? - 1 : 1;
|
|
684
|
+
|
|
685
|
+
return sign * ((num_bytes_abs + alignment - 1) / alignment) * alignment;
|
|
478
686
|
}
|
|
479
687
|
|
|
480
688
|
inline CUDA_CALLABLE void* tile_alloc_shared(int num_bytes, bool init=false)
|
|
@@ -502,20 +710,78 @@ inline CUDA_CALLABLE void* tile_alloc_shared(int num_bytes, bool init=false)
|
|
|
502
710
|
}
|
|
503
711
|
|
|
504
712
|
|
|
505
|
-
|
|
506
|
-
|
|
507
|
-
struct tile_shared_t
|
|
713
|
+
template <typename Shape_, typename Stride_= typename compute_strides<Shape_>::Stride>
|
|
714
|
+
struct tile_layout_strided_t
|
|
508
715
|
{
|
|
509
|
-
using
|
|
510
|
-
|
|
511
|
-
|
|
512
|
-
static constexpr int Size = M*N;
|
|
716
|
+
using Shape = Shape_;
|
|
717
|
+
using Stride = Stride_;
|
|
718
|
+
using Coord = tile_coord_t<Shape::N>;
|
|
513
719
|
|
|
514
|
-
static constexpr int
|
|
515
|
-
static constexpr int StrideN = StrideN_;
|
|
516
|
-
|
|
720
|
+
static constexpr int Size = Shape::size();
|
|
517
721
|
static constexpr bool Aligned = Size%WP_TILE_BLOCK_DIM == 0;
|
|
518
|
-
|
|
722
|
+
|
|
723
|
+
static inline CUDA_CALLABLE auto coord_from_linear(int linear)
|
|
724
|
+
{
|
|
725
|
+
assert(linear < Size);
|
|
726
|
+
|
|
727
|
+
Coord c;
|
|
728
|
+
|
|
729
|
+
WP_PRAGMA_UNROLL
|
|
730
|
+
for (int d=Shape::N-1; d >= 0; --d)
|
|
731
|
+
{
|
|
732
|
+
c[d] = linear%Shape::dim(d);
|
|
733
|
+
linear /= Shape::dim(d);
|
|
734
|
+
}
|
|
735
|
+
|
|
736
|
+
return c;
|
|
737
|
+
}
|
|
738
|
+
|
|
739
|
+
static inline CUDA_CALLABLE int index_from_coord(Coord c)
|
|
740
|
+
{
|
|
741
|
+
int index = 0;
|
|
742
|
+
|
|
743
|
+
WP_PRAGMA_UNROLL
|
|
744
|
+
for (int d=0; d < Shape::N; ++d)
|
|
745
|
+
{
|
|
746
|
+
assert(c[d] < Shape::dim(d));
|
|
747
|
+
|
|
748
|
+
index += c[d]*Stride::dim(d);
|
|
749
|
+
}
|
|
750
|
+
|
|
751
|
+
return index;
|
|
752
|
+
}
|
|
753
|
+
|
|
754
|
+
// checks whether a strided layout is unique, i.e.: if memory locations are only
|
|
755
|
+
// every referred to by one element in the tile, this is a basic test that only
|
|
756
|
+
// checks for broadcast dimensions, it would be possible to do the full check
|
|
757
|
+
// using sorted shape/strides in Python and add it as a template parameter to the type
|
|
758
|
+
static constexpr bool is_unique()
|
|
759
|
+
{
|
|
760
|
+
constexpr int N = Shape::N;
|
|
761
|
+
|
|
762
|
+
// check for any broadcast dimensions
|
|
763
|
+
for (int i=0; i < N; ++i)
|
|
764
|
+
if (Stride::dim(i) == 0)
|
|
765
|
+
return false;
|
|
766
|
+
|
|
767
|
+
return true;
|
|
768
|
+
}
|
|
769
|
+
|
|
770
|
+
static constexpr bool Unique = is_unique();
|
|
771
|
+
|
|
772
|
+
static inline CUDA_CALLABLE bool valid(int linear)
|
|
773
|
+
{
|
|
774
|
+
return linear < Size;
|
|
775
|
+
}
|
|
776
|
+
|
|
777
|
+
};
|
|
778
|
+
|
|
779
|
+
|
|
780
|
+
template <typename T, typename L, bool Owner_=true>
|
|
781
|
+
struct tile_shared_t
|
|
782
|
+
{
|
|
783
|
+
using Type = T;
|
|
784
|
+
using Layout = L;
|
|
519
785
|
static constexpr bool Owner = Owner_;
|
|
520
786
|
|
|
521
787
|
struct Storage
|
|
@@ -524,55 +790,60 @@ struct tile_shared_t
|
|
|
524
790
|
|
|
525
791
|
Storage(T* p) : ptr(p) {}
|
|
526
792
|
|
|
527
|
-
inline CUDA_CALLABLE T& operator()(
|
|
793
|
+
inline CUDA_CALLABLE T& operator()(typename Layout::Coord c)
|
|
528
794
|
{
|
|
529
|
-
assert(
|
|
530
|
-
assert(j < N);
|
|
795
|
+
assert(ptr);
|
|
531
796
|
|
|
532
|
-
|
|
797
|
+
int index = Layout::index_from_coord(c);
|
|
798
|
+
return ptr[index];
|
|
533
799
|
}
|
|
534
800
|
|
|
535
|
-
inline CUDA_CALLABLE const T& operator()(
|
|
536
|
-
{
|
|
537
|
-
assert(
|
|
538
|
-
assert(j < N);
|
|
801
|
+
inline CUDA_CALLABLE const T& operator()(typename Layout::Coord c) const
|
|
802
|
+
{
|
|
803
|
+
assert(ptr);
|
|
539
804
|
|
|
540
|
-
|
|
805
|
+
int index = Layout::index_from_coord(c);
|
|
806
|
+
return ptr[index];
|
|
541
807
|
}
|
|
542
808
|
|
|
543
|
-
inline CUDA_CALLABLE T& operator()(int
|
|
809
|
+
inline CUDA_CALLABLE T& operator()(int linear)
|
|
544
810
|
{
|
|
545
|
-
assert(
|
|
811
|
+
assert(ptr);
|
|
812
|
+
assert(Layout::valid(linear));
|
|
546
813
|
|
|
547
|
-
|
|
548
|
-
|
|
549
|
-
int j = index%N;
|
|
550
|
-
|
|
551
|
-
return (*this)(i,j);
|
|
814
|
+
auto c = Layout::coord_from_linear(linear);
|
|
815
|
+
return (*this)(c);
|
|
552
816
|
}
|
|
553
817
|
|
|
554
|
-
inline CUDA_CALLABLE const T& operator()(int
|
|
818
|
+
inline CUDA_CALLABLE const T& operator()(int linear) const
|
|
555
819
|
{
|
|
556
|
-
assert(
|
|
557
|
-
|
|
558
|
-
// unravel
|
|
559
|
-
int i = index/N;
|
|
560
|
-
int j = index%N;
|
|
820
|
+
assert(ptr);
|
|
821
|
+
assert(Layout::valid(linear));
|
|
561
822
|
|
|
562
|
-
|
|
823
|
+
auto c = Layout::coord_from_linear(linear);
|
|
824
|
+
return (*this)(c);
|
|
563
825
|
}
|
|
564
826
|
};
|
|
565
827
|
|
|
566
828
|
Storage data;
|
|
567
829
|
Storage grad;
|
|
568
830
|
|
|
831
|
+
// we need to track whether or not this tile's data has been initialized.
|
|
832
|
+
// once true, any re-initialization of data that follows needs a WP_TILE_SYNC()
|
|
833
|
+
// call to precede it, to allow threads that are still reading from this tile
|
|
834
|
+
// to complete their work. e.g, in a dynamic loop:
|
|
835
|
+
// for i in range(x):
|
|
836
|
+
// tile = wp.tile_load(arr, i, TILE_SIZE, storage="shared")
|
|
837
|
+
// # read from tile...
|
|
838
|
+
bool initialized;
|
|
839
|
+
|
|
569
840
|
// default initialization (non-initialized)
|
|
570
|
-
inline CUDA_CALLABLE tile_shared_t() : data(NULL), grad(NULL)
|
|
841
|
+
inline CUDA_CALLABLE tile_shared_t() : data(NULL), grad(NULL), initialized(false)
|
|
571
842
|
{
|
|
572
843
|
}
|
|
573
844
|
|
|
574
845
|
// initialize from an existing tile's memory
|
|
575
|
-
inline CUDA_CALLABLE tile_shared_t(T* data, T* grad=NULL) : data(data), grad(grad)
|
|
846
|
+
inline CUDA_CALLABLE tile_shared_t(T* data, T* grad=NULL, bool initialized=true) : data(data), grad(grad), initialized(initialized)
|
|
576
847
|
{
|
|
577
848
|
}
|
|
578
849
|
|
|
@@ -582,10 +853,10 @@ struct tile_shared_t
|
|
|
582
853
|
{
|
|
583
854
|
// update our per-thread shared memory allocator
|
|
584
855
|
if (data.ptr)
|
|
585
|
-
tile_alloc_shared(-
|
|
856
|
+
tile_alloc_shared(-Layout::Size*int(sizeof(T)));
|
|
586
857
|
|
|
587
858
|
if (grad.ptr)
|
|
588
|
-
tile_alloc_shared(-
|
|
859
|
+
tile_alloc_shared(-Layout::Size*int(sizeof(T)));
|
|
589
860
|
}
|
|
590
861
|
}
|
|
591
862
|
|
|
@@ -597,12 +868,13 @@ struct tile_shared_t
|
|
|
597
868
|
return *this;
|
|
598
869
|
}
|
|
599
870
|
|
|
871
|
+
|
|
600
872
|
// construct from another shared tile, this constructor
|
|
601
873
|
// is invoked for reshape operations like `wp.tile_transpose()`
|
|
602
|
-
template <typename OtherT,
|
|
603
|
-
inline CUDA_CALLABLE auto& operator=(const tile_shared_t<OtherT,
|
|
874
|
+
template <typename OtherT, typename OtherLayout>
|
|
875
|
+
inline CUDA_CALLABLE auto& operator=(const tile_shared_t<OtherT, OtherLayout>& rhs)
|
|
604
876
|
{
|
|
605
|
-
using OtherTile = tile_shared_t<OtherT,
|
|
877
|
+
using OtherTile = tile_shared_t<OtherT, OtherLayout>;
|
|
606
878
|
|
|
607
879
|
// check dimensions are compatible
|
|
608
880
|
static_assert(Size == OtherTile::Size);
|
|
@@ -610,89 +882,89 @@ struct tile_shared_t
|
|
|
610
882
|
// alias tile directly
|
|
611
883
|
data = rhs.data;
|
|
612
884
|
grad = rhs.grad;
|
|
885
|
+
initialized = rhs.initialized;
|
|
613
886
|
|
|
614
887
|
return *this;
|
|
615
888
|
}
|
|
616
889
|
|
|
617
890
|
// assign from a global tile (load)
|
|
618
|
-
inline CUDA_CALLABLE auto& operator=(const tile_global_t<T>& t)
|
|
891
|
+
inline CUDA_CALLABLE auto& operator=(const tile_global_t<T, typename Layout::Shape>& t)
|
|
619
892
|
{
|
|
620
|
-
|
|
621
|
-
copy_from_global(t.data, t.x); // 1d load
|
|
622
|
-
else
|
|
623
|
-
copy_from_global(t.data, t.x, t.y); // 2d load
|
|
624
|
-
|
|
625
|
-
// synchronization happens in copy functions above
|
|
626
|
-
|
|
893
|
+
copy_from_global(t);
|
|
627
894
|
return *this;
|
|
628
895
|
}
|
|
629
896
|
|
|
630
897
|
// assign from a constant value
|
|
631
898
|
inline CUDA_CALLABLE auto& operator=(const T& x)
|
|
632
899
|
{
|
|
633
|
-
|
|
900
|
+
// sync if we are re-initializing data so that any threads that are still
|
|
901
|
+
// reading from this tile can complete their work, e.g.: if re-assigning
|
|
902
|
+
// to a tile during a dynamic loop
|
|
903
|
+
if (initialized)
|
|
904
|
+
WP_TILE_SYNC();
|
|
905
|
+
|
|
906
|
+
for (int i=threadIdx.x; i < Layout::Size; i+= WP_TILE_BLOCK_DIM)
|
|
634
907
|
data(i) = x;
|
|
635
908
|
|
|
909
|
+
initialized = true;
|
|
636
910
|
WP_TILE_SYNC();
|
|
637
911
|
return *this;
|
|
638
912
|
}
|
|
639
913
|
|
|
640
|
-
|
|
641
|
-
// compute tile coordinate from linear index
|
|
642
|
-
inline CUDA_CALLABLE coord_t coord(int index) const
|
|
643
|
-
{
|
|
644
|
-
return {index/N, index%N};
|
|
645
|
-
}
|
|
646
|
-
|
|
647
914
|
// in-place zero
|
|
648
915
|
inline CUDA_CALLABLE void zero()
|
|
649
916
|
{
|
|
650
|
-
for (int i=threadIdx.x; i <
|
|
917
|
+
for (int i=threadIdx.x; i < Layout::Size; i+= WP_TILE_BLOCK_DIM)
|
|
651
918
|
data(i) = T(0);
|
|
652
919
|
|
|
653
920
|
WP_TILE_SYNC();
|
|
654
921
|
}
|
|
655
922
|
|
|
656
923
|
// extract a single tile element to a native type
|
|
657
|
-
inline CUDA_CALLABLE Type extract(
|
|
924
|
+
inline CUDA_CALLABLE Type extract(const typename Layout::Coord& c)
|
|
658
925
|
{
|
|
659
|
-
return data(
|
|
926
|
+
return data(c);
|
|
660
927
|
}
|
|
661
928
|
|
|
662
929
|
// backward of scalar extraction
|
|
663
|
-
inline CUDA_CALLABLE void adj_extract(
|
|
930
|
+
inline CUDA_CALLABLE void adj_extract(const typename Layout::Coord& c, Type adj_ret)
|
|
664
931
|
{
|
|
665
|
-
|
|
666
|
-
|
|
667
|
-
|
|
668
|
-
|
|
932
|
+
// since multiple threads may extract the same element
|
|
933
|
+
// we need to accumulate using atomic operations
|
|
934
|
+
wp::atomic_add(&grad(c), adj_ret);
|
|
935
|
+
|
|
936
|
+
WP_TILE_SYNC();
|
|
669
937
|
}
|
|
670
938
|
|
|
671
939
|
|
|
672
940
|
// copy register tile to shared
|
|
673
|
-
|
|
941
|
+
template <typename Tile>
|
|
942
|
+
inline CUDA_CALLABLE void assign(const Tile& tile)
|
|
674
943
|
{
|
|
944
|
+
if (initialized)
|
|
945
|
+
WP_TILE_SYNC();
|
|
946
|
+
|
|
675
947
|
WP_PRAGMA_UNROLL
|
|
676
|
-
for (int i=0; i <
|
|
948
|
+
for (int i=0; i < Tile::Layout::NumRegs; ++i)
|
|
677
949
|
{
|
|
678
|
-
const int linear =
|
|
950
|
+
const int linear = Tile::Layout::linear_from_register(i);
|
|
679
951
|
|
|
680
952
|
// handle case where tile size is not
|
|
681
953
|
// aligned to block dimensions
|
|
682
|
-
if (!
