warp-lang 1.4.2__py3-none-manylinux2014_x86_64.whl → 1.5.1__py3-none-manylinux2014_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +4 -0
- warp/autograd.py +43 -8
- warp/bin/warp-clang.so +0 -0
- warp/bin/warp.so +0 -0
- warp/build.py +21 -2
- warp/build_dll.py +23 -6
- warp/builtins.py +1819 -7
- warp/codegen.py +197 -61
- warp/config.py +2 -2
- warp/context.py +379 -107
- warp/examples/assets/pixel.jpg +0 -0
- warp/examples/benchmarks/benchmark_cloth_paddle.py +86 -0
- warp/examples/benchmarks/benchmark_gemm.py +121 -0
- warp/examples/benchmarks/benchmark_interop_paddle.py +158 -0
- warp/examples/benchmarks/benchmark_tile.py +179 -0
- warp/examples/fem/example_adaptive_grid.py +37 -10
- warp/examples/fem/example_apic_fluid.py +3 -2
- warp/examples/fem/example_convection_diffusion_dg.py +4 -5
- warp/examples/fem/example_deformed_geometry.py +1 -1
- warp/examples/fem/example_diffusion_3d.py +47 -4
- warp/examples/fem/example_distortion_energy.py +220 -0
- warp/examples/fem/example_magnetostatics.py +127 -85
- warp/examples/fem/example_nonconforming_contact.py +5 -5
- warp/examples/fem/example_stokes.py +3 -1
- warp/examples/fem/example_streamlines.py +12 -19
- warp/examples/fem/utils.py +38 -15
- warp/examples/sim/example_cloth.py +4 -25
- warp/examples/sim/example_quadruped.py +2 -1
- warp/examples/tile/example_tile_convolution.py +58 -0
- warp/examples/tile/example_tile_fft.py +47 -0
- warp/examples/tile/example_tile_filtering.py +105 -0
- warp/examples/tile/example_tile_matmul.py +79 -0
- warp/examples/tile/example_tile_mlp.py +375 -0
- warp/fem/__init__.py +8 -0
- warp/fem/cache.py +16 -12
- warp/fem/dirichlet.py +1 -1
- warp/fem/domain.py +44 -1
- warp/fem/field/__init__.py +1 -2
- warp/fem/field/field.py +31 -19
- warp/fem/field/nodal_field.py +101 -49
- warp/fem/field/virtual.py +794 -0
- warp/fem/geometry/__init__.py +2 -2
- warp/fem/geometry/deformed_geometry.py +3 -105
- warp/fem/geometry/element.py +13 -0
- warp/fem/geometry/geometry.py +165 -7
- warp/fem/geometry/grid_2d.py +3 -6
- warp/fem/geometry/grid_3d.py +31 -28
- warp/fem/geometry/hexmesh.py +3 -46
- warp/fem/geometry/nanogrid.py +3 -2
- warp/fem/geometry/{quadmesh_2d.py → quadmesh.py} +280 -159
- warp/fem/geometry/tetmesh.py +2 -43
- warp/fem/geometry/{trimesh_2d.py → trimesh.py} +354 -186
- warp/fem/integrate.py +683 -261
- warp/fem/linalg.py +404 -0
- warp/fem/operator.py +101 -18
- warp/fem/polynomial.py +5 -5
- warp/fem/quadrature/quadrature.py +45 -21
- warp/fem/space/__init__.py +45 -11
- warp/fem/space/basis_function_space.py +451 -0
- warp/fem/space/basis_space.py +58 -11
- warp/fem/space/function_space.py +146 -5
- warp/fem/space/grid_2d_function_space.py +80 -66
- warp/fem/space/grid_3d_function_space.py +113 -68
- warp/fem/space/hexmesh_function_space.py +96 -108
- warp/fem/space/nanogrid_function_space.py +62 -110
- warp/fem/space/quadmesh_function_space.py +208 -0
- warp/fem/space/shape/__init__.py +45 -7
- warp/fem/space/shape/cube_shape_function.py +328 -54
- warp/fem/space/shape/shape_function.py +10 -1
- warp/fem/space/shape/square_shape_function.py +328 -60
- warp/fem/space/shape/tet_shape_function.py +269 -19
- warp/fem/space/shape/triangle_shape_function.py +238 -19
- warp/fem/space/tetmesh_function_space.py +69 -37
- warp/fem/space/topology.py +38 -0
- warp/fem/space/trimesh_function_space.py +179 -0
- warp/fem/utils.py +6 -331
- warp/jax_experimental.py +3 -1
- warp/native/array.h +15 -0
- warp/native/builtin.h +66 -26
- warp/native/bvh.h +4 -0
- warp/native/coloring.cpp +604 -0
- warp/native/cuda_util.cpp +68 -51
- warp/native/cuda_util.h +2 -1
- warp/native/fabric.h +8 -0
- warp/native/hashgrid.h +4 -0
- warp/native/marching.cu +8 -0
- warp/native/mat.h +14 -3
- warp/native/mathdx.cpp +59 -0
- warp/native/mesh.h +4 -0
- warp/native/range.h +13 -1
- warp/native/reduce.cpp +9 -1
- warp/native/reduce.cu +7 -0
- warp/native/runlength_encode.cpp +9 -1
- warp/native/runlength_encode.cu +7 -1
- warp/native/scan.cpp +8 -0
- warp/native/scan.cu +8 -0
- warp/native/scan.h +8 -1
- warp/native/sparse.cpp +8 -0
- warp/native/sparse.cu +8 -0
- warp/native/temp_buffer.h +7 -0
- warp/native/tile.h +1854 -0
- warp/native/tile_gemm.h +341 -0
- warp/native/tile_reduce.h +210 -0
