warp-lang 1.4.2__py3-none-win_amd64.whl → 1.5.1__py3-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +4 -0
- warp/autograd.py +43 -8
- warp/bin/warp-clang.dll +0 -0
- warp/bin/warp.dll +0 -0
- warp/build.py +21 -2
- warp/build_dll.py +23 -6
- warp/builtins.py +1819 -7
- warp/codegen.py +197 -61
- warp/config.py +2 -2
- warp/context.py +379 -107
- warp/examples/assets/pixel.jpg +0 -0
- warp/examples/benchmarks/benchmark_cloth_paddle.py +86 -0
- warp/examples/benchmarks/benchmark_gemm.py +121 -0
- warp/examples/benchmarks/benchmark_interop_paddle.py +158 -0
- warp/examples/benchmarks/benchmark_tile.py +179 -0
- warp/examples/fem/example_adaptive_grid.py +37 -10
- warp/examples/fem/example_apic_fluid.py +3 -2
- warp/examples/fem/example_convection_diffusion_dg.py +4 -5
- warp/examples/fem/example_deformed_geometry.py +1 -1
- warp/examples/fem/example_diffusion_3d.py +47 -4
- warp/examples/fem/example_distortion_energy.py +220 -0
- warp/examples/fem/example_magnetostatics.py +127 -85
- warp/examples/fem/example_nonconforming_contact.py +5 -5
- warp/examples/fem/example_stokes.py +3 -1
- warp/examples/fem/example_streamlines.py +12 -19
- warp/examples/fem/utils.py +38 -15
- warp/examples/sim/example_cloth.py +4 -25
- warp/examples/sim/example_quadruped.py +2 -1
- warp/examples/tile/example_tile_convolution.py +58 -0
- warp/examples/tile/example_tile_fft.py +47 -0
- warp/examples/tile/example_tile_filtering.py +105 -0
- warp/examples/tile/example_tile_matmul.py +79 -0
- warp/examples/tile/example_tile_mlp.py +375 -0
- warp/fem/__init__.py +8 -0
- warp/fem/cache.py +16 -12
- warp/fem/dirichlet.py +1 -1
- warp/fem/domain.py +44 -1
- warp/fem/field/__init__.py +1 -2
- warp/fem/field/field.py +31 -19
- warp/fem/field/nodal_field.py +101 -49
- warp/fem/field/virtual.py +794 -0
- warp/fem/geometry/__init__.py +2 -2
- warp/fem/geometry/deformed_geometry.py +3 -105
- warp/fem/geometry/element.py +13 -0
- warp/fem/geometry/geometry.py +165 -7
- warp/fem/geometry/grid_2d.py +3 -6
- warp/fem/geometry/grid_3d.py +31 -28
- warp/fem/geometry/hexmesh.py +3 -46
- warp/fem/geometry/nanogrid.py +3 -2
- warp/fem/geometry/{quadmesh_2d.py → quadmesh.py} +280 -159
- warp/fem/geometry/tetmesh.py +2 -43
- warp/fem/geometry/{trimesh_2d.py → trimesh.py} +354 -186
- warp/fem/integrate.py +683 -261
- warp/fem/linalg.py +404 -0
- warp/fem/operator.py +101 -18
- warp/fem/polynomial.py +5 -5
- warp/fem/quadrature/quadrature.py +45 -21
- warp/fem/space/__init__.py +45 -11
- warp/fem/space/basis_function_space.py +451 -0
- warp/fem/space/basis_space.py +58 -11
- warp/fem/space/function_space.py +146 -5
- warp/fem/space/grid_2d_function_space.py +80 -66
- warp/fem/space/grid_3d_function_space.py +113 -68
- warp/fem/space/hexmesh_function_space.py +96 -108
- warp/fem/space/nanogrid_function_space.py +62 -110
- warp/fem/space/quadmesh_function_space.py +208 -0
- warp/fem/space/shape/__init__.py +45 -7
- warp/fem/space/shape/cube_shape_function.py +328 -54
- warp/fem/space/shape/shape_function.py +10 -1
- warp/fem/space/shape/square_shape_function.py +328 -60
- warp/fem/space/shape/tet_shape_function.py +269 -19
- warp/fem/space/shape/triangle_shape_function.py +238 -19
- warp/fem/space/tetmesh_function_space.py +69 -37
- warp/fem/space/topology.py +38 -0
- warp/fem/space/trimesh_function_space.py +179 -0
- warp/fem/utils.py +6 -331
- warp/jax_experimental.py +3 -1
- warp/native/array.h +15 -0
- warp/native/builtin.h +66 -26
- warp/native/bvh.h +4 -0
- warp/native/coloring.cpp +604 -0
- warp/native/cuda_util.cpp +68 -51
- warp/native/cuda_util.h +2 -1
- warp/native/fabric.h +8 -0
- warp/native/hashgrid.h +4 -0
- warp/native/marching.cu +8 -0
- warp/native/mat.h +14 -3
- warp/native/mathdx.cpp +59 -0
- warp/native/mesh.h +4 -0
- warp/native/range.h +13 -1
- warp/native/reduce.cpp +9 -1
- warp/native/reduce.cu +7 -0
- warp/native/runlength_encode.cpp +9 -1
- warp/native/runlength_encode.cu +7 -1
- warp/native/scan.cpp +8 -0
- warp/native/scan.cu +8 -0
- warp/native/scan.h +8 -1
- warp/native/sparse.cpp +8 -0
- warp/native/sparse.cu +8 -0
- warp/native/temp_buffer.h +7 -0
- warp/native/tile.h +1854 -0
- warp/native/tile_gemm.h +341 -0
- warp/native/tile_reduce.h +210 -0
- warp/native/volume_builder.cu +8 -0
- warp/native/volume_builder.h +8 -0
- warp/native/warp.cpp +10 -2
- warp/native/warp.cu +369 -15
- warp/native/warp.h +12 -2
- warp/optim/adam.py +39 -4
- warp/paddle.py +29 -12
- warp/render/render_opengl.py +140 -67
- warp/sim/graph_coloring.py +292 -0
- warp/sim/import_urdf.py +8 -8
- warp/sim/integrator_euler.py +4 -2
- warp/sim/integrator_featherstone.py +115 -44
- warp/sim/integrator_vbd.py +6 -0
- warp/sim/model.py +109 -32
- warp/sparse.py +1 -1
- warp/stubs.py +569 -4
- warp/tape.py +12 -7
- warp/tests/assets/pixel.npy +0 -0
- warp/tests/aux_test_instancing_gc.py +18 -0
- warp/tests/test_array.py +39 -0
- warp/tests/test_codegen.py +81 -1
- warp/tests/test_codegen_instancing.py +30 -0
- warp/tests/test_collision.py +110 -0
- warp/tests/test_coloring.py +251 -0
- warp/tests/test_context.py +34 -0
- warp/tests/test_examples.py +21 -5
- warp/tests/test_fem.py +453 -113
- warp/tests/test_func.py +34 -4
- warp/tests/test_generics.py +52 -0
- warp/tests/test_iter.py +68 -0
- warp/tests/test_lerp.py +13 -87
- warp/tests/test_mat_scalar_ops.py +1 -1
- warp/tests/test_matmul.py +6 -9
- warp/tests/test_matmul_lite.py +6 -11
- warp/tests/test_mesh_query_point.py +1 -1
- warp/tests/test_module_hashing.py +23 -0
- warp/tests/test_overwrite.py +45 -0
- warp/tests/test_paddle.py +27 -87
- warp/tests/test_print.py +56 -1
- warp/tests/test_smoothstep.py +17 -83
- warp/tests/test_spatial.py +1 -1
- warp/tests/test_static.py +3 -3
- warp/tests/test_tile.py +744 -0
- warp/tests/test_tile_mathdx.py +144 -0
- warp/tests/test_tile_mlp.py +383 -0
- warp/tests/test_tile_reduce.py +374 -0
- warp/tests/test_tile_shared_memory.py +190 -0
- warp/tests/test_vbd.py +12 -20
- warp/tests/test_volume.py +43 -0
- warp/tests/unittest_suites.py +19 -2
- warp/tests/unittest_utils.py +4 -2
- warp/types.py +340 -74
- warp/utils.py +23 -3
- {warp_lang-1.4.2.dist-info → warp_lang-1.5.1.dist-info}/METADATA +32 -7
- {warp_lang-1.4.2.dist-info → warp_lang-1.5.1.dist-info}/RECORD +161 -134
- {warp_lang-1.4.2.dist-info → warp_lang-1.5.1.dist-info}/WHEEL +1 -1
- warp/fem/field/test.py +0 -180
- warp/fem/field/trial.py +0 -183
- warp/fem/space/collocated_function_space.py +0 -102
- warp/fem/space/quadmesh_2d_function_space.py +0 -261
- warp/fem/space/trimesh_2d_function_space.py +0 -153
- {warp_lang-1.4.2.dist-info → warp_lang-1.5.1.dist-info}/LICENSE.md +0 -0
- {warp_lang-1.4.2.dist-info → warp_lang-1.5.1.dist-info}/top_level.txt +0 -0
warp/builtins.py
CHANGED
|
@@ -5,6 +5,9 @@
|
|
|
5
5
|
# distribution of this software and related documentation without an express
|
|
6
6
|
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
7
7
|
import builtins
|
|
8
|
+
import functools
|
|
9
|
+
import tempfile
|
|
10
|
+
from pathlib import Path
|
|
8
11
|
from typing import Any, Callable, Mapping, Sequence
|
|
9
12
|
|
|
10
13
|
from warp.codegen import Reference, Var, strip_reference
|
|
@@ -396,11 +399,11 @@ def scalar_infer_type(arg_types: Mapping[str, type]):
|
|
|
396
399
|
|
|
397
400
|
scalar_types = set()
|
|
398
401
|
for t in arg_types:
|
|
399
|
-
|
|
400
|
-
if hasattr(
|
|
401
|
-
scalar_types.add(
|
|
402
|
-
elif
|
|
403
|
-
scalar_types.add(
|
|
402
|
+
t_val = strip_reference(t)
|
|
403
|
+
if hasattr(t_val, "_wp_scalar_type_"):
|
|
404
|
+
scalar_types.add(t_val._wp_scalar_type_)
|
|
405
|
+
elif t_val in scalar_and_bool_types:
|
|
406
|
+
scalar_types.add(t_val)
|
|
404
407
|
|
|
405
408
|
if len(scalar_types) > 1:
|
|
406
409
|
raise RuntimeError(
|
|
@@ -1702,6 +1705,1267 @@ add_builtin(
|
|
|
1702
1705
|
group="Spatial Math",
|
|
1703
1706
|
)
|
|
1704
1707
|
|
|
1708
|
+
# ------------------
|
|
1709
|
+
# Tile-based primitives
|
|
1710
|
+
shared_memory_id = 0
|
|
1711
|
+
|
|
1712
|
+
|
|
1713
|
+
def tile_zeros_value_func(arg_types: Mapping[str, type], arg_values: Mapping[str, Any]):
|
|
1714
|
+
# return generic type (for doc builds)
|
|
1715
|
+
if arg_types is None:
|
|
1716
|
+
return Tile(dtype=Any, M=Any, N=Any)
|
|
1717
|
+
|
|
1718
|
+
if "m" not in arg_values:
|
|
1719
|
+
raise RuntimeError("'m' keyword argument must be specified when calling tile_zeros() function")
|
|
1720
|
+
|
|
1721
|
+
if "n" not in arg_values:
|
|
1722
|
+
raise RuntimeError("'n' keyword argument must be specified when calling tile_zeros() function")
|
|
1723
|
+
|
|
1724
|
+
if "dtype" not in arg_values:
|
|
1725
|
+
raise RuntimeError("'dtype' keyword argument must be specified when calling tile_zeros() function")
|
|
1726
|
+
|
|
1727
|
+
if "storage" not in arg_values:
|
|
1728
|
+
raise ValueError("'storage' keyword not provided for tile_zeros")
|
|
1729
|
+
|
|
1730
|
+
if arg_values["storage"] not in {"shared", "register"}:
|
|
1731
|
+
raise ValueError(
|
|
1732
|
+
f"'storage' keyword argument must be either 'shared' or 'register', got {arg_values['storage']}"
|
|
1733
|
+
)
|
|
1734
|
+
|
|
1735
|
+
m, n = arg_values["m"], arg_values["n"]
|
|
1736
|
+
dtype = arg_values["dtype"]
|
|
1737
|
+
|
|
1738
|
+
return TileZeros(dtype=dtype, M=m, N=n, storage=arg_values["storage"])
|
|
1739
|
+
|
|
1740
|
+
|
|
1741
|
+
def tile_zeros_dispatch_func(arg_types: Mapping[str, type], return_type: Any, arg_values: Mapping[str, Var]):
|
|
1742
|
+
m, n, dtype = arg_values["m"], arg_values["n"], arg_values["dtype"]
|
|
1743
|
+
|
|
1744
|
+
template_args = []
|
|
1745
|
+
template_args.append(dtype)
|
|
1746
|
+
template_args.append(m.constant)
|
|
1747
|
+
template_args.append(n.constant)
|
|
1748
|
+
|
|
1749
|
+
return ([], template_args)
|
|
1750
|
+
|
|
1751
|
+
|
|
1752
|
+
add_builtin(
|
|
1753
|
+
"tile_zeros",
|
|
1754
|
+
input_types={"m": int, "n": int, "dtype": Any, "storage": str},
|
|
1755
|
+
defaults={"storage": "register"},
|
|
1756
|
+
value_func=tile_zeros_value_func,
|
|
1757
|
+
dispatch_func=tile_zeros_dispatch_func,
|
|
1758
|
+
variadic=False,
|
|
1759
|
+
missing_grad=True,
|
|
1760
|
+
doc="""Allocates a tile of zero-initialized items.
|
|
1761
|
+
|
|
1762
|
+
:param m: Size of the first dimension of the output tile
|
|
1763
|
+
:param n: Size of the second dimension of the output tile
|
|
1764
|
+
:param dtype: Datatype of output tile's elements
|
|
1765
|
+
:param storage: The storage location for the tile: ``"register"`` for registers
|
|
1766
|
+
(default) or ``"shared"`` for shared memory.