|
|
683
|
-
break;
|
|
954
|
+
if (!Tile::Layout::valid(linear))
|
|
955
|
+
break;
|
|
684
956
|
|
|
685
957
|
data(linear) = tile.data[i];
|
|
686
958
|
}
|
|
687
959
|
|
|
960
|
+
initialized = true;
|
|
688
961
|
WP_TILE_SYNC();
|
|
689
962
|
}
|
|
690
963
|
|
|
691
964
|
// in-place gradient zero
|
|
692
965
|
inline CUDA_CALLABLE void grad_zero()
|
|
693
966
|
{
|
|
694
|
-
|
|
695
|
-
for (int i=threadIdx.x; i < M*N; i+= WP_TILE_BLOCK_DIM)
|
|
967
|
+
for (int i=threadIdx.x; i < Layout::Size; i+= WP_TILE_BLOCK_DIM)
|
|
696
968
|
grad(i) = T(0);
|
|
697
969
|
|
|
698
970
|
WP_TILE_SYNC();
|
|
@@ -700,44 +972,73 @@ struct tile_shared_t
|
|
|
700
972
|
|
|
701
973
|
|
|
702
974
|
// accumulate gradients onto this tile
|
|
703
|
-
|
|
975
|
+
template <typename Tile>
|
|
976
|
+
inline CUDA_CALLABLE void grad_add(const Tile& tile)
|
|
704
977
|
{
|
|
705
978
|
WP_PRAGMA_UNROLL
|
|
706
|
-
for (int i=0; i <
|
|
979
|
+
for (int i=0; i < Tile::Layout::NumRegs; ++i)
|
|
707
980
|
{
|
|
708
|
-
const int linear =
|
|
981
|
+
const int linear = Tile::Layout::linear_from_register(i);
|
|
709
982
|
|
|
710
983
|
// handle case where tile size is not
|
|
711
984
|
// aligned to block dimensions
|
|
712
|
-
if (!
|
|
985
|
+
if (!Tile::Layout::valid(linear))
|
|
713
986
|
break;
|
|
714
987
|
|
|
715
|
-
if (
|
|
988
|
+
// if the destination layout is unique (no broadcast dimensions)
|
|
989
|
+
// then we can use regular non-atomic accmulation
|
|
990
|
+
if (Layout::Unique)
|
|
716
991
|
grad(linear) += tile.data[i];
|
|
717
992
|
else
|
|
718
993
|
// use shared memory atomics to accumulate gradients
|
|
719
994
|
// since for broadcast tiles (e.g.: a bias vector) multiple incoming threads
|
|
720
995
|
// may map to a single location in shared memory
|
|
721
|
-
atomic_add(&grad(linear), tile.data[i]);
|
|
996
|
+
wp::atomic_add(&grad(linear), tile.data[i]);
|
|
722
997
|
|
|
723
998
|
}
|
|
724
999
|
|
|
725
1000
|
WP_TILE_SYNC();
|
|
726
1001
|
}
|
|
727
1002
|
|
|
1003
|
+
// accumulate gradient onto this tile from a global array
|
|
1004
|
+
CUDA_CALLABLE void grad_add(const tile_global_t<T, typename Layout::Shape>& global)
|
|
1005
|
+
{
|
|
1006
|
+
WP_PRAGMA_UNROLL
|
|
1007
|
+
for (int i=threadIdx.x; i < Layout::Size; i += WP_TILE_BLOCK_DIM)
|
|
1008
|
+
{
|
|
1009
|
+
auto c = Layout::coord_from_linear(i);
|
|
1010
|
+
T g = global.load_grad(c);
|
|
1011
|
+
|
|
1012
|
+
if (Layout::Unique)
|
|
1013
|
+
{
|
|
1014
|
+
// if the destination layout is unique (no broadcast dimensions)
|
|
1015
|
+
// then we can use regular non-atomic accumulation
|
|
1016
|
+
grad(c) += g;
|
|
1017
|
+
}
|
|
1018
|
+
else
|
|
1019
|
+
{
|
|
1020
|
+
// use shared memory atomics to accumulate gradients
|
|
1021
|
+
// since for broadcast tiles (e.g.: a bias vector) multiple incoming threads
|
|
1022
|
+
// may map to a single location in shared memory
|
|
1023
|
+
wp::atomic_add(&grad(c), g);
|
|
1024
|
+
}
|
|
1025
|
+
}
|
|
1026
|
+
|
|
1027
|
+
WP_TILE_SYNC();
|
|
1028
|
+
}
|
|
1029
|
+
|
|
728
1030
|
// copy shared tile to register
|
|
729
|
-
inline CUDA_CALLABLE
|
|
1031
|
+
inline CUDA_CALLABLE auto grad_to_register()
|
|
730
1032
|
{
|
|
731
|
-
tile_register_t<T,
|
|
1033
|
+
using Tile = tile_register_t<T, tile_layout_register_t<typename Layout::Shape>>;
|
|
1034
|
+
Tile out;
|
|
732
1035
|
|
|
733
1036
|
WP_PRAGMA_UNROLL
|
|
734
|
-
for (int i=0; i <
|
|
1037
|
+
for (int i=0; i < Tile::Layout::NumRegs; ++i)
|
|
735
1038
|
{
|
|
736
|
-
const int linear =
|
|
1039
|
+
const int linear = Tile::Layout::linear_from_register(i);
|
|
737
1040
|
|
|
738
|
-
|
|
739
|
-
// aligned to block dimensions
|
|
740
|
-
if (!Aligned && linear >= Size)
|
|
1041
|
+
if (!Tile::Layout::valid(linear))
|
|
741
1042
|
break;
|
|
742
1043
|
|
|
743
1044
|
out(i) = grad(linear);
|
|
@@ -746,40 +1047,20 @@ struct tile_shared_t
|
|
|
746
1047
|
return out;
|
|
747
1048
|
}
|
|
748
1049
|
|
|
749
|
-
inline CUDA_CALLABLE void print() const
|
|
750
|
-
{
|
|
751
|
-
if (threadIdx.x == 0)
|
|
752
|
-
{
|
|
753
|
-
printf("tile(m=%d, n=%d, storage=shared) = [", M, N);
|
|
754
|
-
for (int i=0; i < M; ++i)
|
|
755
|
-
{
|
|
756
|
-
printf("%*s[", i>0, "");
|
|
757
|
-
for (int j=0; j < N; ++j)
|
|
758
|
-
{
|
|
759
|
-
printf("%g ", double(data(i, j)));
|
|
760
|
-
}
|
|
761
|
-
|
|
762
|
-
if (i == M-1)
|
|
763
|
-
printf("]]\n");
|
|
764
|
-
else
|
|
765
|
-
printf("]\n");
|
|
766
|
-
}
|
|
767
|
-
}
|
|
768
|
-
}
|
|
769
|
-
|
|
770
1050
|
// copy shared tile to register
|
|
771
|
-
inline CUDA_CALLABLE
|
|
1051
|
+
inline CUDA_CALLABLE auto copy_to_register() const
|
|
772
1052
|
{
|
|
773
|
-
|
|
1053
|
+
|
|
1054
|
+
auto out = tile_register_like(this);
|
|
1055
|
+
|
|
1056
|
+
using Layout = typename decltype(out)::Layout;
|
|
774
1057
|
|
|
775
1058
|
WP_PRAGMA_UNROLL
|
|
776
|
-
for (int i=0; i <
|
|
1059
|
+
for (int i=0; i < Layout::NumRegs; ++i)
|
|
777
1060
|
{
|
|
778
|
-
const int linear =
|
|
1061
|
+
const int linear = Layout::linear_from_register(i);
|
|
779
1062
|
|
|
780
|
-
|
|
781
|
-
// aligned to block dimensions
|
|
782
|
-
if (!Aligned && linear >= Size)
|
|
1063
|
+
if (!Layout::valid(linear))
|
|
783
1064
|
break;
|
|
784
1065
|
|
|
785
1066
|
out(i) = data(linear);
|
|
@@ -788,220 +1069,354 @@ struct tile_shared_t
|
|
|
788
1069
|
return out;
|
|
789
1070
|
}
|
|
790
1071
|
|
|
791
|
-
|
|
792
|
-
|
|
793
|
-
|
|
1072
|
+
template <typename Global>
|
|
1073
|
+
inline CUDA_CALLABLE void copy_to_global(const Global& dest)
|
|
1074
|
+
{
|
|
1075
|
+
// vectorized loads for specific input/output shapes
|
|
1076
|
+
if constexpr (Layout::Shape::N == 2)
|
|
1077
|
+
{
|
|
1078
|
+
constexpr int lastdim = Layout::Shape::N-1;
|
|
1079
|
+
constexpr bool contiguous_src = Layout::Stride::dim(lastdim) == 1;
|
|
1080
|
+
const bool contiguous_dest = dest.data.strides[lastdim] == sizeof(T);
|
|
1081
|
+
const int elements = (dest.data.shape[lastdim] - dest.offset[lastdim]);
|
|
1082
|
+
const bool aligned = (elements*sizeof(T))%sizeof(float4) == 0;
|
|
1083
|
+
|
|
1084
|
+
if (contiguous_dest && contiguous_src && aligned)
|
|
1085
|
+
{
|
|
1086
|
+
constexpr int M = Layout::Shape::dim(0);
|
|
1087
|
+
constexpr int N = (Layout::Shape::dim(1)*sizeof(T))/sizeof(float4);
|
|
1088
|
+
|
|
1089
|
+
// alias of shared tile with 128bit type
|
|
1090
|
+
using SrcLayout = tile_layout_strided_t<tile_shape_t<M, N>>;
|
|
1091
|
+
tile_shared_t<float4, SrcLayout> src128((float4*)data.ptr);
|
|
1092
|
+
float4* dest128 = (float4*)&dest.data.data[dest.index_from_coord(tile_coord(0,0))];
|
|
1093
|
+
|
|
1094
|
+
assert(((uint64_t)(data.ptr))%sizeof(float4) == 0);
|
|
1095
|
+
assert(((uint64_t)(ptr))%sizeof(float4) == 0);
|
|
1096
|
+
|
|
1097
|
+
const int stride_i = dest.data.strides[0]/sizeof(float4);
|
|
1098
|
+
const int stride_j = 1;
|
|
1099
|
+
|
|
1100
|
+
WP_PRAGMA_UNROLL
|
|
1101
|
+
for (int i=threadIdx.x; i < SrcLayout::Size; i += WP_TILE_BLOCK_DIM)
|
|
1102
|
+
{
|
|
1103
|
+
auto c = SrcLayout::coord_from_linear(i);
|
|
1104
|
+
|
|
1105
|
+
dest128[stride_i*c[0] + stride_j*c[1]] = src128.data(i);
|
|
1106
|
+
}
|
|
794
1107
|
|
|
795
|
-
|
|
796
|
-
|
|
1108
|
+
return;
|
|
1109
|
+
}
|
|
1110
|
+
}
|
|
797
1111
|
|
|
1112
|
+
// scalar bounds checked path
|
|
798
1113
|
WP_PRAGMA_UNROLL
|
|
799
|
-
for (int i=threadIdx.x; i < Size; i += WP_TILE_BLOCK_DIM)
|
|
1114
|
+
for (int i=threadIdx.x; i < Layout::Size; i += WP_TILE_BLOCK_DIM)
|
|
800
1115
|
{
|
|
801
|
-
|
|
1116
|
+
auto c = Layout::coord_from_linear(i);
|
|
1117
|
+
dest.store(c, data(i));
|
|
802
1118
|
}
|
|
803
1119
|
}
|
|
804
1120
|
|
|
805
|
-
|
|
1121
|
+
__device__ __forceinline__
|
|
1122
|
+
void cp_async_global_to_shared_128(float4* shared_dest, const float4* global_src)
|
|
806
1123
|
{
|
|
807
|
-
|
|
808
|
-
|
|
809
|
-
|
|
810
|
-
|
|
811
|
-
|
|
812
|
-
|
|
813
|
-
|
|
814
|
-
|
|
815
|
-
|
|
816
|
-
|
|
817
|
-
|
|
818
|
-
|
|
819
|
-
|
|
820
|
-
|
|
1124
|
+
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800)
|
|
1125
|
+
|
|
1126
|
+
unsigned long long saddr = 0ULL;
|
|
1127
|
+
unsigned long long gaddr = 0ULL;
|
|
1128
|
+
|
|
1129
|
+
asm volatile("cvta.to.shared.u64 %0, %1;" : "=l"(saddr) : "l"(shared_dest));
|
|
1130
|
+
asm volatile("cvta.to.global.u64 %0, %1;" : "=l"(gaddr) : "l"(global_src));
|
|
1131
|
+
|
|
1132
|
+
// Use cp.async on newer architectures
|
|
1133
|
+
asm volatile(
|
|
1134
|
+
"cp.async.ca.shared.global [%0], [%1], 16;\n"
|
|
1135
|
+
:
|
|
1136
|
+
: "l"(saddr), "l"(gaddr)
|
|
1137
|
+
);
|
|
1138
|
+
#else
|
|
1139
|
+
// use regular load/store through register on older arches
|
|
1140
|
+
*shared_dest = *global_src;
|
|
1141
|
+
#endif
|
|
1142
|
+
}
|
|
821
1143
|
|
|
822
|
-
|
|
823
|
-
|
|
1144
|
+
__device__ __forceinline__
|
|
1145
|
+
void cp_async_commit_and_wait_all_128()
|
|
1146
|
+
{
|
|
1147
|
+
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800)
|
|
1148
|
+
asm volatile(
|
|
1149
|
+
"cp.async.commit_group;\n"
|
|
1150
|
+
"cp.async.wait_group 0;\n" ::);
|
|
1151
|
+
#endif
|
|
1152
|
+
}
|
|
1153
|
+
|
|
1154
|
+
template <typename Global>
|
|
1155
|
+
inline CUDA_CALLABLE void copy_from_global(const Global& src)
|
|
1156
|
+
{
|
|
1157
|
+
if (initialized)
|
|
1158
|
+
WP_TILE_SYNC();
|
|
1159
|
+
|
|
1160
|
+
// vectorized loads for specific input/output shapes
|
|
1161
|
+
if constexpr (Layout::Shape::N == 2)
|
|
1162
|
+
{
|
|
1163
|
+