- warp/native/volume_builder.cu +8 -0
- warp/native/volume_builder.h +8 -0
- warp/native/warp.cpp +10 -2
- warp/native/warp.cu +369 -15
- warp/native/warp.h +12 -2
- warp/optim/adam.py +39 -4
- warp/paddle.py +29 -12
- warp/render/render_opengl.py +140 -67
- warp/sim/graph_coloring.py +292 -0
- warp/sim/import_urdf.py +8 -8
- warp/sim/integrator_euler.py +4 -2
- warp/sim/integrator_featherstone.py +115 -44
- warp/sim/integrator_vbd.py +6 -0
- warp/sim/model.py +109 -32
- warp/sparse.py +1 -1
- warp/stubs.py +569 -4
- warp/tape.py +12 -7
- warp/tests/assets/pixel.npy +0 -0
- warp/tests/aux_test_instancing_gc.py +18 -0
- warp/tests/test_array.py +39 -0
- warp/tests/test_codegen.py +81 -1
- warp/tests/test_codegen_instancing.py +30 -0
- warp/tests/test_collision.py +110 -0
- warp/tests/test_coloring.py +251 -0
- warp/tests/test_context.py +34 -0
- warp/tests/test_examples.py +21 -5
- warp/tests/test_fem.py +453 -113
- warp/tests/test_func.py +34 -4
- warp/tests/test_generics.py +52 -0
- warp/tests/test_iter.py +68 -0
- warp/tests/test_lerp.py +13 -87
- warp/tests/test_mat_scalar_ops.py +1 -1
- warp/tests/test_matmul.py +6 -9
- warp/tests/test_matmul_lite.py +6 -11
- warp/tests/test_mesh_query_point.py +1 -1
- warp/tests/test_module_hashing.py +23 -0
- warp/tests/test_overwrite.py +45 -0
- warp/tests/test_paddle.py +27 -87
- warp/tests/test_print.py +56 -1
- warp/tests/test_smoothstep.py +17 -83
- warp/tests/test_spatial.py +1 -1
- warp/tests/test_static.py +3 -3
- warp/tests/test_tile.py +744 -0
- warp/tests/test_tile_mathdx.py +144 -0
- warp/tests/test_tile_mlp.py +383 -0
- warp/tests/test_tile_reduce.py +374 -0
- warp/tests/test_tile_shared_memory.py +190 -0
- warp/tests/test_vbd.py +12 -20
- warp/tests/test_volume.py +43 -0
- warp/tests/unittest_suites.py +19 -2
- warp/tests/unittest_utils.py +4 -2
- warp/types.py +340 -74
- warp/utils.py +23 -3
- {warp_lang-1.4.2.dist-info → warp_lang-1.5.1.dist-info}/METADATA +32 -7
- {warp_lang-1.4.2.dist-info → warp_lang-1.5.1.dist-info}/RECORD +161 -134
- {warp_lang-1.4.2.dist-info → warp_lang-1.5.1.dist-info}/WHEEL +1 -1
- warp/fem/field/test.py +0 -180
- warp/fem/field/trial.py +0 -183
- warp/fem/space/collocated_function_space.py +0 -102
- warp/fem/space/quadmesh_2d_function_space.py +0 -261
- warp/fem/space/trimesh_2d_function_space.py +0 -153
- {warp_lang-1.4.2.dist-info → warp_lang-1.5.1.dist-info}/LICENSE.md +0 -0
- {warp_lang-1.4.2.dist-info → warp_lang-1.5.1.dist-info}/top_level.txt +0 -0
warp/tests/test_tile.py
ADDED
|
@@ -0,0 +1,744 @@
|
|
|
1
|
+
# Copyright (c) 2024 NVIDIA CORPORATION. All rights reserved.
|
|
2
|
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
|
3
|
+
# and proprietary rights in and to this software, related documentation
|
|
4
|
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
|
5
|
+
# distribution of this software and related documentation without an express
|
|
6
|
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
7
|
+
|
|
8
|
+
import unittest
|
|
9
|
+
|
|
10
|
+
import numpy as np
|
|
11
|
+
|
|
12
|
+
import warp as wp
|
|
13
|
+
from warp.tests.unittest_utils import *
|
|
14
|
+
|
|
15
|
+
wp.init() # For wp.context.runtime.core.is_mathdx_enabled()
|
|
16
|
+
|
|
17
|
+
TILE_M = wp.constant(8)
|
|
18
|
+
TILE_N = wp.constant(4)
|
|
19
|
+
TILE_K = wp.constant(8)
|
|
20
|
+
|
|
21
|
+
# num threads per-tile
|
|
22
|
+
TILE_DIM = 64
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
@wp.kernel
|
|
26
|
+
def tile_copy_1d_kernel(A: wp.array(dtype=float), B: wp.array(dtype=float)):
|
|
27
|
+
# tile index
|
|
28
|
+
i = wp.tid()
|
|
29
|
+
|
|
30
|
+
a = wp.tile_load(A, i, n=TILE_N)
|
|
31
|
+
wp.tile_store(B, i, a)
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
def test_tile_copy_1d(test, device):
|
|
35
|
+
rng = np.random.default_rng(42)
|
|
36
|
+
|
|
37
|
+
N = TILE_N * 5
|
|
38
|
+
|
|
39
|
+
A = rng.random((N), dtype=np.float32)
|
|
40
|
+
B = rng.random((N), dtype=np.float32)
|
|
41
|
+
|
|
42
|
+
A_wp = wp.array(A, requires_grad=True, device=device)
|
|
43
|
+
B_wp = wp.array(B, requires_grad=True, device=device)
|
|
44
|
+
|
|
45
|
+
with wp.Tape() as tape:
|
|
46
|
+
wp.launch_tiled(
|
|
47
|
+
tile_copy_1d_kernel,
|
|
48
|
+
dim=[int(N / TILE_N)],
|
|
49
