warp-lang 1.3.3__py3-none-macosx_10_13_universal2.whl → 1.4.0__py3-none-macosx_10_13_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +6 -0
- warp/autograd.py +59 -6
- warp/bin/libwarp-clang.dylib +0 -0
- warp/bin/libwarp.dylib +0 -0
- warp/build_dll.py +8 -10
- warp/builtins.py +126 -4
- warp/codegen.py +435 -53
- warp/config.py +1 -1
- warp/context.py +678 -403
- warp/dlpack.py +2 -0
- warp/examples/benchmarks/benchmark_cloth.py +10 -0
- warp/examples/core/example_render_opengl.py +12 -10
- warp/examples/fem/example_adaptive_grid.py +251 -0
- warp/examples/fem/example_apic_fluid.py +1 -1
- warp/examples/fem/example_diffusion_3d.py +2 -2
- warp/examples/fem/example_magnetostatics.py +1 -1
- warp/examples/fem/example_streamlines.py +1 -0
- warp/examples/fem/utils.py +23 -4
- warp/examples/sim/example_cloth.py +50 -6
- warp/fem/__init__.py +2 -0
- warp/fem/adaptivity.py +493 -0
- warp/fem/field/field.py +2 -1
- warp/fem/field/nodal_field.py +18 -26
- warp/fem/field/test.py +4 -4
- warp/fem/field/trial.py +4 -4
- warp/fem/geometry/__init__.py +1 -0
- warp/fem/geometry/adaptive_nanogrid.py +843 -0
- warp/fem/geometry/nanogrid.py +55 -28
- warp/fem/space/__init__.py +1 -1
- warp/fem/space/nanogrid_function_space.py +69 -35
- warp/fem/utils.py +113 -107
- warp/jax_experimental.py +28 -15
- warp/native/array.h +0 -1
- warp/native/builtin.h +103 -6
- warp/native/bvh.cu +2 -0
- warp/native/cuda_util.cpp +14 -0
- warp/native/cuda_util.h +2 -0
- warp/native/error.cpp +4 -2
- warp/native/exports.h +99 -17
- warp/native/mat.h +97 -0
- warp/native/mesh.cpp +36 -0
- warp/native/mesh.cu +51 -0
- warp/native/mesh.h +1 -0
- warp/native/quat.h +43 -0
- warp/native/spatial.h +6 -0
- warp/native/vec.h +74 -0
- warp/native/warp.cpp +2 -1
- warp/native/warp.cu +10 -3
- warp/native/warp.h +8 -1
- warp/paddle.py +382 -0
- warp/sim/__init__.py +1 -0
- warp/sim/collide.py +519 -0
- warp/sim/integrator_euler.py +18 -5
- warp/sim/integrator_featherstone.py +5 -5
- warp/sim/integrator_vbd.py +1026 -0
- warp/sim/model.py +49 -23
- warp/stubs.py +459 -0
- warp/tape.py +2 -0
- warp/tests/aux_test_dependent.py +1 -0
- warp/tests/aux_test_name_clash1.py +32 -0
- warp/tests/aux_test_name_clash2.py +32 -0
- warp/tests/aux_test_square.py +1 -0
- warp/tests/test_array.py +188 -0
- warp/tests/test_async.py +3 -3
- warp/tests/test_atomic.py +6 -0
- warp/tests/test_closest_point_edge_edge.py +93 -1
- warp/tests/test_codegen.py +62 -15
- warp/tests/test_codegen_instancing.py +1457 -0
- warp/tests/test_collision.py +486 -0
- warp/tests/test_compile_consts.py +3 -28
- warp/tests/test_dlpack.py +170 -0
- warp/tests/test_examples.py +22 -8
- warp/tests/test_fast_math.py +10 -4
- warp/tests/test_fem.py +64 -0
- warp/tests/test_func.py +46 -0
- warp/tests/test_implicit_init.py +49 -0
- warp/tests/test_jax.py +58 -0
- warp/tests/test_mat.py +84 -0
- warp/tests/test_mesh_query_point.py +188 -0
- warp/tests/test_module_hashing.py +40 -0
- warp/tests/test_multigpu.py +3 -3
- warp/tests/test_overwrite.py +8 -0
- warp/tests/test_paddle.py +852 -0
- warp/tests/test_print.py +89 -0
- warp/tests/test_quat.py +111 -0
- warp/tests/test_reload.py +31 -1
- warp/tests/test_scalar_ops.py +2 -0
- warp/tests/test_static.py +412 -0
- warp/tests/test_streams.py +64 -3
- warp/tests/test_struct.py +4 -4
- warp/tests/test_torch.py +24 -0
- warp/tests/test_triangle_closest_point.py +137 -0
- warp/tests/test_types.py +1 -1
- warp/tests/test_vbd.py +386 -0
- warp/tests/test_vec.py +143 -0
- warp/tests/test_vec_scalar_ops.py +139 -0
- warp/tests/unittest_suites.py +12 -0
- warp/tests/unittest_utils.py +9 -5
- warp/thirdparty/dlpack.py +3 -1
- warp/types.py +150 -28
- warp/utils.py +37 -14
- {warp_lang-1.3.3.dist-info → warp_lang-1.4.0.dist-info}/METADATA +10 -8
- {warp_lang-1.3.3.dist-info → warp_lang-1.4.0.dist-info}/RECORD +106 -94
- warp/tests/test_point_triangle_closest_point.py +0 -143
- {warp_lang-1.3.3.dist-info → warp_lang-1.4.0.dist-info}/LICENSE.md +0 -0
- {warp_lang-1.3.3.dist-info → warp_lang-1.4.0.dist-info}/WHEEL +0 -0
- {warp_lang-1.3.3.dist-info → warp_lang-1.4.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,137 @@