constexpr int lastdim = Layout::Shape::N-1;
|
|
1164
|
+
constexpr bool contiguous_dest = Layout::Stride::dim(lastdim) == 1;
|
|
1165
|
+
const bool contiguous_src = src.data.strides[lastdim] == sizeof(T);
|
|
1166
|
+
const int elements = (src.data.shape[lastdim] - src.offset[lastdim]);
|
|
1167
|
+
const bool aligned = (elements*sizeof(T))%sizeof(float4) == 0;
|
|
1168
|
+
|
|
1169
|
+
if (contiguous_dest && contiguous_src && aligned)
|
|
1170
|
+
{
|
|
1171
|
+
constexpr int M = Layout::Shape::dim(0);
|
|
1172
|
+
constexpr int N = (Layout::Shape::dim(1)*sizeof(T))/sizeof(float4);
|
|
1173
|
+
|
|
1174
|
+
// alias of shared tile with 128bit type
|
|
1175
|
+
using DestLayout = tile_layout_strided_t<tile_shape_t<M, N>>;
|
|
1176
|
+
tile_shared_t<float4, DestLayout> dest128((float4*)data.ptr);
|
|
1177
|
+
float4* src128 = (float4*)&src.data.data[src.index_from_coord(tile_coord(0,0))];
|
|
1178
|
+
|
|
1179
|
+
assert(((uint64_t)(dest128.data.ptr))%sizeof(float4) == 0);
|
|
1180
|
+
assert(((uint64_t)(src128))%sizeof(float4) == 0);
|
|
1181
|
+
|
|
1182
|
+
const int stride_i = src.data.strides[0]/sizeof(float4);
|
|
1183
|
+
const int stride_j = 1;
|
|
1184
|
+
|
|
1185
|
+
WP_PRAGMA_UNROLL
|
|
1186
|
+
for (int i=threadIdx.x; i < DestLayout::Size; i += WP_TILE_BLOCK_DIM)
|
|
1187
|
+
{
|
|
1188
|
+
auto c = DestLayout::coord_from_linear(i);
|
|
1189
|
+
|
|
1190
|
+
#if WP_USE_ASYNC_PIPELINE
|
|
1191
|
+
cp_async_global_to_shared_128(&dest128.data(i), &src128[stride_i*c[0] + stride_j*c[1]]);
|
|
1192
|
+
#else
|
|
1193
|
+
dest128.data(i) = src128[stride_i*c[0] + stride_j*c[1]];
|
|
1194
|
+
#endif // WP_USE_ASYNC_PIPELINE
|
|
1195
|
+
}
|
|
824
1196
|
|
|
825
|
-
|
|
826
|
-
|
|
1197
|
+
#if WP_USE_ASYNC_PIPELINE
|
|
1198
|
+
cp_async_commit_and_wait_all_128();
|
|
1199
|
+
#endif // WP_USE_ASYNC_PIPELINE
|
|
827
1200
|
|
|
828
|
-
|
|
829
|
-
|
|
830
|
-
|
|
831
|
-
coord_t c = src128.coord(i);
|
|
832
|
-
ptr[c.i*stride_i + c.j*stride_j] = src128.data(i);
|
|
1201
|
+
initialized = true;
|
|
1202
|
+
WP_TILE_SYNC();
|
|
1203
|
+
return;
|
|
833
1204
|
}
|
|
834
1205
|
}
|
|
835
|
-
else
|
|
836
|
-
{
|
|
837
|
-
// wp.array() indexing generates poor code due to char* casting
|
|
838
|
-
// here we unroll some of the ops, note this assumes byte strides are
|
|
839
|
-
// aligned to the element size
|
|
840
|
-
T* ptr = &wp::index(dest, tile_i, tile_j);
|
|
841
|
-
const int stride_i = dest.strides[0]/sizeof(T);
|
|
842
|
-
const int stride_j = dest.strides[1]/sizeof(T);
|
|
843
|
-
|
|
844
|
-
WP_PRAGMA_UNROLL
|
|
845
|
-
for (int i=threadIdx.x; i < Size; i += WP_TILE_BLOCK_DIM)
|
|
846
|
-
{
|
|
847
|
-
coord_t c = coord(i);
|
|
848
|
-
ptr[c.i*stride_i + c.j*stride_j] = data(c.i, c.j);
|
|
849
|
-
}
|
|
850
|
-
}
|
|
851
|
-
}
|
|
852
|
-
|
|
853
|
-
inline CUDA_CALLABLE void copy_from_global(const array_t<T>& src, int x)
|
|
854
|
-
{
|
|
855
|
-
// todo: use async pipelines or TMA here
|
|
856
|
-
const int tile_i = x*N;
|
|
857
1206
|
|
|
1207
|
+
// scalar bounds checked path
|
|
858
1208
|
WP_PRAGMA_UNROLL
|
|
859
|
-
for (int i=threadIdx.x; i < Size; i += WP_TILE_BLOCK_DIM)
|
|
1209
|
+
for (int i=threadIdx.x; i < Layout::Size; i += WP_TILE_BLOCK_DIM)
|
|
860
1210
|
{
|
|
861
|
-
|
|
1211
|
+
auto c = Layout::coord_from_linear(i);
|
|
1212
|
+
data(i) = src.load(c);
|
|
862
1213
|
}
|
|
863
1214
|
|
|
1215
|
+
initialized = true;
|
|
864
1216
|
WP_TILE_SYNC();
|
|
865
1217
|
}
|
|
866
1218
|
|
|
867
|
-
|
|
1219
|
+
template <typename Global>
|
|
1220
|
+
inline CUDA_CALLABLE auto atomic_add(Global& dest)
|
|
868
1221
|
{
|
|
869
|
-
|
|
870
|
-
|
|
871
|
-
const int tile_j = y*N;
|
|
1222
|
+
copy_to_register().atomic_add(dest);
|
|
1223
|
+
}
|
|
872
1224
|
|
|
873
|
-
|
|
874
|
-
|
|
875
|
-
|
|
876
|
-
|
|
877
|
-
|
|
1225
|
+
template <typename Global>
|
|
1226
|
+
inline CUDA_CALLABLE auto atomic_add_grad(Global& dest)
|
|
1227
|
+
{
|
|
1228
|
+
grad_to_register().atomic_add_grad(dest);
|
|
1229
|
+
}
|
|
878
1230
|
|
|
879
|
-
|
|
880
|
-
|
|
1231
|
+
// overload for integral types
|
|
1232
|
+
inline CUDA_CALLABLE void print_value(int x) const
|
|
1233
|
+
{
|
|
1234
|
+
printf("%d", x);
|
|
1235
|
+
}
|
|
881
1236
|
|
|
882
|
-
|
|
1237
|
+
// overload for floating point types
|
|
1238
|
+
template <typename ValueType>
|
|
1239
|
+
inline CUDA_CALLABLE void print_value(ValueType x) const
|
|
1240
|
+
{
|
|
1241
|
+
printf("%g", x);
|
|
1242
|
+
}
|
|
883
1243
|
|
|
884
|
-
|
|
885
|
-
|
|
1244
|
+
template <int Level = 0>
|
|
1245
|
+
inline CUDA_CALLABLE void print_values(const Storage& storage, int index=0) const
|
|
1246
|
+
{
|
|
1247
|
+
using Shape = typename Layout::Shape;
|
|
886
1248
|
|
|
887
|
-
|
|
888
|
-
|
|
1249
|
+
if constexpr (Level < Shape::N)
|
|
1250
|
+
{
|
|
1251
|
+
if constexpr (Level == Shape::N - 1)
|
|
1252
|
+
{
|
|
1253
|
+
// Special handling for 1D case
|
|
1254
|
+
printf("[");
|
|
1255
|
+
for (int i = 0; i < Shape::dim(Level); ++i)
|
|
1256
|
+
{
|
|
1257
|
+
print_value(storage(index + i));
|
|
889
1258
|
|
|
890
|
-
|
|
891
|
-
|
|
892
|
-
|
|
893
|
-
|
|
894
|
-
|
|
895
|
-
|
|
896
|
-
|
|
897
|
-
|
|
898
|
-
|
|
899
|
-
|
|
900
|
-
|
|
901
|
-
|
|
1259
|
+
if (i < Shape::dim(Level) - 1)
|
|
1260
|
+
{
|
|
1261
|
+
printf(" ");
|
|
1262
|
+
}
|
|
1263
|
+
}
|
|
1264
|
+
printf("]");
|
|
1265
|
+
}
|
|
1266
|
+
else if constexpr (Level == Shape::N - 2)
|
|
1267
|
+
{
|
|
1268
|
+
// Special handling for 2D case
|
|
1269
|
+
printf("[");
|
|
1270
|
+
for (int i = 0; i < Shape::dim(Level); ++i)
|
|
1271
|
+
{
|
|
1272
|
+
printf("[");
|
|
1273
|
+
for (int j=0; j < Shape::dim(Level+1); ++j)
|
|
1274
|
+
{
|
|
1275
|
+
print_value(storage(index));
|
|
1276
|
+
|
|
1277
|
+
if (j < Shape::dim(Level+1) - 1)
|
|
1278
|
+
{
|
|
1279
|
+
printf(" ");
|
|
1280
|
+
}
|
|
1281
|
+
|
|
1282
|
+
++index;
|
|
1283
|
+
}
|
|
1284
|
+
|
|
1285
|
+
printf("]");
|
|
1286
|
+
|
|
1287
|
+
// next row
|
|
1288
|
+
if (i < Shape::dim(Level)-1)
|
|
1289
|
+
{
|
|
1290
|
+
printf("\n");
|
|
1291
|
+
|
|
1292
|
+
// indent next row
|
|
1293
|
+
for (int i=0; i <= Shape::N-2; ++i)
|
|
1294
|
+
printf(" ");
|
|
1295
|
+
|
|
1296
|
+
}
|
|
1297
|
+
}
|
|
1298
|
+
printf("]");
|
|
1299
|
+
}
|
|
1300
|
+
else
|
|
1301
|
+
{
|
|
1302
|
+
printf("[");
|
|
1303
|
+
for (int i = 0; i < Shape::dim(Level); ++i)
|
|
1304
|
+
{
|
|
1305
|
+
print_values<Level + 1>(storage, index + i * Shape::dim(Level));
|
|
1306
|
+
if (i < Shape::dim(Level) - 1)
|
|
1307
|
+
{
|
|
1308
|
+
printf("\n\n");
|
|
1309
|
+
|
|
1310
|
+
// indent next row
|
|
1311
|
+
for (int i=0; i <= Level; ++i)
|
|
1312
|
+
printf(" ");
|
|
1313
|
+
}
|
|
1314
|
+
}
|
|
1315
|
+
printf("]");
|
|
902
1316
|
}
|
|
1317
|
+
}
|
|
1318
|
+
}
|
|
903
1319
|
|
|
904
|
-
|
|
905
|
-
|
|
906
|
-
|
|
1320
|
+
inline CUDA_CALLABLE void print(bool reverse=false) const
|
|
1321
|
+
{
|
|
1322
|
+
if (threadIdx.x != 0)
|
|
1323
|
+
return;
|
|
907
1324
|
|
|
908
|
-
|
|
1325
|
+
if (reverse)
|
|
1326
|
+
print_values(grad);
|
|
909
1327
|
else
|
|
1328
|
+
print_values(data);
|
|
1329
|
+
|
|
1330
|
+
printf(" = tile(shape=(");
|
|
1331
|
+
for (int i=0; i < Layout::Shape::N; ++i)
|
|
910
1332
|
{
|
|
911
|
-
|
|
912
|
-
|
|
913
|
-
|
|
914
|
-
const T* ptr = &wp::index(src, tile_i, tile_j);
|
|
915
|
-
|
|
916
|
-
assert(src.strides[0]%sizeof(T) == 0);
|
|
917
|
-
assert(src.strides[1]%sizeof(T) == 0);
|
|
918
|
-
|
|
919
|
-
const int stride_i = src.strides[0]/sizeof(T);
|
|
920
|
-
const int stride_j = src.strides[1]/sizeof(T);
|
|
921
|
-
|
|
922
|
-
WP_PRAGMA_UNROLL
|
|
923
|
-
for (int i=threadIdx.x; i < Size; i += WP_TILE_BLOCK_DIM)
|
|
924
|
-
{
|
|
925
|
-
coord_t c = coord(i);
|
|
926
|
-
data(c.i, c.j) = ptr[c.i*stride_i + c.j*stride_j];
|
|
927
|
-
}
|
|
1333
|
+
printf("%d", Layout::Shape::dim(i));
|
|
1334
|
+
if (i != Layout::Shape::N-1)
|
|
1335
|
+
printf(",");
|
|
928
1336
|
}
|
|
929
1337
|
|
|
930
|
-
|
|
931
|
-
|
|
932
|
-
#endif
|
|
933
|
-
|
|
934
|
-
}
|
|
1338
|
+
printf("), storage=shared)\n");
|
|
1339
|
+
}
|
|
935
1340
|
};
|
|
936
1341
|
|
|
937
|
-
|
|
938
|
-
|
|
1342
|
+
|
|
1343
|
+
template <typename T, typename L>
|
|
1344
|
+
void tile_register_t<T, L>::print() const
|
|
939
1345
|
{
|
|
940
1346
|
// create a temporary shared tile so that
|
|
941
1347
|
// we can print it deterministically
|
|
942
|
-
WP_TILE_SHARED T smem[
|
|
943
|
-
|
|
944
|
-
|
|
1348
|
+
WP_TILE_SHARED T smem[L::Size];
|
|
1349
|
+
tile_shared_t<T, tile_layout_strided_t<typename L::Shape>> scratch(smem, NULL);
|
|
1350
|
+
|
|
945
1351
|
scratch.assign(*this);
|
|
946
1352
|
|
|
947
1353
|
WP_TILE_SYNC();
|
|
948
1354
|
|
|
949
1355
|
if (threadIdx.x == 0)
|
|
950
1356
|
{
|
|
951
|
-
|
|
952
|
-
for (int i=0; i < M; ++i)
|
|
953
|
-
{
|
|
954
|
-
printf("%*s[", i>0, "");
|
|
955
|
-
for (int j=0; j < N; ++j)
|
|
956
|
-
{
|
|
957
|
-
printf("%g ", double(scratch.data(i, j)));
|
|
958
|
-
}
|
|
1357
|
+
scratch.print_values(scratch.data, 0);
|
|
959
1358
|
|
|
960
|
-
|
|
961
|
-
|
|
962
|
-
|
|
963
|
-
|
|
1359
|
+
printf(" = tile(shape=(");
|
|
1360
|
+
for (int i=0; i < L::Shape::N; ++i)
|
|
1361
|
+
{
|
|
1362
|
+
printf("%d", L::Shape::dim(i));
|
|
1363
|
+
if (i != L::Shape::N-1)
|
|
1364
|
+
printf(",");
|
|
964
1365
|
}
|
|
1366
|
+
|
|
1367
|
+
printf("), storage=register)\n");
|
|
965
1368
|
}
|
|
966
1369
|
|
|
967
1370
|
WP_TILE_SYNC();
|
|
968
1371
|
}
|
|
969
1372
|
|
|
970
|
-
|
|
971
|
-
|
|
