warp-lang 1.4.2__py3-none-manylinux2014_aarch64.whl → 1.5.0__py3-none-manylinux2014_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of warp-lang might be problematic. Click here for more details.

Files changed (158) hide show
  1. warp/__init__.py +4 -0
  2. warp/autograd.py +43 -8
  3. warp/bin/warp-clang.so +0 -0
  4. warp/bin/warp.so +0 -0
  5. warp/build.py +21 -2
  6. warp/build_dll.py +23 -6
  7. warp/builtins.py +1783 -2
  8. warp/codegen.py +177 -45
  9. warp/config.py +2 -2
  10. warp/context.py +321 -73
  11. warp/examples/assets/pixel.jpg +0 -0
  12. warp/examples/benchmarks/benchmark_cloth_paddle.py +86 -0
  13. warp/examples/benchmarks/benchmark_gemm.py +121 -0
  14. warp/examples/benchmarks/benchmark_interop_paddle.py +158 -0
  15. warp/examples/benchmarks/benchmark_tile.py +179 -0
  16. warp/examples/fem/example_adaptive_grid.py +37 -10
  17. warp/examples/fem/example_apic_fluid.py +3 -2
  18. warp/examples/fem/example_convection_diffusion_dg.py +4 -5
  19. warp/examples/fem/example_deformed_geometry.py +1 -1
  20. warp/examples/fem/example_diffusion_3d.py +47 -4
  21. warp/examples/fem/example_distortion_energy.py +220 -0
  22. warp/examples/fem/example_magnetostatics.py +127 -85
  23. warp/examples/fem/example_nonconforming_contact.py +5 -5
  24. warp/examples/fem/example_stokes.py +3 -1
  25. warp/examples/fem/example_streamlines.py +12 -19
  26. warp/examples/fem/utils.py +38 -15
  27. warp/examples/sim/example_cloth.py +2 -25
  28. warp/examples/sim/example_quadruped.py +2 -1
  29. warp/examples/tile/example_tile_convolution.py +58 -0
  30. warp/examples/tile/example_tile_fft.py +47 -0
  31. warp/examples/tile/example_tile_filtering.py +105 -0
  32. warp/examples/tile/example_tile_matmul.py +79 -0
  33. warp/examples/tile/example_tile_mlp.py +375 -0
  34. warp/fem/__init__.py +8 -0
  35. warp/fem/cache.py +16 -12
  36. warp/fem/dirichlet.py +1 -1
  37. warp/fem/domain.py +44 -1
  38. warp/fem/field/__init__.py +1 -2
  39. warp/fem/field/field.py +31 -19
  40. warp/fem/field/nodal_field.py +101 -49
  41. warp/fem/field/virtual.py +794 -0
  42. warp/fem/geometry/__init__.py +2 -2
  43. warp/fem/geometry/deformed_geometry.py +3 -105
  44. warp/fem/geometry/element.py +13 -0
  45. warp/fem/geometry/geometry.py +165 -5
  46. warp/fem/geometry/grid_2d.py +3 -6
  47. warp/fem/geometry/grid_3d.py +31 -28
  48. warp/fem/geometry/hexmesh.py +3 -46
  49. warp/fem/geometry/nanogrid.py +3 -2
  50. warp/fem/geometry/{quadmesh_2d.py → quadmesh.py} +280 -159
  51. warp/fem/geometry/tetmesh.py +2 -43
  52. warp/fem/geometry/{trimesh_2d.py → trimesh.py} +354 -186
  53. warp/fem/integrate.py +683 -261
  54. warp/fem/linalg.py +404 -0
  55. warp/fem/operator.py +101 -18
  56. warp/fem/polynomial.py +5 -5
  57. warp/fem/quadrature/quadrature.py +45 -21
  58. warp/fem/space/__init__.py +45 -11
  59. warp/fem/space/basis_function_space.py +451 -0
  60. warp/fem/space/basis_space.py +58 -11
  61. warp/fem/space/function_space.py +146 -5
  62. warp/fem/space/grid_2d_function_space.py +80 -66
  63. warp/fem/space/grid_3d_function_space.py +113 -68
  64. warp/fem/space/hexmesh_function_space.py +96 -108
  65. warp/fem/space/nanogrid_function_space.py +62 -110
  66. warp/fem/space/quadmesh_function_space.py +208 -0
  67. warp/fem/space/shape/__init__.py +45 -7
  68. warp/fem/space/shape/cube_shape_function.py +328 -54
  69. warp/fem/space/shape/shape_function.py +10 -1
  70. warp/fem/space/shape/square_shape_function.py +328 -60
  71. warp/fem/space/shape/tet_shape_function.py +269 -19
  72. warp/fem/space/shape/triangle_shape_function.py +238 -19
  73. warp/fem/space/tetmesh_function_space.py +69 -37
  74. warp/fem/space/topology.py +38 -0
  75. warp/fem/space/trimesh_function_space.py +179 -0
  76. warp/fem/utils.py +6 -331
  77. warp/jax_experimental.py +3 -1
  78. warp/native/array.h +15 -0
  79. warp/native/builtin.h +66 -26
  80. warp/native/bvh.h +4 -0
  81. warp/native/coloring.cpp +600 -0
  82. warp/native/cuda_util.cpp +14 -0
  83. warp/native/cuda_util.h +2 -1
  84. warp/native/fabric.h +8 -0
  85. warp/native/hashgrid.h +4 -0
  86. warp/native/marching.cu +8 -0
  87. warp/native/mat.h +14 -3
  88. warp/native/mathdx.cpp +59 -0
  89. warp/native/mesh.h +4 -0
  90. warp/native/range.h +13 -1
  91. warp/native/reduce.cpp +9 -1
  92. warp/native/reduce.cu +7 -0
  93. warp/native/runlength_encode.cpp +9 -1
  94. warp/native/runlength_encode.cu +7 -1
  95. warp/native/scan.cpp +8 -0
  96. warp/native/scan.cu +8 -0
  97. warp/native/scan.h +8 -1
  98. warp/native/sparse.cpp +8 -0
  99. warp/native/sparse.cu +8 -0
  100. warp/native/temp_buffer.h +7 -0
  101. warp/native/tile.h +1857 -0
  102. warp/native/tile_gemm.h +341 -0
  103. warp/native/tile_reduce.h +210 -0
  104. warp/native/volume_builder.cu +8 -0
  105. warp/native/volume_builder.h +8 -0
  106. warp/native/warp.cpp +10 -2
  107. warp/native/warp.cu +369 -15
  108. warp/native/warp.h +12 -2
  109. warp/optim/adam.py +39 -4
  110. warp/paddle.py +29 -12
  111. warp/render/render_opengl.py +137 -65
  112. warp/sim/graph_coloring.py +292 -0
  113. warp/sim/integrator_euler.py +4 -2
  114. warp/sim/integrator_featherstone.py +115 -44
  115. warp/sim/integrator_vbd.py +6 -0
  116. warp/sim/model.py +88 -15
  117. warp/stubs.py +569 -4
  118. warp/tape.py +12 -7
  119. warp/tests/assets/pixel.npy +0 -0
  120. warp/tests/aux_test_instancing_gc.py +18 -0
  121. warp/tests/test_array.py +39 -0
  122. warp/tests/test_codegen.py +81 -1
  123. warp/tests/test_codegen_instancing.py +30 -0
  124. warp/tests/test_collision.py +110 -0
  125. warp/tests/test_coloring.py +241 -0
  126. warp/tests/test_context.py +34 -0
  127. warp/tests/test_examples.py +18 -4
  128. warp/tests/test_fem.py +453 -113
  129. warp/tests/test_func.py +13 -0
  130. warp/tests/test_generics.py +52 -0
  131. warp/tests/test_iter.py +68 -0
  132. warp/tests/test_mat_scalar_ops.py +1 -1
  133. warp/tests/test_mesh_query_point.py +1 -1
  134. warp/tests/test_module_hashing.py +23 -0
  135. warp/tests/test_paddle.py +27 -87
  136. warp/tests/test_print.py +56 -1
  137. warp/tests/test_spatial.py +1 -1
  138. warp/tests/test_tile.py +700 -0
  139. warp/tests/test_tile_mathdx.py +144 -0
  140. warp/tests/test_tile_mlp.py +383 -0
  141. warp/tests/test_tile_reduce.py +374 -0
  142. warp/tests/test_tile_shared_memory.py +190 -0
  143. warp/tests/test_vbd.py +12 -20
  144. warp/tests/test_volume.py +43 -0
  145. warp/tests/unittest_suites.py +19 -2
  146. warp/tests/unittest_utils.py +4 -0
  147. warp/types.py +338 -72
  148. warp/utils.py +22 -1
  149. {warp_lang-1.4.2.dist-info → warp_lang-1.5.0.dist-info}/METADATA +33 -7
  150. {warp_lang-1.4.2.dist-info → warp_lang-1.5.0.dist-info}/RECORD +153 -126
  151. {warp_lang-1.4.2.dist-info → warp_lang-1.5.0.dist-info}/WHEEL +1 -1
  152. warp/fem/field/test.py +0 -180
  153. warp/fem/field/trial.py +0 -183
  154. warp/fem/space/collocated_function_space.py +0 -102
  155. warp/fem/space/quadmesh_2d_function_space.py +0 -261
  156. warp/fem/space/trimesh_2d_function_space.py +0 -153
  157. {warp_lang-1.4.2.dist-info → warp_lang-1.5.0.dist-info}/LICENSE.md +0 -0
  158. {warp_lang-1.4.2.dist-info → warp_lang-1.5.0.dist-info}/top_level.txt +0 -0
warp/builtins.py CHANGED
@@ -5,6 +5,9 @@
5
5
  # distribution of this software and related documentation without an express
6
6
  # license agreement from NVIDIA CORPORATION is strictly prohibited.
7
7
  import builtins
8
+ import functools
9
+ import tempfile
10
+ from pathlib import Path
8
11
  from typing import Any, Callable, Mapping, Sequence
9
12
 
10
13
  from warp.codegen import Reference, Var, strip_reference
@@ -1702,6 +1705,1265 @@ add_builtin(
1702
1705
  group="Spatial Math",
1703
1706
  )
1704
1707
 