|
|
|
1
|
+
# Copyright (c) 2024 NVIDIA CORPORATION. All rights reserved.
|
|
2
|
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
|
3
|
+
# and proprietary rights in and to this software, related documentation
|
|
4
|
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
|
5
|
+
# distribution of this software and related documentation without an express
|
|
6
|
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
7
|
+
|
|
8
|
+
import unittest
|
|
9
|
+
|
|
10
|
+
from warp.sim.collide import triangle_closest_point_barycentric
|
|
11
|
+
from warp.tests.unittest_utils import *
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
# a-b is the edge where the closest point is located at
|
|
15
|
+
@wp.func
|
|
16
|
+
def check_edge_feasible_region(p: wp.vec3, a: wp.vec3, b: wp.vec3, c: wp.vec3, eps: float):
|
|
17
|
+
ap = p - a
|
|
18
|
+
bp = p - b
|
|
19
|
+
ab = b - a
|
|
20
|
+
|
|
21
|
+
if wp.dot(ap, ab) < -eps:
|
|
22
|
+
return False
|
|
23
|
+
|
|
24
|
+
if wp.dot(bp, ab) > eps:
|
|
25
|
+
return False
|
|
26
|
+
|
|
27
|
+
ab_sqr_norm = wp.dot(ab, ab)
|
|
28
|
+
if ab_sqr_norm < eps:
|
|
29
|
+
return False
|
|
30
|
+
|
|
31
|
+
t = wp.dot(ab, c - a) / ab_sqr_norm
|
|
32
|
+
|
|
33
|
+
perpendicular_foot = a + t * ab
|
|
34
|
+
|
|
35
|
+
if wp.dot(c - perpendicular_foot, p - perpendicular_foot) > eps:
|
|
36
|
+
return False
|
|
37
|
+
|
|
38
|
+
return True
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
# closest point is a
|
|
42
|
+
@wp.func
|
|
43
|
+
def check_vertex_feasible_region(p: wp.vec3, a: wp.vec3, b: wp.vec3, c: wp.vec3, eps: float):
|
|
44
|
+
ap = p - a
|
|
45
|
+
ba = a - b
|
|
46
|
+
ca = a - c
|
|
47
|
+
|
|
48
|
+
if wp.dot(ap, ba) < -eps:
|
|
49
|
+
return False
|
|
50
|
+
|
|
51
|
+
if wp.dot(p, ca) < -eps:
|
|
52
|
+
return False
|
|
53
|
+
|
|
54
|
+
return True
|
|
55
|
+
|
|
56
|
+
|
|
57
|
+
@wp.kernel
|
|
58
|
+
def test_triangle_closest_point_kernel(tri: wp.array(dtype=wp.vec3), passed: wp.array(dtype=wp.bool)):
|
|
59
|
+
state = wp.uint32(wp.rand_init(wp.int32(123), wp.int32(0)))
|
|
60
|
+
eps = 1e-5
|
|
61
|
+
|
|
62
|
+
a = tri[0]
|
|
63
|
+
b = tri[1]
|
|
64
|
+
c = tri[2]
|
|
65
|
+
|
|
66
|
+
for _i in range(1000):
|
|
67
|
+
l = wp.float32(0.0)
|
|
68
|
+
while l < eps:
|
|
69
|
+
p = wp.vec3(wp.randn(state), wp.randn(state), wp.randn(state))
|
|
70
|
+
l = wp.length(p)
|
|
71
|
+
|
|
72
|
+
# project to a sphere with r=2
|
|
73
|
+
p = 2.0 * p / l
|
|
74
|
+
|
|
75
|
+
bary = triangle_closest_point_barycentric(tri[0], tri[1], tri[2], p)
|
|
76
|
+
|
|
77
|
+
for dim in range(3):
|
|
78
|
+
v1_index = (dim + 1) % 3
|
|
79
|
+
v2_index = (dim + 2) % 3
|
|
80
|
+
v1 = tri[v1_index]
|
|
81
|
+
v2 = tri[v2_index]
|
|
82
|
+
v3 = tri[dim]
|
|
83
|
+
|
|
84
|
+
# on edge
|
|
85
|
+
if bary[dim] == 0.0 and bary[v1_index] != 0.0 and bary[v2_index] != 0.0:
|
|
86
|
+
if not check_edge_feasible_region(p, v1, v2, v3, eps):
|
|
87
|
+
passed[0] = False
|
|
88
|
+
return
|
|
89
|
+
|
|
90
|
+
# p-closest_p must be perpendicular to v1-v2
|
|
91
|
+
closest_p = a * bary[0] + b * bary[1] + c * bary[2]
|
|
92
|
+
e = v1 - v2
|
|
93
|
+
err = wp.dot(e, closest_p - p)
|
|
94
|
+
if wp.abs(err) > eps:
|
|
95
|
+
passed[0] = False
|
|
96
|
+
return
|
|
97
|
+
|
|
98
|
+
if bary[v1_index] == 0.0 and bary[v2_index] == 0.0:
|
|
99
|
+
if not check_vertex_feasible_region(p, v3, v1, v2, eps):
|
|
100
|
+
passed[0] = False
|
|
101
|
+
return
|
|
102
|
+
|
|
103
|
+
if bary[dim] != 0.0 and bary[v1_index] != 0.0 and bary[v2_index] != 0.0:
|
|
104
|
+
closest_p = a * bary[0] + b * bary[1] + c * bary[2]
|
|
105
|
+
e1 = v1 - v2
|
|
106
|
+