1373
|
+
// print entry points
|
|
1374
|
+
template <typename T, typename L>
|
|
1375
|
+
inline CUDA_CALLABLE void print(const tile_register_t<T, L>& t) { t.print(); }
|
|
1376
|
+
template <typename T, typename L, bool Owner>
|
|
1377
|
+
inline CUDA_CALLABLE void print(const tile_shared_t<T, L, Owner>& t) { t.print(); }
|
|
1378
|
+
|
|
1379
|
+
template <typename T, typename L, bool O>
|
|
1380
|
+
inline CUDA_CALLABLE int len(const tile_shared_t<T, L, O>& t)
|
|
972
1381
|
{
|
|
973
|
-
|
|
1382
|
+
return Tile::Layout::Shape::dim(0);
|
|
974
1383
|
}
|
|
975
1384
|
|
|
976
|
-
template <typename T,
|
|
977
|
-
inline CUDA_CALLABLE void
|
|
1385
|
+
template <typename T, typename L, bool O, typename AdjTile>
|
|
1386
|
+
inline CUDA_CALLABLE void adj_len(const tile_shared_t<T,L,O>& t, const AdjTile& a, int& adj_ret)
|
|
978
1387
|
{
|
|
979
|
-
a.print();
|
|
980
1388
|
}
|
|
981
1389
|
|
|
982
|
-
template <typename T,
|
|
983
|
-
inline CUDA_CALLABLE
|
|
1390
|
+
template <typename T, typename L>
|
|
1391
|
+
inline CUDA_CALLABLE int len(const tile_register_t<T, L>& t)
|
|
984
1392
|
{
|
|
985
|
-
|
|
1393
|
+
return Tile::Layout::Shape::dim(0);
|
|
986
1394
|
}
|
|
987
1395
|
|
|
988
|
-
template <typename T,
|
|
989
|
-
inline CUDA_CALLABLE void
|
|
1396
|
+
template <typename T, typename L, typename AdjTile>
|
|
1397
|
+
inline CUDA_CALLABLE void adj_len(const tile_register_t<T,L>& t, const AdjTile& a, int& adj_ret)
|
|
990
1398
|
{
|
|
991
|
-
a.print();
|
|
992
1399
|
}
|
|
993
1400
|
|
|
1401
|
+
|
|
1402
|
+
template <typename T, typename L>
|
|
1403
|
+
inline CUDA_CALLABLE void adj_print(const tile_register_t<T, L>& t, const tile_register_t<T, L>& a) { a.print(); }
|
|
1404
|
+
template <typename T, typename L, bool Owner>
|
|
1405
|
+
inline CUDA_CALLABLE void adj_print(const tile_shared_t<T, L, Owner>& t, const tile_shared_t<T, L, Owner>& a) { a.print(true); }
|
|
1406
|
+
|
|
1407
|
+
|
|
1408
|
+
|
|
994
1409
|
// helpers to allocate shared tiles
|
|
995
|
-
template <typename T,
|
|
1410
|
+
template <typename T, typename Shape, bool RequiresGrad>
|
|
996
1411
|
inline CUDA_CALLABLE auto tile_alloc_empty()
|
|
997
1412
|
|
|
998
|
-
{ constexpr int
|
|
999
|
-
T* data = (T*)tile_alloc_shared(
|
|
1413
|
+
{ constexpr int size = Shape::size();
|
|
1414
|
+
T* data = (T*)tile_alloc_shared(size*sizeof(T));
|
|
1000
1415
|
T* grad = NULL;
|
|
1001
1416
|
|
|
1002
1417
|
#if FP_CHECK
|
|
1003
1418
|
|
|
1004
|
-
for (int i=threadIdx.x; i <
|
|
1419
|
+
for (int i=threadIdx.x; i < size; i+= WP_TILE_BLOCK_DIM)
|
|
1005
1420
|
data[i] = T(nanf(""));
|
|
1006
1421
|
|
|
1007
1422
|
WP_TILE_SYNC();
|
|
@@ -1011,15 +1426,15 @@ inline CUDA_CALLABLE auto tile_alloc_empty()
|
|
|
1011
1426
|
|
|
1012
1427
|
if (RequiresGrad)
|
|
1013
1428
|
{
|
|
1014
|
-
grad = (T*)tile_alloc_shared(
|
|
1429
|
+
grad = (T*)tile_alloc_shared(size*sizeof(T));
|
|
1015
1430
|
|
|
1016
|
-
for (int i=threadIdx.x; i <
|
|
1431
|
+
for (int i=threadIdx.x; i < size; i+= WP_TILE_BLOCK_DIM)
|
|
1017
1432
|
grad[i] = T(0);
|
|
1018
1433
|
|
|
1019
1434
|
WP_TILE_SYNC();
|
|
1020
1435
|
}
|
|
1021
1436
|
|
|
1022
|
-
return tile_shared_t<T,
|
|
1437
|
+
return tile_shared_t<T, tile_layout_strided_t<Shape>>(data, grad);
|
|
1023
1438
|
}
|
|
1024
1439
|
|
|
1025
1440
|
template <typename T, int M, int N, bool RequiresGrad>
|
|
@@ -1043,7 +1458,7 @@ inline CUDA_CALLABLE auto tile_alloc_zeros()
|
|
|
1043
1458
|
|
|
1044
1459
|
WP_TILE_SYNC();
|
|
1045
1460
|
|
|
1046
|
-
return tile_shared_t<T, M, N
|
|
1461
|
+
return tile_shared_t<T, tile_layout_strided_t<tile_shape_t<M, N>>(data, grad);
|
|
1047
1462
|
}
|
|
1048
1463
|
|
|
1049
1464
|
|
|
@@ -1054,9 +1469,10 @@ inline CUDA_CALLABLE auto tile_alloc_zeros()
|
|
|
1054
1469
|
template <typename T>
|
|
1055
1470
|
inline CUDA_CALLABLE auto tile(const T& x)
|
|
1056
1471
|
{
|
|
1057
|
-
tile_register_t<T,
|
|
1472
|
+
tile_register_t<T, tile_layout_register_t<tile_shape_t<WP_TILE_BLOCK_DIM>>> result;
|
|
1058
1473
|
|
|
1059
|
-
|
|
1474
|
+
using Layout = typename decltype(result)::Layout;
|
|
1475
|
+
static_assert(Layout::NumRegs == 1);
|
|
1060
1476
|
|
|
1061
1477
|
result.data[0] = x;
|
|
1062
1478
|
return result;
|
|
@@ -1066,9 +1482,10 @@ inline CUDA_CALLABLE auto tile(const T& x)
|
|
|
1066
1482
|
template <typename T, unsigned Length>
|
|
1067
1483
|
inline CUDA_CALLABLE auto tile(const wp::vec_t<Length, T>& x)
|
|
1068
1484
|
{
|
|
1069
|
-
tile_register_t<T, Length, WP_TILE_BLOCK_DIM
|
|
1485
|
+
tile_register_t<T, tile_layout_register_t<tile_shape_t<Length, WP_TILE_BLOCK_DIM>>> result;
|
|
1070
1486
|
|
|
1071
|
-
|
|
1487
|
+
using Layout = typename decltype(result)::Layout;
|
|
1488
|
+
static_assert(Layout::NumRegs == Length);
|
|
1072
1489
|
|
|
1073
1490
|
for (int i=0; i < Length; ++i)
|
|
1074
1491
|
result.data[i] = x[i];
|
|
@@ -1080,8 +1497,8 @@ inline CUDA_CALLABLE auto tile(const wp::vec_t<Length, T>& x)
|
|
|
1080
1497
|
template <typename T, typename AdjTile>
|
|
1081
1498
|
inline CUDA_CALLABLE void adj_tile(const T& x, T& adj_x, AdjTile& adj_ret)
|
|
1082
1499
|
{
|
|
1083
|
-
static_assert(AdjTile::
|
|
1084
|
-
static_assert(AdjTile::
|
|
1500
|
+
static_assert(AdjTile::Layout::Shape::N == 1);
|
|
1501
|
+
static_assert(AdjTile::Layout::Shape::dim(0) == WP_TILE_BLOCK_DIM);
|
|
1085
1502
|
|
|
1086
1503
|
auto adj_reg = adj_ret.copy_to_register();
|
|
1087
1504
|
|
|
@@ -1091,8 +1508,9 @@ inline CUDA_CALLABLE void adj_tile(const T& x, T& adj_x, AdjTile& adj_ret)
|
|
|
1091
1508
|
template <typename T, unsigned Length, typename AdjTile>
|
|
1092
1509
|
inline CUDA_CALLABLE void adj_tile(const wp::vec_t<Length, T>& x, wp::vec_t<Length, T>& adj_x, AdjTile& adj_ret)
|
|
1093
1510
|
{
|
|
1094
|
-
static_assert(AdjTile::
|
|
1095
|
-
static_assert(AdjTile::
|
|
1511
|
+
static_assert(AdjTile::Layout::Shape::N == 2);
|
|
1512
|
+
static_assert(AdjTile::Layout::Shape::dim(0) == Length);
|
|
1513
|
+
static_assert(AdjTile::Layout::Shape::dim(1) == WP_TILE_BLOCK_DIM);
|
|
1096
1514
|
|
|
1097
1515
|
auto adj_reg = adj_ret.copy_to_register();
|
|
1098
1516
|
|
|
@@ -1108,76 +1526,82 @@ inline CUDA_CALLABLE auto untile(Tile& tile)
|
|
|
1108
1526
|
// there is exactly one value per-thread
|
|
1109
1527
|
auto reg = tile.copy_to_register();
|
|
1110
1528
|
|
|
1529
|
+
constexpr int N = Tile::Layout::Shape::N;
|
|
1530
|
+
|
|
1111
1531
|
// scalar case
|
|
1112
|
-
if constexpr(
|
|
1532
|
+
if constexpr(N == 1)
|
|
1113
1533
|
{
|
|
1114
1534
|
return reg.data[0];
|
|
1115
1535
|
}
|
|
1116
1536
|
|
|
1117
1537
|
// vector case
|
|
1118
|
-
if constexpr(
|
|
1538
|
+
if constexpr(N == 2)
|
|
1119
1539
|
{
|
|
1120
|
-
|
|
1121
|
-
|
|
1540
|
+
constexpr int Length = Tile::Layout::Shape::dim(0);
|
|
1541
|
+
wp::vec_t<Length, typename Tile::Type> v;
|
|
1542
|
+
for (int i=0; i < Length; ++i)
|
|
1122
1543
|
v[i] = reg.data[i];
|
|
1123
1544
|
|
|
1124
1545
|
return v;
|
|
1125
1546
|
}
|
|
1126
1547
|
}
|
|
1127
1548
|
|
|
1128
|
-
|
|
1129
|
-
|
|
1130
1549
|
template <typename Tile, typename Value>
|
|
1131
1550
|
inline CUDA_CALLABLE void adj_untile(Tile& tile, Tile& adj_tile, Value& adj_ret)
|
|
1132
1551
|
{
|
|
1133
1552
|
auto adj = adj_tile.copy_to_register();
|
|
1134
1553
|
|
|
1554
|
+
constexpr int N = Tile::Layout::Shape::N;
|
|
1555
|
+
|
|
1135
1556
|
// scalar case
|
|
1136
|
-
if constexpr(
|
|
1557
|
+
if constexpr(N == 1)
|
|
1137
1558
|
{
|
|
1138
1559
|
adj.data[0] += adj_ret;
|
|
1139
1560
|
}
|
|
1140
1561
|
|
|
1141
1562
|
// vector case
|
|
1142
|
-
if constexpr(
|
|
1563
|
+
if constexpr(N == 2)
|
|
1143
1564
|
{
|
|
1144
|
-
|
|
1145
|
-
|
|
1565
|
+
constexpr int Length = Tile::Layout::Shape::dim(0);
|
|
1566
|
+
for (int i=0; i < Length; ++i)
|
|
1567
|
+
adj.data[i] += adj_ret[i];
|
|
1146
1568
|
}
|
|
1147
1569
|
|
|
1148
1570
|
adj_tile.assign(adj);
|
|
1149
1571
|
}
|
|
1150
1572
|
|
|
1151
1573
|
// zero initialized tile
|
|
1152
|
-
template <typename T,
|
|
1574
|
+
template <typename T, unsigned... Shape>
|
|
1153
1575
|
inline CUDA_CALLABLE auto tile_zeros()
|
|
1154
1576
|
{
|
|
1155
1577
|
// tile variable assignment operator will handle initialization (since lhs could be shared/register tile)
|
|
1156
1578
|
return T(0);
|
|
1157
1579
|
}
|
|
1158
1580
|
|
|
1159
|
-
//
|
|
1160
|
-
template <typename T,
|
|
1581
|
+
// one-initialized tile
|
|
1582
|
+
template <typename T, unsigned... Shape>
|
|
1161
1583
|
inline CUDA_CALLABLE auto tile_ones()
|
|
1162
1584
|
{
|
|
1163
1585
|
// tile variable assignment operator will handle initialization (since lhs could be shared/register tile)
|
|
1164
1586
|
return T(1);
|
|
1165
1587
|
}
|
|
1166
1588
|
|
|
1167
|
-
//
|
|
1168
|
-
template <typename T, int
|
|
1589
|
+
// tile with evenly spaced values
|
|
1590
|
+
template <typename T, int Len>
|
|
1169
1591
|
inline CUDA_CALLABLE auto tile_arange(T start, T stop, T step)
|
|
1170
1592
|
{
|
|
1171
|
-
|
|
1593
|
+
auto out = tile_register<T, Len>();
|
|
1594
|
+
|
|
1595
|
+
using Layout = typename decltype(out)::Layout;
|
|
1172
1596
|
|
|
1173
1597
|
WP_PRAGMA_UNROLL
|
|
1174
|
-
for (int i=0; i <
|
|
1598
|
+
for (int i=0; i < Layout::NumRegs; ++i)
|
|
1175
1599
|
{
|
|
1176
|
-
const int linear =
|
|
1600
|
+
const int linear = Layout::linear_from_register(i);
|
|
1177
1601
|
|
|
1178
1602
|
// handle case where tile size is not
|
|
1179
1603
|
// aligned to block dimensions
|
|
1180
|
-
if (!
