wandb 0.20.1rc20250604__py3-none-musllinux_1_2_aarch64.whl → 0.21.0__py3-none-musllinux_1_2_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- wandb/__init__.py +3 -6
- wandb/__init__.pyi +24 -23
- wandb/analytics/sentry.py +2 -2
- wandb/apis/importers/internals/internal.py +0 -3
- wandb/apis/internal.py +3 -0
- wandb/apis/paginator.py +17 -4
- wandb/apis/public/api.py +85 -4
- wandb/apis/public/artifacts.py +10 -8
- wandb/apis/public/files.py +5 -5
- wandb/apis/public/projects.py +44 -3
- wandb/apis/public/registries/{utils.py → _utils.py} +12 -12
- wandb/apis/public/registries/registries_search.py +2 -2
- wandb/apis/public/registries/registry.py +19 -18
- wandb/apis/public/reports.py +64 -8
- wandb/apis/public/runs.py +16 -23
- wandb/automations/__init__.py +10 -10
- wandb/automations/_filters/run_metrics.py +0 -2
- wandb/automations/_utils.py +0 -2
- wandb/automations/actions.py +0 -2
- wandb/automations/automations.py +0 -2
- wandb/automations/events.py +0 -2
- wandb/bin/gpu_stats +0 -0
- wandb/bin/wandb-core +0 -0
- wandb/cli/beta.py +1 -7
- wandb/cli/cli.py +0 -30
- wandb/env.py +0 -6
- wandb/integration/catboost/catboost.py +6 -2
- wandb/integration/kfp/kfp_patch.py +3 -1
- wandb/integration/sb3/sb3.py +3 -3
- wandb/integration/ultralytics/callback.py +6 -2
- wandb/plot/__init__.py +2 -0
- wandb/plot/bar.py +30 -29
- wandb/plot/confusion_matrix.py +75 -71
- wandb/plot/histogram.py +26 -25
- wandb/plot/line.py +33 -32
- wandb/plot/line_series.py +100 -103
- wandb/plot/pr_curve.py +33 -32
- wandb/plot/roc_curve.py +38 -38
- wandb/plot/scatter.py +27 -27
- wandb/proto/v3/wandb_internal_pb2.py +366 -385
- wandb/proto/v3/wandb_settings_pb2.py +2 -2
- wandb/proto/v3/wandb_telemetry_pb2.py +10 -10
- wandb/proto/v4/wandb_internal_pb2.py +352 -356
- wandb/proto/v4/wandb_settings_pb2.py +2 -2
- wandb/proto/v4/wandb_telemetry_pb2.py +10 -10
- wandb/proto/v5/wandb_internal_pb2.py +352 -356
- wandb/proto/v5/wandb_settings_pb2.py +2 -2
- wandb/proto/v5/wandb_telemetry_pb2.py +10 -10
- wandb/proto/v6/wandb_internal_pb2.py +352 -356
- wandb/proto/v6/wandb_settings_pb2.py +2 -2
- wandb/proto/v6/wandb_telemetry_pb2.py +10 -10
- wandb/sdk/artifacts/_generated/__init__.py +12 -1
- wandb/sdk/artifacts/_generated/input_types.py +20 -2
- wandb/sdk/artifacts/_generated/link_artifact.py +21 -0
- wandb/sdk/artifacts/_generated/operations.py +9 -0
- wandb/sdk/artifacts/_validators.py +40 -2
- wandb/sdk/artifacts/artifact.py +163 -21
- wandb/sdk/artifacts/storage_handlers/s3_handler.py +42 -1
- wandb/sdk/backend/backend.py +1 -1
- wandb/sdk/data_types/base_types/media.py +9 -7
- wandb/sdk/data_types/base_types/wb_value.py +6 -6
- wandb/sdk/data_types/saved_model.py +3 -3
- wandb/sdk/data_types/table.py +41 -41
- wandb/sdk/data_types/trace_tree.py +12 -12
- wandb/sdk/interface/interface.py +8 -19
- wandb/sdk/interface/interface_shared.py +7 -16
- wandb/sdk/internal/datastore.py +18 -18
- wandb/sdk/internal/handler.py +4 -74
- wandb/sdk/internal/internal_api.py +54 -0
- wandb/sdk/internal/sender.py +23 -3
- wandb/sdk/internal/sender_config.py +9 -0
- wandb/sdk/launch/_project_spec.py +3 -3
- wandb/sdk/launch/agent/agent.py +3 -3
- wandb/sdk/launch/agent/job_status_tracker.py +3 -1
- wandb/sdk/launch/utils.py +3 -3
- wandb/sdk/lib/console_capture.py +66 -19
- wandb/sdk/lib/printer.py +6 -7
- wandb/sdk/lib/progress.py +1 -3
- wandb/sdk/lib/service/ipc_support.py +13 -0
- wandb/sdk/lib/{service_connection.py → service/service_connection.py} +20 -56