1708
+ # ------------------
1709
+ # Tile-based primitives
1710
+ shared_memory_id = 0
1711
+
1712
+
1713
+ def tile_zeros_value_func(arg_types: Mapping[str, type], arg_values: Mapping[str, Any]):
1714
+ # return generic type (for doc builds)
1715
+ if arg_types is None:
1716
+ return Tile(dtype=Any, M=Any, N=Any)
1717
+
1718
+ if "m" not in arg_values:
1719
+ raise RuntimeError("'m' keyword argument must be specified when calling tile_zeros() function")
1720
+
1721
+ if "n" not in arg_values:
1722
+ raise RuntimeError("'n' keyword argument must be specified when calling tile_zeros() function")
1723
+
1724
+ if "dtype" not in arg_values:
1725
+ raise RuntimeError("'dtype' keyword argument must be specified when calling tile_zeros() function")
1726
+
1727
+ if "storage" not in arg_values:
1728
+ raise ValueError("'storage' keyword not provided for tile_zeros")
1729
+
1730
+ if arg_values["storage"] not in {"shared", "register"}:
1731
+ raise ValueError(
1732
+ f"'storage' keyword argument must be either 'shared' or 'register', got {arg_values['storage']}"
1733
+ )
1734
+
1735
+ m, n = arg_values["m"], arg_values["n"]
1736
+ dtype = arg_values["dtype"]
1737
+
1738
+ return TileZeros(dtype=dtype, M=m, N=n, storage=arg_values["storage"])
1739
+
1740
+
1741
+ def tile_zeros_dispatch_func(arg_types: Mapping[str, type], return_type: Any, arg_values: Mapping[str, Var]):
1742
+ m, n, dtype = arg_values["m"], arg_values["n"], arg_values["dtype"]
1743
+
1744
+ template_args = []
1745
+ template_args.append(dtype)
1746
+ template_args.append(m.constant)
1747
+ template_args.append(n.constant)
1748
+
1749
+ return ([], template_args)
1750
+
1751
+
1752
+ add_builtin(
1753
+ "tile_zeros",
1754
+ input_types={"m": int, "n": int, "dtype": Any, "storage": str},
1755
+ defaults={"storage": "register"},
1756
+ value_func=tile_zeros_value_func,
1757
+ dispatch_func=tile_zeros_dispatch_func,
1758
+ variadic=False,
1759
+ missing_grad=True,
1760
+ doc="""Allocates a tile of zero-initialized items.
1761
+
1762
+ :param m: Size of the first dimension of the output tile
1763
+ :param n: Size of the second dimension of the output tile
1764
+ :param dtype: Datatype of output tile's elements
1765
+ :param storage: The storage location for the tile: ``"register"`` for registers
1766
+ (default) or ``"shared"`` for shared memory.
1767
+ :returns: A zero-initialized tile with ``shape=(m,n)`` and the specified datatype""",
1768
+ group="Tile Primitives",
1769
+ export=False,
1770
+ )
1771
+
1772
+
1773
+ def tile_ones_value_func(arg_types: Mapping[str, type], arg_values: Mapping[str, Any]):
1774
+ # return generic type (for doc builds)
1775
+ if arg_types is None:
1776
+ return Tile(dtype=Any, M=Any, N=Any)
1777
+
1778
+ if "m" not in arg_values:
1779
+ raise RuntimeError("'m' keyword argument must be specified when calling tile_zeros() function")
1780
+
1781
+ if "n" not in arg_values:
1782
+ raise RuntimeError("'n' keyword argument must be specified when calling tile_zeros() function")
1783
+
1784
+ if "dtype" not in arg_values:
1785
+ raise RuntimeError("'dtype' keyword argument must be specified when calling tile_zeros() function")
1786
+
1787
+ if arg_values["storage"] not in {"shared", "register"}:
1788
+ raise ValueError(
1789
+ f"'storage' keyword argument must be either 'shared' or 'register', got {arg_values['storage']}"
1790
+ )
1791
+
1792
+ m, n = arg_values["m"], arg_values["n"]
1793
+ dtype = arg_values["dtype"]
1794
+
1795
+ return TileZeros(dtype=dtype, M=m, N=n, storage=arg_values["storage"])
1796
+
1797
+
1798
+ def tile_ones_dispatch_func(arg_types: Mapping[str, type], return_type: Any, arg_values: Mapping[str, Var]):
1799
+ m, n, dtype = arg_values["m"], arg_values["n"], arg_values["dtype"]
1800
+
1801
+ template_args = []
1802
+ template_args.append(dtype)
1803
+ template_args.append(m.constant)
1804
+ template_args.append(n.constant)
1805
+
1806
+ return ([], template_args)
1807
+
1808
+
1809
+ add_builtin(
1810
+ "tile_ones",
1811
+ input_types={"m": int, "n": int, "dtype": Any, "storage": str},
1812
+ defaults={"storage": "register"},
1813
+ value_func=tile_ones_value_func,
1814
+ dispatch_func=tile_ones_dispatch_func,
1815
+ missing_grad=True,
1816
+ doc="""Allocates a tile of one-initialized items.
1817
+
1818
+ :param m: Size of the first dimension of the output tile
1819
+ :param n: Size of the second dimension of the output tile
1820
+ :param dtype: Datatype of output tile's elements
1821
+ :param storage: The storage location for the tile: ``"register"`` for registers
1822
+ (default) or ``"shared"`` for shared memory.
1823
+ :returns: A one-initialized tile with ``shape=(m,n)`` and the specified dtype""",
1824
+ group="Tile Primitives",
1825
+ export=False,
1826
+ )
1827
+
1828
+
1829
+ def tile_arange_value_func(arg_types: Mapping[str, type], arg_values: Mapping[str, Any]):
1830
+ # return generic type (for doc builds)
1831
+ if arg_types is None:
1832
+ return Tile(dtype=Any, M=Any, N=Any)
1833
+
1834
+ start = 0
1835
+ stop = 0
1836
+ step = 1
1837
+ dtype = int
1838
+
1839
+ args = arg_values["args"]
1840
+
1841
+ if len(args) == 1:
1842
+ start = 0
1843
+ stop = args[0]
1844
+
1845
+ elif len(args) == 2:
1846
+ start = args[0]
1847
+ stop = args[1]
1848
+
1849
+ elif len(args) == 3:
1850
+ start = args[0]
1851
+ stop = args[1]
1852
+ step = args[2]
1853
+
1854
+ if start is None or stop is None or step is None:
1855
+ raise RuntimeError("wp.tile_arange() arguments must be compile time constants")
1856
+
1857
+ if "dtype" in arg_values:
1858
+ dtype = arg_values["dtype"]
1859
+ else:
1860
+ dtype = float
1861
+
1862
+ if arg_values["storage"] not in {"shared", "register"}:
1863
+ raise ValueError(
1864
+ f"'storage' keyword argument must be either 'shared' or 'register', got {arg_values['storage']}"
1865
+ )
1866
+
1867
+ return TileRange(dtype=dtype, start=start, stop=stop, step=step, storage=arg_values["storage"])
1868
+
1869
+
1870
+ def tile_arange_dispatch_func(arg_types: Mapping[str, type], return_type: Any, arg_values: Mapping[str, Var]):
1871
+ m, n, dtype = return_type.M, return_type.N, return_type.dtype
1872
+
1873
+ template_args = []
1874
+ template_args.append(dtype)
1875
+ template_args.append(m)
1876
+ template_args.append(n)
1877
+
1878
+ # todo: it is somewhat redundant to create new vars here since some of start,stop,step
1879
+ # already exist depending on which form the function was called by the user
1880
+ start = warp.codegen.Var(label=None, type=return_type.dtype, constant=return_type.start)
1881
+ stop = warp.codegen.Var(label=None, type=return_type.dtype, constant=return_type.stop)
1882
+ step = warp.codegen.Var(label=None, type=return_type.dtype, constant=return_type.step)
1883
+
1884
+ function_args = []
1885
+ function_args.append(start)
1886
+ function_args.append(stop)
1887
+ function_args.append(step)
1888
+
1889
+ return (function_args, template_args)
1890
+
1891
+
1892
+ add_builtin(
1893
+ "tile_arange",
1894
+ input_types={"*args": Scalar, "dtype": Any, "storage": str},
1895
+ defaults={"dtype": None, "storage": "register"},
1896
+ value_func=tile_arange_value_func,
1897
+ dispatch_func=tile_arange_dispatch_func,
1898
+ variadic=True,
1899
+ missing_grad=True,
1900
+ doc="""Generates a tile of linearly spaced elements.
1901
+
1902
+ :param args: Variable-length positional arguments, interpreted as:
1903
+
1904
+ - ``(stop,)``: Generates values from ``0`` to ``stop - 1``
1905
+ - ``(start, stop)``: Generates values from ``start`` to ``stop - 1``
1906
+ - ``(start, stop, step)``: Generates values from ``start`` to ``stop - 1`` with a step size
1907
+
1908
+ :param dtype: Datatype of output tile's elements (optional, default: int)
1909
+ :param storage: The storage location for the tile: ``"register"`` for registers
1910
+ (default) or ``"shared"`` for shared memory.
1911
+ :returns: A tile with ``shape=(1,n)`` with linearly spaced elements of specified dtype""",
1912
+ group="Tile Primitives",
1913
+ export=False,
1914
+ )
1915
+
1916
+
1917
+ def tile_load_1d_value_func(arg_types, arg_values):
1918
+ # return generic type (for doc builds)
1919
+ if arg_types is None:
1920
+ return Tile(dtype=Any, M=Any, N=Any)
1921
+
1922
+ if not is_array(arg_types["a"]):
1923
+ raise RuntimeError("tile_load() argument 0 must be an array")
1924
+
1925
+ if arg_types["a"].ndim != 1:
1926
+ raise RuntimeError(
1927
+ "tile_load() argument 0 must be 1-dimensional if using the ``wp.tile_load(array, i, n)`` syntax."
1928
+ )
1929
+
1930
+ if not type_is_int(arg_types["i"]):
1931
+ raise RuntimeError("tile_load() argument 1 must be an integer")
1932
+
1933
+ if "n" not in arg_values:
1934
+ raise RuntimeError("'n' keyword argument must be specified when calling tile_load() function")
1935
+
1936
+ if arg_values["storage"] not in {"shared", "register"}:
1937
+ raise ValueError(
1938
+ f"'storage' keyword argument must be either 'shared' or 'register', got {arg_values['storage']}"
1939
+ )
1940
+
1941
+ a = arg_types["a"]
1942
+ _m, n = 1, arg_values["n"]
1943
+
1944
+ return TileLoad(a, 1, n, arg_values["storage"])
1945
+
1946
+
1947
+ def tile_load_1d_dispatch_func(arg_types: Mapping[str, type], return_type: Any, arg_values: Mapping[str, Var]):
1948
+ array = arg_values["a"]
1949
+ i = arg_values["i"]
1950
+ n = arg_values["n"].constant
1951
+ dtype = arg_values["a"].type.dtype
1952
+
1953
+ template_args = []
1954
+ template_args.append(dtype)
1955
+ template_args.append(n)
1956
+
1957
+ return ((array, i), template_args)
1958
+
1959
+
1960
+ add_builtin(
1961
+ "tile_load",
1962
+ input_types={"a": array(dtype=Any), "i": int, "n": int, "storage": str},
1963
+ defaults={"storage": "register"},
1964
+ value_func=tile_load_1d_value_func,
1965
+ dispatch_func=tile_load_1d_dispatch_func,
1966
+ variadic=False,
1967
+ doc="""Loads a 1D tile from a global memory array.
1968
+
1969
+ This method will cooperatively load a tile from global memory using all threads in the block.
1970
+
1971
+ :param a: The source array in global memory
1972
+ :param i: Offset in the source array measured in multiples of ``n``, i.e.: ``offset=i*n``
1973
+ :param n: The number of elements in the tile
1974
+ :param storage: The storage location for the tile: ``"register"`` for registers
1975
+ (default) or ``"shared"`` for shared memory.
1976
+ :returns: A tile with ``shape=(1,n)`` and dtype the same as the source array""",
1977
+ group="Tile Primitives",
1978
+ export=False,
1979
+ )
1980
+
1981
+
1982
+ def tile_load_2d_value_func(arg_types, arg_values):
1983
+ # return generic type (for doc builds)
1984
+ if arg_types is None:
1985
+ return Tile(dtype=Any, M=Any, N=Any)
1986
+
1987
+ if not is_array(arg_types["a"]):
1988
+ raise RuntimeError("tile_load() argument 0 must be an array")
1989
+
1990