|
|
1604
|
+
if (!Layout::valid(linear))
|
|
1181
1605
|
break;
|
|
1182
1606
|
|
|
1183
1607
|
out.data[i] = start + linear*step;
|
|
@@ -1190,192 +1614,106 @@ template <typename T, typename AdjTile>
|
|
|
1190
1614
|
inline CUDA_CALLABLE void adj_tile_arange(T start, T stop, T step,
|
|
1191
1615
|
T& adj_start, T& adj_stop, T& adj_step, AdjTile& adj_ret) {}
|
|
1192
1616
|
|
|
1193
|
-
// entry point for
|
|
1194
|
-
template <typename
|
|
1195
|
-
inline CUDA_CALLABLE auto tile_load(array_t<T>& src,
|
|
1617
|
+
// entry point for load operations, these just return a reference to a global memory array + coordinate
|
|
1618
|
+
template <unsigned... Shape, typename... Indices, typename T>
|
|
1619
|
+
inline CUDA_CALLABLE auto tile_load(array_t<T>& src, Indices... offset)
|
|
1196
1620
|
{
|
|
1197
|
-
return tile_global_t<T
|
|
1621
|
+
return tile_global_t<T, tile_shape_t<Shape...>>(src, tile_coord(offset...));
|
|
1198
1622
|
}
|
|
1199
1623
|
|
|
1200
|
-
// entry point for
|
|
1201
|
-
template <typename
|
|
1202
|
-
inline CUDA_CALLABLE
|
|
1203
|
-
{
|
|
1204
|
-
|
|
1205
|
-
}
|
|
1624
|
+
// // entry point for tile store operations
|
|
1625
|
+
// template <typename... Indices, typename T, typename Tile>
|
|
1626
|
+
// inline CUDA_CALLABLE void tile_store(array_t<T>& dest, Tile& src, Indices... x)
|
|
1627
|
+
// {
|
|
1628
|
+
// src.copy_to_global(tile_global_t<T, typename Tile::Layout::Shape>(dest, tile_coord(x)));
|
|
1629
|
+
// }
|
|
1206
1630
|
|
|
1207
|
-
// entry point for
|
|
1631
|
+
// entry point for tile store operations
|
|
1208
1632
|
template <typename T, typename Tile>
|
|
1209
|
-
inline CUDA_CALLABLE void tile_store(array_t<T>& dest, int x, Tile& src)
|
|
1210
|
-
{
|
|
1211
|
-
// dispatch to tile type
|
|
1212
|
-
src.copy_to_global(dest, x);
|
|
1213
|
-
}
|
|
1214
|
-
|
|
1215
|
-
// entry point for 2d store
|
|
1633
|
+
inline CUDA_CALLABLE void tile_store(array_t<T>& dest, int x, Tile& src) { src.copy_to_global(tile_global_t<T, typename Tile::Layout::Shape>(dest, tile_coord(x))); }
|
|
1216
1634
|
template <typename T, typename Tile>
|
|
1217
|
-
inline CUDA_CALLABLE void tile_store(array_t<T>& dest, int x, int y, Tile& src)
|
|
1218
|
-
{
|
|
1219
|
-
// dispatch to tile type
|
|
1220
|
-
src.copy_to_global(dest, x, y);
|
|
1221
|
-
}
|
|
1222
|
-
|
|
1223
|
-
// entry point for store
|
|
1635
|
+
inline CUDA_CALLABLE void tile_store(array_t<T>& dest, int x, int y, Tile& src) { src.copy_to_global(tile_global_t<T, typename Tile::Layout::Shape>(dest, tile_coord(x, y))); }
|
|
1224
1636
|
template <typename T, typename Tile>
|
|
1225
|
-
inline CUDA_CALLABLE
|
|
1226
|
-
|
|
1227
|
-
|
|
1228
|
-
|
|
1229
|
-
const int tile_i = x*src_reg.M;
|
|
1230
|
-
const int tile_j = y*src_reg.N;
|
|
1231
|
-
|
|
1232
|
-
tile_register_t<T, src_reg.M, src_reg.N> previous;
|
|
1233
|
-
|
|
1234
|
-
WP_PRAGMA_UNROLL
|
|
1235
|
-
for (int i=0; i < src_reg.NumRegs; ++i)
|
|
1236
|
-
{
|
|
1237
|
-
// handle case where tile size is not
|
|
1238
|
-
// aligned to block dimensions
|
|
1239
|
-
int linear = src_reg.index(i);
|
|
1240
|
-
if (!src_reg.Aligned && linear >= src_reg.Size)
|
|
1241
|
-
break;
|
|
1637
|
+
inline CUDA_CALLABLE void tile_store(array_t<T>& dest, int x, int y, int z, Tile& src) { src.copy_to_global(tile_global_t<T, typename Tile::Layout::Shape>(dest, tile_coord(x, y, z))); }
|
|
1638
|
+
template <typename T, typename Tile>
|
|
1639
|
+
inline CUDA_CALLABLE void tile_store(array_t<T>& dest, int x, int y, int z, int w, Tile& src) { src.copy_to_global(tile_global_t<T, typename Tile::Layout::Shape>(dest, tile_coord(x, y, z, w))); }
|
|
1242
1640
|
|
|
1243
|
-
coord_t c = src_reg.coord(linear);
|
|
1244
|
-
previous.data[i] = atomic_add(dest, tile_i + c.i, tile_j + c.j, src_reg.data[i]);
|
|
1245
|
-
}
|
|
1246
1641
|
|
|
1247
|
-
return previous;
|
|
1248
|
-
}
|
|
1249
1642
|
|
|
1643
|
+
template <typename T, typename Tile>
|
|
1644
|
+
inline CUDA_CALLABLE auto tile_atomic_add(array_t<T>& dest, int x, Tile& src) { return src.atomic_add(tile_global_t<T, typename Tile::Layout::Shape>(dest, tile_coord(x))); }
|
|
1645
|
+
template <typename T, typename Tile>
|
|
1646
|
+
inline CUDA_CALLABLE auto tile_atomic_add(array_t<T>& dest, int x, int y, Tile& src) { return src.atomic_add(tile_global_t<T, typename Tile::Layout::Shape>(dest, tile_coord(x, y)));}
|
|
1647
|
+
template <typename T, typename Tile>
|
|
1648
|
+
inline CUDA_CALLABLE auto tile_atomic_add(array_t<T>& dest, int x, int y, int z, Tile& src) { return src.atomic_add(tile_global_t<T, typename Tile::Layout::Shape>(dest, tile_coord(x, y, z)));}
|
|
1649
|
+
template <typename T, typename Tile>
|
|
1650
|
+
inline CUDA_CALLABLE auto tile_atomic_add(array_t<T>& dest, int x, int y, int z, int w, Tile& src) { return src.atomic_add(tile_global_t<T, typename Tile::Layout::Shape>(dest, tile_coord(x, y, z, w)));}
|
|
1250
1651
|
|
|
1251
1652
|
|
|
1252
1653
|
//-------------------------------------
|
|
1253
1654
|
// Adjoints
|
|
1254
1655
|
|
|
1255
|
-
template <typename T, typename AdjTile>
|
|
1256
|
-
inline CUDA_CALLABLE void adj_tile_load(array_t<T>& src,
|
|
1257
|
-
array_t<T>& adj_src,
|
|
1656
|
+
template <typename T, typename AdjTile, typename Coord>
|
|
1657
|
+
inline CUDA_CALLABLE void adj_tile_load(array_t<T>& src, Coord c,
|
|
1658
|
+
array_t<T>& adj_src, Coord adj_c,
|
|
1258
1659
|
AdjTile& adj_ret)
|
|
1259
1660
|
{
|
|
1260
|
-
|
|
1261
|
-
|
|
1262
|
-
//
|
|
1263
|
-
|
|
1264
|
-
|
|
1265
|
-
|
|
1266
|
-
const int tile_i = x*adj_reg.N;
|
|
1267
|
-
|
|
1268
|
-
// add gradients to src array
|
|
1269
|
-
WP_PRAGMA_UNROLL
|
|
1270
|
-
for (int i=0; i < adj_reg.NumRegs; ++i)
|
|
1271
|
-
{
|
|
1272
|
-
int linear = adj_reg.index(i);
|
|
1273
|
-
if (!adj_reg.Aligned && linear >= adj_reg.Size)
|
|
1274
|
-
break;
|
|
1275
|
-
|
|
1276
|
-
auto grad = adj_reg.data[i];
|
|
1661
|
+
tile_global_t<T, typename AdjTile::Layout::Shape> dest(src, c);
|
|
1662
|
+
|
|
1663
|
+
// we allow users to override grad of src
|
|
1664
|
+
if (adj_src.data)
|
|
1665
|
+
dest.data.grad = adj_src.data;
|
|
1277
1666
|
|
|
1278
|
-
|
|
1279
|
-
adj_atomic_add(&index(adj_src, tile_i + linear), grad);
|
|
1280
|
-
else if (src.grad)
|
|
1281
|
-
adj_atomic_add(&index_grad(src, tile_i + linear), grad);
|
|
1282
|
-
}
|
|
1667
|
+
adj_ret.atomic_add_grad(dest);
|
|
1283
1668
|
}
|
|
1284
1669
|
|
|
1285
|
-
template <typename T, typename AdjTile>
|
|
1286
|
-
inline CUDA_CALLABLE void adj_tile_load(array_t<T>& src, int x, int y,
|
|
1287
|
-
array_t<T>& adj_src, int adj_x, int adj_y,
|
|
1288
|
-
AdjTile& adj_ret)
|
|
1289
|
-
{
|
|
1290
|
-
// early out
|
|
1291
|
-
// if (!src.grad)
|
|
1292
|
-
// return;
|
|
1293
|
-
|
|
1294
|
-
auto adj_reg = adj_ret.grad_to_register();
|
|
1295
|
-
|
|
1296
|
-
const int tile_i = x*adj_reg.M;
|
|
1297
|
-
const int tile_j = y*adj_reg.N;
|
|
1298
|
-
|
|
1299
|
-
// add gradients to src array
|
|
1300
|
-
WP_PRAGMA_UNROLL
|
|
1301
|
-
for (int i=0; i < adj_reg.NumRegs; ++i)
|
|
1302
|
-
{
|
|
1303
|
-
int linear = adj_reg.index(i);
|
|
1304
|
-
if (!adj_reg.Aligned && linear >= adj_reg.Size)
|
|
1305
|
-
break;
|
|
1306
|
-
|
|
1307
|
-
coord_t coord = adj_reg.coord(linear);
|
|
1308
1670
|
|
|
1309
|
-
|
|
1671
|
+
template <typename T, typename AdjTile>
|
|
1672
|
+
inline CUDA_CALLABLE void adj_tile_load(array_t<T>& src, int x, array_t<T>& adj_src, int adj_x, AdjTile& adj_ret) { adj_tile_load( src, tile_coord(x), adj_src, tile_coord(0), adj_ret); }
|
|
1673
|
+
template <typename T, typename AdjTile>
|
|
1674
|
+
inline CUDA_CALLABLE void adj_tile_load(array_t<T>& src, int x, int y, array_t<T>& adj_src, int adj_x, int adj_y, AdjTile& adj_ret) { adj_tile_load( src, tile_coord(x, y), adj_src, tile_coord(0,0), adj_ret); }
|
|
1675
|
+
template <typename T, typename AdjTile>
|
|
1676
|
+
inline CUDA_CALLABLE void adj_tile_load(array_t<T>& src, int x, int y, int z, array_t<T>& adj_src, int adj_x, int adj_y, int adj_z, AdjTile& adj_ret) { adj_tile_load( src, tile_coord(x, y, z), adj_src, tile_coord(0,0,0), adj_ret); }
|
|
1677
|
+
template <typename T, typename AdjTile>
|
|
1678
|
+
inline CUDA_CALLABLE void adj_tile_load(array_t<T>& src, int x, int y, int z, int w, array_t<T>& adj_src, int adj_x, int adj_y, int adj_z, int adj_w, AdjTile& adj_ret) { adj_tile_load( src, tile_coord(x, y, z, w), adj_src, tile_coord(0,0,0,0), adj_ret); }
|
|
1310
1679
|
|
|
1311
|
-
if (adj_src.data)
|
|
1312
|