e2 = v1 - v3
|
|
107
|
+
if wp.abs(wp.dot(e1, closest_p - p)) > eps or wp.abs(wp.dot(e2, closest_p - p)) > eps:
|
|
108
|
+
passed[0] = False
|
|
109
|
+
return
|
|
110
|
+
|
|
111
|
+
|
|
112
|
+
def test_triangle_closest_point(test, device):
|
|
113
|
+
passed = wp.array([True], dtype=wp.bool, device=device)
|
|
114
|
+
|
|
115
|
+
a = wp.vec3(1.0, 0.0, 0.0)
|
|
116
|
+
b = wp.vec3(0.0, 0.0, 0.0)
|
|
117
|
+
c = wp.vec3(0.0, 1.0, 0.0)
|
|
118
|
+
|
|
119
|
+
tri = wp.array([a, b, c], dtype=wp.vec3, device=device)
|
|
120
|
+
wp.launch(test_triangle_closest_point_kernel, dim=1, inputs=[tri, passed], device=device)
|
|
121
|
+
passed = passed.numpy()
|
|
122
|
+
|
|
123
|
+
test.assertTrue(passed.all())
|
|
124
|
+
|
|
125
|
+
|
|
126
|
+
devices = get_test_devices()
|
|
127
|
+
|
|
128
|
+
|
|
129
|
+
class TestTriangleClosestPoint(unittest.TestCase):
|
|
130
|
+
pass
|
|
131
|
+
|
|
132
|
+
|
|
133
|
+
add_function_test(TestTriangleClosestPoint, "test_triangle_closest_point", test_triangle_closest_point, devices=devices)
|
|
134
|
+
|
|
135
|
+
if __name__ == "__main__":
|
|
136
|
+
wp.clear_kernel_cache()
|
|
137
|
+
unittest.main(verbosity=2)
|
warp/tests/test_types.py
CHANGED
|
@@ -215,7 +215,7 @@ class TestTypes(unittest.TestCase):
|
|
|
215
215
|
self.assertEqual(const, wp.vec3i(1, 2, 3))
|
|
216
216
|
|
|
217
217
|
def test_constant_error_invalid_type(self):
|
|
218
|
-
with self.assertRaisesRegex(
|
|
218
|
+
with self.assertRaisesRegex(TypeError, r"Invalid constant type: <class 'tuple'>$"):
|
|
219
219
|
wp.constant((1, 2, 3))
|
|
220
220
|
|
|
221
221
|
def test_vector_assign(self):
|
warp/tests/test_vbd.py
ADDED
|
@@ -0,0 +1,386 @@
|
|
|
1
|
+
# Copyright (c) 2024 NVIDIA CORPORATION. All rights reserved.
|
|
2
|
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
|
3
|
+
# and proprietary rights in and to this software, related documentation
|
|
4
|
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
|
5
|
+
# distribution of this software and related documentation without an express
|
|
6
|
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
7
|
+
|
|
8
|
+
import unittest
|
|
9
|
+
|
|
10
|
+
import warp as wp
|
|
11
|
+
import warp.optim
|
|
12
|
+
import warp.sim
|
|
13
|
+
from warp.sim.model import (
|
|
14
|
+
PARTICLE_FLAG_ACTIVE,
|
|
15
|
+
)
|
|
16
|
+
from warp.tests.unittest_utils import *
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class VBDClothSim:
|
|
20
|
+
def __init__(self, device):
|
|
21
|
+
# fmt: off
|
|
22
|
+
self.pts = [
|
|
23
|
+
(-50.0000000, 0.0000000, -50.0000000),
|
|
24
|
+
(-38.8888893, 11.1111107, -50.0000000),
|
|
25
|
+
(-27.7777786, 22.2222214, -50.0000000),
|
|
26
|
+
(-16.6666679, 33.3333321, -50.0000000),
|
|
27
|
+
(-5.5555558, 44.4444427, -50.0000000),
|
|
28
|
+
(5.5555558, 55.5555573, -50.0000000),
|
|
29
|
+
(16.6666679, 66.6666641, -50.0000000),
|
|
30
|
+
(27.7777786, 77.7777786, -50.0000000),
|
|
31
|
+
(38.8888893, 88.8888855, -50.0000000),
|
|
32
|
+
(50.0000000, 100.0000000, -50.0000000),
|
|
33
|
+
(-50.0000000, 0.0000000, -38.8888893),
|
|
34
|
+
(-38.8888893, 11.1111107, -38.8888893),
|
|
35
|
+
(-27.7777786, 22.2222214, -38.8888893),
|
|
36
|
+
(-16.6666679, 33.3333321, -38.8888893),
|
|
37
|
+
(-5.5555558, 44.4444427, -38.8888893),
|
|
38
|
+
(5.5555558, 55.5555573, -38.8888893),
|
|
39
|
+
(16.6666679, 66.6666641, -38.8888893),
|
|
40
|
+
(27.7777786, 77.7777786, -38.8888893),
|
|
41
|
+
(38.8888893, 88.8888855, -38.8888893),
|
|
42
|
+
(50.0000000, 100.0000000, -38.8888893),
|
|
43
|
+
(-50.0000000, 0.0000000, -27.7777786),
|
|
44
|
+
(-38.8888893, 11.1111107, -27.7777786),
|
|
45
|
+
