warn-transformer 1.3.265__py3-none-any.whl → 1.3.302__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of warn-transformer might be problematic. Click here for more details.

@@ -171,6 +171,35 @@ class Transformer(BaseTransformer):
171
171
  ),
172
172
  "11/28/25, 12/31/25, 1/19/26, 1/30/26, 3/6/26, 6/26/26": datetime(2025, 11, 28),
173
173
  "7/14/25 - 9/15/25": datetime(2025, 7, 14),
174
+ "11/16/25 - 12/16/25": datetime(2025, 11, 16),
175
+ "12/11/25, 2/12/26, 3/13/26, 3/27/26": datetime(2025, 12, 11),
176
+ "9/18/25 - 10/3/25": datetime(2025, 9, 18),
177
+ "12/8/25, 12/14/25, 12/15/25, 12/24/25, 12/27/25, 12/28/25": datetime(
178
+ 2025, 12, 8
179
+ ),
180
+ "9/9/25, 9/24/25, 9/25/25": datetime(2025, 9, 9),
181
+ "12/31/25 and 1/1/26": datetime(2025, 12, 31),
182
+ "1/4/26 & 1/23/26": datetime(2026, 1, 4),
183
+ "1/15/26 & 1/17/26": datetime(2026, 1, 15),
184
+ "11/19/25 - 12/2/25": datetime(2025, 11, 19),
185
+ "11/19/25 - 12/15/25": datetime(2025, 11, 19),
186
+ "1/23/26 & 2/13/26": datetime(2026, 1, 23),
187
+ "12/17/2025 & 1/28/26": datetime(2025, 12, 17),
188
+ "1/23/26, 6/26/26, 7/31/26": datetime(2026, 1, 23),
189
+ "10/30/25 - 1/31/25": datetime(2025, 10, 30),
190
+ "10/25/25 - 11/9/25": datetime(2025, 10, 25),
191
+ "2/2/26 (377), 2/5/26 (4), 2/13/26 (4), 2/19/26 (2), 2/27/26 (1), and 3/4/26 (2)": datetime(
192
+ 2026, 2, 2
193
+ ),
194
+ "2/2/26 (120), 3/2/26 (1), and 3/4/26 (1)": datetime(2026, 2, 2),
195
+ "2/2/26 and 2/19/26": datetime(2026, 2, 2),
196
+ "11/4/26 - 11/6/26": datetime(2026, 11, 4),
197
+ "1/2/26, 1/9/26, 1/12/26, 1/13/26, 1/16/26, 1/29/26": datetime(2026, 1, 2),
198
+ "2/2/26 - 2/14/26": datetime(2026, 2, 2),
199
+ "2/12/26 and 3/13/26": datetime(2026, 2, 12),
200
+ "1/9/26 - 2/9/26": datetime(2026, 1, 9),
201
+ "2/20/26, 3/6/26, 3/13/26, 5/11/26": datetime(2026, 2, 20),
202
+ "12/31/25, 3/31/26, 6/30/26": datetime(2025, 12, 31),
174
203
  }
175
204
 
176
205
  def transform_jobs(self, value: str) -> typing.Optional[int]:
@@ -60,6 +60,8 @@ class Transformer(BaseTransformer):
60
60
  "98 Part-time Workers": 98,
61
61
  "56 part time": 56,
62
62
  "39 part time": 39,
63
+ "484 Perm Layoffs/850 Temp Layoffs": 1334,
64
+ "1 remote": 1,
63
65
  }
64
66
 
65
67
  def transform_date(self, value: str) -> typing.Optional[str]:
@@ -1,3 +1,5 @@
1
+ import typing
2
+
1
3
  from ..schema import BaseTransformer
2
4
 
3
5
 
@@ -6,9 +8,21 @@ class Transformer(BaseTransformer):
6
8
 
7
9
  postal_code = "OK"
8
10
  fields = dict(
9
- company="employer",
10
- location=lambda row: row["city"] or row["address"] or row["lwib_area"],
11
+ company="company_name",
12
+ location=lambda row: row["city"] or row["workforce_board"],
11
13
  notice_date="notice_date",
12
- jobs="number_of_employees_affected",
14
+ # jobs="number_of_employees_affected",
15
+ jobs="jobs",
13
16
  )
14
- date_format = "%b %d, %Y"
17
+
18
+ date_format = "%Y-%m-%d"
19
+
20
+ def check_if_closure(self, row: typing.Dict) -> typing.Optional[bool]:
21
+ """Determine whether a row is a closure or not.
22
+
23
+ Args:
24
+ row (dict): The raw row of data.