-
adj_atomic_add(&index(adj_src, tile_i + coord.i, tile_j + coord.j), grad);
|
|
1313
|
-
else if (src.grad)
|
|
1314
|
-
adj_atomic_add(&index_grad(src, tile_i + coord.i, tile_j + coord.j), grad);
|
|
1315
|
-
}
|
|
1316
|
-
}
|
|
1317
1680
|
|
|
1318
1681
|
|
|
1319
|
-
template <typename T, typename Tile, typename AdjTile>
|
|
1320
|
-
inline CUDA_CALLABLE void adj_tile_store(array_t<T>& dest,
|
|
1682
|
+
template <typename T, typename Tile, typename AdjTile, typename Coord>
|
|
1683
|
+
inline CUDA_CALLABLE void adj_tile_store(array_t<T>& dest, Coord c, Tile& t, array_t<T>& adj_dest, Coord adj_c, AdjTile& adj_t)
|
|
1321
1684
|
{
|
|
1322
|
-
|
|
1323
|
-
|
|
1324
|
-
|
|
1325
|
-
|
|
1326
|
-
|
|
1327
|
-
// load gradients from output
|
|
1328
|
-
WP_PRAGMA_UNROLL
|
|
1329
|
-
for (int i=0; i < adj_reg.NumRegs; ++i)
|
|
1330
|
-
{
|
|
1331
|
-
int linear = adj_reg.index(i);
|
|
1332
|
-
if (!adj_reg.Aligned && linear >= adj_reg.Size)
|
|
1333
|
-
break;
|
|
1685
|
+
tile_global_t<T, typename AdjTile::Layout::Shape> src(dest, c);
|
|
1686
|
+
|
|
1687
|
+
// we allow users to override grad of src
|
|
1688
|
+
if (adj_dest.data)
|
|
1689
|
+
src.data.grad = adj_dest.data;
|
|
1334
1690
|
|
|
1335
|
-
|
|
1336
|
-
|
|
1337
|
-
else if (dest.grad)
|
|
1338
|
-
adj_reg.data[i] = index_grad(dest, tile_i + linear);
|
|
1339
|
-
}
|
|
1691
|
+
if (src.data.grad == NULL)
|
|
1692
|
+
return;
|
|
1340
1693
|
|
|
1341
|
-
|
|
1342
|
-
adj_t.grad_add(adj_reg);
|
|
1694
|
+
adj_t.grad_add(src);
|
|
1343
1695
|
}
|
|
1344
1696
|
|
|
1345
1697
|
template <typename T, typename Tile, typename AdjTile>
|
|
1346
|
-
inline CUDA_CALLABLE void adj_tile_store(array_t<T>& dest, int x,
|
|
1347
|
-
|
|
1348
|
-
|
|
1349
|
-
|
|
1350
|
-
|
|
1351
|
-
|
|
1352
|
-
|
|
1353
|
-
|
|
1354
|
-
// load gradients from output
|
|
1355
|
-
WP_PRAGMA_UNROLL
|
|
1356
|
-
for (int i=0; i < adj_reg.NumRegs; ++i)
|
|
1357
|
-
{
|
|
1358
|
-
int linear = adj_reg.index(i);
|
|
1359
|
-
if (!adj_reg.Aligned && linear >= adj_reg.Size)
|
|
1360
|
-
break;
|
|
1361
|
-
|
|
1362
|
-
coord_t coord = adj_reg.coord(linear);
|
|
1698
|
+
inline CUDA_CALLABLE void adj_tile_store(array_t<T>& dest, int x, Tile& t, array_t<T>& adj_dest, int adj_x, AdjTile& adj_t) { adj_tile_store(dest, tile_coord(x), t, adj_dest, tile_coord(0), adj_t); }
|
|
1699
|
+
template <typename T, typename Tile, typename AdjTile>
|
|
1700
|
+
inline CUDA_CALLABLE void adj_tile_store(array_t<T>& dest, int x, int y, Tile& t, array_t<T>& adj_dest, int adj_x, int adj_y, AdjTile& adj_t) { adj_tile_store(dest, tile_coord(x, y), t, adj_dest, tile_coord(0,0), adj_t); }
|
|
1701
|
+
template <typename T, typename Tile, typename AdjTile>
|
|
1702
|
+
inline CUDA_CALLABLE void adj_tile_store(array_t<T>& dest, int x, int y, int z, Tile& t, array_t<T>& adj_dest, int adj_x, int adj_y, int adj_z, AdjTile& adj_t) { adj_tile_store(dest, tile_coord(x, y, z), t, adj_dest, tile_coord(0,0,0), adj_t); }
|
|
1703
|
+
template <typename T, typename Tile, typename AdjTile>
|
|
1704
|
+
inline CUDA_CALLABLE void adj_tile_store(array_t<T>& dest, int x, int y, int z, int w, Tile& t, array_t<T>& adj_dest, int adj_x, int adj_y, int adj_z, int adj_w, AdjTile& adj_t) { adj_tile_store(dest, tile_coord(x, y, z, w), t, adj_dest, tile_coord(0,0,0,0), adj_t); }
|
|
1363
1705
|
|
|
1364
|
-
if (adj_dest.data)
|
|
1365
|
-
adj_reg.data[i] = index(adj_dest, tile_i + coord.i, tile_j + coord.j);
|
|
1366
|
-
else if (dest.grad)
|
|
1367
|
-
adj_reg.data[i] = index_grad(dest, tile_i + coord.i, tile_j + coord.j);
|
|
1368
|
-
}
|
|
1369
1706
|
|
|
1370
|
-
// store adjoint back to tile
|
|
1371
|
-
adj_t.grad_add(adj_reg);
|
|
1372
|
-
}
|
|
1373
1707
|
|
|
1708
|
+
// adj_tile_atomic_add is an alias for adj_tile_store
|
|
1374
1709
|
template <typename T, typename Tile, typename AdjTile, typename AdjRet>
|
|
1375
|
-
inline CUDA_CALLABLE void adj_tile_atomic_add(array_t<T>& dest, int x,
|
|
1376
|
-
|
|
1377
|
-
|
|
1378
|
-
|
|
1710
|
+
inline CUDA_CALLABLE void adj_tile_atomic_add(array_t<T>& dest, int x, Tile& t, array_t<T>& adj_dest, int adj_x, AdjTile& adj_t, AdjRet& adj_ret) { adj_tile_store(dest, tile_coord(x), t, adj_dest, tile_coord(adj_x), adj_t); }
|
|
1711
|
+
template <typename T, typename Tile, typename AdjTile, typename AdjRet>
|
|
1712
|
+
inline CUDA_CALLABLE void adj_tile_atomic_add(array_t<T>& dest, int x, int y, Tile& t, array_t<T>& adj_dest, int adj_x, int adj_y, AdjTile& adj_t, AdjRet& adj_ret) { adj_tile_store(dest, tile_coord(x, y), t, adj_dest, tile_coord(adj_x, adj_y), adj_t); }
|
|
1713
|
+
template <typename T, typename Tile, typename AdjTile, typename AdjRet>
|
|
1714
|
+
inline CUDA_CALLABLE void adj_tile_atomic_add(array_t<T>& dest, int x, int y, int z, Tile& t, array_t<T>& adj_dest, int adj_x, int adj_y, int adj_z, AdjTile& adj_t, AdjRet& adj_ret) { adj_tile_store(dest, tile_coord(x, y, z), t, adj_dest, tile_coord(adj_x, adj_y, adj_z), adj_t); }
|
|
1715
|
+
template <typename T, typename Tile, typename AdjTile, typename AdjRet>
|
|
1716
|
+
inline CUDA_CALLABLE void adj_tile_atomic_add(array_t<T>& dest, int x, int y, int z, int w, Tile& t, array_t<T>& adj_dest, int adj_x, int adj_y, int adj_z, int adj_w, AdjTile& adj_t, AdjRet& adj_ret) { adj_tile_store(dest, tile_coord(x, y, z, w), t, adj_dest, tile_coord(adj_x, adj_y, adj_z, adj_w), adj_t); }
|
|
1379
1717
|
|
|
1380
1718
|
|
|
1381
1719
|
// unary map
|
|
@@ -1383,11 +1721,13 @@ template <typename Tile, typename Fwd>
|
|
|
1383
1721
|
inline CUDA_CALLABLE auto tile_map(Fwd op,
|
|
1384
1722
|
Tile &a)
|
|
1385
1723
|
{
|
|
1386
|
-
auto out =
|
|
1724
|
+
auto out = tile_register_like<Tile>();
|
|
1387
1725
|
auto a_reg = a.copy_to_register();
|
|
1726
|
+
|
|
1727
|
+
using Layout = typename decltype(out)::Layout;
|
|
1388
1728
|
|
|
1389
1729
|
WP_PRAGMA_UNROLL
|
|
1390
|
-
for (int i=0; i <
|
|
1730
|
+
for (int i=0; i < Layout::NumRegs; ++i)
|
|
1391
1731
|
{
|
|
1392
1732
|
out.data[i] = op(a_reg.data[i]);
|
|
1393
1733
|
}
|
|
@@ -1407,8 +1747,10 @@ inline CUDA_CALLABLE void adj_tile_map(Fwd op,
|
|
|
1407
1747
|
auto adj_a_reg = tile_register_like<Tile>();
|
|
1408
1748
|
auto adj_ret_reg = adj_ret.grad_to_register();
|
|
1409
1749
|
|
|
1750
|
+
using Layout = typename decltype(a_reg)::Layout;
|
|
1751
|
+
|
|
1410
1752
|
WP_PRAGMA_UNROLL
|
|
1411
|
-
for (int i=0; i <
|
|
1753
|
+
for (int i=0; i < Layout::NumRegs; ++i)
|
|
1412
1754
|
{
|
|
1413
1755
|
adj_op(a_reg.data[i], adj_a_reg.data[i], adj_ret_reg.data[i]);
|
|
1414
1756
|
}
|
|
@@ -1423,14 +1765,18 @@ inline CUDA_CALLABLE auto tile_map(Fwd op,
|
|
|
1423
1765
|
TileA& a,
|
|
1424
1766
|
TileB& b)
|
|
1425
1767
|
{
|
|
1426
|
-
auto out =
|
|
1768
|
+
auto out = tile_register_like<TileA>();
|
|
1427
1769
|
|
|
1428
1770
|
auto a_reg = a.copy_to_register();
|
|
1429
1771
|
auto b_reg = b.copy_to_register();
|
|
1430
1772
|
|
|
1773
|
+
using Layout = typename decltype(out)::Layout;
|
|
1774
|
+
|
|
1431
1775
|
WP_PRAGMA_UNROLL
|
|
1432
|
-
for (int i=0; i <
|
|
1776
|
+
for (int i=0; i < Layout::NumRegs; ++i)
|
|
1777
|
+
{
|
|
1433
1778
|
out.data[i] = op(a_reg.data[i], b_reg.data[i]);
|
|
1779
|
+
}
|
|
1434
1780
|
|
|
1435
1781
|
return out;
|
|
1436
1782
|
}
|
|
@@ -1454,8 +1800,10 @@ inline CUDA_CALLABLE void adj_tile_map(Fwd op,
|
|
|
1454
1800
|
|
|
1455
1801
|
auto adj_ret_reg = adj_ret.grad_to_register();
|
|
1456
1802
|
|
|
1803
|
+
using Layout = typename decltype(a_reg)::Layout;
|
|
1804
|
+
|
|
1457
1805
|
WP_PRAGMA_UNROLL
|
|
1458
|
-
for (int i=0; i <
|
|
1806
|
+
for (int i=0; i < Layout::NumRegs; ++i)
|
|
1459
1807
|
{
|
|
1460
1808
|
adj_op(a_reg.data[i], b_reg.data[i], adj_a_reg.data[i], adj_b_reg.data[i], adj_ret_reg.data[i]);
|
|
1461
1809
|
}
|
|
@@ -1488,26 +1836,32 @@ inline CUDA_CALLABLE auto tile_add(TileA& a, TileB& b)
|
|
|
1488
1836
|
return tile_binary_map(add, a, b);
|
|
1489
1837
|
}
|
|
1490
1838
|
|
|
1491
|
-
// // tile + tile, we implement this
|
|
1492
|
-
// template <typename TileA, typename TileB>
|
|
1493
|
-
// inline CUDA_CALLABLE auto add(TileA& a, TileB& b)
|
|
1494
|
-
// {
|
|
1495
|
-
// return tile_binary_map(add, a, b);
|
|
1496
|
-
// }
|
|
1497
|
-
|
|
1498
|
-
|
|
1499
1839
|
template <typename TileA, typename TileB, typename AdjTileA, typename AdjTileB, typename AdjTile>
|
|
1500
1840
|
inline CUDA_CALLABLE void adj_tile_add(TileA& a, TileB& b, AdjTileA& adj_a, AdjTileB& adj_b, AdjTile& adj_c)
|
|
1501
1841
|
{
|
|
1502
1842