(-27.7777786, 22.2222214, -27.7777786),
|
|
46
|
+
(-16.6666679, 33.3333321, -27.7777786),
|
|
47
|
+
(-5.5555558, 44.4444427, -27.7777786),
|
|
48
|
+
(5.5555558, 55.5555573, -27.7777786),
|
|
49
|
+
(16.6666679, 66.6666641, -27.7777786),
|
|
50
|
+
(27.7777786, 77.7777786, -27.7777786),
|
|
51
|
+
(38.8888893, 88.8888855, -27.7777786),
|
|
52
|
+
(50.0000000, 100.0000000, -27.7777786),
|
|
53
|
+
(-50.0000000, 0.0000000, -16.6666679),
|
|
54
|
+
(-38.8888893, 11.1111107, -16.6666679),
|
|
55
|
+
(-27.7777786, 22.2222214, -16.6666679),
|
|
56
|
+
(-16.6666679, 33.3333321, -16.6666679),
|
|
57
|
+
(-5.5555558, 44.4444427, -16.6666679),
|
|
58
|
+
(5.5555558, 55.5555573, -16.6666679),
|
|
59
|
+
(16.6666679, 66.6666641, -16.6666679),
|
|
60
|
+
(27.7777786, 77.7777786, -16.6666679),
|
|
61
|
+
(38.8888893, 88.8888855, -16.6666679),
|
|
62
|
+
(50.0000000, 100.0000000, -16.6666679),
|
|
63
|
+
(-50.0000000, 0.0000000, -5.5555558),
|
|
64
|
+
(-38.8888893, 11.1111107, -5.5555558),
|
|
65
|
+
(-27.7777786, 22.2222214, -5.5555558),
|
|
66
|
+
(-16.6666679, 33.3333321, -5.5555558),
|
|
67
|
+
(-5.5555558, 44.4444427, -5.5555558),
|
|
68
|
+
(5.5555558, 55.5555573, -5.5555558),
|
|
69
|
+
(16.6666679, 66.6666641, -5.5555558),
|
|
70
|
+
(27.7777786, 77.7777786, -5.5555558),
|
|
71
|
+
(38.8888893, 88.8888855, -5.5555558),
|
|
72
|
+
(50.0000000, 100.0000000, -5.5555558),
|
|
73
|
+
(-50.0000000, 0.0000000, 5.5555558),
|
|
74
|
+
(-38.8888893, 11.1111107, 5.5555558),
|
|
75
|
+
(-27.7777786, 22.2222214, 5.5555558),
|
|
76
|
+
(-16.6666679, 33.3333321, 5.5555558),
|
|
77
|
+
(-5.5555558, 44.4444427, 5.5555558),
|
|
78
|
+
(5.5555558, 55.5555573, 5.5555558),
|
|
79
|
+
(16.6666679, 66.6666641, 5.5555558),
|
|
80
|
+
(27.7777786, 77.7777786, 5.5555558),
|
|
81
|
+
(38.8888893, 88.8888855, 5.5555558),
|
|
82
|
+
(50.0000000, 100.0000000, 5.5555558),
|
|
83
|
+
(-50.0000000, 0.0000000, 16.6666679),
|
|
84
|
+
(-38.8888893, 11.1111107, 16.6666679),
|
|
85
|
+
(-27.7777786, 22.2222214, 16.6666679),
|
|
86
|
+
(-16.6666679, 33.3333321, 16.6666679),
|
|
87
|
+
(-5.5555558, 44.4444427, 16.6666679),
|
|
88
|
+
(5.5555558, 55.5555573, 16.6666679),
|
|
89
|
+
(16.6666679, 66.6666641, 16.6666679),
|
|
90
|
+
(27.7777786, 77.7777786, 16.6666679),
|
|
91
|
+
(38.8888893, 88.8888855, 16.6666679),
|
|
92
|
+
(50.0000000, 100.0000000, 16.6666679),
|
|
93
|
+
(-50.0000000, 0.0000000, 27.7777786),
|
|
94
|
+
(-38.8888893, 11.1111107, 27.7777786),
|
|
95
|
+
(-27.7777786, 22.2222214, 27.7777786),
|
|
96
|
+
(-16.6666679, 33.3333321, 27.7777786),
|
|
97
|
+
(-5.5555558, 44.4444427, 27.7777786),
|
|
98
|
+
(5.5555558, 55.5555573, 27.7777786),
|
|
99
|
+
(16.6666679, 66.6666641, 27.7777786),
|
|
100
|
+
(27.7777786, 77.7777786, 27.7777786),
|
|
101
|
+
(38.8888893, 88.8888855, 27.7777786),
|
|
102
|
+
(50.0000000, 100.0000000, 27.7777786),
|
|
103
|
+
(-50.0000000, 0.0000000, 38.8888893),
|
|
104
|
+
(-38.8888893, 11.1111107, 38.8888893),
|
|
105
|
+
(-27.7777786, 22.2222214, 38.8888893),
|
|
106
|
+
(-16.6666679, 33.3333321, 38.8888893),
|
|
107
|
+
(-5.5555558, 44.4444427, 38.8888893),
|
|
108
|
+
(5.5555558, 55.5555573, 38.8888893),
|
|
109
|
+
(16.6666679, 66.6666641, 38.8888893),
|
|
110
|
+
(27.7777786, 77.7777786, 38.8888893),
|
|
111
|
+
(38.8888893, 88.8888855, 38.8888893),
|
|
112
|
+
(50.0000000, 100.0000000, 38.8888893),
|
|
113
|
+
(-50.0000000, 0.0000000, 50.0000000),
|
|
114
|
+
(-38.8888893, 11.1111107, 50.0000000),
|
|
115
|
+
(-27.7777786, 22.2222214, 50.0000000),
|
|
116
|
+
(-16.6666679, 33.3333321, 50.0000000),
|
|
117
|
+
(-5.5555558, 44.4444427, 50.0000000),
|
|
118
|
+
(5.5555558, 55.5555573, 50.0000000),