|
+
inputs=[A_wp, B_wp],
|
|
50
|
+
block_dim=TILE_DIM,
|
|
51
|
+
device=device,
|
|
52
|
+
)
|
|
53
|
+
|
|
54
|
+
# verify forward pass
|
|
55
|
+
assert_array_equal(B_wp, A_wp)
|
|
56
|
+
|
|
57
|
+
# verify backward pass
|
|
58
|
+
B_wp.grad = wp.ones_like(B_wp, device=device)
|
|
59
|
+
tape.backward()
|
|
60
|
+
|
|
61
|
+
assert_array_equal(B_wp.grad, A_wp.grad)
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
@wp.kernel
|
|
65
|
+
def tile_copy_2d_kernel(A: wp.array2d(dtype=float), B: wp.array2d(dtype=float)):
|
|
66
|
+
# tile index
|
|
67
|
+
i, j = wp.tid()
|
|
68
|
+
|
|
69
|
+
a = wp.tile_load(A, i, j, m=TILE_M, n=TILE_N)
|
|
70
|
+
wp.tile_store(B, i, j, a)
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
def test_tile_copy_2d(test, device):
|
|
74
|
+
rng = np.random.default_rng(42)
|
|
75
|
+
|
|
76
|
+
M = TILE_M * 7
|
|
77
|
+
N = TILE_N * 5
|
|
78
|
+
|
|
79
|
+
A = rng.random((M, N), dtype=np.float32)
|
|
80
|
+
B = rng.random((M, N), dtype=np.float32)
|
|
81
|
+
|
|
82
|
+
A_wp = wp.array(A, requires_grad=True, device=device)
|
|
83
|
+
B_wp = wp.array(B, requires_grad=True, device=device)
|
|
84
|
+
|
|
85
|
+
with wp.Tape() as tape:
|
|
86
|
+
wp.launch_tiled(
|
|
87
|
+
tile_copy_2d_kernel,
|
|
88
|
+
dim=[int(M / TILE_M), int(N / TILE_N)],
|
|
89
|
+
inputs=[A_wp, B_wp],
|
|
90
|
+
block_dim=TILE_DIM,
|
|
91
|
+
device=device,
|
|
92
|
+
)
|
|
93
|
+
|
|
94
|
+
# verify forward pass
|
|
95
|
+
assert_array_equal(B_wp, A_wp)
|
|
96
|
+
|
|
97
|
+
# verify backward pass
|
|
98
|
+
B_wp.grad = wp.ones_like(B_wp, device=device)
|
|
99
|
+
tape.backward()
|
|
100
|
+
|
|
101
|
+
assert_array_equal(B_wp.grad, A_wp.grad)
|
|
102
|
+
|
|
103
|
+
|
|
104
|
+
@wp.func
|
|
105
|
+
def unary_func(x: float):
|
|
106
|
+
return wp.sin(x)
|
|
107
|
+
|
|
108
|
+
|
|
109
|
+
@wp.kernel
|
|
110
|
+
def tile_unary_map(input: wp.array2d(dtype=float), output: wp.array2d(dtype=float)):
|
|
111
|
+
# tile index
|
|
112
|
+
i, j = wp.tid()
|
|
113
|
+
|
|
114
|
+
a = wp.tile_load(input, i, j, m=TILE_M, n=TILE_N)
|
|
115
|
+
|
|
116
|
+
sa = wp.tile_map(wp.sin, a)
|
|
117
|
+
|
|
118
|
+
wp.tile_store(output, i, j, sa)
|
|
119
|
+
|
|
120
|
+
|
|
121
|
+
def test_tile_unary_map(test, device):
|
|
122
|
+
rng = np.random.default_rng(42)
|
|
123
|
+
|
|
124
|
+
M = TILE_M * 7
|
|
125
|
+
N = TILE_N * 5
|
|
126
|
+
|
|
127
|
+
A = rng.random((M, N), dtype=np.float32)
|
|
128
|
+
B = np.sin(A)
|
|
129
|
+
|
|
130
|
+
A_grad = np.cos(A)
|
|
131
|
+
|
|
132
|
+
A_wp = wp.array(A, requires_grad=True, device=device)
|
|
133
|
+
B_wp = wp.zeros_like(A_wp, requires_grad=True, device=device)
|
|
134
|
+
|
|
135
|
+
with wp.Tape() as tape:
|
|
136
|
+
wp.launch_tiled(
|
|
137
|
+
tile_unary_map,
|
|
138
|
+
dim=[int(M / TILE_M), int(N / TILE_N)],
|
|
139
|
+
inputs=[A_wp, B_wp],
|
|
140
|
+
block_dim=TILE_DIM,
|
|
141
|
+
device=device,
|
|
142
|
+
)
|
|
143
|
+
|
|
144
|
+
# verify forward pass
|
|
145
|
+
assert_np_equal(B_wp.numpy(), B, tol=1.0e-4)
|
|
146
|
+
|
|
147
|
+
# verify backward pass
|
|
148
|
+
B_wp.grad = wp.ones_like(B_wp, device=device)
|
|
149
|
+
tape.backward()
|
|
150
|
+
|
|
151
|
+
assert_np_equal(A_wp.grad.numpy(), A_grad, tol=1.0e-6)
|
|
152
|
+
|
|
153
|
+
|
|
154
|
+
@wp.func
|
|
155
|
+
def binary_func(x: float, y: float):
|
|
156
|
+
return wp.sin(x) + y
|
|
157
|
+
|
|
158
|
+
|
|
159
|
+
@wp.kernel
|
|
160
|
+
def tile_binary_map(
|
|
161
|
+
input_a: wp.array2d(dtype=float), input_b: wp.array2d(dtype=float), output: wp.array2d(dtype=float)
|
|
162
|
+
):
|
|
163
|
+
# tile index
|
|
164
|
+
i, j = wp.tid()
|
|
165
|
+
|
|
166
|
+
a = wp.tile_load(input_a, i, j, m=TILE_M, n=TILE_N)
|
|
167
|
+
b = wp.tile_load(input_b, i, j, m=TILE_M, n=TILE_N)
|
|
168
|
+
|
|
169
|
+
sa = wp.tile_map(binary_func, a, b)
|
|
170
|
+
|
|
171
|
+
wp.tile_store(output, i, j, sa)
|
|
172
|
+
|
|
173
|
+
|
|
174
|
+
def test_tile_binary_map(test, device):
|
|
175
|
+
rng = np.random.default_rng(42)
|
|
176
|
+
|
|
177
|
+
M = TILE_M * 7
|
|
178
|
+
N = TILE_N * 5
|
|
179
|
+
|
|
180
|
+
A = rng.random((M, N), dtype=np.float32)
|
|
181
|
+
B = rng.random((M, N), dtype=np.float32)
|
|
182
|
+
C = np.sin(A) + B
|
|
183
|
+
|
|
184
|
+
A_grad = np.cos(A)