25
+
26
+ Returns: A boolean or null
27
+ """
28
+ return "closing" in row["closure_type"].lower() or None
@@ -0,0 +1,249 @@
1
+ import typing
2
+ from datetime import datetime
3
+
4
+ from ..schema import BaseTransformer
5
+
6
+
7
+ class Transformer(BaseTransformer):
8
+ """Transform Pennsylvania raw data for consolidation."""
9
+
10
+ postal_code = "PA"
11
+ fields = dict(
12
+ company="company",
13
+ location="county",
14
+ # notice_date="Date Received",
15
+ effective_date="date_effective",
16
+ jobs="jobs",
17
+ )
18
+ date_format = ["%m/%d/%Y", "%m/%d/%y"]
19
+ date_corrections = {
20
+ "Unknown": None,
21
+ "": None,
22
+ "beginning 10/9/25; ending 10/31/25": datetime(2025, 10, 9),
23
+ "beginning 8/26/2025; ending 9/9/2025": datetime(2025, 8, 26),
24
+ "beginning 9/1/2025; ending 9/15/2025": datetime(2025, 9, 1),
25
+ "8/30/2025 - 12/31/2025": datetime(2025, 8, 30),
26
+ "beginning 8/18/2025; ending 12/31/2026": datetime(2025, 8, 18),
27
+ "beginning 8/12/25; ending 10/18/25": datetime(2025, 8, 12),
28
+ "beginning 6/13/25; ending 6/30/25": datetime(2025, 6, 13),
29
+ "beginning 1/17/25; ending 6/30/25": datetime(2025, 1, 17),
30
+ "beginning 7/31/25; ending 8/3/25": datetime(2025, 7, 31),
31
+ "8/25/2025 - 9/8/2025": datetime(2025, 8, 25),
32
+ "5/5/2025 @ Etters location; 6/4/2025 @ Philadelphia location": datetime(
33
+ 2025, 5, 5
34
+ ),
35
+ "7/1/2025 - 7/15/2025": datetime(2025, 7, 1),
36
+ "8/1/2025 - 12/31/2025": datetime(2025, 8, 1),
37
+ "beginning 4/25/25; ending 5/2/25": datetime(2025, 4, 25),
38
+ "first wave - 6/9/2025 impacting 192 workers ... second wave - 9/30/2025 impacting 106 workers ... final wave ending - 11/17/2025 impacting 25 workers": datetime(
39
+ 2025, 6, 9
40
+ ),
41
+ "4/22/2025 for Frankford Avenue location ... 4/24/2025 for Castor Avenue location": datetime(
42
+ 2025, 4, 22
43
+ ),
44
+ "first wave - 5/9/2025 impacting 124 workers ... second wave - 7/1/2025 impacting 112 workers ... final wave ending - 12/31/2025 impacting 62 workers": datetime(
45
+ 2025, 5, 9
46
+ ),
47
+ "6/27/2025 - 12/31/2025": datetime(2025, 6, 27),
48
+ "beginning: 3/24/2025; ending: 4/12/2025": datetime(2025, 3, 24),
49
+ "May 19, 23, 30 ... June 6, 20, 27 ... July 11, 18 ... August 8, 22, 29 ... September 12": datetime(
50
+ 2025, 5, 19
51
+ ),
52
+ "first round -- 5/16 through 5/30; second round -- 6/23 through 7/7; final round -- sometime in 2026": datetime(
53
+ 2025, 5, 16
54
+ ),
55
+ "4/23/25; ending: 5/7/25": datetime(2025, 4, 23),
56
+ "4/9/25-10/15/25": datetime(2025, 4, 9),
57
+ "5/26/25-5/30/25": datetime(2025, 1, 31),
58
+ "1/31/25-3/31/25": datetime(2025, 1, 31),
59
+ "beginning: 3/18/25; ending: 3/31/25": datetime(2025, 3, 18),
60
+ "beginning: 1/6/2025; completed: 3/31/2025": datetime(2025, 1, 6),
61
+ "Layoff date: 2/18/2025; Closure date: 2/21/2025": datetime(2025, 2, 18),
62
+ "2/17/2025 through 3/3/2025": datetime(2025, 2, 17),
63
+ "Layoffs: 1/25/2025; Closure: 1/31/2025": datetime(2025, 1, 25),
64
+ "beginning: 1/1/2025; ending: 1/3/2025": datetime(2025, 1, 1),
65
+ "1/3/2025 - 1/31/2026": datetime(2025, 1, 3),
66
+ "1. 1/15/2025 ... 2. 1/22/2025 ... 3. 2/12/2025": datetime(2025, 1, 15),
67