|
|
1767
|
+
:returns: A zero-initialized tile with ``shape=(m,n)`` and the specified datatype""",
|
|
1768
|
+
group="Tile Primitives",
|
|
1769
|
+
export=False,
|
|
1770
|
+
)
|
|
1771
|
+
|
|
1772
|
+
|
|
1773
|
+
def tile_ones_value_func(arg_types: Mapping[str, type], arg_values: Mapping[str, Any]):
|
|
1774
|
+
# return generic type (for doc builds)
|
|
1775
|
+
if arg_types is None:
|
|
1776
|
+
return Tile(dtype=Any, M=Any, N=Any)
|
|
1777
|
+
|
|
1778
|
+
if "m" not in arg_values:
|
|
1779
|
+
raise RuntimeError("'m' keyword argument must be specified when calling tile_zeros() function")
|
|
1780
|
+
|
|
1781
|
+
if "n" not in arg_values:
|
|
1782
|
+
raise RuntimeError("'n' keyword argument must be specified when calling tile_zeros() function")
|
|
1783
|
+
|
|
1784
|
+
if "dtype" not in arg_values:
|
|
1785
|
+
raise RuntimeError("'dtype' keyword argument must be specified when calling tile_zeros() function")
|
|
1786
|
+
|
|
1787
|
+
if arg_values["storage"] not in {"shared", "register"}:
|
|
1788
|
+
raise ValueError(
|
|
1789
|
+
f"'storage' keyword argument must be either 'shared' or 'register', got {arg_values['storage']}"
|
|
1790
|
+
)
|
|
1791
|
+
|
|
1792
|
+
m, n = arg_values["m"], arg_values["n"]
|
|
1793
|
+
dtype = arg_values["dtype"]
|
|
1794
|
+
|
|
1795
|
+
return TileZeros(dtype=dtype, M=m, N=n, storage=arg_values["storage"])
|
|
1796
|
+
|
|
1797
|
+
|
|
1798
|
+
def tile_ones_dispatch_func(arg_types: Mapping[str, type], return_type: Any, arg_values: Mapping[str, Var]):
|
|
1799
|
+
m, n, dtype = arg_values["m"], arg_values["n"], arg_values["dtype"]
|
|
1800
|
+
|
|
1801
|
+
template_args = []
|
|
1802
|
+
template_args.append(dtype)
|
|
1803
|
+
template_args.append(m.constant)
|
|
1804
|
+
template_args.append(n.constant)
|
|
1805
|
+
|
|
1806
|
+
return ([], template_args)
|
|
1807
|
+
|
|
1808
|
+
|
|
1809
|
+
add_builtin(
|
|
1810
|
+
"tile_ones",
|
|
1811
|
+
input_types={"m": int, "n": int, "dtype": Any, "storage": str},
|
|
1812
|
+
defaults={"storage": "register"},
|
|
1813
|
+
value_func=tile_ones_value_func,
|
|
1814
|
+
dispatch_func=tile_ones_dispatch_func,
|
|
1815
|
+
missing_grad=True,
|
|
1816
|
+
doc="""Allocates a tile of one-initialized items.
|
|
1817
|
+
|
|
1818
|
+
:param m: Size of the first dimension of the output tile
|
|
1819
|
+
:param n: Size of the second dimension of the output tile
|
|
1820
|
+
:param dtype: Datatype of output tile's elements
|
|
1821
|
+
:param storage: The storage location for the tile: ``"register"`` for registers
|
|
1822
|
+
(default) or ``"shared"`` for shared memory.
|
|
1823
|
+
:returns: A one-initialized tile with ``shape=(m,n)`` and the specified dtype""",
|
|
1824
|
+
group="Tile Primitives",
|
|
1825
|
+
export=False,
|
|
1826
|
+
)
|
|
1827
|
+
|
|
1828
|
+
|
|
1829
|
+
def tile_arange_value_func(arg_types: Mapping[str, type], arg_values: Mapping[str, Any]):
|
|
1830
|
+
# return generic type (for doc builds)
|
|
1831
|
+
if arg_types is None:
|
|
1832
|
+
return Tile(dtype=Any, M=Any, N=Any)
|
|
1833
|
+
|
|
1834
|
+
start = 0
|
|
1835
|
+
stop = 0
|
|
1836
|
+
step = 1
|
|
1837
|
+
dtype = int
|
|
1838
|
+
|
|
1839
|
+
args = arg_values["args"]
|
|
1840
|
+
|
|
1841
|
+
if len(args) == 1:
|
|
1842
|
+
start = 0
|
|
1843
|
+
stop = args[0]
|
|
1844
|
+
|
|
1845
|
+
elif len(args) == 2:
|
|
1846
|
+
start = args[0]
|
|
1847
|
+
stop = args[1]
|
|
1848
|
+
|
|
1849
|
+
elif len(args) == 3:
|
|
1850
|
+
start = args[0]
|
|
1851
|
+
stop = args[1]
|
|
1852
|
+
step = args[2]
|
|
1853
|
+
|
|
1854
|
+
if start is None or stop is None or step is None:
|
|
1855
|
+
print(args)
|
|
1856
|
+
raise RuntimeError("wp.tile_arange() arguments must be compile time constants")
|
|
1857
|
+
|
|
1858
|
+
if "dtype" in arg_values:
|
|
1859
|
+
dtype = arg_values["dtype"]
|
|
1860
|
+
else:
|
|
1861
|
+
dtype = float
|
|
1862
|
+
|
|
1863
|
+
if arg_values["storage"] not in {"shared", "register"}:
|
|
1864
|
+
raise ValueError(
|
|
1865
|
+
f"'storage' keyword argument must be either 'shared' or 'register', got {arg_values['storage']}"
|
|
1866
|
+
)
|
|
1867
|
+
|
|
1868
|
+
return TileRange(dtype=dtype, start=start, stop=stop, step=step, storage=arg_values["storage"])
|
|
1869
|
+
|
|
1870
|
+
|
|
1871
|
+
def tile_arange_dispatch_func(arg_types: Mapping[str, type], return_type: Any, arg_values: Mapping[str, Var]):
|
|
1872
|
+
m, n, dtype = return_type.M, return_type.N, return_type.dtype
|
|
1873
|
+
|
|
1874
|
+
template_args = []
|
|
1875
|
+
template_args.append(dtype)
|
|
1876
|
+
template_args.append(m)
|
|
1877
|
+
template_args.append(n)
|
|
1878
|
+
|
|
1879
|
+
# todo: it is somewhat redundant to create new vars here since some of start,stop,step
|
|
1880
|
+
# already exist depending on which form the function was called by the user
|
|
1881
|
+
start = warp.codegen.Var(label=None, type=return_type.dtype, constant=return_type.start)
|
|
1882
|
+
stop = warp.codegen.Var(label=None, type=return_type.dtype, constant=return_type.stop)
|
|
1883
|
+
step = warp.codegen.Var(label=None, type=return_type.dtype, constant=return_type.step)
|
|
1884
|
+
|
|
1885
|
+
function_args = []
|
|
1886
|
+
function_args.append(start)
|
|
1887
|
+
function_args.append(stop)
|
|
1888
|
+
function_args.append(step)
|
|
1889
|
+
|
|
1890
|
+
return (function_args, template_args)
|
|
1891
|
+
|
|
1892
|
+
|
|
1893
|
+
add_builtin(
|
|
1894
|
+
"tile_arange",
|
|
1895
|
+
input_types={"*args": Scalar, "dtype": Any, "storage": str},
|
|
1896
|
+
defaults={"dtype": None, "storage": "register"},
|
|
1897
|
+
value_func=tile_arange_value_func,
|
|
1898
|
+
dispatch_func=tile_arange_dispatch_func,
|
|
1899
|
+
variadic=True,
|
|
1900
|
+
missing_grad=True,
|
|
1901
|
+
doc="""Generates a tile of linearly spaced elements.
|
|
1902
|
+
|
|
1903
|
+
:param args: Variable-length positional arguments, interpreted as:
|
|
1904
|
+
|
|
1905
|
+
- ``(stop,)``: Generates values from ``0`` to ``stop - 1``
|
|
1906
|
+
- ``(start, stop)``: Generates values from ``start`` to ``stop - 1``
|
|
1907
|
+
- ``(start, stop, step)``: Generates values from ``start`` to ``stop - 1`` with a step size
|
|
1908
|
+
|
|
1909
|
+
:param dtype: Datatype of output tile's elements (optional, default: int)
|
|
1910
|
+
:param storage: The storage location for the tile: ``"register"`` for registers
|
|
1911
|
+
(default) or ``"shared"`` for shared memory.
|
|
1912
|
+
:returns: A tile with ``shape=(1,n)`` with linearly spaced elements of specified dtype""",
|
|
1913
|
+
group="Tile Primitives",
|
|
1914
|
+
export=False,
|
|
1915
|
+
)
|
|
1916
|
+
|
|
1917
|
+
|
|
1918
|
+
def tile_load_1d_value_func(arg_types, arg_values):
|
|
1919
|
+
# return generic type (for doc builds)
|
|
1920
|
+
if arg_types is None:
|
|
1921
|
+
return Tile(dtype=Any, M=Any, N=Any)
|
|
1922
|
+
|
|
1923
|
+
if not is_array(arg_types["a"]):
|
|
1924
|
+
raise RuntimeError("tile_load() argument 0 must be an array")
|
|
1925
|
+
|
|
1926
|
+
if arg_types["a"].ndim != 1:
|
|
1927
|
+
raise RuntimeError(
|
|
1928
|
+
"tile_load() argument 0 must be 1-dimensional if using the ``wp.tile_load(array, i, n)`` syntax."
|
|
1929
|
+
)
|
|
1930
|
+
|
|
1931
|
+
if not type_is_int(arg_types["i"]):
|
|
1932
|
+
raise RuntimeError("tile_load() argument 1 must be an integer")
|
|
1933
|
+
|
|
1934
|
+
if "n" not in arg_values:
|
|
1935
|
+
raise RuntimeError("'n' keyword argument must be specified when calling tile_load() function")
|
|
1936
|
+
|
|
1937
|
+
if arg_values["storage"] not in {"shared", "register"}:
|
|
1938
|
+
raise ValueError(
|
|
1939
|
+
f"'storage' keyword argument must be either 'shared' or 'register', got {arg_values['storage']}"
|
|
1940
|
+
)
|
|
1941
|
+
|
|
1942
|
+
a = arg_types["a"]
|
|
1943
|
+
_m, n = 1, arg_values["n"]
|
|
1944
|
+
|
|
1945
|
+
return TileLoad(a, 1, n, arg_values["storage"])
|
|
1946
|
+
|
|
1947
|
+
|
|
1948
|
+
def tile_load_1d_dispatch_func(arg_types: Mapping[str, type], return_type: Any, arg_values: Mapping[str, Var]):
|
|
1949
|
+
array = arg_values["a"]
|
|
1950
|
+
i = arg_values["i"]
|
|
1951
|
+
n = arg_values["n"].constant
|
|
1952
|
+
dtype = arg_values["a"].type.dtype
|
|
1953
|
+
|
|
1954
|
+
template_args = []
|
|
1955
|
+
template_args.append(dtype)
|
|
1956
|
+
template_args.append(n)
|
|
1957
|
+
|
|
1958
|
+
return ((array, i), template_args)
|
|
1959
|
+
|
|
1960
|
+
|
|
1961
|
+
add_builtin(
|
|
1962
|
+
"tile_load",
|
|
1963
|
+
input_types={"a": array(dtype=Any), "i": int, "n": int, "storage": str},
|
|
1964
|
+
defaults={"storage": "register"},
|
|
1965
|
+
value_func=tile_load_1d_value_func,
|
|
1966
|
+
dispatch_func=tile_load_1d_dispatch_func,
|
|
1967
|
+
variadic=False,
|
|
1968
|
+
doc="""Loads a 1D tile from a global memory array.
|
|
1969
|
+
|
|
1970
|
+
This method will cooperatively load a tile from global memory using all threads in the block.
|
|
1971
|
+
|
|
1972
|
+
:param a: The source array in global memory
|
|
1973
|
+
:param i: Offset in the source array measured in multiples of ``n``, i.e.: ``offset=i*n``
|
|
1974
|
+
:param n: The number of elements in the tile
|
|
1975
|
+
:param storage: The storage location for the tile: ``"register"`` for registers
|
|
1976
|
+
(default) or ``"shared"`` for shared memory.
|
|
1977
|
+
:returns: A tile with ``shape=(1,n)`` and dtype the same as the source array""",
|
|
1978
|
+
group="Tile Primitives",
|
|
1979
|
+
export=False,
|
|
1980
|
+
)
|
|
1981
|
+
|
|
1982
|
+
|
|
1983
|
+
def tile_load_2d_value_func(arg_types, arg_values):
|
|
1984
|
+
# return generic type (for doc builds)
|
|
1985
|
+
if arg_types is None:
|
|
1986
|
+
return Tile(dtype=Any, M=Any, N=Any)
|
|
1987
|
+
|
|
1988
|
+
if not is_array(arg_types["a"]):
|
|
1989
|
+
raise RuntimeError("tile_load() argument 0 must be an array")
|
|
1990
|
+
|
|
1991
|
+
if arg_types["a"].ndim != 2:
|
|
1992
|
+
raise RuntimeError(
|
|
1993
|
+
"tile_load() argument 0 must be 2-dimensional if using the ``wp.tile_load(array, i, j, m, n)`` syntax."
|
|
1994
|
+
)
|
|
1995
|
+
|
|
1996
|
+
if not type_is_int(arg_types["i"]):
|
|
1997
|
+
raise RuntimeError("tile_load() argument 1 must be an integer")
|
|
1998
|
+
|
|
1999
|
+
if not type_is_int(arg_types["j"]):
|
|
2000
|
+
raise RuntimeError("tile_load() argument 1 must be an integer")
|
|
2001
|
+
|
|
2002
|
+
if "m" not in arg_values:
|
|
2003
|
+
raise RuntimeError("'m' keyword argument must be specified when calling tile_load() function")
|
|
2004
|
+
|
|
2005
|
+
if "n" not in arg_values:
|
|
2006
|
+
raise RuntimeError("'n' keyword argument must be specified when calling tile_load() function")
|
|
2007
|
+
|
|
2008
|
+
if arg_values["storage"] not in {"shared", "register"}:
|
|
2009
|
+
raise ValueError(
|
|
2010
|
+
f"'storage' keyword argument must be either 'shared' or 'register', got {arg_values['storage']}"
|
|
2011
|
+
)
|
|
2012
|
+
|
|
2013
|
+
a = arg_types["a"]
|
|
2014
|
+
m, n = arg_values["m"], arg_values["n"]
|
|
2015
|
+
|
|
2016
|
+
return TileLoad(a, m, n, arg_values["storage"])
|
|
2017
|
+
|
|
2018
|
+
|
|
2019
|
+
def tile_load_2d_dispatch_func(arg_types: Mapping[str, type], return_type: Any, arg_values: Mapping[str, Var]):
|
|
2020
|
+
array = arg_values["a"]
|
|
2021
|
+
i, j = arg_values["i"], arg_values["j"]
|
|
2022
|
+
m, n = arg_values["m"].constant, arg_values["n"].constant
|
|
2023
|
+
dtype = arg_values["a"].type.dtype
|
|
2024
|
+
|
|
2025
|
+
template_args = []
|
|
2026
|
+
template_args.append(dtype)
|
|
2027
|
+
template_args.append(m)
|
|
2028
|
+
template_args.append(n)
|
|
2029
|
+
|
|
2030
|
+
return ((array, i, j), template_args)
|
|
2031
|
+
|
|
2032
|
+
|
|
2033
|
+
add_builtin(
|
|
2034
|
+
"tile_load",
|
|
2035
|
+
input_types={"a": array(dtype=Any), "i": int, "j": int, "m": int, "n": int, "storage": str},
|
|
2036
|
+
defaults={"storage": "register"},
|
|
2037
|
+
value_func=tile_load_2d_value_func,
|
|
2038
|
+
dispatch_func=tile_load_2d_dispatch_func,
|
|
2039
|
+
variadic=False,
|
|
2040
|
+
doc="""Loads a 2D tile from a global memory array.
|
|
2041
|
+
|
|
2042
|
+
This method will cooperatively load a tile from global memory using all threads in the block.
|
|
2043
|
+
|
|
2044
|
+
:param a: The source array in global memory
|
|
2045
|
+
:param i: Offset in the source array measured in multiples of ``m``, i.e.: ``row=i*m``
|
|
2046
|
+
:param j: Offset in the source array measured in multiples of ``n``, i.e.; ``col=j*n``
|
|
2047
|
+
:param m: The size of the tile's first dimension
|
|
2048
|
+
:param n: The size of the tile's second dimension
|
|
2049
|
+
:param storage: The storage location for the tile: ``"register"`` for registers
|
|
2050
|
+
(default) or ``"shared"`` for shared memory.