|
|
185
|
+
B_grad = np.ones_like(B)
|
|
186
|
+
|
|
187
|
+
A_wp = wp.array(A, requires_grad=True, device=device)
|
|
188
|
+
B_wp = wp.array(B, requires_grad=True, device=device)
|
|
189
|
+
C_wp = wp.zeros_like(A_wp, requires_grad=True, device=device)
|
|
190
|
+
|
|
191
|
+
with wp.Tape() as tape:
|
|
192
|
+
wp.launch_tiled(
|
|
193
|
+
tile_binary_map,
|
|
194
|
+
dim=[int(M / TILE_M), int(N / TILE_N)],
|
|
195
|
+
inputs=[A_wp, B_wp, C_wp],
|
|
196
|
+
block_dim=TILE_DIM,
|
|
197
|
+
device=device,
|
|
198
|
+
)
|
|
199
|
+
|
|
200
|
+
# verify forward pass
|
|
201
|
+
assert_np_equal(C_wp.numpy(), C, tol=1.0e-6)
|
|
202
|
+
|
|
203
|
+
# verify backward pass
|
|
204
|
+
C_wp.grad = wp.ones_like(C_wp, device=device)
|
|
205
|
+
tape.backward()
|
|
206
|
+
|
|
207
|
+
assert_np_equal(A_wp.grad.numpy(), A_grad, tol=1.0e-6)
|
|
208
|
+
assert_np_equal(B_wp.grad.numpy(), B_grad)
|
|
209
|
+
|
|
210
|
+
|
|
211
|
+
@unittest.skipUnless(wp.context.runtime.core.is_mathdx_enabled(), "Warp was not built with MathDx support")
|
|
212
|
+
def test_tile_grouped_gemm(test, device):
|
|
213
|
+
@wp.kernel
|
|
214
|
+
def tile_grouped_gemm(A: wp.array3d(dtype=float), B: wp.array3d(dtype=float), C: wp.array3d(dtype=float)):
|
|
215
|
+
# output tile index
|
|
216
|
+
i = wp.tid()
|
|
217
|
+
|
|
218
|
+
a = wp.tile_load(A[i], 0, 0, m=TILE_M, n=TILE_K)
|
|
219
|
+
b = wp.tile_load(B[i], 0, 0, m=TILE_K, n=TILE_N)
|
|
220
|
+
|
|
221
|
+
sum = wp.tile_zeros(m=TILE_M, n=TILE_N, dtype=wp.float32)
|
|
222
|
+
|
|
223
|
+
wp.tile_matmul(a, b, sum)
|
|
224
|
+
|
|
225
|
+
wp.tile_store(C[i], 0, 0, sum)
|
|
226
|
+
|
|
227
|
+
batch_count = 56
|
|
228
|
+
|
|
229
|
+
M = TILE_M
|
|
230
|
+
N = TILE_N
|
|
231
|
+
K = TILE_K
|
|
232
|
+
|
|
233
|
+
rng = np.random.default_rng(42)
|
|
234
|
+
A = rng.random((batch_count, M, K), dtype=np.float32)
|
|
235
|
+
B = rng.random((batch_count, K, N), dtype=np.float32)
|
|
236
|
+
C = A @ B
|
|
237
|
+
|
|
238
|
+
A_wp = wp.array(A, requires_grad=True, device=device)
|
|
239
|
+
B_wp = wp.array(B, requires_grad=True, device=device)
|
|
240
|
+
C_wp = wp.zeros((batch_count, TILE_M, TILE_N), requires_grad=True, device=device)
|
|
241
|
+
|
|
242
|
+
with wp.Tape() as tape:
|
|
243
|
+
wp.launch_tiled(
|
|
244
|
+
tile_grouped_gemm, dim=[batch_count], inputs=[A_wp, B_wp, C_wp], block_dim=TILE_DIM, device=device
|
|
245
|
+
)
|
|
246
|
+
|
|
247
|
+
# TODO: 32 mismatched elements
|
|
248
|
+
assert_np_equal(C_wp.numpy(), C)
|
|
249
|
+
|
|
250
|
+
|
|
251
|
+
@unittest.skipUnless(wp.context.runtime.core.is_mathdx_enabled(), "Warp was not built with MathDx support")
|
|
252
|
+
def test_tile_gemm(test, device):
|
|
253
|
+
@wp.kernel
|
|
254
|
+
def tile_gemm(A: wp.array2d(dtype=float), B: wp.array2d(dtype=float), C: wp.array2d(dtype=float)):
|
|
255
|
+
# output tile index
|
|
256
|
+
i, j = wp.tid()
|
|
257
|
+
|
|
258
|
+
sum = wp.tile_zeros(m=TILE_M, n=TILE_N, dtype=wp.float32)
|
|
259
|
+
|
|
260
|
+
M = A.shape[0]
|
|
261
|
+
N = B.shape[1]
|
|
262
|
+
K = A.shape[1]
|
|
263
|
+
|
|
264
|
+
count = int(K / TILE_K)
|
|
265
|
+
|
|
266
|
+
for k in range(0, count):
|
|
267
|
+
a = wp.tile_load(A, i, k, m=TILE_M, n=TILE_K)
|
|
268
|
+
b = wp.tile_load(B, k, j, m=TILE_K, n=TILE_N)
|
|
269
|
+
|
|
270
|
+
# sum += a*b
|
|
271
|
+
wp.tile_matmul(a, b, sum)
|
|
272
|
+
|
|
273
|
+
wp.tile_store(C, i, j, sum)
|
|
274
|
+
|
|
275
|
+
M = TILE_M * 7
|
|
276
|
+
K = TILE_K * 6
|
|
277
|
+
N = TILE_N * 5
|
|
278
|
+
|
|
279
|
+
rng = np.random.default_rng(42)
|
|
280
|
+
A = rng.random((M, K), dtype=np.float32)
|
|
281
|
+
B = rng.random((K, N), dtype=np.float32)
|
|
282
|
+
C = np.zeros((M, N), dtype=np.float32)
|
|
283
|
+
|
|
284
|
+
A_wp = wp.array(A, requires_grad=True, device=device)
|
|
285
|
+
B_wp = wp.array(B, requires_grad=True, device=device)
|
|
286
|
+
C_wp = wp.array(C, requires_grad=True, device=device)
|
|
287
|
+
|
|
288
|
+
with wp.Tape() as tape:
|
|
289
|
+
wp.launch_tiled(
|
|
290
|
+
tile_gemm,
|
|
291
|
+
dim=(int(M / TILE_M), int(N / TILE_N)),
|
|
292
|
+
inputs=[A_wp, B_wp, C_wp],
|
|
293
|
+
block_dim=TILE_DIM,
|
|
294
|
+
device=device,
|
|
295
|
+
)
|
|
296
|
+
|
|
297
|
+
assert_np_equal(C_wp.numpy(), A @ B, tol=1.0e-5)
|