+ "beginning: 12/14/2024; ending: 12/28/2024": datetime(2024, 12, 14),
68
+ "12/9/2024 -- 173 workers ... 12/20/2024 -- 60 workers ... 1/13/2025 -- 2 workers ... 1/27/2025 -- 9 workers ... 2/17/2025 -- 26 workers": datetime(
69
+ 2024, 12, 9
70
+ ),
71
+ "beginning: 11/30/24; ending: 12/3/24": datetime(2024, 11, 30),
72
+ "11/27/2024 - 12/31/2024": datetime(2024, 11, 27),
73
+ "11/10/2024 ": datetime(2024, 11, 10),
74
+ "11/22/2024 ": datetime(2024, 11, 22),
75
+ "9/23/2024 ": datetime(2024, 9, 23),
76
+ "11/22 /2024 ": datetime(2024, 11, 22),
77
+ "beginning: 10/26/2024; ending: 11/9/2024 ": datetime(2024, 10, 26),
78
+ "beginning: 10/27/2024; ending: 11/10/2024": datetime(2024, 10, 27),
79
+ "8/30/2024 - 10/4/2024": datetime(2024, 8, 30),
80
+ "beginning: 10/7/2024; ending: 12/31/2024": datetime(2024, 10, 7),
81
+ "6/7 /2024": datetime(2024, 6, 7),
82
+ "8/9 /2024": datetime(2024, 8, 9),
83
+ "8/16 /2024": datetime(2024, 8, 16),
84
+ "8/9/2024 or within a 14-day window ": datetime(2024, 8, 9),
85
+ "beginning: 8/26/2024; E nding: 12/31/2024 ": datetime(2024, 8, 26),
86
+ "beginning: 8/26/2024; E nding: 12/31/2024": datetime(2024, 8, 26),
87
+ "beginning: 8/26/2024; Ending: 12/31/2024": datetime(2024, 8, 26),
88
+ "8/2/2024-8/16/2024": datetime(2024, 8, 2),
89
+ "Beginning 4/20/24; Ending 5/4/2024": datetime(2024, 4, 20),
90
+ "Beginning 4/13/2024; Ending 5/31/2024": datetime(2024, 4, 13),
91
+ "Beginning 2/15/2024; Ending 4/30/2024": datetime(2024, 2, 15),
92
+ "14 day period commencing 4/15/2024": datetime(2024, 4, 15),
93
+ "Beginning 3/8/2024; Ending end of year 2024": datetime(2024, 3, 8),
94
+ "Beginning 1/31/2024; Ending end of year 2024": datetime(2024, 1, 31),
95
+ "3/15/24 - 9/30/24": datetime(2024, 3, 15),
96
+ "Beginning 2/11/2024; Ending 2/25/2024": datetime(2024, 2, 11),
97
+ "Beginning February/March 2024; Ending July 1, 2024": datetime(2024, 2, 1),
98
+ "1/2/2024 and continuing periodically": datetime(2024, 1, 2),
99
+ "1/6/2024 - 3/26/2024": datetime(2024, 1, 6),
100
+ "1/16/2024 - 3/1/2024": datetime(2024, 1, 16),
101
+ "1/18/2024. Additional layoff dates: 2/19/24 & 4/18/24": datetime(2024, 1, 18),
102
+ "beginning: 1/3/2024 (52 employees); ending: 3/31/2024 (128 employees)": datetime(
103
+ 2024, 1, 3
104
+ ),
105
+ "Beginning 12/15/2023 - Ending 9/30/2024": datetime(2023, 12, 15),
106
+ "Beginning 11/20/2023 - Ending 12/15/2023": datetime(2023, 11, 20),
107
+ "9/8/23 - 10/1/23": datetime(2023, 9, 8),
108
+ "Beginning 9/29/23; Ending 11/16/23": datetime(2023, 9, 23),
109
+ "Beginning: October 31, 2023 - ... Ending: April 15, 2024": datetime(
110
+ 2023, 10, 31
111
+ ),
112
+ "Beginning: October 21, 2023 - ... Ending: December 30, 2023": datetime(
113
+ 2023, 10, 21
114
+ ),
115
+ "9/8/23 (96 employees) ... 9/15/23 (66 employees) ... 9/22/23 (36 employees) ... 9/29/23 (26 employees) ... 9/30/23 (1 employee) ... 10/6/23 (13 employees) ... 10/13/23 (37 employees) ... 10/20/23 (34 employees) ... 11/10/23 (10 employees) ... 12/1/23 (61 employees) ... 2/2/24 (13 employees) ... ": datetime(
116
+ 2023, 9, 8
117
+ ),
118
+ "9/8/23 (96 employees)": datetime(2023, 9, 8),
119
+ "Beginning 8/21/23 - Ending 9/19/23": datetime(2023, 8, 21),
120
+ "beginning 5/10/23 and ending 60-74 days thereafter": datetime(2023, 5, 10),