- wandb/sdk/lib/service/service_port_file.py +105 -0
- wandb/sdk/lib/service/service_process.py +111 -0
- wandb/sdk/lib/service/service_token.py +164 -0
- wandb/sdk/lib/sock_client.py +8 -12
- wandb/sdk/wandb_init.py +1 -5
- wandb/sdk/wandb_require.py +9 -21
- wandb/sdk/wandb_run.py +23 -137
- wandb/sdk/wandb_settings.py +233 -80
- wandb/sdk/wandb_setup.py +2 -13
- {wandb-0.20.1rc20250604.dist-info → wandb-0.21.0.dist-info}/METADATA +1 -3
- {wandb-0.20.1rc20250604.dist-info → wandb-0.21.0.dist-info}/RECORD +94 -120
- wandb/sdk/internal/flow_control.py +0 -263
- wandb/sdk/internal/internal.py +0 -401
- wandb/sdk/internal/internal_util.py +0 -97
- wandb/sdk/internal/system/__init__.py +0 -0
- wandb/sdk/internal/system/assets/__init__.py +0 -25
- wandb/sdk/internal/system/assets/aggregators.py +0 -31
- wandb/sdk/internal/system/assets/asset_registry.py +0 -20
- wandb/sdk/internal/system/assets/cpu.py +0 -163
- wandb/sdk/internal/system/assets/disk.py +0 -210
- wandb/sdk/internal/system/assets/gpu.py +0 -416
- wandb/sdk/internal/system/assets/gpu_amd.py +0 -233
- wandb/sdk/internal/system/assets/interfaces.py +0 -205
- wandb/sdk/internal/system/assets/ipu.py +0 -177
- wandb/sdk/internal/system/assets/memory.py +0 -166
- wandb/sdk/internal/system/assets/network.py +0 -125
- wandb/sdk/internal/system/assets/open_metrics.py +0 -293
- wandb/sdk/internal/system/assets/tpu.py +0 -154
- wandb/sdk/internal/system/assets/trainium.py +0 -393
- wandb/sdk/internal/system/env_probe_helpers.py +0 -13
- wandb/sdk/internal/system/system_info.py +0 -248
- wandb/sdk/internal/system/system_monitor.py +0 -224
- wandb/sdk/internal/writer.py +0 -204
- wandb/sdk/lib/service_token.py +0 -93
- wandb/sdk/service/__init__.py +0 -0
- wandb/sdk/service/_startup_debug.py +0 -22
- wandb/sdk/service/port_file.py +0 -53
- wandb/sdk/service/server.py +0 -107
- wandb/sdk/service/server_sock.py +0 -286
- wandb/sdk/service/service.py +0 -252
- wandb/sdk/service/streams.py +0 -425
- wandb/sdk/wandb_metadata.py +0 -623
- {wandb-0.20.1rc20250604.dist-info → wandb-0.21.0.dist-info}/WHEEL +0 -0
- {wandb-0.20.1rc20250604.dist-info → wandb-0.21.0.dist-info}/entry_points.txt +0 -0
- {wandb-0.20.1rc20250604.dist-info → wandb-0.21.0.dist-info}/licenses/LICENSE +0 -0
wandb/plot/confusion_matrix.py
CHANGED
@@ -23,16 +23,16 @@ def confusion_matrix(
|
|
23
23
|
"""Constructs a confusion matrix from a sequence of probabilities or predictions.
|
24
24
|
|
25
25
|
Args:
|
26
|
-
probs
|
26
|
+
probs: A sequence of predicted probabilities for each
|
27
27
|
class. The sequence shape should be (N, K) where N is the number of samples
|
28
28
|
and K is the number of classes. If provided, `preds` should not be provided.
|
29
|
-
y_true
|
30
|
-
preds
|
29
|
+
y_true: A sequence of true labels.
|
30
|
+
preds: A sequence of predicted class labels. If provided,
|
31
31
|
`probs` should not be provided.
|
32
|
-
class_names
|
32
|
+
class_names: Sequence of class names. If not
|
33
33
|
provided, class names will be defined as "Class_1", "Class_2", etc.
|
34
|
-
title
|
35
|
-
split_table
|
34
|
+
title: Title of the confusion matrix chart.
|
35
|
+
split_table: Whether the table should be split into a separate section
|
36
36
|
in the W&B UI. If `True`, the table will be displayed in a section named
|
37
37
|
"Custom Chart Tables". Default is `False`.
|
38
38
|
|
@@ -48,75 +48,79 @@ def confusion_matrix(
|
|
48
48
|
wandb.Error: If numpy is not installed.