+ if arg_types["a"].ndim != 2:
1991
+ raise RuntimeError(
1992
+ "tile_load() argument 0 must be 2-dimensional if using the ``wp.tile_load(array, i, j, m, n)`` syntax."
1993
+ )
1994
+
1995
+ if not type_is_int(arg_types["i"]):
1996
+ raise RuntimeError("tile_load() argument 1 must be an integer")
1997
+
1998
+ if not type_is_int(arg_types["j"]):
1999
+ raise RuntimeError("tile_load() argument 1 must be an integer")
2000
+
2001
+ if "m" not in arg_values:
2002
+ raise RuntimeError("'m' keyword argument must be specified when calling tile_load() function")
2003
+
2004
+ if "n" not in arg_values:
2005
+ raise RuntimeError("'n' keyword argument must be specified when calling tile_load() function")
2006
+
2007
+ if arg_values["storage"] not in {"shared", "register"}:
2008
+ raise ValueError(
2009
+ f"'storage' keyword argument must be either 'shared' or 'register', got {arg_values['storage']}"
2010
+ )
2011
+
2012
+ a = arg_types["a"]
2013
+ m, n = arg_values["m"], arg_values["n"]
2014
+
2015
+ return TileLoad(a, m, n, arg_values["storage"])
2016
+
2017
+
2018
+ def tile_load_2d_dispatch_func(arg_types: Mapping[str, type], return_type: Any, arg_values: Mapping[str, Var]):
2019
+ array = arg_values["a"]
2020
+ i, j = arg_values["i"], arg_values["j"]
2021
+ m, n = arg_values["m"].constant, arg_values["n"].constant
2022
+ dtype = arg_values["a"].type.dtype
2023
+
2024
+ template_args = []
2025
+ template_args.append(dtype)
2026
+ template_args.append(m)
2027
+ template_args.append(n)
2028
+
2029
+ return ((array, i, j), template_args)
2030
+
2031
+
2032
+ add_builtin(
2033
+ "tile_load",
2034
+ input_types={"a": array(dtype=Any), "i": int, "j": int, "m": int, "n": int, "storage": str},
2035
+ defaults={"storage": "register"},
2036
+ value_func=tile_load_2d_value_func,
2037
+ dispatch_func=tile_load_2d_dispatch_func,
2038
+ variadic=False,
2039
+ doc="""Loads a 2D tile from a global memory array.
2040
+
2041
+ This method will cooperatively load a tile from global memory using all threads in the block.
2042
+
2043
+ :param a: The source array in global memory
2044
+ :param i: Offset in the source array measured in multiples of ``m``, i.e.: ``row=i*m``
2045
+ :param j: Offset in the source array measured in multiples of ``n``, i.e.; ``col=j*n``
2046
+ :param m: The size of the tile's first dimension
2047
+ :param n: The size of the tile's second dimension
2048
+ :param storage: The storage location for the tile: ``"register"`` for registers
2049
+ (default) or ``"shared"`` for shared memory.
2050
+ :returns: A tile with ``shape=(m,n)`` and dtype the same as the source array""",
2051
+ group="Tile Primitives",
2052
+ export=False,
2053
+ )
2054
+
2055
+
2056
+ def tile_store_1d_value_func(arg_types, arg_values):
2057
+ # return generic type (for doc builds)
2058
+ if arg_types is None:
2059
+ return None
2060
+
2061
+ if len(arg_types) != 3:
2062
+ raise RuntimeError("tile_store() requires 3 positional args")
2063
+
2064
+ if not is_array(arg_types["a"]):
2065
+ raise RuntimeError("tile_store() argument 0 must be an array")
2066
+
2067
+ if arg_types["a"].ndim != 1:
2068
+ raise RuntimeError(
2069
+ "tile_load() argument 0 must be a 1-dimensional array if using the ``wp.tile_store(array, i, t)`` syntax."
2070
+ )
2071
+
2072
+ if not type_is_int(arg_types["i"]):
2073
+ raise RuntimeError("tile_store() argument 1 must be an integer")
2074
+
2075
+ if not is_tile(arg_types["t"]):
2076
+ raise RuntimeError("tile_store() argument 2 must be a tile")
2077
+
2078
+ if not types_equal(arg_types["a"].dtype, arg_types["t"].dtype):
2079
+ raise RuntimeError("tile_store() destination array must have same type as source tile")
2080
+
2081
+ return None
2082
+
2083
+
2084
+ add_builtin(
2085
+ "tile_store",
2086
+ input_types={"a": array(dtype=Any), "i": int, "t": Any},
2087
+ value_func=tile_store_1d_value_func,
2088
+ variadic=False,
2089
+ skip_replay=True,
2090
+ doc="""Stores a 1D tile to a global memory array.
2091
+
2092
+ This method will cooperatively store a tile to global memory using all threads in the block.
2093
+
2094
+ :param a: The destination array in global memory
2095
+ :param i: Offset in the destination array measured in multiples of ``n``, i.e.: ``offset=i*n``
2096
+ :param t: The source tile to store data from, must have the same dtype as the destination array""",
2097
+ group="Tile Primitives",
2098
+ export=False,
2099
+ )
2100
+
2101
+
2102
+ def tile_store_2d_value_func(arg_types, arg_values):
2103
+ # return generic type (for doc builds)
2104
+ if arg_types is None:
2105
+ return None
2106
+
2107
+ if len(arg_types) != 4:
2108
+ raise RuntimeError("tile_store() requires 4 positional args")
2109
+
2110
+ if not is_array(arg_types["a"]):
2111
+ raise RuntimeError("tile_store() argument 0 must be an array")
2112
+
2113
+ if arg_types["a"].ndim != 2:
2114
+ raise RuntimeError(
2115
+ "tile_load() argument 0 must be a 2-dimensional array if using the ``wp.tile_store(array, i, j, t)`` syntax."
2116
+ )
2117
+
2118
+ if not type_is_int(arg_types["i"]):
2119
+ raise RuntimeError("tile_store() argument 1 must be an integer")
2120
+
2121
+ if not type_is_int(arg_types["j"]):
2122
+ raise RuntimeError("tile_store() argument 2 must be an integer")
2123
+
2124
+ if not is_tile(arg_types["t"]):
2125
+ raise RuntimeError("tile_store() argument 3 must be a tile")
2126
+
2127
+ if not types_equal(arg_types["a"].dtype, arg_types["t"].dtype):
2128
+ raise RuntimeError("tile_store() destination array must have same type as source tile")
2129
+
2130
+ return None
2131
+
2132
+
2133
+ add_builtin(
2134
+ "tile_store",
2135
+ input_types={"a": array(dtype=Any), "i": int, "j": int, "t": Any},
2136
+ value_func=tile_store_2d_value_func,
2137
+ variadic=False,
2138
+ skip_replay=True,
2139
+ doc="""Stores a tile to a global memory array.
2140
+
2141
+ This method will cooperatively store a tile to global memory using all threads in the block.
2142
+
2143
+ :param a: The destination array in global memory
2144
+ :param i: Offset in the destination array measured in multiples of ``m``, i.e.: ``row=i*m``
2145
+ :param j: Offset in the destination array measured in multiples of ``n``, i.e.; ``col=j*n``
2146
+ :param t: The source tile to store data from, must have the same dtype as the destination array""",
2147
+ group="Tile Primitives",
2148
+ export=False,
2149
+ )
2150
+
2151
+
2152
+ def tile_atomic_add_value_func(arg_types, arg_values):
2153
+ # return generic type (for doc builds)
2154
+ if arg_types is None:
2155
+ return Tile(dtype=Any, M=Any, N=Any)
2156
+
2157
+ if len(arg_types) != 4:
2158
+ raise RuntimeError("tile_atomic_add() requires 4 positional args")
2159
+
2160
+ if not is_array(arg_types["a"]):
2161
+ raise RuntimeError("tile_atomic_add() argument 0 must be an array")
2162
+
2163
+ if not type_is_int(arg_types["x"]):
2164
+ raise RuntimeError("tile_atomic_add() argument 1 must be an integer")
2165
+
2166
+ if not type_is_int(arg_types["y"]):
2167
+ raise RuntimeError("tile_atomic_add() argument 2 must be an integer")
2168
+
2169
+ if not is_tile(arg_types["t"]):
2170
+ raise RuntimeError("tile_atomic_add() argument 3 must be a tile")
2171
+
2172
+ if arg_types["a"].dtype != arg_types["t"].dtype:
2173
+ raise RuntimeError("tile_atomic_add() tile dtype and array dtype must match")
2174
+
2175
+ return Tile(dtype=arg_types["t"].dtype, M=arg_types["t"].M, N=arg_types["t"].N)
2176
+
2177
+
2178
+ add_builtin(
2179
+ "tile_atomic_add",
2180
+ input_types={"a": array(dtype=Any), "x": int, "y": int, "t": Any},
2181
+ value_func=tile_atomic_add_value_func,
2182
+ variadic=True,
2183
+ skip_replay=True,
2184
+ doc="""Atomically add a tile to the array `a`, each element will be updated atomically.
2185
+
2186
+ :param a: Array in global memory, should have the same ``dtype`` as the input tile
2187
+ :param x: Offset in the destination array measured in multiples of ``m``, i.e.: ``i=x*M`` where ``M`` is the first tile dimension
2188
+ :param y: Offset in the destination array measured in multiples of ``n``, i.e.: ``j=y*N`` where ``N`` is the second tile dimension
2189
+ :param t: Source tile to add to the destination array
2190
+ :returns: A tile with the same dimensions and type as the source tile, holding the original value of the destination elements""",
2191
+ group="Tile Primitives",
2192
+ export=False,
2193
+ )
2194
+
2195
+
2196
+ def tile_view_value_func(arg_types, arg_values):
2197
+ # return generic type (for doc builds)
2198
+ if arg_types is None:
2199
+ return Tile(dtype=Any, M=Any, N=Any)
2200
+
2201
+ tile = arg_types["t"]
2202
+
2203
+ if "m" not in arg_values:
2204
+ m = 1
2205
+ else:
2206
+ m = arg_values["m"]
2207
+
2208
+ if "n" not in arg_values:
2209
+ n = tile.N
2210
+ else:
2211
+ n = arg_values["n"]
2212
+
2213
+ if m > tile.M or n > tile.N:
2214
+ raise RuntimeError(
2215
+ f"Trying to view a tile subrange with dimensions ({m}, {n}) which is larger than source tile with dimensions ({tile.M}, {tile.N})"
2216
+ )
2217
+
2218
+ # force source tile to shared memory
2219
+ tile.storage = "shared"
2220
+
2221
+ output = Tile(dtype=tile.dtype, M=m, N=n, strides=tile.strides, layout=tile.layout, storage="shared", owner=False)
2222
+ return output
2223
+
2224
+
2225
+ def tile_view_dispatch_func(arg_types: Mapping[str, type], return_type: Any, arg_values: Mapping[str, Var]):
2226
+ tile = arg_values["t"]
2227
+ i = arg_values["i"]
2228
+
2229
+ if "j" not in arg_values:
2230
+ j = warp.codegen.Var(label=None, type=int, constant=0)
2231
+ else:
2232
+ j = arg_values["j"]
2233
+
2234
+ template_args = []
2235
+ template_args.append(return_type.M)
2236
+ template_args.append(return_type.N)
2237
+
2238
+ return ((tile, i, j), template_args)
2239
+
2240
+
2241
+ add_builtin(
2242
+ "tile_view",
2243
+ input_types={"t": Tile(dtype=Any, M=Any, N=Any), "i": int, "j": int, "m": int, "n": int},
2244
+ value_func=tile_view_value_func,
2245
+ dispatch_func=tile_view_dispatch_func,
2246
+ defaults={"j": None, "m": None, "n": None},
2247
+ variadic=True,
2248
+ doc="""Return a subrange of a given tile from coordinates (i,j) to (i+m, j+n).
2249
+
2250
+ :param t: Input tile to extract a subrange from
2251
+ :param i: Offset in the source tile along the first dimension
2252
+ :param j: Offset in the source tile along the second dimensions
2253
+ :param m: Size of the subrange to return along the first dimension
2254
+ :param n: Size of the subrange to return along the second dimension
2255
+ :returns: A tile with dimensions (m,n) and the same datatype as the input tile""",
2256
+ group="Tile Primitives",
2257
+ export=False,
2258
+ )
2259
+
2260
+
2261
+ def tile_assign_value_func(arg_types, arg_values):
2262
+ # return generic type (for doc builds)
2263
+ return None
2264
+
2265
+
2266
+ add_builtin(
2267