121
+ "7/14/23 (37 workers); 9/15/23 (125 workers)": datetime(2023, 7, 14),
122
+ "04/14 -- 11 Employees ... 05/05 -- 20 Employees ... 06/17 -- 40 Employees ... 07/07 -- 20 Employees ... 08/04 -- 20 Employees ... 09/08 -- 20 Employees ... 10/06 -- 20 Employees ... 11/03 -- 69 Employees ... 12/29 -- 40 Employees": datetime(
123
+ 2023, 4, 14
124
+ ),
125
+ "04/14": datetime(2023, 4, 14),
126
+ "Phase 1: 4/14 ... Phase 2: 5/13 -- 5/27 ... Phase 3: 6/12 -- 8/11": datetime(
127
+ 2023, 4, 14
128
+ ),
129
+ "Phase 1: 4/14": datetime(2023, 4, 14),
130
+ "7/3/20223 - 10/16/2023": datetime(2023, 7, 3),
131
+ "6/25/2023 - 7/9/2023": datetime(2023, 6, 25),
132
+ "6/2/23 -- 105 Employees ... 7/7/23 -- 10 Employees ... 10/6/23 -- 70 Employees ... 12/1/23 -- 18 Employees": datetime(
133
+ 2023, 6, 2
134
+ ),
135
+ "6/2/23 -- 105 Employees": datetime(2023, 6, 2),
136
+ "6/30/23 -- 50 Employees ... 8/11/23 -- 74 Employees": datetime(2023, 6, 30),
137
+ "6/30/23 -- 50 Employees": datetime(2023, 6, 30),
138
+ "Phase 1: 4/28/23 (67 employees) ... Phase 2: 7/14/23 (9 employees) ... Phase 3: 10/6/23 (4 employees)": datetime(
139
+ 2023, 4, 28
140
+ ),
141
+ "Phase 1: 4/28/23 (67 employees)": datetime(2023, 4, 28),
142
+ "February 1, 2023 -- 82 Employees ... March 1, 2023 -- 1 Employee ... April 1, 2023 -- 21 Employees": datetime(
143
+ 2023, 2, 1
144
+ ),
145
+ "February 1, 2023 -- 82 Employees": datetime(2023, 2, 1),
146
+ "1st Phase: 1/9/2023 (49 Employees) ... 2nd Phase: 7/31/2023 (15 Employees)": datetime(
147
+ 2023, 1, 9
148
+ ),
149
+ "1st Phase: 1/9/2023 (49 Employees)": datetime(2023, 1, 9),
150
+ "Phase 1: 1/11/23 (38 workers) ... Phase 2: 2/10/23 (59 workers) ... Phase 3: 3/31/23 (11 workers) ... Phase 4: TBD (6 workers)": datetime(
151
+ 2023, 1, 11
152
+ ),
153
+ "Phase 1: 1/11/23 (38 workers)": datetime(2023, 1, 11),
154
+ "Beginning: 7/15/25; Ending: 7/29/25": datetime(2025, 7, 15),
155
+ "Beginning: 12/9/2024; Ending: 12/21/2024": datetime(2024, 12, 9),
156
+ "beginning: 10/26/2024; ending: 11/9/2024": datetime(2024, 10, 26),
157
+ "beginning: 10/27/2024; ending: 11/10/2024": datetime(2024, 10, 27),
158
+ "Commencing: 5/30/2024; Ending: 7/29/2024": datetime(2024, 5, 30),
159
+ "8/9/2024 or within a 14-day window": datetime(2024, 8, 9),
160
+ "Commencing: 7/6/2024; Ending: 9/1/2024": datetime(2024, 7, 6),
161
+ "Beginning: 6/3/24; Ending: 6/16/24": datetime(2024, 6, 3),
162
+ "Beginning: 2/24/24; Ending: 4/23/24": datetime(2024, 2, 24),
163
+ "Beginning: 5/17/24; Ending: 8/30/24": datetime(2024, 5, 17),
164
+ "Beginning: 1/16/24; Ending: 3/29/24": datetime(2024, 1, 16),
165
+ "Beginning: 1/2/2024 - Ending: 3/31/2024": datetime(2024, 1, 2),
166
+ "November 3, 2023": datetime(2023, 11, 3),
167
+ "9/8/23 (96 employees) ... 9/15/23 (66 employees) ... 9/22/23 (36 employees) ... 9/29/23 (26 employees) ... 9/30/23 (1 employee) ... 10/6/23 (13 employees) ... 10/13/23 (37 employees) ... 10/20/23 (34 employees) ... 11/10/23 (10 employees) ... 12/1/23 (61 employees) ... 2/2/24 (13 employees) ...": datetime(
168
+ 2023, 9, 8
169
+ ),
170
+ "Beginning: 2/28/23 - Ending: 12/31/23": datetime(2023, 2, 28),
171
+ "March 3, 2023": datetime(2023, 3, 3),