|
|
119
|
+
(16.6666679, 66.6666641, 50.0000000),
|
|
120
|
+
(27.7777786, 77.7777786, 50.0000000),
|
|
121
|
+
(38.8888893, 88.8888855, 50.0000000),
|
|
122
|
+
(50.0000000, 100.0000000, 50.0000000),
|
|
123
|
+
]
|
|
124
|
+
|
|
125
|
+
self.faces = [
|
|
126
|
+
1, 12, 2,
|
|
127
|
+
1, 11, 12,
|
|
128
|
+
2, 12, 3,
|
|
129
|
+
12, 13, 3,
|
|
130
|
+
3, 14, 4,
|
|
131
|
+
3, 13, 14,
|
|
132
|
+
4, 14, 5,
|
|
133
|
+
14, 15, 5,
|
|
134
|
+
5, 16, 6,
|
|
135
|
+
5, 15, 16,
|
|
136
|
+
6, 16, 7,
|
|
137
|
+
16, 17, 7,
|
|
138
|
+
7, 18, 8,
|
|
139
|
+
7, 17, 18,
|
|
140
|
+
8, 18, 9,
|
|
141
|
+
18, 19, 9,
|
|
142
|
+
9, 20, 10,
|
|
143
|
+
9, 19, 20,
|
|
144
|
+
11, 21, 12,
|
|
145
|
+
21, 22, 12,
|
|
146
|
+
12, 23, 13,
|
|
147
|
+
12, 22, 23,
|
|
148
|
+
13, 23, 14,
|
|
149
|
+
23, 24, 14,
|
|
150
|
+
14, 25, 15,
|
|
151
|
+
14, 24, 25,
|
|
152
|
+
15, 25, 16,
|
|
153
|
+
25, 26, 16,
|
|
154
|
+
16, 27, 17,
|
|
155
|
+
16, 26, 27,
|
|
156
|
+
17, 27, 18,
|
|
157
|
+
27, 28, 18,
|
|
158
|
+
18, 29, 19,
|
|
159
|
+
18, 28, 29,
|
|
160
|
+
19, 29, 20,
|
|
161
|
+
29, 30, 20,
|
|
162
|
+
21, 32, 22,
|
|
163
|
+
21, 31, 32,
|
|
164
|
+
22, 32, 23,
|
|
165
|
+
32, 33, 23,
|
|
166
|
+
23, 34, 24,
|
|
167
|
+
23, 33, 34,
|
|
168
|
+
24, 34, 25,
|
|
169
|
+
34, 35, 25,
|
|
170
|
+
25, 36, 26,
|
|
171
|
+
25, 35, 36,
|
|
172
|
+
26, 36, 27,
|
|
173
|
+
36, 37, 27,
|
|
174
|
+
27, 38, 28,
|
|
175
|
+
27, 37, 38,
|
|
176
|
+
28, 38, 29,
|
|
177
|
+
38, 39, 29,
|
|
178
|
+
29, 40, 30,
|
|
179
|
+
29, 39, 40,
|
|
180
|
+
31, 41, 32,
|
|
181
|
+
41, 42, 32,
|
|
182
|
+
32, 43, 33,
|
|
183
|
+
32, 42, 43,
|
|
184
|
+
33, 43, 34,
|
|
185
|
+
43, 44, 34,
|
|
186
|
+
34, 45, 35,
|
|
187
|
+
34, 44, 45,
|
|
188
|
+
35, 45, 36,
|
|
189
|
+
45, 46, 36,
|
|
190
|
+
36, 47, 37,
|
|
191
|
+
36, 46, 47,
|
|
192
|
+
37, 47, 38,
|
|
193
|
+
47, 48, 38,
|
|
194
|
+
38, 49, 39,
|
|
195
|
+
38, 48, 49,
|
|
196
|
+
39, 49, 40,
|
|
197
|
+
49, 50, 40,
|
|
198
|
+
41, 52, 42,
|
|
199
|
+
41, 51, 52,
|
|
200
|
+
42, 52, 43,
|
|
201
|
+
52, 53, 43,
|
|
202
|
+
43, 54, 44,
|
|
203
|
+
43, 53, 54,
|
|
204
|
+
44, 54, 45,
|
|
205
|
+
54, 55, 45,
|
|
206
|
+
45, 56, 46,
|
|
207
|
+
45, 55, 56,
|
|
208
|
+
46, 56, 47,
|
|
209
|
+
56, 57, 47,
|
|
210
|
+
47, 58, 48,
|
|
211
|
+
47, 57, 58,
|
|
212
|
+
48, 58, 49,
|
|
213
|
+
58, 59, 49,
|
|
214
|
+
49, 60, 50,
|
|
215
|
+
49, 59, 60,
|
|
216
|
+
51, 61, 52,
|
|
217
|
+
61, 62, 52,
|
|
218
|
+
52, 63, 53,
|
|
219
|
+
52, 62, 63,
|
|
220
|
+
53, 63, 54,
|
|
221
|
+
63, 64, 54,
|
|
222
|
+
54, 65, 55,
|
|
223
|
+
54, 64, 65,
|
|
224
|
+
55, 65, 56,
|
|
225
|
+
65, 66, 56,
|
|
226
|
+
56, 67, 57,
|
|
227
|
+
56, 66, 67,
|
|
228
|
+
57, 67, 58,
|
|
229
|
+
67, 68, 58,
|
|
230
|
+
58, 69, 59,
|
|
231
|
+
58, 68, 69,
|
|
232
|
+
59, 69, 60,
|
|
233
|
+
69, 70, 60,
|
|
234
|
+
61, 72, 62,
|
|
235
|
+
61, 71, 72,
|
|
236
|
+
62, 72, 63,
|
|
237
|
+
72, 73, 63,
|
|
238
|
+
63, 74, 64,
|
|
239
|
+
63, 73, 74,
|
|
240
|
+
64, 74, 65,
|
|
241
|
+
74, 75, 65,
|
|
242
|
+
65, 76, 66,
|
|
243
|
+
65, 75, 76,
|
|
244
|
+
66, 76, 67,
|
|
245
|
+
76, 77, 67,
|
|
246
|
+
67, 78, 68,
|
|
247
|
+
67, 77, 78,
|
|
248
|
+
68, 78, 69,
|
|
249
|
+
78, 79, 69,
|
|
250
|
+
69, 80, 70,
|
|
251
|
+
69, 79, 80,
|
|
252
|
+
71, 81, 72,
|
|
253
|
+
81, 82, 72,
|
|
254
|
+
72, 83, 73,
|
|
255
|
+
72, 82, 83,
|
|
256
|
+
73, 83, 74,
|
|
257
|
+
83, 84, 74,
|
|
258
|
+
74, 85, 75,
|
|
259
|
+
74, 84, 85,
|
|
260
|
+
75, 85, 76,
|
|
261
|
+
85, 86, 76,
|
|
262
|
+
76, 87, 77,
|
|
263
|
+
76, 86, 87,
|
|
264
|
+
77, 87, 78,
|
|
265
|
+
87, 88, 78,
|
|
266
|
+
78, 89, 79,
|
|
267
|
+