|
|
2051
|
+
:returns: A tile with ``shape=(m,n)`` and dtype the same as the source array""",
|
|
2052
|
+
group="Tile Primitives",
|
|
2053
|
+
export=False,
|
|
2054
|
+
)
|
|
2055
|
+
|
|
2056
|
+
|
|
2057
|
+
def tile_store_1d_value_func(arg_types, arg_values):
|
|
2058
|
+
# return generic type (for doc builds)
|
|
2059
|
+
if arg_types is None:
|
|
2060
|
+
return None
|
|
2061
|
+
|
|
2062
|
+
if len(arg_types) != 3:
|
|
2063
|
+
raise RuntimeError("tile_store() requires 3 positional args")
|
|
2064
|
+
|
|
2065
|
+
if not is_array(arg_types["a"]):
|
|
2066
|
+
raise RuntimeError("tile_store() argument 0 must be an array")
|
|
2067
|
+
|
|
2068
|
+
if arg_types["a"].ndim != 1:
|
|
2069
|
+
raise RuntimeError(
|
|
2070
|
+
"tile_load() argument 0 must be a 1-dimensional array if using the ``wp.tile_store(array, i, t)`` syntax."
|
|
2071
|
+
)
|
|
2072
|
+
|
|
2073
|
+
if not type_is_int(arg_types["i"]):
|
|
2074
|
+
raise RuntimeError("tile_store() argument 1 must be an integer")
|
|
2075
|
+
|
|
2076
|
+
if not is_tile(arg_types["t"]):
|
|
2077
|
+
raise RuntimeError("tile_store() argument 2 must be a tile")
|
|
2078
|
+
|
|
2079
|
+
if not types_equal(arg_types["a"].dtype, arg_types["t"].dtype):
|
|
2080
|
+
raise RuntimeError("tile_store() destination array must have same type as source tile")
|
|
2081
|
+
|
|
2082
|
+
return None
|
|
2083
|
+
|
|
2084
|
+
|
|
2085
|
+
add_builtin(
|
|
2086
|
+
"tile_store",
|
|
2087
|
+
input_types={"a": array(dtype=Any), "i": int, "t": Tile(dtype=Any, M=Any, N=Any)},
|
|
2088
|
+
value_func=tile_store_1d_value_func,
|
|
2089
|
+
variadic=False,
|
|
2090
|
+
skip_replay=True,
|
|
2091
|
+
doc="""Stores a 1D tile to a global memory array.
|
|
2092
|
+
|
|
2093
|
+
This method will cooperatively store a tile to global memory using all threads in the block.
|
|
2094
|
+
|
|
2095
|
+
:param a: The destination array in global memory
|
|
2096
|
+
:param i: Offset in the destination array measured in multiples of ``n``, i.e.: ``offset=i*n``
|
|
2097
|
+
:param t: The source tile to store data from, must have the same dtype as the destination array""",
|
|
2098
|
+
group="Tile Primitives",
|
|
2099
|
+
export=False,
|
|
2100
|
+
)
|
|
2101
|
+
|
|
2102
|
+
|
|
2103
|
+
def tile_store_2d_value_func(arg_types, arg_values):
|
|
2104
|
+
# return generic type (for doc builds)
|
|
2105
|
+
if arg_types is None:
|
|
2106
|
+
return None
|
|
2107
|
+
|
|
2108
|
+
if len(arg_types) != 4:
|
|
2109
|
+
raise RuntimeError("tile_store() requires 4 positional args")
|
|
2110
|
+
|
|
2111
|
+
if not is_array(arg_types["a"]):
|
|
2112
|
+
raise RuntimeError("tile_store() argument 0 must be an array")
|
|
2113
|
+
|
|
2114
|
+
if arg_types["a"].ndim != 2:
|
|
2115
|
+
raise RuntimeError(
|
|
2116
|
+
"tile_load() argument 0 must be a 2-dimensional array if using the ``wp.tile_store(array, i, j, t)`` syntax."
|
|
2117
|
+
)
|
|
2118
|
+
|
|
2119
|
+
if not type_is_int(arg_types["i"]):
|
|
2120
|
+
raise RuntimeError("tile_store() argument 1 must be an integer")
|
|
2121
|
+
|
|
2122
|
+
if not type_is_int(arg_types["j"]):
|
|
2123
|
+
raise RuntimeError("tile_store() argument 2 must be an integer")
|
|
2124
|
+
|
|
2125
|
+
if not is_tile(arg_types["t"]):
|
|
2126
|
+
raise RuntimeError("tile_store() argument 3 must be a tile")
|
|
2127
|
+
|
|
2128
|
+
if not types_equal(arg_types["a"].dtype, arg_types["t"].dtype):
|
|
2129
|
+
raise RuntimeError("tile_store() destination array must have same type as source tile")
|
|
2130
|
+
|
|
2131
|
+
return None
|
|
2132
|
+
|
|
2133
|
+
|
|
2134
|
+
add_builtin(
|
|
2135
|
+
"tile_store",
|
|
2136
|
+
input_types={"a": array(dtype=Any), "i": int, "j": int, "t": Tile(dtype=Any, M=Any, N=Any)},
|
|
2137
|
+
value_func=tile_store_2d_value_func,
|
|
2138
|
+
variadic=False,
|
|
2139
|
+
skip_replay=True,
|
|
2140
|
+
doc="""Stores a tile to a global memory array.
|
|
2141
|
+
|
|
2142
|
+
This method will cooperatively store a tile to global memory using all threads in the block.
|
|
2143
|
+
|
|
2144
|
+
:param a: The destination array in global memory
|
|
2145
|
+
:param i: Offset in the destination array measured in multiples of ``m``, i.e.: ``row=i*m``
|
|
2146
|
+
:param j: Offset in the destination array measured in multiples of ``n``, i.e.; ``col=j*n``
|
|
2147
|
+
:param t: The source tile to store data from, must have the same dtype as the destination array""",
|
|
2148
|
+
group="Tile Primitives",
|
|
2149
|
+
export=False,
|
|
2150
|
+
)
|
|
2151
|
+
|
|
2152
|
+
|
|
2153
|
+
def tile_atomic_add_value_func(arg_types, arg_values):
|
|
2154
|
+
# return generic type (for doc builds)
|
|
2155
|
+
if arg_types is None:
|
|
2156
|
+
return Tile(dtype=Any, M=Any, N=Any)
|
|
2157
|
+
|
|
2158
|
+
if len(arg_types) != 4:
|
|
2159
|
+
raise RuntimeError("tile_atomic_add() requires 4 positional args")
|
|
2160
|
+
|
|
2161
|
+
if not is_array(arg_types["a"]):
|
|
2162
|
+
raise RuntimeError("tile_atomic_add() argument 0 must be an array")
|
|
2163
|
+
|
|
2164
|
+
if not type_is_int(arg_types["x"]):
|
|
2165
|
+
raise RuntimeError("tile_atomic_add() argument 1 must be an integer")
|
|
2166
|
+
|
|
2167
|
+
if not type_is_int(arg_types["y"]):
|
|
2168
|
+
raise RuntimeError("tile_atomic_add() argument 2 must be an integer")
|
|
2169
|
+
|
|
2170
|
+
if not is_tile(arg_types["t"]):
|
|
2171
|
+
raise RuntimeError("tile_atomic_add() argument 3 must be a tile")
|
|
2172
|
+
|
|
2173
|
+
if arg_types["a"].dtype != arg_types["t"].dtype:
|
|
2174
|
+
raise RuntimeError("tile_atomic_add() tile dtype and array dtype must match")
|
|
2175
|
+
|
|
2176
|
+
return Tile(dtype=arg_types["t"].dtype, M=arg_types["t"].M, N=arg_types["t"].N)
|
|
2177
|
+
|
|
2178
|
+
|
|
2179
|
+
add_builtin(
|
|
2180
|
+
"tile_atomic_add",
|
|
2181
|
+
input_types={"a": array(dtype=Any), "x": int, "y": int, "t": Tile(dtype=Any, M=Any, N=Any)},
|
|
2182
|
+
value_func=tile_atomic_add_value_func,
|
|
2183
|
+
variadic=True,
|
|
2184
|
+
skip_replay=True,
|
|
2185
|
+
doc="""Atomically add a tile to the array `a`, each element will be updated atomically.
|
|
2186
|
+
|
|
2187
|
+
:param a: Array in global memory, should have the same ``dtype`` as the input tile
|
|
2188
|
+
:param x: Offset in the destination array measured in multiples of ``m``, i.e.: ``i=x*M`` where ``M`` is the first tile dimension
|
|
2189
|
+
:param y: Offset in the destination array measured in multiples of ``n``, i.e.: ``j=y*N`` where ``N`` is the second tile dimension
|
|
2190
|
+
:param t: Source tile to add to the destination array
|
|
2191
|
+
:returns: A tile with the same dimensions and type as the source tile, holding the original value of the destination elements""",
|
|
2192
|
+
group="Tile Primitives",
|
|
2193
|
+
export=False,
|
|
2194
|
+
)
|
|
2195
|
+
|
|
2196
|
+
|
|
2197
|
+
def tile_view_value_func(arg_types, arg_values):
|
|
2198
|
+
# return generic type (for doc builds)
|
|
2199
|
+
if arg_types is None:
|
|
2200
|
+
return Tile(dtype=Any, M=Any, N=Any)
|
|
2201
|
+
|
|
2202
|
+
tile = arg_types["t"]
|
|
2203
|
+
|
|
2204
|
+
if "m" not in arg_values:
|
|
2205
|
+
m = 1
|
|
2206
|
+
else:
|
|
2207
|
+
m = arg_values["m"]
|
|
2208
|
+
|
|
2209
|
+
if "n" not in arg_values:
|
|
2210
|
+
n = tile.N
|
|
2211
|
+
else:
|
|
2212
|
+
n = arg_values["n"]
|
|
2213
|
+
|
|
2214
|
+
if m > tile.M or n > tile.N:
|
|
2215
|
+
raise RuntimeError(
|
|
2216
|
+
f"Trying to view a tile subrange with dimensions ({m}, {n}) which is larger than source tile with dimensions ({tile.M}, {tile.N})"
|
|
2217
|
+
)
|
|
2218
|
+
|
|
2219
|
+
# force source tile to shared memory
|
|
2220
|
+
tile.storage = "shared"
|
|
2221
|
+
|
|
2222
|
+
output = Tile(dtype=tile.dtype, M=m, N=n, strides=tile.strides, layout=tile.layout, storage="shared", owner=False)
|
|
2223
|
+
return output
|
|
2224
|
+
|
|
2225
|
+
|
|
2226
|
+
def tile_view_dispatch_func(arg_types: Mapping[str, type], return_type: Any, arg_values: Mapping[str, Var]):
|
|
2227
|
+
tile = arg_values["t"]
|
|
2228
|
+
i = arg_values["i"]
|
|
2229
|
+
|
|
2230
|
+
if "j" not in arg_values:
|
|
2231
|
+
j = warp.codegen.Var(label=None, type=int, constant=0)
|
|
2232
|
+
else:
|
|
2233
|
+
j = arg_values["j"]
|
|
2234
|
+
|
|
2235
|
+
template_args = []
|
|
2236
|
+
template_args.append(return_type.M)
|
|
2237
|
+
template_args.append(return_type.N)
|
|
2238
|
+
|
|
2239
|
+
return ((tile, i, j), template_args)
|
|
2240
|
+
|
|
2241
|
+
|
|
2242
|
+
add_builtin(
|
|
2243
|
+
"tile_view",
|
|
2244
|
+
input_types={"t": Tile(dtype=Any, M=Any, N=Any), "i": int, "j": int, "m": int, "n": int},
|
|
2245
|
+
value_func=tile_view_value_func,
|
|
2246
|
+
dispatch_func=tile_view_dispatch_func,
|
|
2247
|
+
defaults={"j": None, "m": None, "n": None},
|
|
2248
|
+
variadic=True,
|
|
2249
|
+
doc="""Return a subrange of a given tile from coordinates (i,j) to (i+m, j+n).
|
|
2250
|
+
|
|
2251
|
+
:param t: Input tile to extract a subrange from
|
|
2252
|
+
:param i: Offset in the source tile along the first dimension
|
|
2253
|
+
:param j: Offset in the source tile along the second dimensions
|
|
2254
|
+
:param m: Size of the subrange to return along the first dimension
|
|
2255
|
+
:param n: Size of the subrange to return along the second dimension
|
|
2256
|
+
:returns: A tile with dimensions (m,n) and the same datatype as the input tile""",
|
|
2257
|
+
group="Tile Primitives",
|
|
2258
|
+
export=False,
|
|
2259
|
+
)
|
|
2260
|
+
|
|
2261
|
+
|
|
2262
|
+
def tile_assign_value_func(arg_types, arg_values):
|
|
2263
|
+
# return generic type (for doc builds)
|
|
2264
|
+
return None
|
|
2265
|
+
|
|
2266
|
+
|
|
2267
|
+
add_builtin(
|
|
2268
|
+
"tile_assign",
|
|
2269
|
+
input_types={"dst": Tile(dtype=Any, M=Any, N=Any), "i": int, "j": int, "src": Tile(dtype=Any, M=Any, N=Any)},
|
|
2270
|
+
value_func=tile_assign_value_func,
|
|
2271
|
+
# dispatch_func=tile_assign_dispatch_func,
|
|
2272
|
+
doc="""Assign a tile to a subrange of a destination tile at coordinates (i,j).
|
|
2273
|
+
|
|
2274
|
+
:param t: The destination tile to assign to
|
|
2275
|
+
:param i: Offset in the source tile along the first dimension
|
|
2276
|
+
:param j: Offset in the source tile along the second dimensions
|
|
2277
|
+
:param src: The source tile to read values from""",
|
|
2278
|
+
group="Tile Primitives",
|
|
2279
|
+
export=False,
|
|
2280
|
+
)
|
|
2281
|
+
|
|
2282
|
+
|
|
2283
|
+
def tile_value_func(arg_types, arg_values):
|
|
2284
|
+
# return generic type (for doc builds)
|
|
2285
|
+
if arg_types is None:
|
|
2286
|
+
return Tile
|
|
2287
|
+
|
|
2288
|
+
if len(arg_types) != 1:
|
|
2289
|
+
raise RuntimeError("tile() requires 1 positional arg")
|
|
2290
|
+
|
|
2291
|
+
dtype = None
|
|
2292
|
+
length = None
|
|
2293
|
+
|
|
2294
|
+
if type_is_vector(arg_types["x"]):
|
|
2295
|
+
dtype = arg_types["x"]._wp_scalar_type_
|
|
2296
|
+
length = arg_types["x"]._shape_[0]
|
|
2297
|
+
else:
|
|
2298
|
+
dtype = arg_types["x"]
|
|
2299
|
+
length = 1
|
|
2300
|
+
|
|
2301
|
+
return Tile(dtype=dtype, M=length, N=warp.codegen.options["block_dim"], op="tile")
|
|
2302
|
+
|
|
2303
|
+
|
|
2304
|
+
add_builtin(
|
|
2305
|
+
"tile",
|
|
2306
|
+
input_types={"x": Any},
|
|
2307
|
+
value_func=tile_value_func,
|
|
2308
|
+
variadic=True,
|
|
2309
|
+
doc="""Constructs a new Tile from per-thread kernel values.
|
|
2310
|
+
|
|
2311
|
+
This function converts values computed using scalar kernel code to a tile representation for input into collective operations.
|
|
2312
|
+
|
|
2313
|
+
* If the input value is a scalar, then the resulting tile has ``shape=(1, block_dim)``
|
|
2314
|
+
* If the input value is a vector, then the resulting tile has ``shape=(length(vector), block_dim)``
|
|
2315
|
+
|
|
2316
|
+
:param x: A per-thread local value, e.g.: scalar, vector, or matrix.