172
+ "March 31, 2023": datetime(2023, 3, 31),
173
+ "March 5, 2023": datetime(2023, 3, 5),
174
+ "February 28, 2023": datetime(2023, 2, 28),
175
+ "Beginning: March 15, 2023; Ending: October 2, 2023": datetime(2023, 3, 15),
176
+ "Beginning: January 23, 2023; Ending: March 24, 2023": datetime(2023, 1, 23),
177
+ "Beginning: 12/31/2025; Ending: 6/30/2026": datetime(2025, 12, 31),
178
+ "1/1/2026-12/31/2027": datetime(2026, 1, 1),
179
+ "Beginning 1/31/2026; Ending 2/28/2026": datetime(2026, 1, 31),
180
+ "Beginning 1/12/2026; Ending 1/26/2026": datetime(2026, 1, 12),
181
+ "Beginning 1/12/2026; Ending 5/30/2026": datetime(2026, 1, 12),
182
+ "beginning 2/13/2026; ending 12/31/2026": datetime(2026, 2, 13),
183
+ }
184
+
185
+ jobs_corrections = {
186
+ "Unknown": None,
187
+ "TBD": None,
188
+ "unknown": None,
189
+ "To be determined": None,
190
+ "60 total": 60,
191
+ "72 (54 PA residents impacted)": 54,
192
+ "9 Pennsylvania workers (209 total) ... EFFECTIVE DATE: Beginning: 7/15/25; Ending: 7/29/25": 9,
193
+ "501 @ Etters location; 595 @ Philadelphia location": 1096,
194
+ "14 Pennsylvania residents": 14,
195
+ "430 nationwide; unknown number of PA residents impacted": None,
196
+ "Cooked Plant -- 110 ... Raw Plant - 119": 229,
197
+ "420 ... EFFECTIVE DATE: Beginning: 12/9/2024; Ending: 12/21/2024": 420,
198
+ "124 ... EFFECTIVE DATE: Commencing: 5/30/2024; Ending: 7/29/2024": 124,
199
+ "645 (**ONLY FIVE PA RESIDENTS AFFECTED**)": 5,
200
+ "253 (173 @ Allentown and 80 @ Greensburg)": 253,
201
+ "9 Pennsylvania workers (209 total)": 9,
202
+ "105 (91 Temporary Layoffs and 14 Permanent Layoffs)": 105,
203
+ "60 (all employees work remotely)": None,
204
+ "206 (198 P/T and 8 F/T Employees)": 206,
205
+ "54 (All employees can be relocated to other Amazon Delivery Service Partners)": 54,
206
+ "179 (80 Marsden Employees and 99 Temporary Employees from both Express Labor & Integrated Staffing Agencies)": 179,
207
+ "9236 Nationwide; PA total pending verification": None,
208
+ "81 Total -- 13 of which reside in PA": 81,
209
+ }
210
+
211
+ def transform_date(self, value: str) -> typing.Optional[str]:
212
+ """Transform a raw date string into a date object.
213
+
214
+ Args:
215
+ value (str): The raw date string provided by the source
216
+
217
+ Returns: A date object ready for consolidation. Or, if the date string is invalid, a None.
218
+ """
219
+ # Cut out cruft
220
+ # value = value.replace("Updated", "")
221
+ # value = value.replace("Revised", "")
222
+ # value = value.replace("-", "").strip()
223
+
224
+ # Split double dates
225
+ # if len(value) == 20:
226
+ # value = value[:10]
227
+ # elif len(value) == 19:
228
+ # value = value[:9]
229
+ # value = re.split(r"\s{2,}", value)[0].strip()
230
+ # value = value.split("Originated")[0].strip()
231
+ # print(value)
232
+
233
+ try:
234
+ return super().transform_date(value)
235
+ except Exception:
236
+ # value = value.split(" to ")[0].strip()
237
+ # value = value.split()[0].strip()
238
+ # value = value.replace("‐", "")
239
+ return super().transform_date(value)
240
+
241
+ def check_if_closure(self, row: typing.Dict) -> typing.Optional[bool]:
242
+ """Determine whether a row is a closure or not.