|
298
|
+
|
|
299
|
+
adj_C = np.ones_like(C)
|
|
300
|
+
|
|
301
|
+
tape.backward(grads={C_wp: wp.array(adj_C, device=device)})
|
|
302
|
+
|
|
303
|
+
assert_np_equal(A_wp.grad.numpy(), adj_C @ B.T, tol=1.0e-5)
|
|
304
|
+
assert_np_equal(B_wp.grad.numpy(), A.T @ adj_C, 1.0e-5)
|
|
305
|
+
|
|
306
|
+
|
|
307
|
+
@wp.kernel
|
|
308
|
+
def tile_operators(input: wp.array3d(dtype=float), output: wp.array3d(dtype=float)):
|
|
309
|
+
# output tile index
|
|
310
|
+
i = wp.tid()
|
|
311
|
+
|
|
312
|
+
a = wp.tile_load(input[i], 0, 0, m=TILE_M, n=TILE_N)
|
|
313
|
+
|
|
314
|
+
# neg
|
|
315
|
+
b = -a
|
|
316
|
+
|
|
317
|
+
# right scalar multiply
|
|
318
|
+
c = b * 0.5
|
|
319
|
+
|
|
320
|
+
# left scalar multiply
|
|
321
|
+
d = 0.5 * c
|
|
322
|
+
|
|
323
|
+
# add tiles
|
|
324
|
+
e = a + d
|
|
325
|
+
|
|
326
|
+
wp.tile_store(output[i], 0, 0, e)
|
|
327
|
+
|
|
328
|
+
|
|
329
|
+
def test_tile_operators(test, device):
|
|
330
|
+
batch_count = 56
|
|
331
|
+
|
|
332
|
+
M = TILE_M
|
|
333
|
+
N = TILE_N
|
|
334
|
+
|
|
335
|
+
rng = np.random.default_rng(42)
|
|
336
|
+
input = rng.random((batch_count, M, N), dtype=np.float32)
|
|
337
|
+
output = input * 0.75
|
|
338
|
+
|
|
339
|
+
input_wp = wp.array(input, requires_grad=True, device=device)
|
|
340
|
+
output_wp = wp.zeros_like(input_wp, requires_grad=True, device=device)
|
|
341
|
+
|
|
342
|
+
with wp.Tape() as tape:
|
|
343
|
+
wp.launch_tiled(
|
|
344
|
+
tile_operators, dim=[batch_count], inputs=[input_wp, output_wp], block_dim=TILE_DIM, device=device
|
|
345
|
+
)
|
|
346
|
+
|
|
347
|
+
assert_np_equal(output_wp.numpy(), output)
|
|
348
|
+
|
|
349
|
+
output_wp.grad.fill_(1.0)
|
|
350
|
+
|
|
351
|
+
tape.backward()
|
|
352
|
+
|
|
353
|
+
assert_np_equal(input_wp.grad.numpy(), np.ones_like(input) * 0.75)
|
|
354
|
+
|
|
355
|
+
|
|
356
|
+
@wp.kernel
|
|
357
|
+
def tile_sum_kernel(input: wp.array3d(dtype=float), output: wp.array(dtype=float)):
|
|
358
|
+
# output tile index
|
|
359
|
+
i = wp.tid()
|
|
360
|
+
|
|
361
|
+
a = wp.tile_load(input[i], 0, 0, m=TILE_M, n=TILE_N)
|
|
362
|
+
s = wp.tile_sum(a) * 0.5
|
|
363
|
+
|
|
364
|
+
wp.tile_store(output, i, s)
|
|
365
|
+
|
|
366
|
+
|
|
367
|
+
def test_tile_sum(test, device):
|
|
368
|
+
batch_count = 56
|
|
369
|
+
|
|
370
|
+
M = TILE_M
|
|
371
|
+
N = TILE_N
|
|
372
|
+
|
|
373
|
+
rng = np.random.default_rng(42)
|
|
374
|
+
input = rng.random((batch_count, M, N), dtype=np.float32)
|
|
375
|
+
|
|
376
|
+
input_wp = wp.array(input, requires_grad=True, device=device)
|
|
377
|
+
output_wp = wp.zeros(batch_count, requires_grad=True, device=device)
|
|
378
|
+
|
|
379
|
+
with wp.Tape() as tape:
|
|
380
|
+
wp.launch_tiled(
|
|
381
|
+
tile_sum_kernel,
|
|
382
|
+
dim=[batch_count],
|
|
383
|
+
inputs=[input_wp, output_wp],
|
|
384
|
+
block_dim=TILE_DIM,
|
|
385
|
+
device=device,
|
|
386
|
+
)
|
|
387
|
+
|
|
388
|
+
sum_wp = output_wp.numpy()
|
|
389
|
+
|
|
390
|
+
for i in range(batch_count):
|
|
391
|
+
sum_np = np.sum(input[i]) * 0.5
|
|
392
|
+
test.assertAlmostEqual(sum_wp[i], sum_np, places=5)
|
|
393
|
+
|
|
394
|
+
output_wp.grad.fill_(1.0)
|
|
395
|
+
|
|
396
|
+
tape.backward()
|
|
397
|
+
|
|
398
|
+
assert_np_equal(input_wp.grad.numpy(), np.ones_like(input) * 0.5)
|
|
399
|
+
|
|
400
|
+
|
|
401
|
+
def test_tile_sum_launch(test, device):
|
|
402
|
+
batch_count = 56
|
|
403
|
+
|
|
404
|
+
M = TILE_M
|
|
405
|
+
N = TILE_N
|
|
406
|
+
|
|
407
|
+
rng = np.random.default_rng(42)
|
|
408
|
+
input = rng.random((batch_count, M, N), dtype=np.float32)
|
|
409
|
+
|
|
410
|
+
input_wp = wp.array(input, requires_grad=True, device=device)
|
|
411
|
+
output_wp = wp.zeros(batch_count, requires_grad=True, device=device)
|
|
412
|
+
|
|
413
|
+
cmd = wp.launch_tiled(
|
|
414
|
+
tile_sum_kernel,
|
|
415
|
+
dim=[batch_count],
|
|
416
|
+
inputs=[input_wp, output_wp],
|
|
417
|
+
block_dim=TILE_DIM,
|
|
418
|
+
device=device,
|
|
419
|
+
record_cmd=True,
|
|
420
|
+
)
|
|
421
|
+
cmd.launch()
|
|
422
|
+
|
|
423
|
+
sum_wp = output_wp.numpy()
|
|
424
|
+
|
|
425
|
+
for i in range(batch_count):
|
|
426
|
+
sum_np = np.sum(input[i]) * 0.5
|
|
427
|
+
test.assertAlmostEqual(sum_wp[i], sum_np, places=5)
|
|
428
|
+
|
|
429
|
+