|
|
2317
|
+
:returns: A tile with first dimension according to the value type length and a second dimension equal to ``block_dim``
|
|
2318
|
+
|
|
2319
|
+
This example shows how to create a linear sequence from thread variables:
|
|
2320
|
+
|
|
2321
|
+
.. code-block:: python
|
|
2322
|
+
|
|
2323
|
+
@wp.kernel
|
|
2324
|
+
def compute():
|
|
2325
|
+
i = wp.tid()
|
|
2326
|
+
t = wp.tile(i*2)
|
|
2327
|
+
print(t)
|
|
2328
|
+
|
|
2329
|
+
wp.launch(compute, dim=16, inputs=[], block_dim=16)
|
|
2330
|
+
|
|
2331
|
+
Prints:
|
|
2332
|
+
|
|
2333
|
+
.. code-block:: text
|
|
2334
|
+
|
|
2335
|
+
tile(m=1, n=16, storage=register) = [[0 2 4 6 8 ...]]
|
|
2336
|
+
|
|
2337
|
+
""",
|
|
2338
|
+
group="Tile Primitives",
|
|
2339
|
+
export=False,
|
|
2340
|
+
)
|
|
2341
|
+
|
|
2342
|
+
|
|
2343
|
+
def untile_value_func(arg_types, arg_values):
|
|
2344
|
+
# return generic type (for doc builds)
|
|
2345
|
+
if arg_types is None:
|
|
2346
|
+
return Scalar
|
|
2347
|
+
|
|
2348
|
+
if len(arg_types) != 1:
|
|
2349
|
+
raise RuntimeError("untile() requires 1 positional arg")
|
|
2350
|
+
|
|
2351
|
+
t = arg_types["a"]
|
|
2352
|
+
|
|
2353
|
+
if not is_tile(t):
|
|
2354
|
+
raise RuntimeError(f"untile() accepts arguments of type tile only, got {arg_types[0]}")
|
|
2355
|
+
|
|
2356
|
+
if t.N != warp.codegen.options["block_dim"]:
|
|
2357
|
+
raise RuntimeError(
|
|
2358
|
+
f"untile() argument must have the same length as the block width, got {t.N}, expected {warp.codegen.options['block_dim']}"
|
|
2359
|
+
)
|
|
2360
|
+
|
|
2361
|
+
if t.M == 1:
|
|
2362
|
+
return t.dtype
|
|
2363
|
+
elif t.M > 1:
|
|
2364
|
+
return warp.types.vector(t.M, t.dtype)
|
|
2365
|
+
|
|
2366
|
+
|
|
2367
|
+
add_builtin(
|
|
2368
|
+
"untile",
|
|
2369
|
+
input_types={"a": Tile(dtype=Any, M=Any, N=Any)},
|
|
2370
|
+
value_func=untile_value_func,
|
|
2371
|
+
variadic=True,
|
|
2372
|
+
doc="""Convert a Tile back to per-thread values.
|
|
2373
|
+
|
|
2374
|
+
This function converts a block-wide tile back to per-thread values.
|
|
2375
|
+
|
|
2376
|
+
* If the input tile is 1-dimensional then the resulting value will be a per-thread scalar
|
|
2377
|
+
* If the input tile is 2-dimensional then the resulting value will be a per-thread vector of length M
|
|
2378
|
+
|
|
2379
|
+
:param a: A tile with dimensions ``shape=(M, block_dim)``
|
|
2380
|
+
:returns: A single value per-thread with the same dtype as the tile
|
|
2381
|
+
|
|
2382
|
+
This example shows how to create a linear sequence from thread variables:
|
|
2383
|
+
|
|
2384
|
+
.. code-block:: python
|
|
2385
|
+
|
|
2386
|
+
@wp.kernel
|
|
2387
|
+
def compute():
|
|
2388
|
+
i = wp.tid()
|
|
2389
|
+
|
|
2390
|
+
# create block-wide tile
|
|
2391
|
+
t = wp.tile(i)*2
|
|
2392
|
+
|
|
2393
|
+
# convert back to per-thread values
|
|
2394
|
+
s = wp.untile(t)
|
|
2395
|
+
|
|
2396
|
+
print(s)
|
|
2397
|
+
|
|
2398
|
+
wp.launch(compute, dim=16, inputs=[], block_dim=16)
|
|
2399
|
+
|
|
2400
|
+
Prints:
|
|
2401
|
+
|
|
2402
|
+
.. code-block:: text
|
|
2403
|
+
|
|
2404
|
+
0
|
|
2405
|
+
2
|
|
2406
|
+
4
|
|
2407
|
+
6
|
|
2408
|
+
8
|
|
2409
|
+
...
|
|
2410
|
+
""",
|
|
2411
|
+
group="Tile Primitives",
|
|
2412
|
+
export=False,
|
|
2413
|
+
)
|
|
2414
|
+
|
|
2415
|
+
|
|
2416
|
+
def tile_extract_value_func(arg_types, arg_values):
|
|
2417
|
+
# return generic type (for doc builds)
|
|
2418
|
+
if arg_types is None:
|
|
2419
|
+
return Scalar
|
|
2420
|
+
|
|
2421
|
+
if len(arg_types) != 3:
|
|
2422
|
+
raise RuntimeError("tile_extract() requires 3 positional args")
|
|
2423
|
+
|
|
2424
|
+
if not is_tile(arg_types["a"]):
|
|
2425
|
+
raise RuntimeError("tile_extract() argument 0 must be a tile")
|
|
2426
|
+
|
|
2427
|
+
return arg_types["a"].dtype
|
|
2428
|
+
|
|
2429
|
+
|
|
2430
|
+
add_builtin(
|
|
2431
|
+
"tile_extract",
|
|
2432
|
+
input_types={"a": Tile(dtype=Any, M=Any, N=Any), "i": int, "j": int},
|
|
2433
|
+
value_func=tile_extract_value_func,
|
|
2434
|
+
variadic=True,
|
|
2435
|
+
doc="""Extracts a single element from the tile and returns it as a scalar type.
|
|
2436
|
+
|
|
2437
|
+
This function will extract an element from the tile and broadcast its value to all threads in the block.
|
|
2438
|
+
|
|
2439
|
+
Note that this may incur additional synchronization if the source tile is a register tile.
|
|
2440
|
+
|
|
2441
|
+
:param a: Tile to extract the element from
|
|
2442
|
+
:param i: Coordinate of element on first dimension
|
|
2443
|
+
:param j: Coordinate of element on the second dimension
|
|
2444
|
+
:returns: The value of the element at the specified tile location, with the same type as the input tile's per-element dtype""",
|
|
2445
|
+
group="Tile Primitives",
|
|
2446
|
+
export=False,
|
|
2447
|
+
)
|
|
2448
|
+
|
|
2449
|
+
|
|
2450
|
+
def tile_transpose_value_func(arg_types, arg_values):
|
|
2451
|
+
# return generic type (for doc builds)
|
|
2452
|
+
if arg_types is None:
|
|
2453
|
+
return Tile
|
|
2454
|
+
|
|
2455
|
+
if len(arg_types) != 1:
|
|
2456
|
+
raise RuntimeError("tile_transpose() requires 1 positional args")
|
|
2457
|
+
|
|
2458
|
+
t = arg_types["a"]
|
|
2459
|
+
|
|
2460
|
+
if not is_tile(t):
|
|
2461
|
+
raise RuntimeError("tile_transpose() argument 0 must be a tile")
|
|
2462
|
+
|
|
2463
|
+
layout = None
|
|
2464
|
+
|
|
2465
|
+
# flip layout
|
|
2466
|
+
if t.layout == "rowmajor":
|
|
2467
|
+
layout = "colmajor"
|
|
2468
|
+
elif t.layout == "colmajor":
|
|
2469
|
+
layout = "rowmajor"
|
|
2470
|
+
|
|
2471
|
+
# force the input tile to shared memory
|
|
2472
|
+
t.storage = "shared"
|
|
2473
|
+
|
|
2474
|
+
return Tile(
|
|
2475
|
+
dtype=t.dtype,
|
|
2476
|
+
M=t.N,
|
|
2477
|
+
N=t.M,
|
|
2478
|
+
op="transpose",
|
|
2479
|
+
storage=t.storage,
|
|
2480
|
+
strides=t.strides[::-1],
|
|
2481
|
+
layout=layout,
|
|
2482
|
+
owner=False,
|
|
2483
|
+
)
|
|
2484
|
+
|
|
2485
|
+
|
|
2486
|
+
add_builtin(
|
|
2487
|
+
"tile_transpose",
|
|
2488
|
+
input_types={"a": Tile(dtype=Any, M=Any, N=Any)},
|
|
2489
|
+
value_func=tile_transpose_value_func,
|
|
2490
|
+
variadic=True,
|
|
2491
|
+
doc="""Transpose a tile.
|
|
2492
|
+
|
|
2493
|
+
For shared memory tiles this operation will alias the input tile, register tiles will first be transferred to shared memory before transposition.
|
|
2494
|
+
|
|
2495
|
+
:param a: Tile to transpose with ``shape=(M,N)``
|
|
2496
|
+
:returns: Tile with ``shape=(N,M)``""",
|
|
2497
|
+
group="Tile Primitives",
|
|
2498
|
+
export=False,
|
|
2499
|
+
)
|
|
2500
|
+
|
|
2501
|
+
|
|
2502
|
+
def tile_broadcast_value_func(arg_types, arg_values):
|
|
2503
|
+
# return generic type (for doc builds)
|
|
2504
|
+
if arg_types is None:
|
|
2505
|
+
return Tile
|
|
2506
|
+
|
|
2507
|
+
if len(arg_types) != 3:
|
|
2508
|
+
raise RuntimeError("tile_broadcast() requires 1 positional args")
|
|
2509
|
+
|
|
2510
|
+
t = arg_types["a"]
|
|
2511
|
+
m = arg_values["m"]
|
|
2512
|
+
n = arg_values["n"]
|
|
2513
|
+
|
|
2514
|
+
if not is_tile(t):
|
|
2515
|
+
raise RuntimeError("tile_broadcast() argument 0 must be a tile")
|
|
2516
|
+
|
|
2517
|
+
# try to broadcast last dimension
|
|
2518
|
+
if t.N == 1:
|
|
2519
|
+
stride_n = 0
|
|
2520
|
+
elif t.N == n:
|
|
2521
|
+
stride_n = t.strides[1]
|
|
2522
|
+
else:
|
|
2523
|
+
raise RuntimeError(
|
|
2524
|
+
f"Broadcast dimension must be 1 or match destination, shape(src) = {t.m, t.n}, shape(dest) = {m, n}"
|
|
2525
|
+
)
|
|
2526
|
+
|
|
2527
|
+
# try to broadcast first dimension
|
|
2528
|
+
if t.M == 1:
|
|
2529
|
+
stride_m = 0
|
|
2530
|
+
elif t.M == m:
|
|
2531
|
+
stride_m = t.strides[0]
|
|
2532
|
+
else:
|
|
2533
|
+
raise RuntimeError(
|
|
2534
|
+
f"Broadcast dimension must be 1 or match destination, shape(src) = {t.m, t.n}, shape(dest) = {m, n}"
|
|
2535
|
+
)
|
|
2536
|
+
|
|
2537
|
+
# force the input tile to shared memory
|
|
2538
|
+
t.storage = "shared"
|
|
2539
|
+
|
|
2540
|
+
tile_type = Tile(
|
|
2541
|
+
dtype=t.dtype, M=m, N=n, op="broadcast", storage=t.storage, strides=(stride_m, stride_n), owner=False
|
|
2542
|
+
)
|
|
2543
|
+
return tile_type
|
|
2544
|
+
|
|
2545
|
+
|
|
2546
|
+
def tile_broadcast_dispatch_func(arg_types: Mapping[str, type], return_type: Any, arg_values: Mapping[str, Var]):
|
|
2547
|
+
tile = arg_values["a"]
|
|
2548
|
+
|
|
2549
|
+
template_args = []
|
|
2550
|
+
template_args.append(return_type.M)
|
|
2551
|
+
template_args.append(return_type.N)
|
|
2552
|
+
template_args.append(return_type.strides[0])
|
|
2553
|
+
template_args.append(return_type.strides[1])
|
|
2554
|
+
|
|
2555
|
+
return ((tile,), template_args)
|
|
2556
|
+
|
|
2557
|
+
|
|
2558
|
+
add_builtin(
|
|
2559
|
+
"tile_broadcast",
|
|
2560
|
+
input_types={"a": Tile(dtype=Any, M=Any, N=Any), "m": int, "n": int},
|
|
2561
|
+
value_func=tile_broadcast_value_func,
|
|
2562
|
+
dispatch_func=tile_broadcast_dispatch_func,
|
|
2563
|
+
variadic=True,
|
|
2564
|
+
doc="""Broadcast a tile.
|
|
2565
|
+
|
|
2566
|
+
This function will attempt to broadcast the input tile ``a`` to the destination shape (m, n), broadcasting follows NumPy broadcast rules.
|
|
2567
|
+
|
|
2568
|
+
:param a: Tile to broadcast
|
|
2569
|
+
:returns: Tile with broadcast ``shape=(m, n)``""",
|
|
2570
|
+
group="Tile Primitives",
|
|
2571
|
+
export=False,
|
|
2572
|
+
)
|
|
2573
|
+
|
|
2574
|
+
|
|
2575
|
+
def tile_matmul_value_func(arg_types, arg_values):
|
|
2576
|
+
# return generic type (for doc builds)
|
|
2577
|
+
if arg_types is None:
|
|
2578
|
+
return Tile(dtype=Any, M=Any, N=Any)
|
|
2579
|
+
|
|
2580
|
+
if len(arg_types) != 3:
|
|
2581
|
+
raise RuntimeError("tile_matmul() requires 4 positional args")
|
|
2582
|
+
|
|
2583
|
+
if not is_tile(arg_types["a"]):
|
|
2584
|
+
raise RuntimeError("tile_matmul() argument 0 must be a tile")
|
|
2585
|
+
|
|
2586
|
+
if not is_tile(arg_types["b"]):
|
|
2587
|
+
raise RuntimeError("tile_matmul() argument 1 must be an tile")
|
|
2588
|
+
|
|
2589
|
+
if not isinstance(arg_types["out"], Tile):
|
|
2590
|
+
raise RuntimeError("tile_matmul() output argument must be a tile")
|
|
2591
|
+
|
|
2592
|
+
return None
|
|
2593
|
+
|
|
2594
|
+
|
|
2595
|
+
def tile_matmul_dispatch_func(arg_types: Mapping[str, type], return_type: Any, arg_values: Mapping[str, Var]):
|
|
2596
|
+
a = arg_values["a"]
|
|
2597
|
+
b = arg_values["b"]
|
|
2598
|
+
out = arg_values["out"]
|
|
2599
|
+
|
|
2600
|
+
# force the storage type of the input variables to shared memory
|
|
2601
|
+
a.type.storage = "shared"
|
|
2602
|
+
b.type.storage = "shared"
|
|
2603
|
+
out.type.storage = "shared"
|
|
2604
|
+
|
|
2605
|
+
template_args = []
|
|
2606
|
+
return ((a, b, out), template_args)
|
|
2607
|
+
|
|
2608
|
+
|
|
2609
|
+
add_builtin(
|
|
2610
|
+
"tile_matmul_scalar",
|
|
2611
|
+
input_types={"a": Tile, "b": Tile, "out": Tile},
|
|
2612
|
+
value_func=tile_matmul_value_func,
|
|
2613
|
+
dispatch_func=tile_matmul_dispatch_func,
|
|
2614
|
+
variadic=True,
|
|
2615
|
+
doc="Compute matrix product and accumulate out += a*b.",
|
|
2616
|
+
group="Tile Primitives",
|
|
2617
|
+
hidden=True,
|
|
2618
|
+
export=False,
|
|
2619
|
+
)
|
|
2620
|
+
|
|
2621
|
+
|
|
2622
|
+
def tile_sum_value_func(arg_types, arg_values):
|
|
2623
|
+
# return generic type (for doc builds)
|
|
2624
|
+
if arg_types is None:
|
|
2625
|
+
return Tile(dtype=Any, M=1, N=1)
|
|
2626
|
+
|
|
2627
|
+
if len(arg_types) != 1:
|
|
2628
|
+
raise RuntimeError("tile_sum() requires 1 positional args")
|
|
2629
|
+
|
|
2630
|
+
a = arg_types["a"]
|
|
2631
|
+
|
|
2632
|
+
if not is_tile(a):
|
|
2633
|
+
raise RuntimeError("tile_sum() argument 0 must be a tile")
|
|
2634
|
+
|
|
2635
|
+
return Tile(dtype=a.dtype, M=1, N=1, op="sum")
|
|
2636
|
+
|
|
2637
|
+
|
|
2638
|
+
add_builtin(
|
|
2639
|
+
"tile_sum",
|
|
2640
|
+
input_types={"a": Tile},
|
|
2641
|
+
value_func=tile_sum_value_func,
|
|
2642
|
+
variadic=True,
|
|
2643
|
+
doc="""Cooperatively compute the sum of the tile elements using all threads in the block.