243
+
244
+ Args:
245
+ row (dict): The raw row of data.
246
+
247
+ Returns: A boolean or null
248
+ """
249
+ return "clos" in row["closure_or_layoff"].lower() or None
@@ -43,4 +43,5 @@ class Transformer(BaseTransformer):
43
43
  "8/1/2025 - 10/1/2025": datetime(2025, 8, 1),
44
44
  "6/30/2025 - 7/3/2025": datetime(2025, 6, 30),
45
45
  "10/10/2025 - 10/24/2025": datetime(2025, 10, 10),
46
+ "1/6/2026 - 9/30/2026": datetime(2026, 1, 6),
46
47
  }
@@ -15,4 +15,5 @@ class Transformer(BaseTransformer):
15
15
  jobs_corrections = {
16
16
  "1-5": 1,
17
17
  "324 (11 reside in South Dakota)": 11,
18
+ "n/a": None,
18
19
  }
@@ -27,4 +27,4 @@ class Transformer(BaseTransformer):
27
27
 
28
28
  Returns: A boolean or null
29
29
  """
30
- return "closure" in row["Reduction in Force"].lower() or None
30
+ return "closure" in row["Notice Type"].lower() or None
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: warn-transformer
3
- Version: 1.3.265
3
+ Version: 1.3.302
4
4
  Summary: Consolidate, enrich and analyze the data gathered by warn-scraper
5
5
  Home-page: https://github.com/biglocalnews/warn-transformer
6
6
  Author: Big Local News
@@ -3,7 +3,7 @@ warn_transformer/cli.py,sha256=gwO96jz_dj_LSpMYtY-avRvZl3hzE7sUMhimpMZwUFU,3180
3
3
  warn_transformer/consolidate.py,sha256=P2kgwxGt7V-ltD-XVnPMwsRhzNpXnxlm8J962hRPwn0,2393
4
4
  warn_transformer/download.py,sha256=xkSV4jj2cwz70DqtNzoIs5pWIJUXdtBtv5W68Y2lNhU,1642
5
5
  warn_transformer/integrate.py,sha256=ofeIvJGqktxsX8bj2ngSgEtJcIn293s_IXNCGNUIMwA,14829
6
- warn_transformer/schema.py,sha256=BfJ3foGinUvvnJM9CyQ440GwEio0sT5lcud0aoODyOo,13052
6
+ warn_transformer/schema.py,sha256=6m62x1-B5LJFPMmUicZe6TZUzjkIfxJjm5-0hlo-x2k,13051
7
7
  warn_transformer/utils.py,sha256=wEgK9lE2aLKdtlQAgu21vMo0nTcSK6LbT_eMrkke-50,655
8
8
  warn_transformer/transformers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
9
9
  warn_transformer/transformers/ak.py,sha256=BVzKzIOpZ3fzSj6EjlqyG3z4D5LBVLwP6-gYRCfSVO4,2441
@@ -11,8 +11,8 @@ warn_transformer/transformers/al.py,sha256=OydLDvZMAJTDBTr-xfCW8sRlOYqgCGGmXIA41
11
11
  warn_transformer/transformers/az.py,sha256=cB1fTlpBH-meU4NO4hS5-pO2_oCSc6q6Ip7eeQQEUJo,398
12
12
  warn_transformer/transformers/ca.py,sha256=UGs9lbslvtJxT-3WylvZSFu7_BKlUgjNKDBZApOhc0Q,1764
13
13
  warn_transformer/transformers/co.py,sha256=_EBTSAhnV9g3VPPvJh-TymhWguuvVEMEYtY3XkejjlY,5375
14
- warn_transformer/transformers/ct.py,sha256=tREKFro2HYl4xRJsN0eokYIajP6fMC5dr8yClyUv-wQ,4251
15
- warn_transformer/transformers/dc.py,sha256=p2gOjNNOaIxG7IrHCTO3xLP_y2ROVqR8C8NJ4OC5xEE,2396
14
+ warn_transformer/transformers/ct.py,sha256=6GLDJPvV2mA6rb6HQtGJaOzwbV2A0KzqWG4sXTNeswg,8403
15