|
49
49
|
|
50
50
|
Examples:
|
51
|
-
|
52
|
-
|
53
|
-
|
54
|
-
|
55
|
-
|
56
|
-
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
|
51
|
+
Logging a confusion matrix with random probabilities for wildlife
|
52
|
+
classification:
|
53
|
+
|
54
|
+
```python
|
55
|
+
import numpy as np
|
56
|
+
import wandb
|
57
|
+
|
58
|
+
# Define class names for wildlife
|
59
|
+
wildlife_class_names = ["Lion", "Tiger", "Elephant", "Zebra"]
|
60
|
+
|
61
|
+
# Generate random true labels (0 to 3 for 10 samples)
|
62
|
+
wildlife_y_true = np.random.randint(0, 4, size=10)
|
63
|
+
|
64
|
+
# Generate random probabilities for each class (10 samples x 4 classes)
|
65
|
+
wildlife_probs = np.random.rand(10, 4)
|
66
|
+
wildlife_probs = np.exp(wildlife_probs) / np.sum(
|
67
|
+
np.exp(wildlife_probs),
|
68
|
+
axis=1,
|
69
|
+
keepdims=True,
|
70
|
+
)
|
71
|
+
|
72
|
+
# Initialize W&B run and log confusion matrix
|
73
|
+
with wandb.init(project="wildlife_classification") as run:
|
74
|
+
confusion_matrix = wandb.plot.confusion_matrix(
|
75
|
+
probs=wildlife_probs,
|
76
|
+
y_true=wildlife_y_true,
|
77
|
+
class_names=wildlife_class_names,
|
78
|
+
title="Wildlife Classification Confusion Matrix",
|
69
79
|
)
|
80
|
+
run.log({"wildlife_confusion_matrix": confusion_matrix})
|
81
|
+
```
|
82
|
+
|
83
|
+
In this example, random probabilities are used to generate a confusion
|
84
|
+
matrix.
|
85
|
+
|
86
|
+
Logging a confusion matrix with simulated model predictions and 85%
|
87
|
+
accuracy:
|
70
88
|
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
84
|
-
|
85
|
-
|
86
|
-
|
87
|
-
|
88
|
-
|
89
|
-
|
90
|
-
|
91
|
-
|
92
|
-
|
93
|
-
|
94
|
-
|
95
|
-
|
96
|
-
|
97
|
-
|
89
|
+
```python
|
90
|
+
import numpy as np
|
91
|
+
import wandb
|
92
|
+
|
93
|
+
# Define class names for wildlife
|
94
|
+
wildlife_class_names = ["Lion", "Tiger", "Elephant", "Zebra"]
|
95
|
+
|
96
|
+
# Simulate true labels for 200 animal images (imbalanced distribution)
|
97
|
+
wildlife_y_true = np.random.choice(
|
98
|
+
[0, 1, 2, 3],
|
99
|
+
size=200,
|
100
|
+
p=[0.2, 0.3, 0.25, 0.25],
|
101
|
+
)
|
102
|
+
|
103
|
+
# Simulate model predictions with 85% accuracy
|
104
|
+
wildlife_preds = [
|
105
|
+
y_t
|
106
|
+
if np.random.rand() < 0.85
|
107
|
+
else np.random.choice([x for x in range(4) if x != y_t])
|
108
|
+
for y_t in wildlife_y_true
|
109
|
+
]
|
110
|
+
|
111
|
+
# Initialize W&B run and log confusion matrix
|
112
|
+
with wandb.init(project="wildlife_classification") as run:
|
113
|
+
confusion_matrix = wandb.plot.confusion_matrix(
|
114
|
+
preds=wildlife_preds,
|
115
|
+
y_true=wildlife_y_true,
|
116
|
+
class_names=wildlife_class_names,
|
117
|
+
title="Simulated Wildlife Classification Confusion Matrix",
|
98
118
|
)
|
119
|
+
run.log({"wildlife_confusion_matrix": confusion_matrix})
|
120
|
+
```
|
99
121
|
|
100
|
-
|
101
|
-
|
102
|
-
y_t
|
103
|
-
if np.random.rand() < 0.85
|
104
|
-
else np.random.choice([x for x in range(4) if x != y_t])
|
105
|
-
for y_t in wildlife_y_true
|
106
|
-
]
|
107
|
-
|
108
|
-
# Initialize W&B run and log confusion matrix
|
109
|
-
with wandb.init(project="wildlife_classification") as run:
|
110
|
-
confusion_matrix = wandb.plot.confusion_matrix(
|
111
|
-
preds=wildlife_preds,
|
112
|
-
y_true=wildlife_y_true,
|
113
|
-
class_names=wildlife_class_names,
|
114
|
-
title="Simulated Wildlife Classification Confusion Matrix"
|
115
|
-
)
|
116
|
-
run.log({"wildlife_confusion_matrix": confusion_matrix})
|
117
|
-
```
|
118
|
-
In this example, predictions are simulated with 85% accuracy to generate a
|
119
|
-
confusion matrix.