|
adj_tile_binary_map(add, a, b, adj_add, adj_a, adj_b, adj_c);
|
|
1503
1843
|
}
|
|
1504
1844
|
|
|
1845
|
+
// tile - tile
|
|
1846
|
+
template <typename TileA, typename TileB>
|
|
1847
|
+
inline CUDA_CALLABLE auto tile_sub(TileA& a, TileB& b)
|
|
1848
|
+
{
|
|
1849
|
+
return tile_binary_map(sub, a, b);
|
|
1850
|
+
}
|
|
1851
|
+
|
|
1852
|
+
template <typename TileA, typename TileB, typename AdjTileA, typename AdjTileB, typename AdjTile>
|
|
1853
|
+
inline CUDA_CALLABLE void adj_tile_sub(TileA& a, TileB& b, AdjTileA& adj_a, AdjTileB& adj_b, AdjTile& adj_c)
|
|
1854
|
+
{
|
|
1855
|
+
adj_tile_binary_map(sub, a, b, adj_sub, adj_a, adj_b, adj_c);
|
|
1856
|
+
}
|
|
1857
|
+
|
|
1858
|
+
|
|
1505
1859
|
// tile*scalar
|
|
1506
1860
|
template <typename Tile>
|
|
1507
1861
|
inline CUDA_CALLABLE auto tile_mul(Tile& a, const typename Tile::Type& s)
|
|
1508
1862
|
{
|
|
1509
1863
|
// promote scalar to a constant tile
|
|
1510
|
-
auto s_tile = tile_register_t<typename Tile::Type,
|
|
1864
|
+
auto s_tile = tile_register_t<typename Tile::Type, tile_layout_register_t<typename Tile::Layout::Shape>>(s);
|
|
1511
1865
|
|
|
1512
1866
|
return tile_binary_map(mul, a, s_tile);
|
|
1513
1867
|
}
|
|
@@ -1517,12 +1871,17 @@ inline CUDA_CALLABLE void adj_tile_mul(Tile& a, const typename Tile::Type& s,
|
|
|
1517
1871
|
Tile& adj_a, typename Tile::Type& adj_s,
|
|
1518
1872
|
AdjTile& adj_c)
|
|
1519
1873
|
{
|
|
1520
|
-
auto s_tile =
|
|
1521
|
-
auto adj_s_tile =
|
|
1874
|
+
auto s_tile = tile_register_like<Tile>();
|
|
1875
|
+
auto adj_s_tile = tile_register_like<Tile>();
|
|
1876
|
+
|
|
1877
|
+
using Layout = typename decltype(adj_s_tile)::Layout;
|
|
1878
|
+
|
|
1879
|
+
// initialize to constant
|
|
1880
|
+
s_tile = s;
|
|
1522
1881
|
|
|
1523
1882
|
adj_tile_binary_map(mul, a, s_tile, adj_mul, adj_a, adj_s_tile, adj_c);
|
|
1524
1883
|
|
|
1525
|
-
for (int i=0; i <
|
|
1884
|
+
for (int i=0; i < Layout::NumRegs; ++i)
|
|
1526
1885
|
{
|
|
1527
1886
|
adj_s += adj_s_tile.data[i];
|
|
1528
1887
|
}
|
|
@@ -1533,10 +1892,7 @@ inline CUDA_CALLABLE void adj_tile_mul(Tile& a, const typename Tile::Type& s,
|
|
|
1533
1892
|
template <typename Tile>
|
|
1534
1893
|
inline CUDA_CALLABLE auto tile_mul(const typename Tile::Type& s, Tile& a)
|
|
1535
1894
|
{
|
|
1536
|
-
|
|
1537
|
-
auto s_tile = tile_register_t<typename Tile::Type, Tile::M, Tile::N>(s);
|
|
1538
|
-
|
|
1539
|
-
return tile_binary_map(mul, s_tile, a);
|
|
1895
|
+
return tile_mul(a, s);
|
|
1540
1896
|
}
|
|
1541
1897
|
|
|
1542
1898
|
template <typename Tile, typename AdjTile>
|
|
@@ -1544,36 +1900,30 @@ inline CUDA_CALLABLE void adj_tile_mul(const typename Tile::Type& s, Tile& a,
|
|
|
1544
1900
|
typename Tile::Type& adj_s, Tile& adj_a,
|
|
1545
1901
|
AdjTile& adj_c)
|
|
1546
1902
|
{
|
|
1547
|
-
|
|
1548
|
-
auto adj_s_tile = tile_register_t<typename Tile::Type, Tile::M, Tile::N>();
|
|
1549
|
-
|
|
1550
|
-
adj_tile_binary_map(mul, s_tile, a, adj_mul, adj_s_tile, adj_a, adj_c);
|
|
1551
|
-
|
|
1552
|
-
for (int i=0; i < adj_s_tile.NumRegs; ++i)
|
|
1553
|
-
{
|
|
1554
|
-
adj_s += adj_s_tile.data[i];
|
|
1555
|
-
}
|
|
1903
|
+
adj_tile_mul(a, s, adj_a, adj_s, adj_c);
|
|
1556
1904
|
}
|
|
1557
1905
|
|
|
1558
1906
|
|
|
1559
|
-
|
|
1560
1907
|
template<typename Tile>
|
|
1561
|
-
typename Tile::Type tile_extract(Tile& t, int i
|
|
1562
|
-
|
|
1563
|
-
|
|
1564
|
-
|
|
1908
|
+
typename Tile::Type tile_extract(Tile& t, int i) { return t.extract(tile_coord(i)); }
|
|
1909
|
+
template<typename Tile>
|
|
1910
|
+
typename Tile::Type tile_extract(Tile& t, int i, int j) { return t.extract(tile_coord(i,j)); }
|
|
1911
|
+
template<typename Tile>
|
|
1912
|
+
typename Tile::Type tile_extract(Tile& t, int i, int j, int k) { return t.extract(tile_coord(i,j,k)); }
|
|
1913
|
+
template<typename Tile>
|
|
1914
|
+
typename Tile::Type tile_extract(Tile& t, int i, int j, int k, int l) { return t.extract(tile_coord(i,j,k,l)); }
|
|
1565
1915
|
|
|
1566
|
-
return t.extract(i, j);
|
|
1567
|
-
}
|
|
1568
1916
|
|
|
1569
1917
|
template<typename Tile, typename AdjTile>
|
|
1570
|
-
void adj_tile_extract(Tile& t, int i,
|
|
1571
|
-
|
|
1572
|
-
|
|
1573
|
-
|
|
1918
|
+
void adj_tile_extract(Tile& t, int i, AdjTile& adj_t, int adj_i, typename Tile::Type adj_ret) { adj_t.adj_extract(tile_coord(i), adj_ret); }
|
|
1919
|
+
template<typename Tile, typename AdjTile>
|
|
1920
|
+
void adj_tile_extract(Tile& t, int i, int j, AdjTile& adj_t, int adj_i, int adj_j, typename Tile::Type adj_ret) { adj_t.adj_extract(tile_coord(i, j), adj_ret); }
|
|
1921
|
+
template<typename Tile, typename AdjTile>
|
|
1922
|
+
void adj_tile_extract(Tile& t, int i, int j, int k, AdjTile& adj_t, int adj_i, int adj_j, int adj_k, typename Tile::Type adj_ret) { adj_t.adj_extract(tile_coord(i, j, k), adj_ret); }
|
|
1923
|
+
template<typename Tile, typename AdjTile>
|
|
1924
|
+
void adj_tile_extract(Tile& t, int i, int j, int k, int l, AdjTile& adj_t, int adj_i, int adj_j, int adj_k, int adj_l, typename Tile::Type adj_ret) { adj_t.adj_extract(tile_coord(i, j, k, l), adj_ret); }
|
|
1574
1925
|
|
|
1575
|
-
|
|
1576
|
-
}
|
|
1926
|
+
#if WP_USE_REGISTER_GEMM
|
|
1577
1927
|
|
|
1578
1928
|
namespace partitioned_gemm
|
|
1579
1929
|
{
|
|
@@ -1595,7 +1945,7 @@ struct partition_t
|
|
|
1595
1945
|
{
|
|
1596
1946
|
static constexpr int M = PartitionM;
|
|
1597
1947
|
static constexpr int N = PartitionN;
|
|
1598
|
-
static constexpr int Stride = Tile::
|
|
1948
|
+
static constexpr int Stride = Tile::Layout::Shape::dim(1);
|
|
1599
1949
|
|
|
1600
1950
|
using T = typename Tile::Type;
|
|
1601
1951
|
|
|
@@ -1604,8 +1954,8 @@ struct partition_t
|
|
|
1604
1954
|
data = A.data.ptr;
|
|
1605
1955
|
|
|
1606
1956
|
// todo: do ceil div for non-multiples of M,N
|
|
1607
|
-
shape[0] = Tile::
|
|
1608
|
-
shape[1] = Tile::
|
|
1957
|
+
shape[0] = Tile::Layout::Shape::dim(0)/PartitionM;
|
|
1958
|
+
shape[1] = Tile::Layout::Shape::dim(1)/PartitionN;
|
|
1609
1959
|
}
|
|
1610
1960
|
|
|
1611
1961
|
// underlying data
|
|
@@ -1643,7 +1993,7 @@ inline auto partition_load(const Partition& tile, int i, int j)
|
|
|
1643
1993
|
WP_PRAGMA_UNROLL
|
|
1644
1994
|
for (int j=0; j < Partition::N; ++j)
|
|
1645
1995
|
{
|
|
1646
|
-
out.data[i][j] = index(tile.data, tile_i + i, tile_j + j, Partition::Stride);
|
|
1996
|
+
out.data[i][j] = partitioned_gemm::index(tile.data, tile_i + i, tile_j + j, Partition::Stride);
|
|
1647
1997
|
}
|
|
1648
1998
|
}
|
|
1649
1999
|
|
|
@@ -1667,6 +2017,7 @@ inline void partition_store(const Partition& tile, int i, int j, const Value& va
|
|
|
1667
2017
|
}
|
|
1668
2018
|
}
|
|
1669
2019
|
|
|
2020
|
+
|
|
1670
2021
|
template <typename TileA, typename TileB, typename TileC>
|
|
1671
2022
|
inline CUDA_CALLABLE void matmul(TileA& A, TileB& B, TileC& out)
|
|
1672
2023
|
{
|
|
@@ -1703,15 +2054,26 @@ inline CUDA_CALLABLE void matmul(TileA& A, TileB& B, TileC& out)
|
|
|
1703
2054
|
|
|
1704
2055
|
} // namespace partition_gemm
|
|
1705
2056
|
|
|
2057
|
+
#endif // WP_USE_REGISTER_GEMM
|
|
2058
|
+
|
|
2059
|
+
|
|
1706
2060
|
template <int Add, typename Fwd, typename AdjA, typename AdjB, typename TileA, typename TileB, typename TileC>
|
|
1707
2061
|
TileC& tile_matmul(Fwd fun_forward, AdjA fun_backward_A, AdjB fun_backward_B, TileA& A, TileB& B, TileC& C)
|
|
1708
2062
|
{
|
|
1709
|
-
using
|
|
2063
|
+
using ShapeA = typename TileA::Layout::Shape;
|
|
2064
|
+
using ShapeB = typename TileB::Layout::Shape;
|
|
2065
|
+
using ShapeC = typename TileC::Layout::Shape;
|
|
1710
2066
|
|
|
1711
|
-
|
|
1712
|
-
|
|
1713
|
-
|
|
1714
|
-
|
|
2067
|
+
static_assert(ShapeA::N == 2);
|
|
2068
|
+
static_assert(ShapeB::N == 2);
|
|
2069
|
+
static_assert(ShapeC::N == 2);
|
|
2070
|
+
|
|
2071
|
+
static_assert(ShapeA::dim(1) == ShapeB::dim(0));
|
|
2072
|
+
static_assert(ShapeC::dim(0) == ShapeA::dim(0));
|
|
2073
|
+
static_assert(ShapeC::dim(1) == ShapeB::dim(1));
|
|
2074
|
+
|
|
2075
|
+
|
|
2076
|
+
using T = typename TileA::Type;
|
|
1715
2077
|
|
|
1716
2078
|
#if WP_USE_REGISTER_GEMM
|
|
1717
2079
|
partitioned_gemm::matmul(A, B, C);
|
|
@@ -1749,11 +2111,11 @@ void adj_tile_matmul(Fwd fun_forward, AdjA fun_backward_A, AdjB fun_backward_B,
|
|
|
1749
2111
|
}
|
|
1750
2112
|
|
|
1751
2113
|
// TODO(lcambier): use a properly overaligned complex type that matches cuFFTDx's expectation
|
|
1752
|
-
//
|
|
2114
|
+
// and remove the need for __align__(16) dtypes data[...]