+ warn_transformer/transformers/dc.py,sha256=rci9d35J9FVs7QntVXIkaiexeSuKa0jtuS9Eotqp_2A,2953
16
16
  warn_transformer/transformers/de.py,sha256=QTvAVeR9A_cqLKBPf1ELL1PzYixazOsPIbLipJqyTrI,344
17
17
  warn_transformer/transformers/fl.py,sha256=2MyAh34od1aJoc_P2-bGLCWljmhDmPGPsHW3xTDUsvM,1879
18
18
  warn_transformer/transformers/ga.py,sha256=Wy5yg7o7W1PcMQ3HZlHFE73yGMOKJZE7ulOC5e7GoC0,1143
@@ -22,33 +22,34 @@ warn_transformer/transformers/id.py,sha256=UInDVmBhkMNJrSLYRII9nngfcAd-0MjJ7bwuH
22
22
  warn_transformer/transformers/il.py,sha256=vScnMPAPyEn9e7mqYUtIp19EENagILzMpl99hmwG4GA,930
23
23
  warn_transformer/transformers/in.py,sha256=1X5r-RuJFmWgzGVt_5RwLHMft_2yMEtdN__h3S3wRgs,4698
24
24
  warn_transformer/transformers/ks.py,sha256=uMj6FYoZt1lA4JWBRIWHsXOnOcN3M8pXun7lcOuo358,473
25
- warn_transformer/transformers/ky.py,sha256=kSKXs5bFCGUrEkKKwHr56NJY4eEvzWTnHv31KnvCb4c,13022
25
+ warn_transformer/transformers/ky.py,sha256=asBo6nDu190ToTYsIfEW951be3saVLf8h9IcaovoBtw,13255
26
26
  warn_transformer/transformers/la.py,sha256=X-eWf2hpoAZeCsZ9R0se2-I6Lu_Buzovn5OBYWofNyk,3601
27
- warn_transformer/transformers/md.py,sha256=Gay0PKYBnEo9rgKAEFZR1DXiAiaY3LYNi-5AzbvjpPk,2956
27
+ warn_transformer/transformers/md.py,sha256=Phh9TnbBCT6xLhi-b1xc8xApDvJA_OUIMUtPaFZMiDY,3025
28
28
  warn_transformer/transformers/me.py,sha256=jSF_U_mcvApbvX3Tasf_eFQNxIAvclIc-xJYGiUqtZE,396
29
- warn_transformer/transformers/mi.py,sha256=fXKiv-Slgh34tpKGPZiNs0hVd2mDqiaOP2ZEaegj8eQ,736
29
+ warn_transformer/transformers/mi.py,sha256=Hu0OyQTbxlvSb1KNx9tW5mHzdBywEanoAoTXp4PwPkg,48860
30
30
  warn_transformer/transformers/mo.py,sha256=NYmHMISfXawIoIm00Bsvjzjw4TGAxbsHiS8MQ6oYEdk,1709
31
- warn_transformer/transformers/mt.py,sha256=QSSlo3BFjJklcE4e6tUu_vJa1H887XeDXdxsCY0LGm0,762
31
+ warn_transformer/transformers/mt.py,sha256=Z_HHFwVehxfjty6poFNnpPzhSHnjdYvPItwzmTviWI8,852
32
32
  warn_transformer/transformers/ne.py,sha256=WqUkSsoR9a2Oi4Y7sjOqH3C2lbbaYWQzFCvhme2iNKo,982
33
- warn_transformer/transformers/nj.py,sha256=Qpu_yG9INYuBn5rxOmXztyrRmgn1tVQJHne4x4_28VM,9341
33
+ warn_transformer/transformers/nj.py,sha256=Aukoicj8Cr6VLQfEtx5QofKYrob1lA3oNkN-ir6OfeY,10914
34
34
  warn_transformer/transformers/nm.py,sha256=w_u9AmXyc-VCqnspTvuUNlP2cwqjwSRvqeVHwQoLux0,664
35
35
  warn_transformer/transformers/ny.py,sha256=YGlomU9-pr6dBLrR0xROL8jJzOwJWPGV01GSByqUHds,2559
36
- warn_transformer/transformers/oh.py,sha256=ZTREXZgvurJjigJ-g38qBtiDmT4P1p5ZvOH0G7Y4Q9I,3273
37
- warn_transformer/transformers/ok.py,sha256=Ek3po8qTAmBtMLoHRJGMV5iJasZ_l_-0HH510kefUO4,399
36
+ warn_transformer/transformers/oh.py,sha256=ncQCWult8moFxjbwkHUYlVbC4PvrYvrVNiqAitXavTU,3347
37