+ "tile_assign",
2268
+ input_types={"dst": Tile(dtype=Any, M=Any, N=Any), "i": int, "j": int, "src": Tile(dtype=Any, M=Any, N=Any)},
2269
+ value_func=tile_assign_value_func,
2270
+ # dispatch_func=tile_assign_dispatch_func,
2271
+ doc="""Assign a tile to a subrange of a destination tile at coordinates (i,j).
2272
+
2273
+ :param t: The destination tile to assign to
2274
+ :param i: Offset in the source tile along the first dimension
2275
+ :param j: Offset in the source tile along the second dimensions
2276
+ :param src: The source tile to read values from""",
2277
+ group="Tile Primitives",
2278
+ export=False,
2279
+ )
2280
+
2281
+
2282
+ def tile_value_func(arg_types, arg_values):
2283
+ # return generic type (for doc builds)
2284
+ if arg_types is None:
2285
+ return Tile
2286
+
2287
+ if len(arg_types) != 1:
2288
+ raise RuntimeError("tile() requires 1 positional arg")
2289
+
2290
+ dtype = None
2291
+ length = None
2292
+
2293
+ if type_is_vector(arg_types["x"]):
2294
+ dtype = arg_types["x"]._wp_scalar_type_
2295
+ length = arg_types["x"]._shape_[0]
2296
+ else:
2297
+ dtype = arg_types["x"]
2298
+ length = 1
2299
+
2300
+ return Tile(dtype=dtype, M=length, N=warp.codegen.options["block_dim"], op="tile")
2301
+
2302
+
2303
+ add_builtin(
2304
+ "tile",
2305
+ input_types={"x": Any},
2306
+ value_func=tile_value_func,
2307
+ variadic=True,
2308
+ doc="""Constructs a new Tile from per-thread kernel values.
2309
+
2310
+ This function converts values computed using scalar kernel code to a tile representation for input into collective operations.
2311
+
2312
+ * If the input value is a scalar, then the resulting tile has ``shape=(1, block_dim)``
2313
+ * If the input value is a vector, then the resulting tile has ``shape=(length(vector), block_dim)``
2314
+
2315
+ :param x: A per-thread local value, e.g.: scalar, vector, or matrix.
2316
+ :returns: A tile with first dimension according to the value type length and a second dimension equal to ``block_dim``
2317
+
2318
+ This example shows how to create a linear sequence from thread variables:
2319
+
2320
+ .. code-block:: python
2321
+
2322
+ @wp.kernel
2323
+ def compute():
2324
+ i = wp.tid()
2325
+ t = wp.tile(i*2)
2326
+ print(t)
2327
+
2328
+ wp.launch(compute, dim=16, inputs=[], block_dim=16)
2329
+
2330
+ Prints:
2331
+
2332
+ .. code-block:: text
2333
+
2334
+ tile(m=1, n=16, storage=register) = [[0 2 4 6 8 ...]]
2335
+
2336
+ """,
2337
+ group="Tile Primitives",
2338
+ export=False,
2339
+ )
2340
+
2341
+
2342
+ def untile_value_func(arg_types, arg_values):
2343
+ # return generic type (for doc builds)
2344
+ if arg_types is None:
2345
+ return Scalar
2346
+
2347
+ if len(arg_types) != 1:
2348
+ raise RuntimeError("untile() requires 1 positional arg")
2349
+
2350
+ t = arg_types["a"]
2351
+
2352
+ if not is_tile(t):
2353
+ raise RuntimeError(f"untile() accepts arguments of type tile only, got {arg_types[0]}")
2354
+
2355
+ if t.N != warp.codegen.options["block_dim"]:
2356
+ raise RuntimeError(
2357
+ f"untile() argument must have the same length as the block width, got {t.N}, expected {warp.codegen.options['block_dim']}"
2358
+ )
2359
+
2360
+ if t.M == 1:
2361
+ return t.dtype
2362
+ elif t.M > 1:
2363
+ return warp.types.vector(t.M, t.dtype)
2364
+
2365
+
2366
+ add_builtin(
2367
+ "untile",
2368
+ input_types={"a": Any},
2369
+ value_func=untile_value_func,
2370
+ variadic=True,
2371
+ doc="""Convert a Tile back to per-thread values.
2372
+
2373
+ This function converts a block-wide tile back to per-thread values.
2374
+
2375
+ * If the input tile is 1-dimensional then the resulting value will be a per-thread scalar
2376
+ * If the input tile is 2-dimensional then the resulting value will be a per-thread vector of length M
2377
+
2378
+ :param a: A tile with dimensions ``shape=(M, block_dim)``
2379
+ :returns: A single value per-thread with the same dtype as the tile
2380
+
2381
+ This example shows how to create a linear sequence from thread variables:
2382
+
2383
+ .. code-block:: python
2384
+
2385
+ @wp.kernel
2386
+ def compute():
2387
+ i = wp.tid()
2388
+
2389
+ # create block-wide tile
2390
+ t = wp.tile(i)*2
2391
+
2392
+ # convert back to per-thread values
2393
+ s = wp.untile()
2394
+
2395
+ print(s)
2396
+
2397
+ wp.launch(compute, dim=16, inputs=[], block_dim=16)
2398
+
2399
+ Prints:
2400
+
2401
+ .. code-block:: text
2402
+
2403
+ 0
2404
+ 2
2405
+ 4
2406
+ 6
2407
+ 8
2408
+ ...
2409
+ """,
2410
+ group="Tile Primitives",
2411
+ export=False,
2412
+ )
2413
+
2414
+
2415
+ def tile_extract_value_func(arg_types, arg_values):
2416
+ # return generic type (for doc builds)
2417
+ if arg_types is None:
2418
+ return Scalar
2419
+
2420
+ if len(arg_types) != 3:
2421
+ raise RuntimeError("tile_extract() requires 3 positional args")
2422
+
2423
+ if not is_tile(arg_types["a"]):
2424
+ raise RuntimeError("tile_extract() argument 0 must be a tile")
2425
+
2426
+ return arg_types["a"].dtype
2427
+
2428
+
2429
+ add_builtin(
2430
+ "tile_extract",
2431
+ input_types={"a": Tile(dtype=Any, M=Any, N=Any), "i": int, "j": int},
2432
+ value_func=tile_extract_value_func,
2433
+ variadic=True,
2434
+ doc="""Extracts a single element from the tile and returns it as a scalar type.
2435
+
2436
+ This function will extract an element from the tile and broadcast its value to all threads in the block.
2437
+
2438
+ Note that this may incur additional synchronization if the source tile is a register tile.
2439
+
2440
+ :param a: Tile to extract the element from
2441
+ :param i: Coordinate of element on first dimension
2442
+ :param j: Coordinate of element on the second dimension
2443
+ :returns: The value of the element at the specified tile location, with the same type as the input tile's per-element dtype""",
2444
+ group="Tile Primitives",
2445
+ export=False,
2446
+ )
2447
+
2448
+
2449
+ def tile_transpose_value_func(arg_types, arg_values):
2450
+ # return generic type (for doc builds)
2451
+ if arg_types is None:
2452
+ return Tile
2453
+
2454
+ if len(arg_types) != 1:
2455
+ raise RuntimeError("tile_transpose() requires 1 positional args")
2456
+
2457
+ t = arg_types["a"]
2458
+
2459
+ if not is_tile(t):
2460
+ raise RuntimeError("tile_transpose() argument 0 must be a tile")
2461
+
2462
+ layout = None
2463
+
2464
+ # flip layout
2465
+ if t.layout == "rowmajor":
2466
+ layout = "colmajor"
2467
+ elif t.layout == "colmajor":
2468
+ layout = "rowmajor"
2469
+
2470
+ # force the input tile to shared memory
2471
+ t.storage = "shared"
2472
+
2473
+ return Tile(
2474
+ dtype=t.dtype,
2475
+ M=t.N,
2476
+ N=t.M,
2477
+ op="transpose",
2478
+ storage=t.storage,
2479
+ strides=t.strides[::-1],
2480
+ layout=layout,
2481
+ owner=False,
2482
+ )
2483
+
2484
+
2485
+ add_builtin(
2486
+ "tile_transpose",
2487
+ input_types={"a": Tile(dtype=Any, M=Any, N=Any)},
2488
+ value_func=tile_transpose_value_func,
2489
+ variadic=True,
2490
+ doc="""Transpose a tile.
2491
+
2492
+ For shared memory tiles this operation will alias the input tile, register tiles will first be transferred to shared memory before transposition.
2493
+
2494
+ :param a: Tile to transpose with ``shape=(M,N)``
2495
+ :returns: Tile with ``shape=(N,M)``""",
2496
+ group="Tile Primitives",
2497
+ export=False,
2498
+ )
2499
+
2500
+
2501
+ def tile_broadcast_value_func(arg_types, arg_values):
2502
+ # return generic type (for doc builds)
2503
+ if arg_types is None:
2504
+ return Tile
2505
+
2506
+ if len(arg_types) != 3:
2507
+ raise RuntimeError("tile_broadcast() requires 1 positional args")
2508
+
2509
+ t = arg_types["a"]
2510
+ m = arg_values["m"]
2511
+ n = arg_values["n"]
2512
+
2513
+ if not is_tile(t):
2514
+ raise RuntimeError("tile_broadcast() argument 0 must be a tile")
2515
+
2516
+ # try to broadcast last dimension
2517
+ if t.N == 1:
2518
+ stride_n = 0
2519
+ elif t.N == n:
2520
+ stride_n = t.strides[1]
2521
+ else:
2522
+ raise RuntimeError(
2523
+ f"Broadcast dimension must be 1 or match destination, shape(src) = {t.m, t.n}, shape(dest) = {m, n}"
2524
+ )
2525
+
2526
+ # try to broadcast first dimension
2527
+ if t.M == 1:
2528
+ stride_m = 0
2529
+ elif t.M == m:
2530
+ stride_m = t.strides[0]
2531
+ else:
2532
+ raise RuntimeError(
2533
+ f"Broadcast dimension must be 1 or match destination, shape(src) = {t.m, t.n}, shape(dest) = {m, n}"
2534
+ )
2535
+
2536
+ # force the input tile to shared memory
2537
+ t.storage = "shared"
2538
+
2539
+ tile_type = Tile(
2540
+ dtype=t.dtype, M=m, N=n, op="broadcast", storage=t.storage, strides=(stride_m, stride_n), owner=False
2541
+ )
2542
+ return tile_type
2543
+
2544
+
2545
+ def tile_broadcast_dispatch_func(arg_types: Mapping[str, type], return_type: Any, arg_values: Mapping[str, Var]):
2546
+ tile = arg_values["a"]
2547
+
2548
+ template_args = []
2549
+ template_args.append(return_type.M)
2550
+ template_args.append(return_type.N)
2551
+ template_args.append(return_type.strides[0])
2552
+ template_args.append(return_type.strides[1])
2553
+
2554
+ return ((tile,), template_args)
2555
+
2556
+
2557
+ add_builtin(
2558
+ "tile_broadcast",
2559
+ input_types={"a": Tile(dtype=Any, M=Any, N=Any), "m": int, "n": int},
2560
+ value_func=tile_broadcast_value_func,
2561
+ dispatch_func=tile_broadcast_dispatch_func,
2562
+ variadic=True,
2563
+ doc="""Broadcast a tile.
2564
+
2565
+ This method will attempt to broadcast the input tile ``a`` to the destination shape (m, n), broadcasting follows NumPy broadcast rules.
2566
+
2567
+ :param a: Tile to broadcast
2568
+ :returns: Tile with broadcast ``shape=(m, n)``""",
2569
+ group="Tile Primitives",
2570
+ export=False,
2571
+ )
2572
+
2573
+
2574
+ def tile_matmul_value_func(arg_types, arg_values):
2575
+ # return generic type (for doc builds)
2576
+ if arg_types is None:
2577
+ return Tile(dtype=Any, M=Any, N=Any)
2578
+
2579
+ if len(arg_types) != 3:
2580
+ raise RuntimeError("tile_matmul() requires 4 positional args")
2581
+
2582
+ if not is_tile(arg_types["a"]):
2583
+ raise RuntimeError("tile_matmul() argument 0 must be a tile")
2584
+
2585
+ if not is_tile(arg_types["b"]):
2586
+ raise RuntimeError("tile_matmul() argument 1 must be an tile")
2587
+
2588
+ if not isinstance(arg_types["out"], Tile):
2589
+ raise RuntimeError("tile_matmul() output argument must be a tile")
2590
+
2591
+ return None
2592
+
2593
+
2594
+ def tile_matmul_dispatch_func(arg_types: Mapping[str, type], return_type: Any, arg_values: Mapping[str, Var]):
2595
+ a = arg_values["a"]
2596
+ b = arg_values["b"]
2597
+ out = arg_values["out"]
2598
+
2599
+ # force the storage type of the input variables to shared memory
2600
+ a.type.storage = "shared"
2601
+ b.type.storage = "shared"
2602
+ out.type.storage = "shared"
2603
+
2604
+ template_args = []
2605
+ return ((a, b, out), template_args)
2606
+
2607