78, 88, 89,
|
|
268
|
+
79, 89, 80,
|
|
269
|
+
89, 90, 80,
|
|
270
|
+
81, 92, 82,
|
|
271
|
+
81, 91, 92,
|
|
272
|
+
82, 92, 83,
|
|
273
|
+
92, 93, 83,
|
|
274
|
+
83, 94, 84,
|
|
275
|
+
83, 93, 94,
|
|
276
|
+
84, 94, 85,
|
|
277
|
+
94, 95, 85,
|
|
278
|
+
85, 96, 86,
|
|
279
|
+
85, 95, 96,
|
|
280
|
+
86, 96, 87,
|
|
281
|
+
96, 97, 87,
|
|
282
|
+
87, 98, 88,
|
|
283
|
+
87, 97, 98,
|
|
284
|
+
88, 98, 89,
|
|
285
|
+
98, 99, 89,
|
|
286
|
+
89, 100, 90,
|
|
287
|
+
89, 99, 100
|
|
288
|
+
]
|
|
289
|
+
|
|
290
|
+
self.coloring = [
|
|
291
|
+
[9, 12, 17, 24, 31, 38, 43, 46, 50, 62, 65, 68, 80, 84, 89, 92],
|
|
292
|
+
[6, 20, 25, 32, 37, 44, 51, 56, 59, 63, 70, 75, 82, 88, 90, 94, 96],
|
|
293
|
+
[2, 8, 10, 14, 26, 29, 33, 40, 48, 52, 55, 67, 73, 79, 86, 91, 98],
|
|
294
|
+
[4, 11, 16, 23, 28, 30, 35, 42, 49, 54, 57, 71, 74, 76, 78, 93, 97],
|
|
295
|
+
[3, 15, 18, 22, 34, 36, 39, 41, 53, 58, 60, 66, 72, 85, 99, 0, 87],
|
|
296
|
+
[7, 21, 27, 45, 47, 61, 64, 69, 77, 81, 83, 95, 1, 5, 13, 19],
|
|
297
|
+
]
|
|
298
|
+
# fmt: on
|
|
299
|
+
|
|
300
|
+
self.dt = 1 / 60
|
|
301
|
+
self.num_test_frames = 100
|
|
302
|
+
self.num_substeps = 10
|
|
303
|
+
self.iterations = 10
|
|
304
|
+
|
|
305
|
+
stiffness = 1e5
|
|
306
|
+
kd = 1.0e-7
|
|
307
|
+
|
|
308
|
+
self.input_scale_factor = 1.0
|
|
309
|
+
self.renderer_scale_factor = 0.01
|
|
310
|
+
vertices = [wp.vec3(v) * self.input_scale_factor for v in self.pts]
|
|
311
|
+
fs_flatten = [fv - 1 for fv in self.faces]
|
|
312
|
+
|
|
313
|
+
builder = wp.sim.ModelBuilder()
|
|
314
|
+
builder.add_cloth_mesh(
|
|
315
|
+
pos=wp.vec3(0.0, 200.0, 0.0),
|
|
316
|
+
rot=wp.quat_from_axis_angle(wp.vec3(1.0, 0.0, 0.0), 0.0),
|
|
317
|
+
scale=1.0,
|
|
318
|
+
vertices=vertices,
|
|
319
|
+
indices=fs_flatten,
|
|
320
|
+
vel=wp.vec3(0.0, 0.0, 0.0),
|
|
321
|
+
density=0.02,
|
|
322
|
+
tri_ke=stiffness,
|
|
323
|
+
tri_ka=stiffness,
|
|
324
|
+
tri_kd=kd,
|
|
325
|
+
)
|
|
326
|
+
|
|
327
|
+
self.model = builder.finalize(device=device)
|
|
328
|
+
self.model.ground = True
|
|
329
|
+
self.model.gravity = wp.vec3(0, -1000.0, 0)
|
|
330
|
+
|
|
331
|
+
self.model.soft_contact_ke = 1.0e4
|
|
332
|
+
self.model.soft_contact_kd = 1.0e2
|
|
333
|
+
|
|
334
|
+
coloring_wp = []
|
|
335
|
+
for color in self.coloring:
|
|
336
|
+
coloring_wp.append(wp.array(color, dtype=wp.int32, device=self.model.device))
|
|
337
|
+
self.model.coloring = coloring_wp
|
|
338
|
+
|
|
339
|
+
self.dt = self.dt / self.num_substeps
|
|
340
|
+
self.fixed_particles = [0, 9]
|
|
341
|
+
|
|
342
|
+
self.set_points_fixed(self.model, self.fixed_particles)
|
|
343
|
+
|
|
344
|
+
self.integrator = wp.sim.VBDIntegrator(self.model, self.iterations)
|
|
345
|
+
self.state0 = self.model.state()
|
|
346
|
+
self.state1 = self.model.state()
|
|
347
|
+
|
|
348
|
+
self.init_pos = np.array(self.state0.particle_q.numpy(), copy=True)
|
|
349
|
+
|
|
350
|
+
def run(self, test):
|
|
351
|
+
for _step in range(self.num_substeps * self.num_test_frames):
|
|
352
|
+
self.integrator.simulate(self.model, self.state0, self.state1, self.dt, None)
|
|
353
|
+
(self.state0, self.state1) = (self.state1, self.state0)
|
|
354
|
+
|
|
355
|
+
# examine that the simulation does not explode
|
|
356
|
+
final_pos = self.state0.particle_q.numpy()
|
|
357
|
+
test.assertTrue((final_pos < 1e5).all())
|
|
358
|
+
# examine that the simulation have moved
|
|
359
|
+
test.assertTrue((self.init_pos != final_pos).any())
|
|
360
|
+
|
|
361
|
+
def set_points_fixed(self, model, fixed_particles):
|
|
362
|
+
if len(fixed_particles):
|
|
363
|
+
flags = model.particle_flags.numpy()
|
|
364