output_wp.grad.fill_(1.0)
|
|
430
|
+
|
|
431
|
+
wp.launch_tiled(
|
|
432
|
+
tile_sum_kernel,
|
|
433
|
+
dim=[batch_count],
|
|
434
|
+
inputs=[input_wp, output_wp],
|
|
435
|
+
adj_inputs=[input_wp.grad, output_wp.grad],
|
|
436
|
+
block_dim=TILE_DIM,
|
|
437
|
+
device=device,
|
|
438
|
+
adjoint=True,
|
|
439
|
+
)
|
|
440
|
+
|
|
441
|
+
assert_np_equal(input_wp.grad.numpy(), np.ones_like(input) * 0.5)
|
|
442
|
+
|
|
443
|
+
|
|
444
|
+
@wp.kernel
|
|
445
|
+
def tile_extract_kernel(input: wp.array2d(dtype=float), output: wp.array2d(dtype=float)):
|
|
446
|
+
# output tile index
|
|
447
|
+
i = wp.tid()
|
|
448
|
+
|
|
449
|
+
t = wp.tile_load(input, 0, 0, m=TILE_M, n=TILE_N)
|
|
450
|
+
|
|
451
|
+
# perform a scalar copy, extracting each
|
|
452
|
+
# tile element individually
|
|
453
|
+
for i in range(TILE_M):
|
|
454
|
+
for j in range(TILE_N):
|
|
455
|
+
output[i, j] = t[i, j]
|
|
456
|
+
|
|
457
|
+
|
|
458
|
+
def test_tile_extract(test, device):
|
|
459
|
+
M = TILE_M
|
|
460
|
+
N = TILE_N
|
|
461
|
+
|
|
462
|
+
rng = np.random.default_rng(42)
|
|
463
|
+
input = rng.random((M, N), dtype=np.float32)
|
|
464
|
+
|
|
465
|
+
input_wp = wp.array(input, requires_grad=True, device=device)
|
|
466
|
+
output_wp = wp.zeros_like(input_wp, requires_grad=True, device=device)
|
|
467
|
+
|
|
468
|
+
with wp.Tape() as tape:
|
|
469
|
+
wp.launch_tiled(tile_extract_kernel, dim=[1], inputs=[input_wp, output_wp], block_dim=TILE_DIM, device=device)
|
|
470
|
+
|
|
471
|
+
assert_array_equal(output_wp, input_wp)
|
|
472
|
+
|
|
473
|
+
output_wp.grad.fill_(1.0)
|
|
474
|
+
|
|
475
|
+
tape.backward()
|
|
476
|
+
|
|
477
|
+
assert_np_equal(input_wp.grad.numpy(), np.ones_like(input))
|
|
478
|
+
|
|
479
|
+
|
|
480
|
+
@wp.kernel
|
|
481
|
+
def test_tile_transpose_kernel(input: wp.array2d(dtype=float), output: wp.array2d(dtype=float)):
|
|
482
|
+
x = wp.tile_load(input, 0, 0, m=TILE_M, n=TILE_N)
|
|
483
|
+
y = wp.tile_transpose(x)
|
|
484
|
+
|
|
485
|
+
wp.tile_store(output, 0, 0, y)
|
|
486
|
+
|
|
487
|
+
|
|
488
|
+
def test_tile_transpose(test, device):
|
|
489
|
+
rng = np.random.default_rng(42)
|
|
490
|
+
input = wp.array(rng.random((TILE_M, TILE_N), dtype=np.float32), device=device)
|
|
491
|
+
output = wp.zeros_like(input.transpose(), device=device)
|
|
492
|
+
|
|
493
|
+
wp.launch_tiled(test_tile_transpose_kernel, dim=[1], inputs=[input, output], block_dim=32, device=device)
|
|
494
|
+
|
|
495
|
+
assert_np_equal(output.numpy(), input.numpy().T)
|
|
496
|
+
|
|
497
|
+
|
|
498
|
+
@unittest.skipUnless(wp.context.runtime.core.is_mathdx_enabled(), "Warp was not built with MathDx support")
|
|
499
|
+
def test_tile_transpose_matmul(test, device):
|
|
500
|
+
@wp.kernel
|
|
501
|
+
def test_tile_transpose_matmul_kernel(input: wp.array2d(dtype=float), output: wp.array2d(dtype=float)):
|
|
502
|
+
x = wp.tile_load(input, 0, 0, m=TILE_M, n=TILE_N)
|
|
503
|
+
y = wp.tile_transpose(x)
|
|
504
|
+
|
|
505
|
+
z = wp.tile_zeros(dtype=float, m=TILE_N, n=TILE_N)
|
|
506
|
+
wp.tile_matmul(y, x, z)
|
|
507
|
+
|
|
508
|
+
wp.tile_store(output, 0, 0, z)
|
|
509
|
+
|
|
510
|
+
rng = np.random.default_rng(42)
|
|
511
|
+
input = wp.array(rng.random((TILE_M, TILE_N), dtype=np.float32), device=device)
|
|
512
|
+
output = wp.zeros((TILE_N, TILE_N), dtype=float, device=device)
|
|
513
|
+
|
|
514
|
+
wp.launch_tiled(test_tile_transpose_matmul_kernel, dim=[1], inputs=[input, output], block_dim=32, device=device)
|
|
515
|
+
|
|
516
|
+
assert_np_equal(output.numpy(), input.numpy().T @ input.numpy())
|
|
517
|
+
|
|
518
|
+
|
|
519
|
+
@wp.kernel
|
|
520
|
+
def test_tile_broadcast_add_kernel(
|
|
521
|
+
input_a: wp.array2d(dtype=float), input_b: wp.array(dtype=float), output: wp.array2d(dtype=float)
|
|
522
|
+
):
|
|
523
|
+
a = wp.tile_load(input_a, 0, 0, m=10, n=10)
|
|
524
|
+
b = wp.tile_load(input_b, 0, n=10)
|
|
525
|
+
|
|
526
|
+
c = wp.tile_broadcast(b, 10, 10)
|
|
527
|
+
d = a + c
|
|
528
|
+
|
|
529
|
+
wp.tile_store(output, 0, 0, d)
|
|
530
|
+
|
|
531
|
+
|
|
532
|
+
def test_tile_broadcast_add(test, device):
|
|
533
|
+
M = 10
|
|
534
|
+
N = 10
|
|
535
|
+
|
|
536
|
+
a = wp.array(np.ones((M, N), dtype=np.float32), device=device)
|
|
537
|
+