+
2608
+ add_builtin(
2609
+ "tile_matmul_scalar",
2610
+ input_types={"a": Tile, "b": Tile, "out": Tile},
2611
+ value_func=tile_matmul_value_func,
2612
+ dispatch_func=tile_matmul_dispatch_func,
2613
+ variadic=True,
2614
+ doc="Compute matrix product and accumulate out += a*b.",
2615
+ group="Tile Primitives",
2616
+ hidden=True,
2617
+ export=False,
2618
+ )
2619
+
2620
+
2621
+ def tile_sum_value_func(arg_types, arg_values):
2622
+ # return generic type (for doc builds)
2623
+ if arg_types is None:
2624
+ return Tile(dtype=Any, M=1, N=1)
2625
+
2626
+ if len(arg_types) != 1:
2627
+ raise RuntimeError("tile_sum() requires 1 positional args")
2628
+
2629
+ a = arg_types["a"]
2630
+
2631
+ if not is_tile(a):
2632
+ raise RuntimeError("tile_sum() argument 0 must be a tile")
2633
+
2634
+ return Tile(dtype=a.dtype, M=1, N=1, op="sum")
2635
+
2636
+
2637
+ add_builtin(
2638
+ "tile_sum",
2639
+ input_types={"a": Tile},
2640
+ value_func=tile_sum_value_func,
2641
+ variadic=True,
2642
+ doc="""Cooperatively compute the sum of the tile elements using all threads in the block.
2643
+
2644
+ :param a: The tile to compute the sum of
2645
+ :returns: A single-element tile with dimensions of (1,1) holding the sum
2646
+
2647
+ Example:
2648
+
2649
+ .. code-block:: python
2650
+
2651
+ @wp.kernel
2652
+ def compute():
2653
+
2654
+ t = wp.tile_ones(dtype=float, m=16, n=16)
2655
+ s = wp.tile_sum(t)
2656
+
2657
+ print(t)
2658
+
2659
+ wp.launch(compute, dim=[64], inputs=[])
2660
+
2661
+ Prints:
2662
+
2663
+ .. code-block:: text
2664
+
2665
+ tile(m=1, n=1, storage=register) = [[256]]
2666
+
2667
+ """,
2668
+ group="Tile Primitives",
2669
+ export=False,
2670
+ )
2671
+
2672
+
2673
+ def tile_min_value_func(arg_types, arg_values):
2674
+ # return generic type (for doc builds)
2675
+ if arg_types is None:
2676
+ return Tile(dtype=Any, M=1, N=1)
2677
+
2678
+ if len(arg_types) != 1:
2679
+ raise RuntimeError("tile_min() requires 1 positional args")
2680
+
2681
+ a = arg_types["a"]
2682
+
2683
+ if not is_tile(a):
2684
+ raise RuntimeError("tile_min() argument 0 must be a tile")
2685
+
2686
+ return Tile(dtype=a.dtype, M=1, N=1, op="min")
2687
+
2688
+
2689
+ add_builtin(
2690
+ "tile_min",
2691
+ input_types={"a": Tile},
2692
+ value_func=tile_min_value_func,
2693
+ variadic=True,
2694
+ doc="""Cooperatively compute the minimum of the tile elements using all threads in the block.
2695
+
2696
+ :param a: The tile to compute the minimum of
2697
+ :returns: A single-element tile with dimensions of (1,1) holding the minimum value
2698
+
2699
+ Example:
2700
+
2701
+ .. code-block:: python
2702
+
2703
+ @wp.kernel
2704
+ def compute():
2705
+
2706
+ t = wp.tile_arange(start=--10, stop=10, dtype=float)
2707
+ s = wp.tile_min(t)
2708
+
2709
+ print(t)
2710
+
2711
+ wp.launch(compute, dim=[64], inputs=[])
2712
+
2713
+ Prints:
2714
+
2715
+ .. code-block:: text
2716
+
2717
+ tile(m=1, n=1, storage=register) = [[-10]]
2718
+
2719
+ """,
2720
+ group="Tile Primitives",
2721
+ export=False,
2722
+ )
2723
+
2724
+
2725
+ def tile_max_value_func(arg_types, arg_values):
2726
+ # return generic type (for doc builds)
2727
+ if arg_types is None:
2728
+ return Tile(dtype=Any, M=1, N=1)
2729
+
2730
+ if len(arg_types) != 1:
2731
+ raise RuntimeError("tile_max() requires 1 positional args")
2732
+
2733
+ a = arg_types["a"]
2734
+
2735
+ if not is_tile(a):
2736
+ raise RuntimeError("tile_max() argument 0 must be a tile")
2737
+
2738
+ return Tile(dtype=a.dtype, M=1, N=1, op="min")
2739
+
2740
+
2741
+ add_builtin(
2742
+ "tile_max",
2743
+ input_types={"a": Tile},
2744
+ value_func=tile_max_value_func,
2745
+ variadic=True,
2746
+ doc="""Cooperatively compute the maximum of the tile elements using all threads in the block.
2747
+
2748
+ :param a: The tile to compute the maximum from
2749
+ :returns: A single-element tile with dimensions of (1,1) holding the maximum value
2750
+
2751
+ Example:
2752
+
2753
+ .. code-block:: python
2754
+
2755
+ @wp.kernel
2756
+ def compute():
2757
+
2758
+ t = wp.tile_arange(start=--10, stop=10, dtype=float)
2759
+ s = wp.tile_min(t)
2760
+
2761
+ print(t)
2762
+
2763
+ wp.launch(compute, dim=[64], inputs=[])
2764
+
2765
+ Prints:
2766
+
2767
+ .. code-block:: text
2768
+
2769
+ tile(m=1, n=1, storage=register) = [[10]]
2770
+
2771
+ """,
2772
+ group="Tile Primitives",
2773
+ export=False,
2774
+ )
2775
+
2776
+
2777
+ # does type propagation for load()
2778
+ def tile_reduce_value_func(arg_types, arg_values):
2779
+ if arg_types is None:
2780
+ return Tile(dtype=Any, M=Any, N=Any)
2781
+
2782
+ a = arg_types["a"]
2783
+
2784
+ # check all args are tiles
2785
+ if not is_tile(a):
2786
+ raise RuntimeError(f"tile_reduce() arguments must be tiles, got type {a}")
2787
+
2788
+ return Tile(dtype=a.dtype, M=1, N=1, op="reduce")
2789
+
2790
+
2791
+ def tile_reduce_dispatch_func(input_types: Mapping[str, type], return_type: Any, args: Mapping[str, Var]):
2792
+ func_args = (args["op"], *args["args"])
2793
+ template_args = ()
2794
+ return (func_args, template_args)
2795
+
2796
+
2797
+ add_builtin(
2798
+ "tile_reduce",
2799
+ input_types={"op": Callable, "a": Any},
2800
+ value_func=tile_reduce_value_func,
2801
+ native_func="tile_reduce",
2802
+ doc="""Apply a custom reduction operator across the tile.
2803
+
2804
+ This function cooperatively performs a reduction using the provided operator across the tile.
2805
+
2806
+ :param op: A callable function that accepts two arguments and returns one argument, may be a user function or builtin
2807
+ :param a: The input tile, the operator (or one of its overloads) must be able to accept the tile's dtype
2808
+ :returns: A single-element tile with ``shape=(1,1)`` with the same datatype as the input tile.
2809
+
2810
+ Example:
2811
+
2812
+ .. code-block:: python
2813
+
2814
+ @wp.kernel
2815
+ def factorial():
2816
+
2817
+ t = wp.tile_arange(1, 10, dtype=int)
2818
+ s = wp.tile_reduce(wp.mul, t)
2819
+
2820
+ print(s)
2821
+
2822
+ wp.launch(factorial, dim=[16], inputs=[], block_dim=16)
2823
+
2824
+ Prints:
2825
+
2826
+ .. code-block:: text
2827
+
2828
+ tile(m=1, n=1, storage=register) = [[362880]]
2829
+ """,
2830
+ group="Tile Primitives",
2831
+ export=False,
2832
+ )
2833
+
2834
+ # maps
2835
+
2836
+
2837
+ # does type propagation for load()
2838
+ def tile_unary_map_value_func(arg_types, arg_values):
2839
+ if arg_types is None:
2840
+ return Tile(dtype=Any, M=Any, N=Any)
2841
+
2842
+ a = arg_types["a"]
2843
+
2844
+ # check all args are tiles
2845
+ if not is_tile(a):
2846
+ raise RuntimeError(f"tile_map() arguments must be tiles, got type {a}")
2847
+
2848
+ return TileUnaryMap(a)
2849
+
2850
+
2851
+ # def tile_map_dispatch_func(input_types: Mapping[str, type], return_type: Any, args: Mapping[str, Var]):
2852
+ # func_args = (args["op"], *args["args"])
2853
+ # template_args = ()
2854
+ # return (func_args, template_args)
2855
+
2856
+
2857
+ add_builtin(
2858
+ "tile_map",
2859
+ input_types={"op": Callable, "a": Any},
2860
+ value_func=tile_unary_map_value_func,
2861
+ # dispatch_func=tile_map_dispatch_func,
2862
+ # variadic=True,
2863
+ native_func="tile_unary_map",
2864
+ doc="""Apply a unary function onto the tile.
2865
+
2866
+ This function cooperatively applies a unary function to each element of the tile using all threads in the block.
2867
+
2868
+ :param op: A callable function that accepts one argument and returns one argument, may be a user function or builtin
2869
+ :param a: The input tile, the operator (or one of its overloads) must be able to accept the tile's dtype
2870
+ :returns: A tile with the same dimensions and datatype as the input tile.
2871
+
2872
+ Example:
2873
+
2874
+ .. code-block:: python
2875
+
2876
+ @wp.kernel
2877
+ def compute():
2878
+
2879
+ t = wp.tile_arange(0.0, 1.0, 0.1, dtype=float)
2880
+ s = wp.tile_map(wp.sin, t)
2881
+
2882
+ print(s)
2883
+
2884
+ wp.launch(compute, dim=[16], inputs=[])
2885
+
2886
+ Prints:
2887
+
2888
+ .. code-block:: text
2889
+
2890
+ tile(m=1, n=10, storage=register) = [[0 0.0998334 0.198669 0.29552 ...]]
2891
+ """,
2892
+ group="Tile Primitives",
2893
+ export=False,
2894
+ )
2895
+
2896
+
2897
+ def tile_binary_map_value_func(arg_types, arg_values):
2898
+ if arg_types is None:
2899
+ return Tile(dtype=Any, M=Any, N=Any)
2900
+
2901
+ a = arg_types["a"]
2902
+ b = arg_types["b"]
2903
+
2904
+ # check all args are tiles
2905
+ if not is_tile(a):
2906
+ raise RuntimeError(f"tile_map() arguments must be tiles, got type {a}")
2907
+
2908
+ if not is_tile(b):
2909
+ raise RuntimeError(f"tile_map() arguments must be tiles, got type {b}")
2910
+
2911
+ # use first argument to define output type
2912
+ if not types_equal(a.dtype, b.dtype):
2913
+ raise RuntimeError(f"tile_map() arguments must all have the same type {a.dtype} != {b.dtype}")
2914
+
2915
+ if a.M != b.M:
2916
+ raise RuntimeError(f"tile_map() arguments must all have the same m dimension {a.M} != {b.M}")
2917
+
2918
+ if a.N != b.N:
2919
+ raise RuntimeError(f"tile_map() arguments must all have the same n dimension {a.N} != {b.N}")
2920
+
2921
+ return TileBinaryMap(a, b)
2922
+
2923
+
2924
+ add_builtin(
2925
+ "tile_map",
2926
+ input_types={"op": Callable, "a": Any, "b": Any},
2927
+ value_func=tile_binary_map_value_func,
2928
+ # dispatch_func=tile_map_dispatch_func,
2929
+ # variadic=True,
2930
+ native_func="tile_binary_map",
2931
+ doc="""Apply a binary function onto the tile.
2932
+
2933
+ This function cooperatively applies a binary function to each element of the tiles using all threads in the block.
2934
+ Both input tiles must have the same dimensions and datatype.
2935
+
2936
+ :param op: A callable function that accepts two arguments and returns one argument, all of the same type, may be a user function or builtin
2937
+ :param a: The first input tile, the operator (or one of its overloads) must be able to accept the tile's dtype
2938
+ :param b: The second input tile, the operator (or one of its overloads) must be able to accept the tile's dtype
2939
+ :returns: A tile with the same dimensions and datatype as the input tiles.
2940
+
2941
+ Example:
2942
+
2943
+ .. code-block:: python
2944
+
2945
+ @wp.kernel
2946
+ def compute():
2947
+
2948
+ a = wp.tile_arange(0.0, 1.0, 0.1, dtype=float)
2949
+ b = wp.tile_ones(m=1, n=10, dtype=float)
2950
+
2951
+ s = wp.tile_map(wp.add, a, b)
2952
+
2953
+ print(s)
2954
+
2955
+ wp.launch(compute, dim=[16], inputs=[])
2956
+
2957
+ Prints:
2958
+
2959
+ .. code-block:: text
2960
+
2961
+ tile(m=1, n=10, storage=register) = [[1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9]]""",
2962
+ group="Tile Primitives",
2963
+ export=False,
2964
+ )
2965
+
2966
+
1705
2967
  # ---------------------------------
1706
2968
  # Linear Algebra
1707
2969
 