|
+
for fixed_v_id in fixed_particles:
|
|
365
|
+
flags[fixed_v_id] = wp.uint32(int(flags[fixed_v_id]) & ~int(PARTICLE_FLAG_ACTIVE))
|
|
366
|
+
|
|
367
|
+
model.particle_flags = wp.array(flags, device=model.device)
|
|
368
|
+
|
|
369
|
+
|
|
370
|
+
def test_vbd_cloth(test, device):
|
|
371
|
+
example = VBDClothSim(device)
|
|
372
|
+
example.run(test)
|
|
373
|
+
|
|
374
|
+
|
|
375
|
+
devices = get_test_devices()
|
|
376
|
+
|
|
377
|
+
|
|
378
|
+
class TestVBD(unittest.TestCase):
|
|
379
|
+
pass
|
|
380
|
+
|
|
381
|
+
|
|
382
|
+
add_function_test(TestVBD, "test_vbd_cloth", test_vbd_cloth, devices=devices)
|
|
383
|
+
|
|
384
|
+
if __name__ == "__main__":
|
|
385
|
+
wp.clear_kernel_cache()
|
|
386
|
+
unittest.main(verbosity=2)
|
warp/tests/test_vec.py
CHANGED
|
@@ -1035,6 +1035,142 @@ def test_casting_constructors(test, device, dtype, register_kernels=False):
|
|
|
1035
1035
|
assert_np_equal(out, a_grad.numpy())
|
|
1036
1036
|
|
|
1037
1037
|
|
|
1038
|
+
def test_vec_assign(test, device, dtype, register_kernels=False):
|
|
1039
|
+
np_type = np.dtype(dtype)
|
|
1040
|
+
wp_type = wp.types.np_dtype_to_warp_type[np_type]
|
|
1041
|
+
|
|
1042
|
+
vec2 = wp.types.vector(length=2, dtype=wp_type)
|
|
1043
|
+
vec3 = wp.types.vector(length=3, dtype=wp_type)
|
|
1044
|
+
vec4 = wp.types.vector(length=4, dtype=wp_type)
|
|
1045
|
+
|
|
1046
|
+
def vectest_read_write_store(
|
|
1047
|
+
x: wp.array(dtype=wp_type), a: wp.array(dtype=vec2), b: wp.array(dtype=vec3), c: wp.array(dtype=vec4)
|
|
1048
|
+
):
|
|
1049
|
+
tid = wp.tid()
|
|
1050
|
+
|
|
1051
|
+
t = a[tid]
|
|
1052
|
+
t[0] = x[tid]
|
|
1053
|
+
a[tid] = t
|
|
1054
|
+
|
|
1055
|
+
u = b[tid]
|
|
1056
|
+
u[1] = x[tid]
|
|
1057
|
+
b[tid] = u
|
|
1058
|
+
|
|
1059
|
+
v = c[tid]
|
|
1060
|
+
v[2] = x[tid]
|
|
1061
|
+
c[tid] = v
|
|
1062
|
+
|
|
1063
|
+
def vectest_in_register(
|
|
1064
|
+
x: wp.array(dtype=wp_type), y: wp.array(dtype=vec3), a: wp.array(dtype=vec2), b: wp.array(dtype=vec3)
|
|
1065
|
+
):
|
|
1066
|
+
tid = wp.tid()
|
|
1067
|
+
|
|
1068
|
+
f = vec3(wp_type(0.0))
|
|
1069
|
+
b_vec = b[tid]
|
|
1070
|
+
f[0] = b_vec[1]
|
|
1071
|
+
f[2] = b_vec[0] * b_vec[1]
|
|
1072
|
+
y[tid] = f
|
|
1073
|
+
|
|
1074
|
+
g = wp_type(0.0)
|
|
1075
|
+
a_vec = a[tid]
|
|
1076
|
+
g = a_vec[0] + a_vec[1]
|
|
1077
|
+
x[tid] = g
|
|
1078
|
+
|
|
1079
|
+
def vectest_in_register_overwrite(x: wp.array(dtype=vec3), a: wp.array(dtype=vec3)):
|
|
1080
|
+
tid = wp.tid()
|
|
1081
|
+
|
|
1082
|
+
f = vec3(wp_type(0.0))
|
|
1083
|
+
a_vec = a[tid]
|
|
1084
|
+
f = a_vec
|
|
1085
|
+
f[1] = wp_type(3.0)
|
|
1086
|
+
|
|
1087
|
+
x[tid] = f
|
|
1088
|
+
|
|
1089
|
+
def vectest_component(x: wp.array(dtype=vec3), y: wp.array(dtype=wp_type)):
|
|
1090
|
+
i = wp.tid()
|
|
1091
|
+
|
|
1092
|
+
a = vec3(wp_type(0.0))
|
|
1093
|
+
a.x = wp_type(1.0) * y[i]
|
|
1094
|
+
a.y = wp_type(2.0) * y[i]
|
|
1095
|
+
a.z = wp_type(3.0) * y[i]
|
|
1096
|
+
x[i] = a
|
|
1097
|
+
|
|
1098
|
+
kernel_read_write_store = getkernel(vectest_read_write_store, suffix=dtype.__name__)
|
|
1099
|
+
kernel_in_register = getkernel(vectest_in_register, suffix=dtype.__name__)
|
|
1100
|
+
kernel_in_register_overwrite = getkernel(vectest_in_register_overwrite, suffix=dtype.__name__)
|
|
1101
|
+
kernel_component = getkernel(vectest_component, suffix=dtype.__name__)
|
|
1102
|
+
|
|
1103
|
+
if register_kernels:
|
|
1104
|
+
return
|
|
1105
|
+
|
|
1106
|
+
a = wp.ones(1, dtype=vec2, device=device, requires_grad=True)
|
|
1107
|
+
b = wp.ones(1, dtype=vec3, device=device, requires_grad=True)
|
|
1108
|
+
c = wp.ones(1, dtype=vec4, device=device, requires_grad=True)