+ warn_transformer/transformers/ok.py,sha256=LxjyrJ4uzhVllXSqWLZhlZ9p60tshwrfco5kGv8m94E,733
38
38
  warn_transformer/transformers/or.py,sha256=YcSBOndSS7sd04LICuVwmMwY4al2bBOCGxowXXj34vE,1433
39
+ warn_transformer/transformers/pa.py,sha256=RDH7uM2Lg81N9nxnQyW_GjWsK2CAL1cO13S1N9ADXyc,13551
39
40
  warn_transformer/transformers/ri.py,sha256=nodHs6DIiZeReJo5R6kKQQiXecfrA2CdTgWc54xP-Z0,2270
40
- warn_transformer/transformers/sc.py,sha256=0GNL3aFCCNsVKtHpUfS-W7Tb5bDkNnTIUrqJwsSu31o,1911
41
- warn_transformer/transformers/sd.py,sha256=p0htc2iIVwHYj_x161nX15O9oKAFbm-2MdbdzygxtDs,438
41
+ warn_transformer/transformers/sc.py,sha256=d-_Ztmsimc8bhCJbfLho0FTPVODY8TrtsuNSv_Cgex8,1965
42
+ warn_transformer/transformers/sd.py,sha256=PYMbuI_va2lk8mZ92PG3ReXxm6J83wxW7-xf_Vxd2Nk,459
42
43
  warn_transformer/transformers/tn.py,sha256=oOz69assHYFyXj6LpI_QFwK5UMeGPKPCDuLQdeKrfjk,3868
43
44
  warn_transformer/transformers/tx.py,sha256=iVNEY1qzkD0k4Ro8VZShU_ffXa0MqrvPqop8MvTbWfM,611
44
45
  warn_transformer/transformers/ut.py,sha256=geMp25P1w_jYeB57c3eYItgixq5eyGcoC1VTczlofgU,784
45
- warn_transformer/transformers/va.py,sha256=vxlkvIgrphAUqqCKi_6xZ8raOEhbUpskBukKbpOB2xI,758
46
+ warn_transformer/transformers/va.py,sha256=XzQnuU2GqGgx5otAItPd3-DMA5fxHniQ2mHYJr25HNw,751
46
47
  warn_transformer/transformers/vt.py,sha256=5J9p7yexXmn4K3Pe0xIkPa9fR10DpZ2DSzvjkrDbCZs,452
47
48
  warn_transformer/transformers/wa.py,sha256=0addhlk4jBAfScVngCq8VUJvd-Bc8e1winPn8Lu2DZo,1111
48
49
  warn_transformer/transformers/wi.py,sha256=sM5KFkACDQ6dqiQ666wvZ8gJe47ywFVmM1hFbw8Io64,3019
49
- warn_transformer-1.3.265.dist-info/licenses/LICENSE,sha256=ZV-QHyqPwyMuwuj0lI05JeSjV1NyzVEk8Yeu7FPtYS0,585
50
- warn_transformer-1.3.265.dist-info/METADATA,sha256=D7EPgO5A01sGxpUljqmwAMEC4Q5jxPa2u7yphPfxXig,1740
51
- warn_transformer-1.3.265.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
52
- warn_transformer-1.3.265.dist-info/entry_points.txt,sha256=MvWNvQnZTu5Fbpd7JMN-KGPeklT6f5v6Hx39uqnBl28,62
53
- warn_transformer-1.3.265.dist-info/top_level.txt,sha256=8nZpmzmOcqSnismvY34muSX8MvaZM6aEfLldl-wp0fQ,17
54
- warn_transformer-1.3.265.dist-info/RECORD,,
50
+ warn_transformer-1.3.302.dist-info/licenses/LICENSE,sha256=ZV-QHyqPwyMuwuj0lI05JeSjV1NyzVEk8Yeu7FPtYS0,585
51
+ warn_transformer-1.3.302.dist-info/METADATA,sha256=8r3WAMNRgUKOfSmpaTNd2c44vkk-37mymih7rSS8vm4,1740
52
+ warn_transformer-1.3.302.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
53
+ warn_transformer-1.3.302.dist-info/entry_points.txt,sha256=MvWNvQnZTu5Fbpd7JMN-KGPeklT6f5v6Hx39uqnBl28,62
54
+ warn_transformer-1.3.302.dist-info/top_level.txt,sha256=8nZpmzmOcqSnismvY34muSX8MvaZM6aEfLldl-wp0fQ,17
55
+ warn_transformer-1.3.302.dist-info/RECORD,,