@@ -2389,6 +3651,16 @@ add_builtin(
2389
3651
  "iter_next", input_types={"query": mesh_query_aabb_t}, value_type=int, group="Utility", export=False, hidden=True
2390
3652
  )
2391
3653
 
3654
+ add_builtin(
3655
+ "reversed",
3656
+ input_types={"range": range_t},
3657
+ value_type=range_t,
3658
+ native_func="iter_reverse",
3659
+ group="Utility",
3660
+ doc="""Returns the range in reversed order.""",
3661
+ export=False,
3662
+ )
3663
+
2392
3664
  # ---------------------------------
2393
3665
  # Volumes
2394
3666
 
@@ -2804,7 +4076,11 @@ add_builtin(
2804
4076
  doc="Return a random float between [low, high).",
2805
4077
  )
2806
4078
  add_builtin(
2807
- "randn", input_types={"state": uint32}, value_type=float, group="Random", doc="Sample a normal distribution."
4079
+ "randn",
4080
+ input_types={"state": uint32},
4081
+ value_type=float,
4082
+ group="Random",
4083
+ doc="Sample a normal (Gaussian) distribution of mean 0 and variance 1. ",
2808
4084
  )
2809
4085
 
2810
4086
  add_builtin(
@@ -2976,12 +4252,20 @@ add_builtin(
2976
4252
  )
2977
4253
 
2978
4254
 
4255
+ def printf_value_func(arg_types: Mapping[str, type], arg_values: Mapping[str, Any]):
4256
+ if arg_types is not None:
4257
+ if len(arg_types.get("args", ())) > 32:
4258
+ raise RuntimeError("the maximum number of variadic arguments that can be passed to `printf` is 32")
4259
+
4260
+ return None
4261
+
4262
+
2979
4263
  def printf_dispatch_func(input_types: Mapping[str, type], return_type: Any, args: Mapping[str, Var]):
2980
4264
  # We're in the codegen stage where we emit the code calling the built-in.
2981
4265
  # Further validate the given argument values if needed and map them
2982
4266
  # to the underlying C++ function's runtime and template params.
2983
4267
 
2984
- func_args = (args["fmt"], *args["args"])
4268
+ func_args = (args["fmt"], *args.get("args", ()))
2985
4269
  template_args = ()
2986
4270
  return (func_args, template_args)
2987
4271
 
@@ -2992,6 +4276,7 @@ add_builtin(
2992
4276
  input_types={"fmt": str, "*args": Any},
2993
4277
  namespace="",
2994
4278
  variadic=True,
4279
+ value_func=printf_value_func,
2995
4280
  dispatch_func=printf_dispatch_func,
2996
4281
  group="Utility",
2997
4282
  doc="Allows printing formatted strings using C-style format specifiers.",
@@ -3775,6 +5060,15 @@ for t in scalar_types + vector_types + (bool,):
3775
5060
  hidden=True,
3776
5061
  )
3777
5062
 