b = wp.array(np.arange(0, N, dtype=np.float32), device=device)
|
|
538
|
+
out = wp.zeros((M, N), dtype=float, device=device)
|
|
539
|
+
|
|
540
|
+
wp.launch_tiled(test_tile_broadcast_add_kernel, dim=[1], inputs=[a, b, out], block_dim=32, device=device)
|
|
541
|
+
|
|
542
|
+
assert_np_equal(out.numpy(), a.numpy() + b.numpy())
|
|
543
|
+
|
|
544
|
+
|
|
545
|
+
@wp.kernel
|
|
546
|
+
def test_tile_broadcast_grad_kernel(a: wp.array(dtype=float), b: wp.array2d(dtype=float)):
|
|
547
|
+
x = wp.tile_load(a, i=0, n=5)
|
|
548
|
+
y = wp.tile_broadcast(x, m=5, n=5)
|
|
549
|
+
|
|
550
|
+
w = wp.tile_ones(dtype=float, m=5, n=5)
|
|
551
|
+
z = w + y
|
|
552
|
+
|
|
553
|
+
wp.tile_store(b, 0, 0, z)
|
|
554
|
+
|
|
555
|
+
|
|
556
|
+
def test_tile_broadcast_grad(test, device):
|
|
557
|
+
a = wp.array(np.arange(0, 5, dtype=np.float32), requires_grad=True, device=device)
|
|
558
|
+
b = wp.array(np.ones((5, 5), dtype=np.float32), requires_grad=True, device=device)
|
|
559
|
+
|
|
560
|
+
with wp.Tape() as tape:
|
|
561
|
+
wp.launch_tiled(test_tile_broadcast_grad_kernel, dim=[1], inputs=[a, b], block_dim=32, device=device)
|
|
562
|
+
|
|
563
|
+
b.grad = wp.ones_like(b, device=device)
|
|
564
|
+
tape.backward()
|
|
565
|
+
|
|
566
|
+
assert_np_equal(b.numpy(), a.numpy() + np.ones((5, 5)))
|
|
567
|
+
assert_np_equal(a.grad.numpy(), np.ones(5) * 5.0)
|
|
568
|
+
|
|
569
|
+
|
|
570
|
+
TILE_VIEW_M = 16
|
|
571
|
+
TILE_VIEW_N = 128
|
|
572
|
+
|
|
573
|
+
|
|
574
|
+
@wp.kernel
|
|
575
|
+
def test_tile_view_kernel(src: wp.array2d(dtype=float), dst: wp.array2d(dtype=float)):
|
|
576
|
+
# load whole source into local memory
|
|
577
|
+
a = wp.tile_load(src, 0, 0, TILE_VIEW_M, TILE_VIEW_N)
|
|
578
|
+
|
|
579
|
+
# copy the source array row by row
|
|
580
|
+
for i in range(TILE_VIEW_M):
|
|
581
|
+
# create a view on original array and store
|
|
582
|
+
row = a[i]
|
|
583
|
+
wp.tile_store(dst, i, 0, row)
|
|
584
|
+
|
|
585
|
+
|
|
586
|
+
def test_tile_view(test, device):
|
|
587
|
+
rng = np.random.default_rng(42)
|
|
588
|
+
|
|
589
|
+
a = wp.array(rng.random((TILE_VIEW_M, TILE_VIEW_N), dtype=np.float32), requires_grad=True, device=device)
|
|
590
|
+
b = wp.array(np.zeros((TILE_VIEW_M, TILE_VIEW_N), dtype=np.float32), requires_grad=True, device=device)
|
|
591
|
+
|
|
592
|
+
with wp.Tape() as tape:
|
|
593
|
+
wp.launch_tiled(test_tile_view_kernel, dim=[1], inputs=[a, b], block_dim=32, device=device)
|
|
594
|
+
|
|
595
|
+
assert_np_equal(b.numpy(), a.numpy())
|
|
596
|
+
|
|
597
|
+
b.grad = wp.ones_like(b, device=device)
|
|
598
|
+
tape.backward()
|
|
599
|
+
|
|
600
|
+
assert_np_equal(a.grad.numpy(), np.ones_like(a.numpy()))
|
|
601
|
+
|
|
602
|
+
|
|
603
|
+
@wp.kernel
|
|
604
|
+
def test_tile_assign_kernel(src: wp.array2d(dtype=float), dst: wp.array2d(dtype=float)):
|
|
605
|
+
# load whole source into local memory
|
|
606
|
+
a = wp.tile_load(src, 0, 0, m=TILE_VIEW_M, n=TILE_VIEW_N)
|
|
607
|
+
b = wp.tile_zeros(dtype=float, m=TILE_VIEW_M, n=TILE_VIEW_N)
|
|
608
|
+
|
|
609
|
+
# copy the source array row by row
|
|
610
|
+
for i in range(TILE_VIEW_M):
|
|
611
|
+
# create views onto source and dest rows
|
|
612
|
+
row_src = a[i]
|
|
613
|
+
row_dst = b[i]
|
|
614
|
+
|
|
615
|
+
# copy onto dest row
|
|
616
|
+
wp.tile_assign(row_dst, 0, 0, row_src)
|
|
617
|
+
|
|
618
|
+
wp.tile_store(dst, 0, 0, b)
|
|
619
|
+
|
|
620
|
+
|
|
621
|
+
def test_tile_assign(test, device):
|
|
622
|
+
rng = np.random.default_rng(42)
|
|
623
|
+
|
|
624
|
+
a = wp.array(rng.random((TILE_VIEW_M, TILE_VIEW_N), dtype=np.float32), requires_grad=True, device=device)
|
|
625
|
+
b = wp.array(np.zeros((TILE_VIEW_M, TILE_VIEW_N), dtype=np.float32), requires_grad=True, device=device)
|
|
626
|
+
|
|
627
|
+
with wp.Tape() as tape:
|
|
628
|
+
wp.launch_tiled(test_tile_assign_kernel, dim=[1], inputs=[a, b], block_dim=32, device=device)
|
|
629
|
+
|
|
630
|
+
assert_np_equal(b.numpy(), a.numpy())
|
|
631
|
+
|
|
632
|
+
b.grad = wp.ones_like(b, device=device)
|
|
633
|
+
tape.backward()
|
|
634
|
+
|
|
635
|
+
assert_np_equal(a.grad.numpy(), np.ones_like(a.numpy()))
|
|
636
|
+
|
|
637
|
+
|
|
638
|
+
# #-----------------------------------------
|
|
639
|
+
# # center of mass computation
|