|
|
2644
|
+
|
|
2645
|
+
:param a: The tile to compute the sum of
|
|
2646
|
+
:returns: A single-element tile with dimensions of (1,1) holding the sum
|
|
2647
|
+
|
|
2648
|
+
Example:
|
|
2649
|
+
|
|
2650
|
+
.. code-block:: python
|
|
2651
|
+
|
|
2652
|
+
@wp.kernel
|
|
2653
|
+
def compute():
|
|
2654
|
+
|
|
2655
|
+
t = wp.tile_ones(dtype=float, m=16, n=16)
|
|
2656
|
+
s = wp.tile_sum(t)
|
|
2657
|
+
|
|
2658
|
+
print(s)
|
|
2659
|
+
|
|
2660
|
+
wp.launch_tiled(compute, dim=[1], inputs=[], block_dim=64)
|
|
2661
|
+
|
|
2662
|
+
Prints:
|
|
2663
|
+
|
|
2664
|
+
.. code-block:: text
|
|
2665
|
+
|
|
2666
|
+
tile(m=1, n=1, storage=register) = [[256]]
|
|
2667
|
+
|
|
2668
|
+
""",
|
|
2669
|
+
group="Tile Primitives",
|
|
2670
|
+
export=False,
|
|
2671
|
+
)
|
|
2672
|
+
|
|
2673
|
+
|
|
2674
|
+
def tile_min_value_func(arg_types, arg_values):
|
|
2675
|
+
# return generic type (for doc builds)
|
|
2676
|
+
if arg_types is None:
|
|
2677
|
+
return Tile(dtype=Any, M=1, N=1)
|
|
2678
|
+
|
|
2679
|
+
if len(arg_types) != 1:
|
|
2680
|
+
raise RuntimeError("tile_min() requires 1 positional args")
|
|
2681
|
+
|
|
2682
|
+
a = arg_types["a"]
|
|
2683
|
+
|
|
2684
|
+
if not is_tile(a):
|
|
2685
|
+
raise RuntimeError("tile_min() argument 0 must be a tile")
|
|
2686
|
+
|
|
2687
|
+
return Tile(dtype=a.dtype, M=1, N=1, op="min")
|
|
2688
|
+
|
|
2689
|
+
|
|
2690
|
+
add_builtin(
|
|
2691
|
+
"tile_min",
|
|
2692
|
+
input_types={"a": Tile},
|
|
2693
|
+
value_func=tile_min_value_func,
|
|
2694
|
+
variadic=True,
|
|
2695
|
+
doc="""Cooperatively compute the minimum of the tile elements using all threads in the block.
|
|
2696
|
+
|
|
2697
|
+
:param a: The tile to compute the minimum of
|
|
2698
|
+
:returns: A single-element tile with dimensions of (1,1) holding the minimum value
|
|
2699
|
+
|
|
2700
|
+
Example:
|
|
2701
|
+
|
|
2702
|
+
.. code-block:: python
|
|
2703
|
+
|
|
2704
|
+
@wp.kernel
|
|
2705
|
+
def compute():
|
|
2706
|
+
|
|
2707
|
+
t = wp.tile_arange(64, 128)
|
|
2708
|
+
s = wp.tile_min(t)
|
|
2709
|
+
|
|
2710
|
+
print(s)
|
|
2711
|
+
|
|
2712
|
+
|
|
2713
|
+
wp.launch_tiled(compute, dim=[1], inputs=[], block_dim=64)
|
|
2714
|
+
|
|
2715
|
+
Prints:
|
|
2716
|
+
|
|
2717
|
+
.. code-block:: text
|
|
2718
|
+
|
|
2719
|
+
tile(m=1, n=1, storage=register) = [[64 ]]
|
|
2720
|
+
|
|
2721
|
+
""",
|
|
2722
|
+
group="Tile Primitives",
|
|
2723
|
+
export=False,
|
|
2724
|
+
)
|
|
2725
|
+
|
|
2726
|
+
|
|
2727
|
+
def tile_max_value_func(arg_types, arg_values):
|
|
2728
|
+
# return generic type (for doc builds)
|
|
2729
|
+
if arg_types is None:
|
|
2730
|
+
return Tile(dtype=Any, M=1, N=1)
|
|
2731
|
+
|
|
2732
|
+
if len(arg_types) != 1:
|
|
2733
|
+
raise RuntimeError("tile_max() requires 1 positional args")
|
|
2734
|
+
|
|
2735
|
+
a = arg_types["a"]
|
|
2736
|
+
|
|
2737
|
+
if not is_tile(a):
|
|
2738
|
+
raise RuntimeError("tile_max() argument 0 must be a tile")
|
|
2739
|
+
|
|
2740
|
+
return Tile(dtype=a.dtype, M=1, N=1, op="min")
|
|
2741
|
+
|
|
2742
|
+
|
|
2743
|
+
add_builtin(
|
|
2744
|
+
"tile_max",
|
|
2745
|
+
input_types={"a": Tile},
|
|
2746
|
+
value_func=tile_max_value_func,
|
|
2747
|
+
variadic=True,
|
|
2748
|
+
doc="""Cooperatively compute the maximum of the tile elements using all threads in the block.
|
|
2749
|
+
|
|
2750
|
+
:param a: The tile to compute the maximum from
|
|
2751
|
+
:returns: A single-element tile with dimensions of (1,1) holding the maximum value
|
|
2752
|
+
|
|
2753
|
+
Example:
|
|
2754
|
+
|
|
2755
|
+
.. code-block:: python
|
|
2756
|
+
|
|
2757
|
+
@wp.kernel
|
|
2758
|
+
def compute():
|
|
2759
|
+
|
|
2760
|
+
t = wp.tile_arange(64, 128)
|
|
2761
|
+
s = wp.tile_max(t)
|
|
2762
|
+
|
|
2763
|
+
print(s)
|
|
2764
|
+
|
|
2765
|
+
wp.launch_tiled(compute, dim=[1], inputs=[], block_dim=64)
|
|
2766
|
+
|
|
2767
|
+
Prints:
|
|
2768
|
+
|
|
2769
|
+
.. code-block:: text
|
|
2770
|
+
|
|
2771
|
+
tile(m=1, n=1, storage=register) = [[127 ]]
|
|
2772
|
+
|
|
2773
|
+
""",
|
|
2774
|
+
group="Tile Primitives",
|
|
2775
|
+
export=False,
|
|
2776
|
+
)
|
|
2777
|
+
|
|
2778
|
+
|
|
2779
|
+
# does type propagation for load()
|
|
2780
|
+
def tile_reduce_value_func(arg_types, arg_values):
|
|
2781
|
+
if arg_types is None:
|
|
2782
|
+
return Tile(dtype=Any, M=Any, N=Any)
|
|
2783
|
+
|
|
2784
|
+
a = arg_types["a"]
|
|
2785
|
+
|
|
2786
|
+
# check all args are tiles
|
|
2787
|
+
if not is_tile(a):
|
|
2788
|
+
raise RuntimeError(f"tile_reduce() arguments must be tiles, got type {a}")
|
|
2789
|
+
|
|
2790
|
+
return Tile(dtype=a.dtype, M=1, N=1, op="reduce")
|
|
2791
|
+
|
|
2792
|
+
|
|
2793
|
+
def tile_reduce_dispatch_func(input_types: Mapping[str, type], return_type: Any, args: Mapping[str, Var]):
|
|
2794
|
+
func_args = (args["op"], *args["args"])
|
|
2795
|
+
template_args = ()
|
|
2796
|
+
return (func_args, template_args)
|
|
2797
|
+
|
|
2798
|
+
|
|
2799
|
+
add_builtin(
|
|
2800
|
+
"tile_reduce",
|
|
2801
|
+
input_types={"op": Callable, "a": Tile(dtype=Any, M=Any, N=Any)},
|
|
2802
|
+
value_func=tile_reduce_value_func,
|
|
2803
|
+
native_func="tile_reduce",
|
|
2804
|
+
doc="""Apply a custom reduction operator across the tile.
|
|
2805
|
+
|
|
2806
|
+
This function cooperatively performs a reduction using the provided operator across the tile.
|
|
2807
|
+
|
|
2808
|
+
:param op: A callable function that accepts two arguments and returns one argument, may be a user function or builtin
|
|
2809
|
+
:param a: The input tile, the operator (or one of its overloads) must be able to accept the tile's dtype
|
|
2810
|
+
:returns: A single-element tile with ``shape=(1,1)`` with the same datatype as the input tile.
|
|
2811
|
+
|
|
2812
|
+
Example:
|
|
2813
|
+
|
|
2814
|
+
.. code-block:: python
|
|
2815
|
+
|
|
2816
|
+
@wp.kernel
|
|
2817
|
+
def factorial():
|
|
2818
|
+
|
|
2819
|
+
t = wp.tile_arange(1, 10, dtype=int)
|
|
2820
|
+
s = wp.tile_reduce(wp.mul, t)
|
|
2821
|
+
|
|
2822
|
+
print(s)
|
|
2823
|
+
|
|
2824
|
+
wp.launch_tiled(factorial, dim=[1], inputs=[], block_dim=16)
|
|
2825
|
+
|
|
2826
|
+
Prints:
|
|
2827
|
+
|
|
2828
|
+
.. code-block:: text
|
|
2829
|
+
|
|
2830
|
+
tile(m=1, n=1, storage=register) = [[362880]]
|
|
2831
|
+
""",
|
|
2832
|
+
group="Tile Primitives",
|
|
2833
|
+
export=False,
|
|
2834
|
+
)
|
|
2835
|
+
|
|
2836
|
+
# maps
|
|
2837
|
+
|
|
2838
|
+
|
|
2839
|
+
# does type propagation for load()
|
|
2840
|
+
def tile_unary_map_value_func(arg_types, arg_values):
|
|
2841
|
+
if arg_types is None:
|
|
2842
|
+
return Tile(dtype=Any, M=Any, N=Any)
|
|
2843
|
+
|
|
2844
|
+
a = arg_types["a"]
|
|
2845
|
+
|
|
2846
|
+
# check all args are tiles
|
|
2847
|
+
if not is_tile(a):
|
|
2848
|
+
raise RuntimeError(f"tile_map() arguments must be tiles, got type {a}")
|
|
2849
|
+
|
|
2850
|
+
return TileUnaryMap(a)
|
|
2851
|
+
|
|
2852
|
+
|
|
2853
|
+
# def tile_map_dispatch_func(input_types: Mapping[str, type], return_type: Any, args: Mapping[str, Var]):
|
|
2854
|
+
# func_args = (args["op"], *args["args"])
|
|
2855
|
+
# template_args = ()
|
|
2856
|
+
# return (func_args, template_args)
|
|
2857
|
+
|
|
2858
|
+
|
|
2859
|
+
add_builtin(
|
|
2860
|
+
"tile_map",
|
|
2861
|
+
input_types={"op": Callable, "a": Tile(dtype=Any, M=Any, N=Any)},
|
|
2862
|
+
value_func=tile_unary_map_value_func,
|
|
2863
|
+
# dispatch_func=tile_map_dispatch_func,
|
|
2864
|
+
# variadic=True,
|
|
2865
|
+
native_func="tile_unary_map",
|
|
2866
|
+
doc="""Apply a unary function onto the tile.
|
|
2867
|
+
|
|
2868
|
+
This function cooperatively applies a unary function to each element of the tile using all threads in the block.
|
|
2869
|
+
|
|
2870
|
+
:param op: A callable function that accepts one argument and returns one argument, may be a user function or builtin
|
|
2871
|
+
:param a: The input tile, the operator (or one of its overloads) must be able to accept the tile's dtype
|
|
2872
|
+
:returns: A tile with the same dimensions and datatype as the input tile.
|
|
2873
|
+
|
|
2874
|
+
Example:
|
|
2875
|
+
|
|
2876
|
+
.. code-block:: python
|
|
2877
|
+
|
|
2878
|
+
@wp.kernel
|
|
2879
|
+
def compute():
|
|
2880
|
+
|
|
2881
|
+
t = wp.tile_arange(0.0, 1.0, 0.1, dtype=float)
|
|
2882
|
+
s = wp.tile_map(wp.sin, t)
|
|
2883
|
+
|
|
2884
|
+
print(s)
|
|
2885
|
+
|
|
2886
|
+
wp.launch_tiled(compute, dim=[1], inputs=[], block_dim=16)
|
|
2887
|
+
|
|
2888
|
+
Prints:
|
|
2889
|
+
|
|
2890
|
+
.. code-block:: text
|
|
2891
|
+
|
|
2892
|
+
tile(m=1, n=10, storage=register) = [[0 0.0998334 0.198669 0.29552 ...]]
|
|
2893
|
+
""",
|
|
2894
|
+
group="Tile Primitives",
|
|
2895
|
+
export=False,
|
|
2896
|
+
)
|
|
2897
|
+
|
|
2898
|
+
|
|
2899
|
+
def tile_binary_map_value_func(arg_types, arg_values):
|
|
2900
|
+
if arg_types is None:
|
|
2901
|
+
return Tile(dtype=Any, M=Any, N=Any)
|
|
2902
|
+
|
|
2903
|
+
a = arg_types["a"]
|
|
2904
|
+
b = arg_types["b"]
|
|
2905
|
+
|
|
2906
|
+
# check all args are tiles
|
|
2907
|
+
if not is_tile(a):
|
|
2908
|
+
raise RuntimeError(f"tile_map() arguments must be tiles, got type {a}")
|
|
2909
|
+
|
|
2910
|
+
if not is_tile(b):
|
|
2911
|
+
raise RuntimeError(f"tile_map() arguments must be tiles, got type {b}")
|
|
2912
|
+
|
|
2913
|
+
# use first argument to define output type
|
|
2914
|
+
if not types_equal(a.dtype, b.dtype):
|
|
2915
|
+
raise RuntimeError(f"tile_map() arguments must all have the same type {a.dtype} != {b.dtype}")
|
|
2916
|
+
|
|
2917
|
+
if a.M != b.M:
|
|
2918
|
+
raise RuntimeError(f"tile_map() arguments must all have the same m dimension {a.M} != {b.M}")
|
|
2919
|
+
|
|
2920
|
+
if a.N != b.N:
|
|
2921
|
+
raise RuntimeError(f"tile_map() arguments must all have the same n dimension {a.N} != {b.N}")
|
|
2922
|
+
|
|
2923
|
+
return TileBinaryMap(a, b)
|
|
2924
|
+
|
|
2925
|
+
|
|
2926
|
+
add_builtin(
|
|
2927
|
+
"tile_map",
|
|
2928
|
+
input_types={"op": Callable, "a": Tile(dtype=Any, M=Any, N=Any), "b": Tile(dtype=Any, M=Any, N=Any)},
|
|
2929
|
+
value_func=tile_binary_map_value_func,
|
|
2930
|
+
# dispatch_func=tile_map_dispatch_func,
|
|
2931
|
+
# variadic=True,
|
|
2932
|
+
native_func="tile_binary_map",
|
|
2933
|
+
doc="""Apply a binary function onto the tile.