5063
+ add_builtin(
5064
+ "expect_neq",
5065
+ input_types={"a": t, "b": t},
5066
+ value_type=None,
5067
+ doc="Prints an error to stdout if ``a`` and ``b`` are not equal",
5068
+ group="Utility",
5069
+ hidden=True,
5070
+ )
5071
+
3778
5072
 
3779
5073
  def expect_eq_value_func(arg_types: Mapping[str, type], arg_values: Mapping[str, Any]):
3780
5074
  if not types_equal(arg_types["a"], arg_types["b"]):
@@ -4315,6 +5609,493 @@ for t in int_types:
4315
5609
 
4316
5610
  add_builtin("unot", input_types={"a": array(dtype=Any)}, value_type=builtins.bool, doc="", group="Operators")
4317
5611
 
5612
+
5613
+ # Tile operators
5614
+ def tile_unary_value_func(arg_types, arg_values):
5615
+ if arg_types is None:
5616
+ return Tile(dtype=Any, M=Any, N=Any)
5617
+
5618
+ t = arg_types["x"]
5619
+
5620
+ if not is_tile(t):
5621
+ raise RuntimeError("Expected tile for unary expression")
5622
+
5623
+ return TileUnaryMap(t)
5624
+
5625
+
5626
+ def tile_scalar_mul_value_func(arg_types, arg_values):
5627
+ if arg_types is None:
5628
+ return Tile(dtype=Any, M=Any, N=Any)
5629
+
5630
+ x = arg_types["x"]
5631
+ y = arg_types["y"]
5632
+
5633
+ # tile*scalar
5634
+ if is_tile(x):
5635
+ if x.dtype != y:
5636
+ raise RuntimeError(
5637
+ "Scalar factor should have the same type as tile for tile*scalar, tile type: {x} scalar type: {y}"
5638
+ )
5639
+
5640
+ return TileBinaryMap(x, TileConstant(y, x.M, x.N))
5641
+
5642
+ # scalar*tile
5643
+ if is_tile(y):
5644
+ if y.dtype != x:
5645
+ raise RuntimeError(
5646
+ "Scalar factor should have the same type as tile for scalar*tile, tile type: {x} scalar type: {y}"
5647
+ )
5648
+
5649
+ return TileBinaryMap(TileConstant(x, y.M, y.N), y)
5650
+
5651
+
5652
+ add_builtin(
5653
+ "neg",
5654
+ input_types={"x": Tile(dtype=Any, M=Any, N=Any)},
5655
+ value_func=tile_unary_value_func,
5656
+ doc="Negate each element of a tile",
5657
+ export=False,
5658
+ native_func="tile_neg",
5659
+ group="Operators",
5660
+ )
5661
+
5662
+ add_builtin(
5663
+ "add",
5664
+ input_types={"a": Tile(dtype=Any, M=Any, N=Any), "b": Tile(dtype=Any, M=Any, N=Any)},
5665
+ value_func=tile_binary_map_value_func,
5666
+ # dispatch_func=tile_map_dispatch_func,
5667
+ # variadic=True,
5668
+ native_func="tile_add",
5669
+ doc="Add each element of two tiles together",
5670
+ group="Tile Primitives",
5671
+ export=False,
5672
+ )
5673
+
5674
+ add_builtin(
5675
+ "mul",
5676
+ input_types={"x": Tile(dtype=Any, M=Any, N=Any), "y": Scalar},
5677
+ value_func=tile_scalar_mul_value_func,
5678
+ doc="Multiply each element of a tile by a scalar",
5679
+ export=False,
5680
+ native_func="tile_mul",
5681
+ group="Operators",
5682
+ )
5683
+
5684
+ add_builtin(
5685
+ "mul",
5686
+ input_types={"x": Scalar, "y": Tile(dtype=Any, M=Any, N=Any)},
5687
+ value_func=tile_scalar_mul_value_func,
5688
+ doc="Multiply each element of a tile by a scalar",
5689
+ export=False,
5690
+ native_func="tile_mul",
5691
+ group="Operators",
5692
+ )
5693
+
5694
+
5695
+ ##
5696
+ ## MathDx, LTOIR-based, Tile functions
5697
+ ##
5698
+
5699
+
5700
+ ##
5701
+ ## Matmul
5702
+ ##
5703
+ def tile_matmul_generic_value_func(arg_types, arg_values):
5704
+ # return generic type (for doc builds)
5705
+ if arg_types is None:
5706
+ return Tile(dtype=Any, M=Any, N=Any)
5707
+
5708
+ a = arg_types["a"]
5709
+ b = arg_types["b"]
5710
+
5711
+ if not is_tile(a):
5712
+ raise RuntimeError("tile_matmul() argument 0 must be a tile")
5713
+ if not is_tile(b):
5714
+ raise RuntimeError("tile_matmul() argument 1 must be an tile")
5715
+
5716
+ # out = wp.tile_matmul(a, b)
5717
+ if len(arg_types) == 2:
5718
+ return Tile(dtype=a.dtype, M=a.M, N=b.N, storage="shared")
5719
+
5720
+ # wp.tile_matmul(a, b, out)
5721
+ elif len(arg_types) == 3:
5722
+ if not is_tile(arg_types["out"]):
5723
+ raise RuntimeError("tile_matmul() output argument must be a tile")
5724
+
5725
+ return None
5726
+
5727
+
5728
+ def tile_matmul_generic_lto_dispatch_func(
5729
+ arg_types: Mapping[str, type],
5730
+ return_type: Any,
5731
+ return_values: List[Var],
5732
+ arg_values: Mapping[str, Var],
5733
+ options: Mapping[str, Any],
5734
+ builder: warp.context.ModuleBuilder,
5735
+ ):
5736
+ a = arg_values["a"]
5737
+ b = arg_values["b"]
5738
+
5739
+ if len(return_values) > 0:
5740
+ accumulate = 0 # for c = tile_matmul(a,b) case we want to overwrite c value
5741
+ out = return_values[0]
5742
+ else:
5743
+ accumulate = 1 # for tile_matmul(a,b,c) case we want to add to c value
5744
+ out = arg_values["out"]
5745
+
5746
+ if any(not is_tile(arg.type) for arg in [a, b, out]):
5747
+ raise RuntimeError("tile_matmul() requires three Tile arguments")
5748
+
5749
+ if any(arg.type.dtype not in [float16, float32, float64, vec2h, vec2f, vec2d] for arg in [a, b, out]):
5750
+ raise RuntimeError(
5751
+ "tile_matmul() arguments must be tiles of float16, float32 or float64, vec2h, vec2f, vec2d entries"
5752
+ )
5753
+
5754
+ if (a.type.N != b.type.M) or (a.type.M != out.type.M) or (b.type.N != out.type.N):
5755
+ raise RuntimeError("tile_matmul(A, B, C) requires sizes of A, B and C to be consistent for a matmul")
5756
+
5757
+ # set the storage type to the inputs to shared
5758
+ a.type.storage = "shared"
5759
+ b.type.storage = "shared"
5760
+ out.type.storage = "shared"
5761
+ template_args = [accumulate]
5762
+
5763
+ # Maps Python/Warp types to C++ types and enums
5764
+ def cublasdx_type_map(dtype):
5765
+ if dtype == float16:
5766
+ return ("wp::float16", 3, 0)
5767
+ if dtype == float32:
5768
+ return ("wp::float32", 5, 0)
5769
+ if dtype == float64:
5770
+ return ("wp::float64", 6, 0)
5771
+ if dtype == vec2h:
5772
+ return ("wp::vec2h", 3, 1)
5773
+ if dtype == vec2f:
5774
+ return ("wp::vec2f", 5, 1)
5775
+ if dtype == vec2d:
5776
+ return ("wp::vec2d", 6, 1)
5777
+ raise RuntimeError("Unsupported input type in tile_matmul")
5778
+
5779
+ def cublasdx_arrangement_map(layout):
5780
+ if layout == "colmajor":
5781
+ return 0 # CUBLASDX_ARRANGEMENT_COL_MAJOR
5782
+ if layout == "rowmajor":
5783
+ return 1 # CUBLASDX_ARRANGEMENT_ROW_MAJOR
5784
+ raise RuntimeError("Unsupported layout in tile_matmul")
5785
+
5786
+ # generate the LTO
5787
+ M, K = a.type.M, a.type.N
5788
+ _, N = b.type.M, b.type.N
5789
+ num_threads = options["block_dim"]
5790
+ arch = options["output_arch"]
5791
+
5792
+ def make_function(M, N, K, adtype, bdtype, cdtype, alayout, blayout, clayout):
5793
+ (a_dtype, a_prec, a_type) = cublasdx_type_map(adtype)
5794
+ (b_dtype, b_prec, b_type) = cublasdx_type_map(bdtype)
5795
+ (c_dtype, c_prec, c_type) = cublasdx_type_map(cdtype)
5796
+ a_arrangement = cublasdx_arrangement_map(alayout)
5797
+ b_arrangement = cublasdx_arrangement_map(blayout)
5798
+ c_arrangement = cublasdx_arrangement_map(clayout)
5799
+
5800
+ if a_type != b_type or a_type != c_type:
5801
+ raise RuntimeError("time_matmul(A, B, C) requires all inputs to be real or complex")
5802
+ element_type = a_type
5803
+
5804
+ lto_symbol = f"dot_{M}_{N}_{K}_{arch}_{num_threads}_{a_arrangement}_{b_arrangement}_{c_arrangement}_{a_prec}_{b_prec}_{c_prec}_{element_type}"
5805
+
5806
+ # early out if LTO for this combination already exists for this module
5807
+ if lto_symbol in builder.ltoirs:
5808
+ return lto_symbol, builder.ltoirs[lto_symbol]
5809
+
5810
+ # otherwise compile LTO
5811
+ lto_code = tempfile.NamedTemporaryFile(prefix="warp", delete=False)
5812
+ result = warp.context.runtime.core.cuda_compile_dot(
5813
+ lto_code.name.encode("utf-8"),
5814
+ lto_symbol.encode("utf-8"),
5815
+ 0,
5816
+ None,
5817
+ None,
5818
+ arch,
5819
+ M,
5820
+ N,
5821
+ K,
5822
+ a_prec,
5823
+ b_prec,
5824
+ c_prec,
5825
+ element_type,
5826
+ a_arrangement,
5827
+ b_arrangement,
5828
+ c_arrangement,
5829
+ num_threads,
5830
+ )
5831
+ lto_code_path = Path(lto_code.name)
5832
+ if not result:
5833
+ lto_code.close()
5834
+ if lto_code_path.exists():
5835
+ lto_code_path.unlink()
5836
+ raise RuntimeError("Failed to compile tile_matmul")
5837
+ else:
5838
+ with open(lto_code.name, "rb") as f:
5839
+ lto_code_data = f.read()
5840
+ lto_code.close()
5841
+ lto_code_path.unlink()
5842
+
5843
+ builder.ltoirs[lto_symbol] = lto_code_data
5844