|
640
|
+
|
|
641
|
+
# start = offset[i]
|
|
642
|
+
# end = offset[i+1]
|
|
643
|
+
|
|
644
|
+
# com = wp.tile_zeros(dtype=wp.vec3, M=1)
|
|
645
|
+
|
|
646
|
+
# # load chunks of indices
|
|
647
|
+
# for i in range(start, end, N):
|
|
648
|
+
|
|
649
|
+
# count = wp.min(N, end-i)
|
|
650
|
+
|
|
651
|
+
# idx = wp.tile_load(indices, i, N, max_col=count)
|
|
652
|
+
# p = wp.tile_load(points, idx, max_col=count)
|
|
653
|
+
|
|
654
|
+
# com += wp.tile_sum(p)
|
|
655
|
+
|
|
656
|
+
|
|
657
|
+
# wp.tile_store(out[i], com)
|
|
658
|
+
|
|
659
|
+
|
|
660
|
+
# #-------------------------------------------
|
|
661
|
+
# # compute deformation gradient
|
|
662
|
+
|
|
663
|
+
# i =
|
|
664
|
+
# j =
|
|
665
|
+
# k =
|
|
666
|
+
# l =
|
|
667
|
+
|
|
668
|
+
# f = wp.tile(F) # generate a block size tile of feature vectors
|
|
669
|
+
|
|
670
|
+
# # layer 1
|
|
671
|
+
# w1 = wp.tile_load(weights)
|
|
672
|
+
# b1 = wp.tile_load(bias)
|
|
673
|
+
|
|
674
|
+
# z = wp.tile_matmul(w1, f) + b1
|
|
675
|
+
# z = wp.tile_map(relu, z)
|
|
676
|
+
|
|
677
|
+
# # layer 2
|
|
678
|
+
# w2 = wp.tile_load(weights)
|
|
679
|
+
# b2 = wp.tile_load(bias)
|
|
680
|
+
|
|
681
|
+
# z = wp.tile_matmul(w2, z) + b2
|
|
682
|
+
# z = wp.tile_map(relu, z)
|
|
683
|
+
|
|
684
|
+
# o = wp.untile(f)
|
|
685
|
+
|
|
686
|
+
|
|
687
|
+
# #----------------------------------
|
|
688
|
+
# # MLP with helper function for linear layers
|
|
689
|
+
# # where shape is only partially known
|
|
690
|
+
# # at compile time, and the other dims
|
|
691
|
+
# # are inferred from the input vector
|
|
692
|
+
|
|
693
|
+
# f = wp.tile(F)
|
|
694
|
+
|
|
695
|
+
# z = wp.tile_linear(weights1, bias1, f, hidden=16)
|
|
696
|
+
# z = wp.tile_map(relu, z)
|
|
697
|
+
|
|
698
|
+
# z = wp.tile_linear(weights2, bias2, f, hidden=8)
|
|
699
|
+
# z = wp.tile_map(relu, z)
|
|
700
|
+
|
|
701
|
+
# z = wp.tile_linear(weights3, bias3, f, hidden=4)
|
|
702
|
+
# z = wp.tile_map(relu, z)
|
|
703
|
+
|
|
704
|
+
# o = wp.untile(z)
|
|
705
|
+
|
|
706
|
+
|
|
707
|
+
# #----------------------------------
|
|
708
|
+
# # softmax
|
|
709
|
+
|
|
710
|
+
# def softmax(z: Any):
|
|
711
|
+
|
|
712
|
+
# e = wp.tile_map(wp.exp, z)
|
|
713
|
+
# s = wp.tile_sum(e, dim=0)
|
|
714
|
+
|
|
715
|
+
# return z/s[0]
|
|
716
|
+
|
|
717
|
+
devices = get_cuda_test_devices()
|
|
718
|
+
|
|
719
|
+
|
|
720
|
+
class TestTile(unittest.TestCase):
|
|
721
|
+
pass
|
|
722
|
+
|
|
723
|
+
|
|
724
|
+
add_function_test(TestTile, "test_tile_copy_1d", test_tile_copy_1d, devices=devices)
|
|
725
|
+
add_function_test(TestTile, "test_tile_copy_2d", test_tile_copy_2d, devices=devices)
|
|
726
|
+
add_function_test(TestTile, "test_tile_unary_map", test_tile_unary_map, devices=devices)
|
|
727
|
+
add_function_test(TestTile, "test_tile_binary_map", test_tile_binary_map, devices=devices)
|
|
728
|
+
add_function_test(TestTile, "test_tile_grouped_gemm", test_tile_grouped_gemm, devices=devices)
|
|
729
|
+
add_function_test(TestTile, "test_tile_gemm", test_tile_gemm, devices=devices)
|
|
730
|
+
add_function_test(TestTile, "test_tile_transpose", test_tile_transpose, devices=devices)
|
|
731
|
+
add_function_test(TestTile, "test_tile_transpose_matmul", test_tile_transpose_matmul, devices=devices)
|
|
732
|
+
add_function_test(TestTile, "test_tile_operators", test_tile_operators, devices=devices)
|
|
733
|
+
add_function_test(TestTile, "test_tile_sum", test_tile_sum, devices=devices)
|
|
734
|
+
add_function_test(TestTile, "test_tile_sum_launch", test_tile_sum_launch, devices=devices)
|
|
735
|
+
add_function_test(TestTile, "test_tile_extract", test_tile_extract, devices=devices)
|
|
736
|
+
add_function_test(TestTile, "test_tile_broadcast_add", test_tile_broadcast_add, devices=devices)
|
|
737
|
+
add_function_test(TestTile, "test_tile_broadcast_grad", test_tile_broadcast_grad, devices=devices)
|
|
738
|
+
add_function_test(TestTile, "test_tile_view", test_tile_view, devices=devices)
|
|
739
|
+
add_function_test(TestTile, "test_tile_assign", test_tile_assign, devices=devices)
|
|
740
|
+
|
|
741
|
+
|
|
742
|
+
if __name__ == "__main__":
|
|
743
|
+
wp.clear_kernel_cache()
|
|
744
|
+
unittest.main(verbosity=2, failfast=True)
|