|
|
1753
2115
|
#define tile_fft(function_name, dtype, shared_memory_size, batch_size, ept, Xinout) \
|
|
1754
2116
|
do { \
|
|
1755
2117
|
void function_name(dtype*, dtype*); \
|
|
1756
|
-
|
|
2118
|
+
char* buffer = (char*)wp::tile_alloc_shared(shared_memory_size); \
|
|
1757
2119
|
__align__(16) dtype data[ept]; \
|
|
1758
2120
|
for(int b = 0; b < (int)batch_size; b++) { \
|
|
1759
2121
|
dtype* inout = Xinout.data + (int)b * (int)ept; \
|
|
@@ -1762,6 +2124,7 @@ void adj_tile_matmul(Fwd fun_forward, AdjA fun_backward_A, AdjB fun_backward_B,
|
|
|
1762
2124
|
memcpy(inout, data, sizeof(dtype) * ept); \
|
|
1763
2125
|
WP_TILE_SYNC(); \
|
|
1764
2126
|
} \
|
|
2127
|
+
wp::tile_alloc_shared(-shared_memory_size); \
|
|
1765
2128
|
} while (0)
|
|
1766
2129
|
|
|
1767
2130
|
#define tile_ifft tile_fft
|
|
@@ -1782,12 +2145,78 @@ void adj_tile_matmul(Fwd fun_forward, AdjA fun_backward_A, AdjB fun_backward_B,
|
|
|
1782
2145
|
tile_fft(function_name, dtype, shared_memory_size, batch_size, ept, adj_Xinout); \
|
|
1783
2146
|
} while (0)
|
|
1784
2147
|
|
|
2148
|
+
template <typename Fwd, typename TileA, typename TileL>
|
|
2149
|
+
TileL& tile_cholesky(Fwd fun_forward, TileA& A, TileL& L)
|
|
2150
|
+
{
|
|
2151
|
+
// Copy to L
|
|
2152
|
+
L = A;
|
|
2153
|
+
|
|
2154
|
+
// Call cholesky on L
|
|
2155
|
+
WP_TILE_SYNC();
|
|
2156
|
+
|
|
2157
|
+
fun_forward(L.data.ptr, TileL::Layout::Shape::dim(0));
|
|
2158
|
+
|
|
2159
|
+
WP_TILE_SYNC();
|
|
2160
|
+
|
|
2161
|
+
// Zero-out the upper triangular part of L
|
|
2162
|
+
|
|
2163
|
+
WP_PRAGMA_UNROLL
|
|
2164
|
+
for (int i=threadIdx.x; i < TileL::Layout::Size; i += WP_TILE_BLOCK_DIM)
|
|
2165
|
+
{
|
|
2166
|
+
auto c = TileL::Layout::coord_from_linear(i);
|
|
2167
|
+
|
|
2168
|
+
if(c[0] < c[1])
|
|
2169
|
+
L.data(c) = 0.0;
|
|
2170
|
+
}
|
|
2171
|
+
|
|
2172
|
+
WP_TILE_SYNC();
|
|
2173
|
+
|
|
2174
|
+
return L;
|
|
2175
|
+
}
|
|
2176
|
+
|
|
2177
|
+
#define adj_tile_cholesky(function_name, A, L, \
|
|
2178
|
+
adj_function_name, adj_A, adj_L, adj_ret) \
|
|
2179
|
+
do { \
|
|
2180
|
+
assert(false); \
|
|
2181
|
+
} while (0)
|
|
2182
|
+
|
|
2183
|
+
template <typename Fwd, typename TileL, typename TileX, typename TileY>
|
|
2184
|
+
TileY& tile_cholesky_solve(Fwd fun_forward, TileL& L, TileX& X, TileY& Y)
|
|
2185
|
+
{
|
|
2186
|
+
// Copy x to y
|
|
2187
|
+
|
|
2188
|
+
Y = X;
|
|
2189
|
+
|
|
2190
|
+
// Call cholesky solve on L & y
|
|
2191
|
+
|
|
2192
|
+
WP_TILE_SYNC();
|
|
2193
|
+
|
|
2194
|
+
fun_forward(L.data.ptr, Y.data.ptr); \
|
|
2195
|
+
|
|
2196
|
+
WP_TILE_SYNC();
|
|
2197
|
+
|
|
2198
|
+
return Y;
|
|
2199
|
+
}
|
|
2200
|
+
|
|
2201
|
+
#define adj_tile_cholesky_solve(function_name, L, X, Y, \
|
|
2202
|
+
adj_function_name, adj_L, adj_X, adj_Y, adj_ret) \
|
|
2203
|
+
do { \
|
|
2204
|
+
assert(false); \
|
|
2205
|
+
} while (0)
|
|
1785
2206
|
|
|
1786
2207
|
template <typename Tile>
|
|
1787
2208
|
inline CUDA_CALLABLE auto tile_transpose(Tile& t)
|
|
1788
2209
|
{
|
|
2210
|
+
static_assert(Tile::Layout::Shape::N == 2);
|
|
2211
|
+
|
|
1789
2212
|
// alias incoming tile
|
|
1790
|
-
|
|
2213
|
+
constexpr int M = Tile::Layout::Shape::dim(0);
|
|
2214
|
+
constexpr int N = Tile::Layout::Shape::dim(1);
|
|
2215
|
+
|
|
2216
|
+
constexpr int StrideM = Tile::Layout::Stride::dim(0);
|
|
2217
|
+
constexpr int StrideN = Tile::Layout::Stride::dim(1);
|
|
2218
|
+
|
|
2219
|
+
return tile_shared_t<typename Tile::Type, tile_layout_strided_t<tile_shape_t<N,M>, tile_stride_t<StrideN, StrideM>>, false>(t.data.ptr, t.grad.ptr);
|
|
1791
2220
|
}
|
|
1792
2221
|
|
|
1793
2222
|
template <typename Tile, typename AdjTile>
|
|
@@ -1803,55 +2232,144 @@ template <int M, int N, int StrideM, int StrideN, typename Tile>
|
|
|
1803
2232
|
inline CUDA_CALLABLE auto tile_broadcast(Tile& t)
|
|
1804
2233
|
{
|
|
1805
2234
|
// alias incoming tile with new strides
|
|
1806
|
-
return tile_shared_t<typename Tile::Type, M, N
|
|
2235
|
+
return tile_shared_t<typename Tile::Type, tile_layout_strided_t<tile_shape_t<M, N>, tile_stride_t<StrideM, StrideN>>, false>(t.data.ptr, t.grad.ptr);
|
|
1807
2236
|
}
|
|
1808
2237
|
|
|
1809
2238
|
template <typename Tile, typename AdjTile>
|
|
1810
2239
|
inline CUDA_CALLABLE void adj_tile_broadcast(Tile& t, Tile& adj_t, AdjTile& adj_ret)
|
|
1811
2240
|
{
|
|
1812
2241
|
// nop, since memory is aliased grads already accumulated
|
|
2242
|
+
}
|
|
2243
|
+
|
|
2244
|
+
template <typename ReturnType, typename Tile, typename... Indices>
|
|
2245
|
+
inline CUDA_CALLABLE auto tile_view(Tile& t, Indices... indices)
|
|
2246
|
+
{
|
|
2247
|
+
auto c = tile_coord(indices...);
|
|
2248
|
+
|
|
2249
|
+
// return new tile with same strides
|
|
2250
|
+
typename Tile::Type* data_ptr = &t.data(c);
|
|
2251
|
+
typename Tile::Type* grad_ptr = NULL;
|
|
2252
|
+
|
|
2253
|
+
if (t.grad.ptr)
|
|
2254
|
+
grad_ptr = &t.grad(c);
|
|
1813
2255
|
|
|
2256
|
+
return ReturnType(data_ptr, grad_ptr);
|
|
1814
2257
|
}
|
|
1815
2258
|
|
|
1816
|
-
|
|
1817
|
-
|
|
1818
|
-
|
|
1819
|
-
|
|
1820
|
-
|
|
2259
|
+
|
|
2260
|
+
template <typename TileA, typename Scalar>
|
|
2261
|
+
inline CUDA_CALLABLE void assign(TileA& dest, int i, const Scalar& src)
|
|
2262
|
+
{
|
|
2263
|
+
dest.data(tile_coord(i)) = src;
|
|
2264
|
+
WP_TILE_SYNC();
|
|
1821
2265
|
}
|
|
1822
2266
|
|
|
1823
|
-
template <typename
|
|
1824
|
-
inline CUDA_CALLABLE void
|
|
2267
|
+
template <typename TileA, typename Scalar>
|
|
2268
|
+
inline CUDA_CALLABLE void assign(TileA& dest, int i, int j, const Scalar& src)
|
|
1825
2269
|
{
|
|
1826
|
-
|
|
2270
|
+
dest.data(tile_coord(i, j)) = src;
|
|
2271
|
+
WP_TILE_SYNC();
|
|
2272
|
+
}
|
|
1827
2273
|
|
|
2274
|
+
template <typename TileA, typename Scalar>
|
|
2275
|
+
inline CUDA_CALLABLE void assign(TileA& dest, int i, int j, int k, const Scalar& src)
|
|
2276
|
+
{
|
|
2277
|
+
dest.data(tile_coord(i, j, k)) = src;
|
|
2278
|
+
WP_TILE_SYNC();
|
|
1828
2279
|
}
|
|
1829
2280
|
|
|
1830
|
-
template <typename TileA, typename
|
|
1831
|
-
inline CUDA_CALLABLE void
|
|
2281
|
+
template <typename TileA, typename Scalar>
|
|
2282
|
+
inline CUDA_CALLABLE void assign(TileA& dest, int i, int j, int k, int l, const Scalar& src)
|
|
2283
|
+
{
|
|
2284
|
+
dest.data(tile_coord(i, j, k, l)) = src;
|
|
2285
|
+
WP_TILE_SYNC();
|
|
2286
|
+
}
|
|
2287
|
+
|
|
2288
|
+
|
|
2289
|
+
|
|
2290
|
+
|
|
2291
|
+
template <typename TileA, typename TileB, typename Coord>
|
|
2292
|
+
inline CUDA_CALLABLE void tile_assign(TileA& dest, TileB& src, const Coord& offset)
|
|
1832
2293
|
{
|
|
1833
|
-
|
|
2294
|
+
using Layout = typename TileB::Layout;
|
|
2295
|
+
|
|
2296
|
+
for (int t=threadIdx.x; t < Layout::Size; t += WP_TILE_BLOCK_DIM)
|
|
1834
2297
|
{
|
|
1835
|
-
|
|
1836
|
-
dest.data(
|
|
2298
|
+
auto c = Layout::coord_from_linear(t);
|
|
2299
|
+
dest.data(c + offset) = src.data(c);
|
|
1837
2300
|
}
|
|
1838
2301
|
|
|
1839
2302
|
WP_TILE_SYNC();
|
|
1840
2303
|
}
|
|
1841
2304
|
|
|
1842
|
-
template <typename TileA, typename TileB, typename AdjTileA, typename AdjTileB>
|
|
1843
|
-
inline CUDA_CALLABLE void adj_tile_assign(TileA& dest,
|
|
1844
|
-
AdjTileA& adj_dest,
|
|
2305
|
+
template <typename TileA, typename TileB, typename AdjTileA, typename AdjTileB, typename Coord, typename AdjCoord>
|
|
2306
|
+
inline CUDA_CALLABLE void adj_tile_assign(TileA& dest, TileB& src, Coord offset,
|
|
2307
|
+
AdjTileA& adj_dest, AdjTileB& adj_src, AdjCoord adj_offset)
|
|
1845
2308
|
{
|
|
1846
|
-
|
|
2309
|
+
using Layout = typename TileB::Layout;
|
|
2310
|
+
|
|
2311
|
+
for (int t=threadIdx.x; t < Layout::Size; t += WP_TILE_BLOCK_DIM)
|
|
1847
2312
|
{
|
|
1848
|
-
|
|
1849
|
-
src.grad(c
|
|
2313
|
+
auto c = Layout::coord_from_linear(t);
|
|
2314
|
+
src.grad(c) += dest.grad(c + offset);
|
|
1850
2315
|
}
|
|
1851
2316
|
|
|
1852
2317
|
WP_TILE_SYNC();
|
|
1853
2318
|
}
|
|
1854
2319
|
|
|
1855
2320
|
|
|
2321
|
+
// codegen entry points, which emit calls like `tile_assign(dest, src, i, j, k)`
|
|
2322
|
+
// a better approach here would be for codegen to just directly generate `tile_assign(dest, src, tile_coord(i, j, k))`
|
|
2323
|
+
// i.e.: call the above implementation methods directly, then we could remove these overloads
|
|
2324
|
+
template <typename TileA, typename TileB>
|
|
2325
|
+
inline CUDA_CALLABLE void tile_assign(TileA& dest, TileB& src, int i) { tile_assign(dest, src, tile_coord(i)); }
|
|
2326
|
+
template <typename TileA, typename TileB>
|
|
2327
|
+
inline CUDA_CALLABLE void tile_assign(TileA& dest, TileB& src, int i, int j) { tile_assign(dest, src, tile_coord(i, j)); }
|
|
2328
|
+
template <typename TileA, typename TileB>
|
|
2329
|
+
inline CUDA_CALLABLE void tile_assign(TileA& dest, TileB& src, int i, int j, int k) { tile_assign(dest, src, tile_coord(i, j, k)); }
|
|
2330
|
+
template <typename TileA, typename TileB>
|
|
2331
|
+
inline CUDA_CALLABLE void tile_assign(TileA& dest, TileB& src, int i, int j, int k, int l) { tile_assign(dest, src, tile_coord(i, j, k, l)); }
|
|
2332
|
+
|
|
2333
|
+
template <typename TileA, typename TileB, typename AdjTileA, typename AdjTileB>
|
|
2334
|
+
inline CUDA_CALLABLE void adj_tile_assign(TileA& dest, TileB& src, int i, AdjTileA& adj_dest, AdjTileB& adj_src, int) { adj_tile_assign(dest, src, tile_coord(i), adj_dest, adj_src, tile_coord(0)); }
|
|
2335
|
+
template <typename TileA, typename TileB, typename AdjTileA, typename AdjTileB>
|
|
2336
|
+
inline CUDA_CALLABLE void adj_tile_assign(TileA& dest, TileB& src, int i, int j, AdjTileA& adj_dest, AdjTileB& adj_src, int, int) { adj_tile_assign(dest, src, tile_coord(i,j), adj_dest, adj_src, tile_coord(0)); }
|
|
2337
|
+
template <typename TileA, typename TileB, typename AdjTileA, typename AdjTileB>
|
|
2338
|
+
inline CUDA_CALLABLE void adj_tile_assign(TileA& dest, TileB& src, int i, int j, int k, AdjTileA& adj_dest, AdjTileB& adj_src, int, int, int) { adj_tile_assign(dest, src, tile_coord(i,j,k), adj_dest, adj_src, tile_coord(0)); }
|
|
2339
|
+
template <typename TileA, typename TileB, typename AdjTileA, typename AdjTileB>
|
|
2340
|
+
inline CUDA_CALLABLE void adj_tile_assign(TileA& dest, TileB& src, int i, int j, int k, int l, AdjTileA& adj_dest, AdjTileB& adj_src, int, int, int, int) { adj_tile_assign(dest, src, tile_coord(i,j,k,l), adj_dest, adj_src, tile_coord(0)); }
|
|
2341
|
+
|
|
2342
|
+
|
|
2343
|
+
template <typename TileA, typename TileB, typename TileC>
|
|
2344
|
+
inline CUDA_CALLABLE TileC& tile_diag_add(TileA& a, TileB& b, TileC& c)
|
|
2345
|
+
{
|
|
2346
|
+
using ShapeA = typename TileA::Layout::Shape;
|
|
2347
|
+
using ShapeB = typename TileB::Layout::Shape;
|
|
2348
|
+
using ShapeC = typename TileC::Layout::Shape;
|
|
2349
|
+
|
|
2350
|
+
static_assert(ShapeA::dim(0) == ShapeA::dim(1));
|
|
2351
|
+
static_assert(ShapeB::dim(0) == ShapeA::dim(0));
|
|
2352
|
+
static_assert(ShapeC::dim(0) == ShapeA::dim(0));
|
|
2353
|
+
static_assert(ShapeC::dim(0) == ShapeC::dim(1));
|
|
2354
|
+
|
|
2355
|
+
c = a;
|
|
2356
|
+
|
|
2357
|
+
for (int t=threadIdx.x; t < ShapeA::dim(0); t += WP_TILE_BLOCK_DIM)
|
|
2358
|
+
{
|
|
2359
|
+
c.data(tile_coord(t, t)) += b.data(tile_coord(t));
|
|
2360
|
+
}
|
|
2361
|
+
|
|
2362
|
+
WP_TILE_SYNC();
|
|
2363
|
+
|
|
2364
|
+
return c;
|
|
2365
|
+
}
|
|
2366
|
+
|
|
2367
|
+
template <typename TileA, typename TileB, typename TileC, typename AdjTileA, typename AdjTileB, typename AdjTileC>
|
|
2368
|
+
inline CUDA_CALLABLE void adj_tile_diag_add(TileA& a, TileB& b, TileC& c, AdjTileA& adj_a, AdjTileB& adj_b, AdjTileC& adj_c, AdjTileC& adj_ret)
|
|
2369
|
+
{
|
|
2370
|
+
assert(false);
|
|
2371
|
+
}
|
|
2372
|
+
|
|
1856
2373
|
|
|
1857
2374
|
} // namespace wp
|
|
2375
|
+
|