|
|
2934
|
+
|
|
2935
|
+
This function cooperatively applies a binary function to each element of the tiles using all threads in the block.
|
|
2936
|
+
Both input tiles must have the same dimensions and datatype.
|
|
2937
|
+
|
|
2938
|
+
:param op: A callable function that accepts two arguments and returns one argument, all of the same type, may be a user function or builtin
|
|
2939
|
+
:param a: The first input tile, the operator (or one of its overloads) must be able to accept the tile's dtype
|
|
2940
|
+
:param b: The second input tile, the operator (or one of its overloads) must be able to accept the tile's dtype
|
|
2941
|
+
:returns: A tile with the same dimensions and datatype as the input tiles.
|
|
2942
|
+
|
|
2943
|
+
Example:
|
|
2944
|
+
|
|
2945
|
+
.. code-block:: python
|
|
2946
|
+
|
|
2947
|
+
@wp.kernel
|
|
2948
|
+
def compute():
|
|
2949
|
+
|
|
2950
|
+
a = wp.tile_arange(0.0, 1.0, 0.1, dtype=float)
|
|
2951
|
+
b = wp.tile_ones(m=1, n=10, dtype=float)
|
|
2952
|
+
|
|
2953
|
+
s = wp.tile_map(wp.add, a, b)
|
|
2954
|
+
|
|
2955
|
+
print(s)
|
|
2956
|
+
|
|
2957
|
+
wp.launch_tiled(compute, dim=[1], inputs=[], block_dim=16)
|
|
2958
|
+
|
|
2959
|
+
Prints:
|
|
2960
|
+
|
|
2961
|
+
.. code-block:: text
|
|
2962
|
+
|
|
2963
|
+
tile(m=1, n=10, storage=register) = [[1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9]]""",
|
|
2964
|
+
group="Tile Primitives",
|
|
2965
|
+
export=False,
|
|
2966
|
+
)
|
|
2967
|
+
|
|
2968
|
+
|
|
1705
2969
|
# ---------------------------------
|
|
1706
2970
|
# Linear Algebra
|
|
1707
2971
|
|
|
@@ -2389,6 +3653,16 @@ add_builtin(
|
|
|
2389
3653
|
"iter_next", input_types={"query": mesh_query_aabb_t}, value_type=int, group="Utility", export=False, hidden=True
|
|
2390
3654
|
)
|
|
2391
3655
|
|
|
3656
|
+
add_builtin(
|
|
3657
|
+
"reversed",
|
|
3658
|
+
input_types={"range": range_t},
|
|
3659
|
+
value_type=range_t,
|
|
3660
|
+
native_func="iter_reverse",
|
|
3661
|
+
group="Utility",
|
|
3662
|
+
doc="""Returns the range in reversed order.""",
|
|
3663
|
+
export=False,
|
|
3664
|
+
)
|
|
3665
|
+
|
|
2392
3666
|
# ---------------------------------
|
|
2393
3667
|
# Volumes
|
|
2394
3668
|
|
|
@@ -2804,7 +4078,11 @@ add_builtin(
|
|
|
2804
4078
|
doc="Return a random float between [low, high).",
|
|
2805
4079
|
)
|
|
2806
4080
|
add_builtin(
|
|
2807
|
-
"randn",
|
|
4081
|
+
"randn",
|
|
4082
|
+
input_types={"state": uint32},
|
|
4083
|
+
value_type=float,
|
|
4084
|
+
group="Random",
|
|
4085
|
+
doc="Sample a normal (Gaussian) distribution of mean 0 and variance 1. ",
|
|
2808
4086
|
)
|
|
2809
4087
|
|
|
2810
4088
|
add_builtin(
|
|
@@ -2976,12 +4254,20 @@ add_builtin(
|
|
|
2976
4254
|
)
|
|
2977
4255
|
|
|
2978
4256
|
|
|
4257
|
+
def printf_value_func(arg_types: Mapping[str, type], arg_values: Mapping[str, Any]):
|
|
4258
|
+
if arg_types is not None:
|
|
4259
|
+
if len(arg_types.get("args", ())) > 32:
|
|
4260
|
+
raise RuntimeError("the maximum number of variadic arguments that can be passed to `printf` is 32")
|
|
4261
|
+
|
|
4262
|
+
return None
|
|
4263
|
+
|
|
4264
|
+
|
|
2979
4265
|
def printf_dispatch_func(input_types: Mapping[str, type], return_type: Any, args: Mapping[str, Var]):
|
|
2980
4266
|
# We're in the codegen stage where we emit the code calling the built-in.
|
|
2981
4267
|
# Further validate the given argument values if needed and map them
|
|
2982
4268
|
# to the underlying C++ function's runtime and template params.
|
|
2983
4269
|
|
|
2984
|
-
func_args = (args["fmt"], *args
|
|
4270
|
+
func_args = (args["fmt"], *args.get("args", ()))
|
|
2985
4271
|
template_args = ()
|
|
2986
4272
|
return (func_args, template_args)
|
|
2987
4273
|
|
|
@@ -2992,6 +4278,7 @@ add_builtin(
|
|
|
2992
4278
|
input_types={"fmt": str, "*args": Any},
|
|
2993
4279
|
namespace="",
|
|
2994
4280
|
variadic=True,
|
|
4281
|
+
value_func=printf_value_func,
|
|
2995
4282
|
dispatch_func=printf_dispatch_func,
|
|
2996
4283
|
group="Utility",
|
|
2997
4284
|
doc="Allows printing formatted strings using C-style format specifiers.",
|
|
@@ -3380,6 +4667,19 @@ def atomic_op_value_func(arg_types: Mapping[str, type], arg_values: Mapping[str,
|
|
|
3380
4667
|
return arr_type.dtype
|
|
3381
4668
|
|
|
3382
4669
|
|
|
4670
|
+
def atomic_op_dispatch_func(input_types: Mapping[str, type], return_type: Any, args: Mapping[str, Var]):
|
|
4671
|
+
# as this is a codegen callback, we can mark the fact that this func writes to an array here
|
|
4672
|
+
if warp.config.verify_autograd_array_access:
|
|
4673
|
+
arr = args["arr"]
|
|
4674
|
+
arr.mark_write()
|
|
4675
|
+
|
|
4676
|
+
func_args = tuple(args.values())
|
|
4677
|
+
# we don't need to specify template arguments for atomic ops
|
|
4678
|
+
template_args = ()
|
|
4679
|
+
|
|
4680
|
+
return (func_args, template_args)
|
|
4681
|
+
|
|
4682
|
+
|
|
3383
4683
|
for array_type in array_types:
|
|
3384
4684
|
# don't list indexed array operations explicitly in docs
|
|
3385
4685
|
hidden = array_type == indexedarray
|
|
@@ -3390,6 +4690,7 @@ for array_type in array_types:
|
|
|
3390
4690
|
input_types={"arr": array_type(dtype=Any), "i": Int, "value": Any},
|
|
3391
4691
|
constraint=atomic_op_constraint,
|
|
3392
4692
|
value_func=atomic_op_value_func,
|
|
4693
|
+
dispatch_func=atomic_op_dispatch_func,
|
|
3393
4694
|
doc="Atomically add ``value`` onto ``arr[i]`` and return the old value.",
|
|
3394
4695
|
group="Utility",
|
|
3395
4696
|
skip_replay=True,
|
|
@@ -3400,6 +4701,7 @@ for array_type in array_types:
|
|
|
3400
4701
|
input_types={"arr": array_type(dtype=Any), "i": Int, "j": Int, "value": Any},
|
|
3401
4702
|
constraint=atomic_op_constraint,
|
|
3402
4703
|
value_func=atomic_op_value_func,
|
|
4704
|
+
dispatch_func=atomic_op_dispatch_func,
|
|
3403
4705
|
doc="Atomically add ``value`` onto ``arr[i,j]`` and return the old value.",
|
|
3404
4706
|
group="Utility",
|
|
3405
4707
|
skip_replay=True,
|
|
@@ -3410,6 +4712,7 @@ for array_type in array_types:
|
|
|
3410
4712
|
input_types={"arr": array_type(dtype=Any), "i": Int, "j": Int, "k": Int, "value": Any},
|
|
3411
4713
|
constraint=atomic_op_constraint,
|
|
3412
4714
|
value_func=atomic_op_value_func,
|
|
4715
|
+
dispatch_func=atomic_op_dispatch_func,
|
|
3413
4716
|
doc="Atomically add ``value`` onto ``arr[i,j,k]`` and return the old value.",
|
|
3414
4717
|
group="Utility",
|
|
3415
4718
|
skip_replay=True,
|
|
@@ -3420,6 +4723,7 @@ for array_type in array_types:
|
|
|
3420
4723
|
input_types={"arr": array_type(dtype=Any), "i": Int, "j": Int, "k": Int, "l": Int, "value": Any},
|
|
3421
4724
|
constraint=atomic_op_constraint,
|
|
3422
4725
|
value_func=atomic_op_value_func,
|
|
4726
|
+
dispatch_func=atomic_op_dispatch_func,
|
|
3423
4727
|
doc="Atomically add ``value`` onto ``arr[i,j,k,l]`` and return the old value.",
|
|
3424
4728
|
group="Utility",
|
|
3425
4729
|
skip_replay=True,
|
|
@@ -3431,6 +4735,7 @@ for array_type in array_types:
|
|
|
3431
4735
|
input_types={"arr": array_type(dtype=Any), "i": Int, "value": Any},
|
|
3432
4736
|
constraint=atomic_op_constraint,
|
|
3433
4737
|
value_func=atomic_op_value_func,
|
|
4738
|
+
dispatch_func=atomic_op_dispatch_func,
|
|
3434
4739
|
doc="Atomically subtract ``value`` onto ``arr[i]`` and return the old value.",
|
|
3435
4740
|
group="Utility",
|
|
3436
4741
|
skip_replay=True,
|
|
@@ -3441,6 +4746,7 @@ for array_type in array_types:
|
|
|
3441
4746
|
input_types={"arr": array_type(dtype=Any), "i": Int, "j": Int, "value": Any},
|
|
3442
4747
|
constraint=atomic_op_constraint,
|
|
3443
4748
|
value_func=atomic_op_value_func,
|
|
4749
|
+
dispatch_func=atomic_op_dispatch_func,
|
|
3444
4750
|
doc="Atomically subtract ``value`` onto ``arr[i,j]`` and return the old value.",
|
|
3445
4751
|
group="Utility",
|
|
3446
4752
|
skip_replay=True,
|
|
@@ -3451,6 +4757,7 @@ for array_type in array_types:
|
|
|
3451
4757
|
input_types={"arr": array_type(dtype=Any), "i": Int, "j": Int, "k": Int, "value": Any},
|
|
3452
4758
|
constraint=atomic_op_constraint,
|
|
3453
4759
|
value_func=atomic_op_value_func,
|
|
4760
|
+
dispatch_func=atomic_op_dispatch_func,
|
|
3454
4761
|
doc="Atomically subtract ``value`` onto ``arr[i,j,k]`` and return the old value.",
|
|
3455
4762
|
group="Utility",
|
|
3456
4763
|
skip_replay=True,
|
|
@@ -3461,6 +4768,7 @@ for array_type in array_types:
|
|
|
3461
4768
|
input_types={"arr": array_type(dtype=Any), "i": Int, "j": Int, "k": Int, "l": Int, "value": Any},
|
|
3462
4769
|
constraint=atomic_op_constraint,
|
|
3463
4770
|
value_func=atomic_op_value_func,
|
|
4771
|
+
dispatch_func=atomic_op_dispatch_func,
|
|
3464
4772
|
doc="Atomically subtract ``value`` onto ``arr[i,j,k,l]`` and return the old value.",
|
|
3465
4773
|
group="Utility",
|
|
3466
4774
|
skip_replay=True,
|
|
@@ -3472,6 +4780,7 @@ for array_type in array_types:
|
|
|
3472
4780
|
input_types={"arr": array_type(dtype=Any), "i": Int, "value": Any},
|
|
3473
4781
|
constraint=atomic_op_constraint,
|
|
3474
4782
|
value_func=atomic_op_value_func,
|
|
4783
|
+
dispatch_func=atomic_op_dispatch_func,
|
|
3475
4784
|
doc="""Compute the minimum of ``value`` and ``arr[i]``, atomically update the array, and return the old value.
|
|
3476
4785
|
|
|
3477
4786
|
The operation is only atomic on a per-component basis for vectors and matrices.""",
|
|
@@ -3484,6 +4793,7 @@ for array_type in array_types:
|
|
|
3484
4793
|
input_types={"arr": array_type(dtype=Any), "i": Int, "j": Int, "value": Any},
|
|
3485
4794
|
constraint=atomic_op_constraint,
|
|
3486
4795
|
value_func=atomic_op_value_func,
|
|
4796
|
+
dispatch_func=atomic_op_dispatch_func,
|
|
3487
4797
|
doc="""Compute the minimum of ``value`` and ``arr[i,j]``, atomically update the array, and return the old value.
|
|
3488
4798
|
|
|
3489
4799
|
The operation is only atomic on a per-component basis for vectors and matrices.""",
|
|
@@ -3496,6 +4806,7 @@ for array_type in array_types:
|
|
|
3496
4806
|
input_types={"arr": array_type(dtype=Any), "i": Int, "j": Int, "k": Int, "value": Any},
|
|
3497
4807
|
constraint=atomic_op_constraint,
|
|
3498
4808
|
value_func=atomic_op_value_func,
|
|
4809
|
+
dispatch_func=atomic_op_dispatch_func,
|
|
3499
4810
|
doc="""Compute the minimum of ``value`` and ``arr[i,j,k]``, atomically update the array, and return the old value.
|
|
3500
4811
|
|
|
3501
4812
|
The operation is only atomic on a per-component basis for vectors and matrices.""",
|
|
@@ -3508,6 +4819,7 @@ for array_type in array_types:
|
|
|
3508
4819
|
input_types={"arr": array_type(dtype=Any), "i": Int, "j": Int, "k": Int, "l": Int, "value": Any},
|
|
3509
4820
|
constraint=atomic_op_constraint,
|
|
3510
4821
|
value_func=atomic_op_value_func,
|
|
4822
|
+
dispatch_func=atomic_op_dispatch_func,
|
|
3511
4823
|
doc="""Compute the minimum of ``value`` and ``arr[i,j,k,l]``, atomically update the array, and return the old value.
|
|
3512
4824
|
|
|
3513
4825
|
The operation is only atomic on a per-component basis for vectors and matrices.""",
|
|
@@ -3521,6 +4833,7 @@ for array_type in array_types:
|
|
|
3521
4833
|
input_types={"arr": array_type(dtype=Any), "i": Int, "value": Any},
|
|
3522
4834
|
constraint=atomic_op_constraint,
|
|
3523
4835
|
value_func=atomic_op_value_func,
|
|
4836
|
+
dispatch_func=atomic_op_dispatch_func,
|
|
3524
4837
|
doc="""Compute the maximum of ``value`` and ``arr[i]``, atomically update the array, and return the old value.