|
|
1109
|
+
x = wp.full(1, value=2.0, dtype=wp_type, device=device, requires_grad=True)
|
|
1110
|
+
|
|
1111
|
+
tape = wp.Tape()
|
|
1112
|
+
with tape:
|
|
1113
|
+
wp.launch(kernel_read_write_store, dim=1, inputs=[x, a, b, c], device=device)
|
|
1114
|
+
|
|
1115
|
+
tape.backward(
|
|
1116
|
+
grads={
|
|
1117
|
+
a: wp.ones_like(a, requires_grad=False),
|
|
1118
|
+
b: wp.ones_like(b, requires_grad=False),
|
|
1119
|
+
c: wp.ones_like(c, requires_grad=False),
|
|
1120
|
+
}
|
|
1121
|
+
)
|
|
1122
|
+
|
|
1123
|
+
assert_np_equal(a.numpy(), np.array([[2.0, 1.0]], dtype=np_type))
|
|
1124
|
+
assert_np_equal(b.numpy(), np.array([[1.0, 2.0, 1.0]], dtype=np_type))
|
|
1125
|
+
assert_np_equal(c.numpy(), np.array([[1.0, 1.0, 2.0, 1.0]], dtype=np_type))
|
|
1126
|
+
assert_np_equal(x.grad.numpy(), np.array([3.0], dtype=np_type))
|
|
1127
|
+
|
|
1128
|
+
tape.reset()
|
|
1129
|
+
|
|
1130
|
+
a = wp.ones(1, dtype=vec2, device=device, requires_grad=True)
|
|
1131
|
+
b = wp.ones(1, dtype=vec3, device=device, requires_grad=True)
|
|
1132
|
+
x = wp.zeros(1, dtype=wp_type, device=device, requires_grad=True)
|
|
1133
|
+
y = wp.zeros(1, dtype=vec3, device=device, requires_grad=True)
|
|
1134
|
+
|
|
1135
|
+
with tape:
|
|
1136
|
+
wp.launch(kernel_in_register, dim=1, inputs=[x, y, a, b], device=device)
|
|
1137
|
+
|
|
1138
|
+
tape.backward(grads={x: wp.ones_like(x, requires_grad=False), y: wp.ones_like(y, requires_grad=False)})
|
|
1139
|
+
|
|
1140
|
+
assert_np_equal(x.numpy(), np.array([2.0], dtype=np_type))
|
|
1141
|
+
assert_np_equal(y.numpy(), np.array([[1.0, 0.0, 1.0]], dtype=np_type))
|
|
1142
|
+
assert_np_equal(a.grad.numpy(), np.array([[1.0, 1.0]], dtype=np_type))
|
|
1143
|
+
assert_np_equal(b.grad.numpy(), np.array([[1.0, 2.0, 0.0]], dtype=np_type))
|
|
1144
|
+
|
|
1145
|
+
tape.reset()
|
|
1146
|
+
|
|
1147
|
+
x = wp.zeros(1, dtype=vec3, device=device, requires_grad=True)
|
|
1148
|
+
y = wp.ones(1, dtype=wp_type, device=device, requires_grad=True)
|
|
1149
|
+
|
|
1150
|
+
tape = wp.Tape()
|
|
1151
|
+
with tape:
|
|
1152
|
+
wp.launch(kernel_component, dim=1, inputs=[x, y], device=device)
|
|
1153
|
+
|
|
1154
|
+
tape.backward(grads={x: wp.ones_like(x, requires_grad=False)})
|
|
1155
|
+
|
|
1156
|
+
assert_np_equal(x.numpy(), np.array([[1.0, 2.0, 3.0]], dtype=np_type))
|
|
1157
|
+
assert_np_equal(y.grad.numpy(), np.array([6.0], dtype=np_type))
|
|
1158
|
+
|
|
1159
|
+
tape.reset()
|
|
1160
|
+
|
|
1161
|
+
x = wp.zeros(1, dtype=vec3, device=device, requires_grad=True)
|
|
1162
|
+
a = wp.ones(1, dtype=vec3, device=device, requires_grad=True)
|
|
1163
|
+
|
|
1164
|
+
tape = wp.Tape()
|
|
1165
|
+
with tape:
|
|
1166
|
+
wp.launch(kernel_in_register_overwrite, dim=1, inputs=[x, a], device=device)
|
|
1167
|
+
|
|
1168
|
+
tape.backward(grads={x: wp.ones_like(x, requires_grad=False)})
|
|
1169
|
+
|
|
1170
|
+
assert_np_equal(x.numpy(), np.array([[1.0, 3.0, 1.0]], dtype=np_type))
|
|
1171
|
+
assert_np_equal(a.grad.numpy(), np.array([[1.0, 0.0, 1.0]], dtype=np_type))
|
|
1172
|
+
|
|
1173
|
+
|
|
1038
1174
|
@wp.kernel
|
|
1039
1175
|
def test_vector_constructor_value_func():
|
|
1040
1176
|
a = wp.vec2()
|
|
@@ -1170,6 +1306,13 @@ for dtype in np_float_types:
|
|
|
1170
1306
|
devices=devices,
|
|
1171
1307
|
dtype=dtype,
|
|
1172
1308
|
)
|
|
1309
|
+
add_function_test_register_kernel(
|
|
1310
|
+
TestVec,
|
|
1311
|
+
f"test_vec_assign_{dtype.__name__}",
|
|
1312
|
+
test_vec_assign,
|
|
1313
|
+
devices=devices,
|
|
1314
|
+
dtype=dtype,
|
|
1315
|
+
)
|
|
1173
1316
|
|
|
1174
1317
|
add_function_test(
|
|
1175
1318
|
TestVec,
|