+ builder.ltoirs_decl[lto_symbol] = (
5845
+ f"void {lto_symbol}({c_dtype}, {a_dtype}*, {b_dtype}*, {c_dtype}, {c_dtype}*);"
5846
+ )
5847
+
5848
+ return lto_symbol, lto_code_data
5849
+
5850
+ def tile_flip_layout(layout):
5851
+ if layout == "rowmajor":
5852
+ return "colmajor"
5853
+ elif layout == "colmajor":
5854
+ return "rowmajor"
5855
+
5856
+ # C += A * B
5857
+ (fun_forward, lto_forward) = make_function(
5858
+ M, N, K, a.type.dtype, b.type.dtype, out.type.dtype, a.type.layout, b.type.layout, out.type.layout
5859
+ )
5860
+ # adjA += adjC * B^T - Transpose ~= flipped layout
5861
+ (fun_backward_A, lto_backward_A) = make_function(
5862
+ M,
5863
+ K,
5864
+ N,
5865
+ out.type.dtype,
5866
+ b.type.dtype,
5867
+ a.type.dtype,
5868
+ out.type.layout,
5869
+ tile_flip_layout(b.type.layout),
5870
+ a.type.layout,
5871
+ )
5872
+ # adjB += A^T * adjC - Transpose ~= flipped layout
5873
+ (fun_backward_B, lto_backward_B) = make_function(
5874
+ K,
5875
+ N,
5876
+ M,
5877
+ a.type.dtype,
5878
+ out.type.dtype,
5879
+ b.type.dtype,
5880
+ tile_flip_layout(a.type.layout),
5881
+ out.type.layout,
5882
+ b.type.layout,
5883
+ )
5884
+
5885
+ return (
5886
+ (
5887
+ Var(fun_forward, str, False, True, False),
5888
+ Var(fun_backward_A, str, False, True, False),
5889
+ Var(fun_backward_B, str, False, True, False),
5890
+ a,
5891
+ b,
5892
+ out,
5893
+ ),
5894
+ template_args,
5895
+ [lto_forward, lto_backward_A, lto_backward_B],
5896
+ )
5897
+
5898
+
5899
+ add_builtin(
5900
+ "tile_matmul",
5901
+ input_types={
5902
+ "a": Tile(dtype=Any, M=Any, N=Any),
5903
+ "b": Tile(dtype=Any, M=Any, N=Any),
5904
+ "out": Tile(dtype=Any, M=Any, N=Any),
5905
+ },
5906
+ value_func=tile_matmul_generic_value_func,
5907
+ lto_dispatch_func=tile_matmul_generic_lto_dispatch_func,
5908
+ variadic=False,
5909
+ doc="""Computes the matrix product and accumulates ``out += a*b``.
5910
+
5911
+ Supported datatypes are:
5912
+ * fp16, fp32, fp64 (real)
5913
+ * vec2h, vec2f, vec2d (complex)
5914
+
5915
+ All input and output tiles must have the same datatype. Tile data will be automatically be migrated
5916
+ to shared memory if necessary and will use TensorCore operations when available.
5917
+
5918
+ :param a: A tile with ``shape=(M, K)``
5919
+ :param b: A tile with ``shape=(K, N)``
5920
+ :param out: A tile with ``shape=(M, N)``
5921
+ """,
5922
+ group="Tile Primitives",
5923
+ export=False,
5924
+ )
5925
+
5926
+ add_builtin(
5927
+ "tile_matmul",
5928
+ input_types={"a": Tile(dtype=Any, M=Any, N=Any), "b": Tile(dtype=Any, M=Any, N=Any)},
5929
+ value_func=tile_matmul_generic_value_func,
5930
+ lto_dispatch_func=tile_matmul_generic_lto_dispatch_func,
5931
+ variadic=False,
5932
+ doc="""Computes the matrix product ``out = a*b``.
5933
+
5934
+ Supported datatypes are:
5935
+ * fp16, fp32, fp64 (real)
5936
+ * vec2h, vec2f, vec2d (complex)
5937
+
5938
+ Both input tiles must have the same datatype. Tile data will be automatically be migrated
5939
+ to shared memory if necessary and will use TensorCore operations when available.
5940
+
5941
+ :param a: A tile with ``shape=(M, K)``
5942
+ :param b: A tile with ``shape=(K, N)``
5943
+ :returns: A tile with ``shape=(M, N)``
5944
+ """,
5945
+ group="Tile Primitives",
5946
+ export=False,
5947
+ )
5948
+
5949
+
5950
+ ##
5951
+ ## FFT
5952
+ ##
5953
+ def tile_fft_generic_value_func(arg_types, arg_values):
5954
+ if arg_types is None:
5955
+ return Tile(dtype=Any, M=Any, N=Any)
5956
+
5957
+ if len(arg_types) != 1:
5958
+ raise RuntimeError("tile_fft() requires 1 positional args")
5959
+
5960
+ if not is_tile(arg_types["inout"]):
5961
+ raise RuntimeError("tile_fft() argument 0 must be a tile")
5962
+
5963
+ if arg_types["inout"].storage != "register":
5964
+ raise RuntimeError("tile_fft() input/output argument must have register memory storage")
5965
+
5966
+ return None
5967
+
5968
+
5969
+ def tile_fft_generic_lto_dispatch_func(
5970
+ arg_types: Mapping[str, type],
5971
+ return_type: Any,
5972
+ return_values: List[Var],
5973
+ arg_values: Mapping[str, Var],
5974
+ options: Mapping[str, Any],
5975
+ builder: warp.context.ModuleBuilder,
5976
+ direction: str = None,
5977
+ ):
5978
+ inout = arg_values["inout"]
5979
+ inout.type.storage = "register"
5980
+
5981
+ if not is_tile(inout.type):
5982
+ raise RuntimeError("tile_fft() arguments must be a single tile with register storage")
5983
+
5984
+ if inout.type.dtype not in [vec2f, vec2d]:
5985
+ raise RuntimeError("tile_fft() argument must be a tile of vec2f or vec2d (interpreted as complex) entries")
5986
+
5987
+ # see libcufftdx.hpp
5988
+ if direction == "forward":
5989
+ dir = 0 # CUFFTDX_DIRECTION_FORWARD
5990
+ elif direction == "inverse":
5991
+ dir = 1 # CUFFTDX_DIRECTION_INVERSE
5992
+ else:
5993
+ raise RuntimeError("Invalid direction")
5994
+
5995
+ if inout.type.dtype == vec2f:
5996
+ dtype = "wp::vec2f"
5997
+ precision = 5 # COMMONDX_PRECISION_F32
5998
+ elif inout.type.dtype == vec2d:
5999
+ dtype = "wp::vec2d"
6000
+ precision = 6 # COMMONDX_PRECISION_F64
6001
+ else:
6002
+ raise RuntimeError("Unsupported datatype")
6003
+
6004
+ # M FFTs of size N each
6005
+ batch, size = inout.type.M, inout.type.N
6006
+ num_threads = options["block_dim"]
6007
+ arch = options["output_arch"]
6008
+ ept = size // num_threads
6009
+ lto_symbol = f"fft_{size}_{ept}_{arch}_{direction}_{precision}"
6010
+
6011
+ # early out if LTO for this combination already exists for this module
6012
+ if lto_symbol in builder.ltoirs:
6013
+ return lto_symbol, builder.ltoirs[lto_symbol]
6014
+
6015
+ # otherwise compile LTO
6016
+ lto_code = tempfile.NamedTemporaryFile(prefix="warp", delete=False)
6017
+ shared_memory_size = ctypes.c_int(0)
6018
+
6019
+ result = warp.context.runtime.core.cuda_compile_fft(
6020
+ lto_code.name.encode("utf-8"),
6021
+ lto_symbol.encode("utf-8"),
6022
+ 0,
6023
+ None,
6024
+ None,
6025
+ arch,
6026
+ size,
6027
+ ept,
6028
+ dir,
6029
+ precision,
6030
+ ctypes.byref(shared_memory_size),
6031
+ )
6032
+ lto_code_path = Path(lto_code.name)
6033
+ if not result:
6034
+ lto_code.close()
6035
+ if lto_code_path.exists():
6036
+ lto_code_path.unlink()
6037
+ raise RuntimeError("Failed to compile tile_matmul")
6038
+
6039
+ with open(lto_code.name, "rb") as f:
6040
+ lto_code_data = f.read()
6041
+
6042
+ lto_code.close()
6043
+ lto_code_path.unlink()
6044
+
6045
+ builder.ltoirs[lto_symbol] = lto_code_data
6046
+
6047
+ return (
6048
+ (
6049
+ Var(lto_symbol, str, False, True, False),
6050
+ Var(dtype, str, False, True, False),
6051
+ Var(str(shared_memory_size.value), str, False, True, False),
6052
+ Var(str(batch), str, False, True, False),
6053
+ Var(str(ept), str, False, True, False),
6054
+ inout,
6055
+ ),
6056
+ [],
6057
+ [lto_code_data],
6058
+ )
6059
+
6060
+
6061
+ add_builtin(
6062
+ "tile_fft",
6063
+ input_types={"inout": Tile},
6064
+ value_func=tile_fft_generic_value_func,
6065
+ lto_dispatch_func=functools.partial(tile_fft_generic_lto_dispatch_func, direction="forward"),
6066
+ variadic=True,
6067
+ doc="""Compute the forward FFT along the second dimension of a 2D tile of data.
6068
+
6069
+ This function cooperatively computes the forward FFT on a tile of data inplace, treating each row individually.
6070
+
6071
+ Supported datatypes are:
6072
+ * vec2f, vec2d
6073
+
6074
+ :param inout: The input/output tile""",
6075
+ group="Tile Primitives",
6076
+ export=False,
6077
+ namespace="",
6078
+ )
6079
+
6080
+ add_builtin(
6081
+ "tile_ifft",
6082
+ input_types={"inout": Tile},
6083
+ value_func=tile_fft_generic_value_func,
6084
+ lto_dispatch_func=functools.partial(tile_fft_generic_lto_dispatch_func, direction="inverse"),
6085
+ variadic=True,
6086
+ doc="""Compute the inverse FFT along the second dimension of a 2D tile of data.
6087
+
6088
+ This function cooperatively computes the inverse FFT on a tile of data inplace, treating each row individually.
6089
+
6090
+ Supported datatypes are:
6091
+ * vec2f, vec2d
6092
+
6093
+ :param inout: The input/output tile""",
6094
+ group="Tile Primitives",
6095
+ export=False,
6096
+ namespace="",
6097
+ )
6098
+
4318
6099
  # ---------------------------------
4319
6100
  # Code Generation
4320
6101