|
|
3525
4838
|
|
|
3526
4839
|
The operation is only atomic on a per-component basis for vectors and matrices.""",
|
|
@@ -3533,6 +4846,7 @@ for array_type in array_types:
|
|
|
3533
4846
|
input_types={"arr": array_type(dtype=Any), "i": Int, "j": Int, "value": Any},
|
|
3534
4847
|
constraint=atomic_op_constraint,
|
|
3535
4848
|
value_func=atomic_op_value_func,
|
|
4849
|
+
dispatch_func=atomic_op_dispatch_func,
|
|
3536
4850
|
doc="""Compute the maximum of ``value`` and ``arr[i,j]``, atomically update the array, and return the old value.
|
|
3537
4851
|
|
|
3538
4852
|
The operation is only atomic on a per-component basis for vectors and matrices.""",
|
|
@@ -3545,6 +4859,7 @@ for array_type in array_types:
|
|
|
3545
4859
|
input_types={"arr": array_type(dtype=Any), "i": Int, "j": Int, "k": Int, "value": Any},
|
|
3546
4860
|
constraint=atomic_op_constraint,
|
|
3547
4861
|
value_func=atomic_op_value_func,
|
|
4862
|
+
dispatch_func=atomic_op_dispatch_func,
|
|
3548
4863
|
doc="""Compute the maximum of ``value`` and ``arr[i,j,k]``, atomically update the array, and return the old value.
|
|
3549
4864
|
|
|
3550
4865
|
The operation is only atomic on a per-component basis for vectors and matrices.""",
|
|
@@ -3557,6 +4872,7 @@ for array_type in array_types:
|
|
|
3557
4872
|
input_types={"arr": array_type(dtype=Any), "i": Int, "j": Int, "k": Int, "l": Int, "value": Any},
|
|
3558
4873
|
constraint=atomic_op_constraint,
|
|
3559
4874
|
value_func=atomic_op_value_func,
|
|
4875
|
+
dispatch_func=atomic_op_dispatch_func,
|
|
3560
4876
|
doc="""Compute the maximum of ``value`` and ``arr[i,j,k,l]``, atomically update the array, and return the old value.
|
|
3561
4877
|
|
|
3562
4878
|
The operation is only atomic on a per-component basis for vectors and matrices.""",
|
|
@@ -3775,6 +5091,15 @@ for t in scalar_types + vector_types + (bool,):
|
|
|
3775
5091
|
hidden=True,
|
|
3776
5092
|
)
|
|
3777
5093
|
|
|
5094
|
+
add_builtin(
|
|
5095
|
+
"expect_neq",
|
|
5096
|
+
input_types={"a": t, "b": t},
|
|
5097
|
+
value_type=None,
|
|
5098
|
+
doc="Prints an error to stdout if ``a`` and ``b`` are not equal",
|
|
5099
|
+
group="Utility",
|
|
5100
|
+
hidden=True,
|
|
5101
|
+
)
|
|
5102
|
+
|
|
3778
5103
|
|
|
3779
5104
|
def expect_eq_value_func(arg_types: Mapping[str, type], arg_values: Mapping[str, Any]):
|
|
3780
5105
|
if not types_equal(arg_types["a"], arg_types["b"]):
|
|
@@ -4315,6 +5640,493 @@ for t in int_types:
|
|
|
4315
5640
|
|
|
4316
5641
|
add_builtin("unot", input_types={"a": array(dtype=Any)}, value_type=builtins.bool, doc="", group="Operators")
|
|
4317
5642
|
|
|
5643
|
+
|
|
5644
|
+
# Tile operators
|
|
5645
|
+
def tile_unary_value_func(arg_types, arg_values):
|
|
5646
|
+
if arg_types is None:
|
|
5647
|
+
return Tile(dtype=Any, M=Any, N=Any)
|
|
5648
|
+
|
|
5649
|
+
t = arg_types["x"]
|
|
5650
|
+
|
|
5651
|
+
if not is_tile(t):
|
|
5652
|
+
raise RuntimeError("Expected tile for unary expression")
|
|
5653
|
+
|
|
5654
|
+
return TileUnaryMap(t)
|
|
5655
|
+
|
|
5656
|
+
|
|
5657
|
+
def tile_scalar_mul_value_func(arg_types, arg_values):
|
|
5658
|
+
if arg_types is None:
|
|
5659
|
+
return Tile(dtype=Any, M=Any, N=Any)
|
|
5660
|
+
|
|
5661
|
+
x = arg_types["x"]
|
|
5662
|
+
y = arg_types["y"]
|
|
5663
|
+
|
|
5664
|
+
# tile*scalar
|
|
5665
|
+
if is_tile(x):
|
|
5666
|
+
if x.dtype != y:
|
|
5667
|
+
raise RuntimeError(
|
|
5668
|
+
"Scalar factor should have the same type as tile for tile*scalar, tile type: {x} scalar type: {y}"
|
|
5669
|
+
)
|
|
5670
|
+
|
|
5671
|
+
return TileBinaryMap(x, TileConstant(y, x.M, x.N))
|
|
5672
|
+
|
|
5673
|
+
# scalar*tile
|
|
5674
|
+
if is_tile(y):
|
|
5675
|
+
if y.dtype != x:
|
|
5676
|
+
raise RuntimeError(
|
|
5677
|
+
"Scalar factor should have the same type as tile for scalar*tile, tile type: {x} scalar type: {y}"
|
|
5678
|
+
)
|
|
5679
|
+
|
|
5680
|
+
return TileBinaryMap(TileConstant(x, y.M, y.N), y)
|
|
5681
|
+
|
|
5682
|
+
|
|
5683
|
+
add_builtin(
|
|
5684
|
+
"neg",
|
|
5685
|
+
input_types={"x": Tile(dtype=Any, M=Any, N=Any)},
|
|
5686
|
+
value_func=tile_unary_value_func,
|
|
5687
|
+
doc="Negate each element of a tile",
|
|
5688
|
+
export=False,
|
|
5689
|
+
native_func="tile_neg",
|
|
5690
|
+
group="Operators",
|
|
5691
|
+
)
|
|
5692
|
+
|
|
5693
|
+
add_builtin(
|
|
5694
|
+
"add",
|
|
5695
|
+
input_types={"a": Tile(dtype=Any, M=Any, N=Any), "b": Tile(dtype=Any, M=Any, N=Any)},
|
|
5696
|
+
value_func=tile_binary_map_value_func,
|
|
5697
|
+
# dispatch_func=tile_map_dispatch_func,
|
|
5698
|
+
# variadic=True,
|
|
5699
|
+
native_func="tile_add",
|
|
5700
|
+
doc="Add each element of two tiles together",
|
|
5701
|
+
group="Tile Primitives",
|
|
5702
|
+
export=False,
|
|
5703
|
+
)
|
|
5704
|
+
|
|
5705
|
+
add_builtin(
|
|
5706
|
+
"mul",
|
|
5707
|
+
input_types={"x": Tile(dtype=Any, M=Any, N=Any), "y": Scalar},
|
|
5708
|
+
value_func=tile_scalar_mul_value_func,
|
|
5709
|
+
doc="Multiply each element of a tile by a scalar",
|
|
5710
|
+
export=False,
|
|
5711
|
+
native_func="tile_mul",
|
|
5712
|
+
group="Operators",
|
|
5713
|
+
)
|
|
5714
|
+
|
|
5715
|
+
add_builtin(
|
|
5716
|
+
"mul",
|
|
5717
|
+
input_types={"x": Scalar, "y": Tile(dtype=Any, M=Any, N=Any)},
|
|
5718
|
+
value_func=tile_scalar_mul_value_func,
|
|
5719
|
+
doc="Multiply each element of a tile by a scalar",
|
|
5720
|
+
export=False,
|
|
5721
|
+
native_func="tile_mul",
|
|
5722
|
+
group="Operators",
|
|
5723
|
+
)
|
|
5724
|
+
|
|
5725
|
+
|
|
5726
|
+
##
|
|
5727
|
+
## MathDx, LTOIR-based, Tile functions
|
|
5728
|
+
##
|
|
5729
|
+
|
|
5730
|
+
|
|
5731
|
+
##
|
|
5732
|
+
## Matmul
|
|
5733
|
+
##
|
|
5734
|
+
def tile_matmul_generic_value_func(arg_types, arg_values):
|
|
5735
|
+
# return generic type (for doc builds)
|
|
5736
|
+
if arg_types is None:
|
|
5737
|
+
return Tile(dtype=Any, M=Any, N=Any)
|
|
5738
|
+
|
|
5739
|
+
a = arg_types["a"]
|
|
5740
|
+
b = arg_types["b"]
|
|
5741
|
+
|
|
5742
|
+
if not is_tile(a):
|
|
5743
|
+
raise RuntimeError("tile_matmul() argument 0 must be a tile")
|
|
5744
|
+
if not is_tile(b):
|
|
5745
|
+
raise RuntimeError("tile_matmul() argument 1 must be an tile")
|
|
5746
|
+
|
|
5747
|
+
# out = wp.tile_matmul(a, b)
|
|
5748
|
+
if len(arg_types) == 2:
|
|
5749
|
+
return Tile(dtype=a.dtype, M=a.M, N=b.N, storage="shared")
|
|
5750
|
+
|
|
5751
|
+
# wp.tile_matmul(a, b, out)
|
|
5752
|
+
elif len(arg_types) == 3:
|
|
5753
|
+
if not is_tile(arg_types["out"]):
|
|
5754
|
+
raise RuntimeError("tile_matmul() output argument must be a tile")
|
|
5755
|
+
|
|
5756
|
+
return None
|
|
5757
|
+
|
|
5758
|
+
|
|
5759
|
+
def tile_matmul_generic_lto_dispatch_func(
|
|
5760
|
+
arg_types: Mapping[str, type],
|
|
5761
|
+
return_type: Any,
|
|
5762
|
+
return_values: List[Var],
|
|
5763
|
+
arg_values: Mapping[str, Var],
|
|
5764
|
+
options: Mapping[str, Any],
|
|
5765
|
+
builder: warp.context.ModuleBuilder,
|
|
5766
|
+
):
|
|
5767
|
+
a = arg_values["a"]
|
|
5768
|
+
b = arg_values["b"]
|
|
5769
|
+
|
|
5770
|
+
if len(return_values) > 0:
|
|
5771
|
+
accumulate = 0 # for c = tile_matmul(a,b) case we want to overwrite c value
|
|
5772
|
+
out = return_values[0]
|
|
5773
|
+
else:
|
|
5774
|
+
accumulate = 1 # for tile_matmul(a,b,c) case we want to add to c value
|
|
5775
|
+
out = arg_values["out"]
|
|
5776
|
+
|
|
5777
|
+
if any(not is_tile(arg.type) for arg in [a, b, out]):
|
|
5778
|
+
raise RuntimeError("tile_matmul() requires three Tile arguments")
|
|
5779
|
+
|
|
5780
|
+
if any(arg.type.dtype not in [float16, float32, float64, vec2h, vec2f, vec2d] for arg in [a, b, out]):
|
|
5781
|
+
raise RuntimeError(
|
|
5782
|
+
"tile_matmul() arguments must be tiles of float16, float32 or float64, vec2h, vec2f, vec2d entries"
|
|
5783
|
+
)
|
|
5784
|
+
|
|
5785
|
+
if (a.type.N != b.type.M) or (a.type.M != out.type.M) or (b.type.N != out.type.N):
|
|
5786
|
+
raise RuntimeError("tile_matmul(A, B, C) requires sizes of A, B and C to be consistent for a matmul")
|
|
5787
|
+
|
|
5788
|
+
# set the storage type to the inputs to shared
|
|
5789
|
+
a.type.storage = "shared"
|
|
5790
|
+
b.type.storage = "shared"
|
|
5791
|
+
out.type.storage = "shared"
|
|
5792
|
+
template_args = [accumulate]
|
|
5793
|
+
|
|
5794
|
+
# Maps Python/Warp types to C++ types and enums
|
|
5795
|
+
def cublasdx_type_map(dtype):
|
|
5796
|
+
if dtype == float16:
|
|
5797
|
+
return ("wp::float16", 3, 0)
|
|
5798
|
+
if dtype == float32:
|
|
5799
|
+
return ("wp::float32", 5, 0)
|
|
5800
|
+
if dtype == float64:
|
|
5801
|
+
return ("wp::float64", 6, 0)
|
|
5802
|
+
if dtype == vec2h:
|
|
5803
|
+
return ("wp::vec2h", 3, 1)
|
|
5804
|
+
if dtype == vec2f:
|
|
5805
|
+
return ("wp::vec2f", 5, 1)
|
|
5806
|
+
if dtype == vec2d:
|
|
5807
|
+
return ("wp::vec2d", 6, 1)
|
|
5808
|
+
raise RuntimeError("Unsupported input type in tile_matmul")
|
|
5809
|
+
|
|
5810
|
+
def cublasdx_arrangement_map(layout):
|
|
5811
|
+
if layout == "colmajor":
|
|
5812
|
+
return 0 # CUBLASDX_ARRANGEMENT_COL_MAJOR
|
|
5813
|
+
if layout == "rowmajor":
|
|
5814
|
+
return 1 # CUBLASDX_ARRANGEMENT_ROW_MAJOR
|
|
5815
|
+
raise RuntimeError("Unsupported layout in tile_matmul")
|
|
5816
|
+
|
|
5817
|
+
# generate the LTO
|
|
5818
|
+
M, K = a.type.M, a.type.N
|
|
5819
|
+
_, N = b.type.M, b.type.N
|
|
5820
|
+
num_threads = options["block_dim"]
|
|
5821
|
+
arch = options["output_arch"]
|
|
5822
|
+
|
|
5823
|
+
def make_function(M, N, K, adtype, bdtype, cdtype, alayout, blayout, clayout):
|
|
5824
|
+
(a_dtype, a_prec, a_type) = cublasdx_type_map(adtype)
|
|
5825
|
+
(b_dtype, b_prec, b_type) = cublasdx_type_map(bdtype)
|
|
5826
|
+
(c_dtype, c_prec, c_type) = cublasdx_type_map(cdtype)
|
|
5827
|
+
a_arrangement = cublasdx_arrangement_map(alayout)
|
|
5828
|
+
b_arrangement = cublasdx_arrangement_map(blayout)
|
|
5829
|
+
c_arrangement = cublasdx_arrangement_map(clayout)
|
|
5830
|
+
|
|
5831
|
+
if a_type != b_type or a_type != c_type:
|
|
5832
|
+
raise RuntimeError("time_matmul(A, B, C) requires all inputs to be real or complex")
|
|
5833
|
+
element_type = a_type
|
|
5834
|
+
|
|
5835
|
+
lto_symbol = f"dot_{M}_{N}_{K}_{arch}_{num_threads}_{a_arrangement}_{b_arrangement}_{c_arrangement}_{a_prec}_{b_prec}_{c_prec}_{element_type}"
|
|
5836
|
+
|
|
5837
|
+
# early out if LTO for this combination already exists for this module
|
|
5838
|
+
if lto_symbol in builder.ltoirs:
|
|
5839
|
+
return lto_symbol, builder.ltoirs[lto_symbol]
|
|
5840
|
+
|
|
5841
|
+
# otherwise compile LTO
|
|
5842
|
+
lto_code = tempfile.NamedTemporaryFile(prefix="warp", delete=False)
|
|
5843
|
+
result = warp.context.runtime.core.cuda_compile_dot(
|
|
5844
|
+
lto_code.name.encode("utf-8"),
|
|
5845
|
+
lto_symbol.encode("utf-8"),
|
|
5846
|
+
0,
|
|
5847
|
+
None,
|
|
5848
|
+
None,
|
|
5849
|
+
arch,
|
|
5850
|
+
M,
|
|
5851
|
+
N,
|
|
5852
|
+
K,
|
|
5853
|
+
a_prec,
|
|
5854
|
+
b_prec,
|
|
5855
|
+
c_prec,
|
|
5856
|
+
element_type,
|
|
5857
|
+
a_arrangement,
|
|
5858
|
+
b_arrangement,
|
|
5859
|
+
c_arrangement,
|
|
5860
|
+
num_threads,
|
|
5861
|
+
)
|
|
5862
|
+
lto_code_path = Path(lto_code.name)
|
|
5863
|
+
if not result:
|
|
5864
|
+
lto_code.close()
|
|
5865
|
+
if lto_code_path.exists():
|
|
5866
|
+
lto_code_path.unlink()
|
|
5867
|
+
raise RuntimeError("Failed to compile tile_matmul")
|
|
5868
|
+
else:
|
|
5869
|
+
with open(lto_code.name, "rb") as f:
|
|
5870
|
+
lto_code_data = f.read()
|
|
5871
|
+
lto_code.close()
|
|
5872
|
+
lto_code_path.unlink()
|
|
5873
|
+
|
|
5874
|
+
builder.ltoirs[lto_symbol] = lto_code_data
|
|
5875
|
+
builder.ltoirs_decl[lto_symbol] = (
|
|
5876
|
+
f"void {lto_symbol}({c_dtype}, {a_dtype}*, {b_dtype}*, {c_dtype}, {c_dtype}*);"
|
|
5877
|
+
)
|
|
5878
|
+
|
|
5879
|
+
return lto_symbol, lto_code_data
|
|
5880
|
+
|
|
5881
|
+
def tile_flip_layout(layout):
|
|
5882
|
+
if layout == "rowmajor":
|
|
5883
|
+
return "colmajor"
|
|
5884
|
+
elif layout == "colmajor":
|
|
5885
|
+
return "rowmajor"
|
|
5886
|
+
|
|
5887
|
+
# C += A * B
|
|
5888
|
+
(fun_forward, lto_forward) = make_function(
|
|
5889
|
+
M, N, K, a.type.dtype, b.type.dtype, out.type.dtype, a.type.layout, b.type.layout, out.type.layout
|
|
5890
|
+
)
|
|
5891
|
+
# adjA += adjC * B^T - Transpose ~= flipped layout
|
|
5892
|
+
(fun_backward_A, lto_backward_A) = make_function(
|
|
5893
|
+
M,
|
|
5894
|
+
K,
|
|
5895
|
+
N,
|
|
5896
|
+
out.type.dtype,
|
|
5897
|
+
b.type.dtype,
|
|
5898
|
+
a.type.dtype,
|
|
5899
|
+
out.type.layout,
|
|
5900
|
+
tile_flip_layout(b.type.layout),
|
|
5901
|
+
a.type.layout,
|
|
5902
|
+
)
|
|
5903
|
+
# adjB += A^T * adjC - Transpose ~= flipped layout
|
|
5904
|
+
(fun_backward_B, lto_backward_B) = make_function(
|
|
5905
|
+
K,
|
|
5906
|
+
N,
|
|
5907
|
+
M,
|
|
5908
|
+
a.type.dtype,
|
|
5909
|
+
out.type.dtype,
|
|
5910
|
+
b.type.dtype,
|
|
5911
|
+
tile_flip_layout(a.type.layout),
|
|
5912
|
+
out.type.layout,
|
|
5913
|
+
b.type.layout,
|
|
5914
|
+
)
|
|
5915
|
+
|
|
5916
|
+
return (
|
|
5917
|
+
(
|
|
5918
|
+
Var(fun_forward, str, False, True, False),
|
|
5919
|
+
Var(fun_backward_A, str, False, True, False),
|
|
5920
|
+
Var(fun_backward_B, str, False, True, False),
|
|
5921
|
+
a,
|
|
5922
|
+
b,
|
|
5923
|
+
out,
|
|
5924
|
+
),
|
|
5925
|
+
template_args,
|
|
5926
|
+
[lto_forward, lto_backward_A, lto_backward_B],
|
|
5927
|
+
)
|
|
5928
|
+
|
|
5929
|
+
|
|
5930
|
+
add_builtin(
|
|
5931
|
+
"tile_matmul",
|
|
5932
|
+
input_types={
|
|
5933
|
+
"a": Tile(dtype=Any, M=Any, N=Any),
|
|
5934
|
+
"b": Tile(dtype=Any, M=Any, N=Any),
|
|
5935
|
+
"out": Tile(dtype=Any, M=Any, N=Any),
|
|
5936
|
+
},
|
|
5937
|
+
value_func=tile_matmul_generic_value_func,
|
|
5938
|
+
lto_dispatch_func=tile_matmul_generic_lto_dispatch_func,
|
|
5939
|
+
variadic=False,
|
|
5940
|
+
doc="""Computes the matrix product and accumulates ``out += a*b``.
|
|
5941
|
+
|
|
5942
|
+
Supported datatypes are:
|
|
5943
|
+
* fp16, fp32, fp64 (real)
|
|
5944
|
+
* vec2h, vec2f, vec2d (complex)
|
|
5945
|
+
|
|
5946
|
+
All input and output tiles must have the same datatype. Tile data will be automatically be migrated
|
|
5947
|
+
to shared memory if necessary and will use TensorCore operations when available.
|
|
5948
|
+
|
|
5949
|
+
:param a: A tile with ``shape=(M, K)``
|
|
5950
|
+
:param b: A tile with ``shape=(K, N)``
|
|
5951
|
+
:param out: A tile with ``shape=(M, N)``
|
|
5952
|
+
""",
|
|
5953
|
+
group="Tile Primitives",
|
|
5954
|
+
export=False,
|
|
5955
|
+
)
|
|
5956
|
+
|
|
5957
|
+
add_builtin(
|
|
5958
|
+
"tile_matmul",
|
|
5959
|
+
input_types={"a": Tile(dtype=Any, M=Any, N=Any), "b": Tile(dtype=Any, M=Any, N=Any)},
|
|
5960
|
+
value_func=tile_matmul_generic_value_func,
|
|
5961
|
+
lto_dispatch_func=tile_matmul_generic_lto_dispatch_func,
|
|
5962
|
+
variadic=False,
|
|
5963
|
+
doc="""Computes the matrix product ``out = a*b``.
|
|
5964
|
+
|
|
5965
|
+
Supported datatypes are:
|
|
5966
|
+
* fp16, fp32, fp64 (real)
|
|
5967
|
+
* vec2h, vec2f, vec2d (complex)
|
|
5968
|
+
|
|
5969
|
+
Both input tiles must have the same datatype. Tile data will be automatically be migrated
|
|
5970
|
+
to shared memory if necessary and will use TensorCore operations when available.
|
|
5971
|
+
|
|
5972
|
+
:param a: A tile with ``shape=(M, K)``
|
|
5973
|
+
:param b: A tile with ``shape=(K, N)``
|
|
5974
|
+
:returns: A tile with ``shape=(M, N)``
|
|
5975
|
+
""",
|
|
5976
|
+
group="Tile Primitives",
|
|
5977
|
+
export=False,
|
|
5978
|
+
)
|
|
5979
|
+
|
|
5980
|
+
|
|
5981
|
+
##
|
|
5982
|
+
## FFT
|
|
5983
|
+
##
|
|
5984
|
+
def tile_fft_generic_value_func(arg_types, arg_values):
|
|
5985
|
+
if arg_types is None:
|
|
5986
|
+
return Tile(dtype=Any, M=Any, N=Any)
|
|
5987
|
+
|
|
5988
|
+
if len(arg_types) != 1:
|
|
5989
|
+
raise RuntimeError("tile_fft() requires 1 positional args")
|
|
5990
|
+
|
|
5991
|
+
if not is_tile(arg_types["inout"]):
|
|
5992
|
+
raise RuntimeError("tile_fft() argument 0 must be a tile")
|
|
5993
|
+
|
|
5994
|
+
if arg_types["inout"].storage != "register":
|
|
5995
|
+
raise RuntimeError("tile_fft() input/output argument must have register memory storage")
|
|
5996
|
+
|
|
5997
|
+
return None
|
|
5998
|
+
|
|
5999
|
+
|
|
6000
|
+
def tile_fft_generic_lto_dispatch_func(
|
|
6001
|
+
arg_types: Mapping[str, type],
|
|
6002
|
+
return_type: Any,
|
|
6003
|
+
return_values: List[Var],
|
|
6004
|
+
arg_values: Mapping[str, Var],
|
|
6005
|
+
options: Mapping[str, Any],
|
|
6006
|
+
builder: warp.context.ModuleBuilder,
|
|
6007
|
+
direction: str = None,
|
|
6008
|
+
):
|
|
6009
|
+
inout = arg_values["inout"]
|
|
6010
|
+
inout.type.storage = "register"
|
|
6011
|
+
|
|
6012
|
+
if not is_tile(inout.type):
|
|
6013
|
+
raise RuntimeError("tile_fft() arguments must be a single tile with register storage")
|
|
6014
|
+
|
|
6015
|
+
if inout.type.dtype not in [vec2f, vec2d]:
|
|
6016
|
+
raise RuntimeError("tile_fft() argument must be a tile of vec2f or vec2d (interpreted as complex) entries")
|
|
6017
|
+
|
|
6018
|
+
# see libcufftdx.hpp
|
|
6019
|
+
if direction == "forward":
|
|
6020
|
+
dir = 0 # CUFFTDX_DIRECTION_FORWARD
|
|
6021
|
+
elif direction == "inverse":
|
|
6022
|
+
dir = 1 # CUFFTDX_DIRECTION_INVERSE
|
|
6023
|
+
else:
|
|
6024
|
+
raise RuntimeError("Invalid direction")
|
|
6025
|
+
|
|
6026
|
+
if inout.type.dtype == vec2f:
|
|
6027
|
+
dtype = "wp::vec2f"
|
|
6028
|
+
precision = 5 # COMMONDX_PRECISION_F32
|
|
6029
|
+
elif inout.type.dtype == vec2d:
|
|
6030
|
+
dtype = "wp::vec2d"
|
|
6031
|
+
precision = 6 # COMMONDX_PRECISION_F64
|
|
6032
|
+
else:
|
|
6033
|
+
raise RuntimeError("Unsupported datatype")
|
|
6034
|
+
|
|
6035
|
+
# M FFTs of size N each
|
|
6036
|
+
batch, size = inout.type.M, inout.type.N
|
|
6037
|
+
num_threads = options["block_dim"]
|
|
6038
|
+
arch = options["output_arch"]
|
|
6039
|
+
ept = size // num_threads
|
|
6040
|
+
lto_symbol = f"fft_{size}_{ept}_{arch}_{direction}_{precision}"
|
|
6041
|
+
|
|
6042
|
+
# early out if LTO for this combination already exists for this module
|
|
6043
|
+
if lto_symbol in builder.ltoirs:
|
|
6044
|
+
return lto_symbol, builder.ltoirs[lto_symbol]
|
|
6045
|
+
|
|
6046
|
+
# otherwise compile LTO
|
|
6047
|
+
lto_code = tempfile.NamedTemporaryFile(prefix="warp", delete=False)
|
|
6048
|
+
shared_memory_size = ctypes.c_int(0)
|
|
6049
|
+
|
|
6050
|
+
result = warp.context.runtime.core.cuda_compile_fft(
|
|
6051
|
+
lto_code.name.encode("utf-8"),
|
|
6052
|
+
lto_symbol.encode("utf-8"),
|
|
6053
|
+
0,
|
|
6054
|
+
None,
|
|
6055
|
+
None,
|
|
6056
|
+
arch,
|
|
6057
|
+
size,
|
|
6058
|
+
ept,
|
|
6059
|
+
dir,
|
|
6060
|
+
precision,
|
|
6061
|
+
ctypes.byref(shared_memory_size),
|
|
6062
|
+
)
|
|
6063
|
+
lto_code_path = Path(lto_code.name)
|
|
6064
|
+
if not result:
|
|
6065
|
+
lto_code.close()
|
|
6066
|
+
if lto_code_path.exists():
|
|
6067
|
+
lto_code_path.unlink()
|
|
6068
|
+
raise RuntimeError("Failed to compile tile_matmul")
|
|
6069
|
+
|
|
6070
|
+
with open(lto_code.name, "rb") as f:
|
|
6071
|
+
lto_code_data = f.read()
|
|
6072
|
+
|
|
6073
|
+
lto_code.close()
|
|
6074
|
+
lto_code_path.unlink()
|
|
6075
|
+
|
|
6076
|
+
builder.ltoirs[lto_symbol] = lto_code_data
|
|
6077
|
+
|
|
6078
|
+
return (
|
|
6079
|
+
(
|
|
6080
|
+
Var(lto_symbol, str, False, True, False),
|
|
6081
|
+
Var(dtype, str, False, True, False),
|
|
6082
|
+
Var(str(shared_memory_size.value), str, False, True, False),
|
|
6083
|
+
Var(str(batch), str, False, True, False),
|
|
6084
|
+
Var(str(ept), str, False, True, False),
|
|
6085
|
+
inout,
|
|
6086
|
+
),
|
|
6087
|
+
[],
|
|
6088
|
+
[lto_code_data],
|
|
6089
|
+
)
|
|
6090
|
+
|
|
6091
|
+
|
|
6092
|
+
add_builtin(
|
|
6093
|
+
"tile_fft",
|
|
6094
|
+
input_types={"inout": Tile},
|
|
6095
|
+
value_func=tile_fft_generic_value_func,
|
|
6096
|
+
lto_dispatch_func=functools.partial(tile_fft_generic_lto_dispatch_func, direction="forward"),
|
|
6097
|
+
variadic=True,
|
|
6098
|
+
doc="""Compute the forward FFT along the second dimension of a 2D tile of data.
|
|
6099
|
+
|
|
6100
|
+
This function cooperatively computes the forward FFT on a tile of data inplace, treating each row individually.
|
|
6101
|
+
|
|
6102
|
+
Supported datatypes are:
|
|
6103
|
+
* vec2f, vec2d
|
|
6104
|
+
|
|
6105
|
+
:param inout: The input/output tile""",
|
|
6106
|
+
group="Tile Primitives",
|
|
6107
|
+
export=False,
|
|
6108
|
+
namespace="",
|
|
6109
|
+
)
|
|
6110
|
+
|
|
6111
|
+
add_builtin(
|
|
6112
|
+
"tile_ifft",
|
|
6113
|
+
input_types={"inout": Tile},
|
|
6114
|
+
value_func=tile_fft_generic_value_func,
|
|
6115
|
+
lto_dispatch_func=functools.partial(tile_fft_generic_lto_dispatch_func, direction="inverse"),
|
|
6116
|
+
variadic=True,
|
|
6117
|
+
doc="""Compute the inverse FFT along the second dimension of a 2D tile of data.
|
|
6118
|
+
|
|
6119
|
+
This function cooperatively computes the inverse FFT on a tile of data inplace, treating each row individually.
|
|
6120
|
+
|
|
6121
|
+
Supported datatypes are:
|
|
6122
|
+
* vec2f, vec2d
|
|
6123
|
+
|
|
6124
|
+
:param inout: The input/output tile""",
|
|
6125
|
+
group="Tile Primitives",
|
|
6126
|
+
export=False,
|
|
6127
|
+
namespace="",
|
|
6128
|
+
)
|
|
6129
|
+
|
|
4318
6130
|
# ---------------------------------
|
|
4319
6131
|
# Code Generation
|
|
4320
6132
|
|