|
122
|
+
In this example, predictions are simulated with 85% accuracy to generate a
|
123
|
+
confusion matrix.
|
120
124
|
"""
|
121
125
|
np = util.get_module(
|
122
126
|
"numpy",
|
wandb/plot/histogram.py
CHANGED
@@ -18,10 +18,10 @@ def histogram(
|
|
18
18
|
"""Constructs a histogram chart from a W&B Table.
|
19
19
|
|
20
20
|
Args:
|
21
|
-
table
|
22
|
-
value
|
23
|
-
title
|
24
|
-
split_table
|
21
|
+
table: The W&B Table containing the data for the histogram.
|
22
|
+
value: The label for the bin axis (x-axis).
|
23
|
+
title: The title of the histogram plot.
|
24
|
+
split_table: Whether the table should be split into a separate section
|
25
25
|
in the W&B UI. If `True`, the table will be displayed in a section named
|
26
26
|
"Custom Chart Tables". Default is `False`.
|
27
27
|
|
@@ -30,31 +30,32 @@ def histogram(
|
|
30
30
|
chart, pass it to `wandb.log()`.
|
31
31
|
|
32
32
|
Example:
|
33
|
-
```
|
34
|
-
import math
|
35
|
-
import random
|
36
|
-
import wandb
|
37
33
|
|
38
|
-
|
39
|
-
|
34
|
+
```python
|
35
|
+
import math
|
36
|
+
import random
|
37
|
+
import wandb
|
38
|
+
|
39
|
+
# Generate random data
|
40
|
+
data = [[i, random.random() + math.sin(i / 10)] for i in range(100)]
|
40
41
|
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
42
|
+
# Create a W&B Table
|
43
|
+
table = wandb.Table(
|
44
|
+
data=data,
|
45
|
+
columns=["step", "height"],
|
46
|
+
)
|
46
47
|
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
|
51
|
-
|
52
|
-
|
48
|
+
# Create a histogram plot
|
49
|
+
histogram = wandb.plot.histogram(
|
50
|
+
table,
|
51
|
+
value="height",
|
52
|
+
title="My Histogram",
|
53
|
+
)
|
53
54
|
|
54
|
-
|
55
|
-
|
56
|
-
|
57
|
-
|
55
|
+
# Log the histogram plot to W&B
|
56
|
+
with wandb.init(...) as run:
|
57
|
+
run.log({"histogram-plot1": histogram})
|
58
|
+
```
|
58
59
|
"""
|
59
60
|
return plot_table(
|
60
61
|
data_table=table,
|
wandb/plot/line.py
CHANGED
@@ -20,13 +20,13 @@ def line(
|
|
20
20
|
"""Constructs a customizable line chart.
|
21
21
|
|
22
22
|
Args:
|
23
|
-
table
|
24
|
-
x
|
25
|
-
y
|
26
|
-
stroke
|
23
|
+
table: The table containing data for the chart.
|
24
|
+
x: Column name for the x-axis values.
|
25
|
+
y: Column name for the y-axis values.
|
26
|
+
stroke: Column name to differentiate line strokes (e.g., for
|
27
27
|
grouping lines).
|
28
|
-
title
|
29
|
-
split_table
|
28
|
+
title: Title of the chart.
|
29
|
+
split_table: Whether the table should be split into a separate section
|
30
30
|
in the W&B UI. If `True`, the table will be displayed in a section named
|
31
31
|
"Custom Chart Tables". Default is `False`.
|
32
32
|
|
@@ -35,35 +35,36 @@ def line(
|
|
35
35
|
chart, pass it to `wandb.log()`.
|
36
36
|
|
37
37
|
Example:
|
38
|
-
```python
|
39
|
-
import math
|
40
|
-
import random
|
41
|
-
import wandb
|
42
38
|
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
|
51
|
-
|
39
|
+
```python
|
40
|
+
import math
|
41
|
+
import random
|
42
|
+
import wandb
|
43
|
+
|
44
|
+
# Create multiple series of data with different patterns
|
45
|
+
data = []
|
46
|
+
for i in range(100):
|
47
|
+
# Series 1: Sinusoidal pattern with random noise
|
48
|
+
data.append([i, math.sin(i / 10) + random.uniform(-0.1, 0.1), "series_1"])
|
49
|
+
# Series 2: Cosine pattern with random noise
|
50
|
+
data.append([i, math.cos(i / 10) + random.uniform(-0.1, 0.1), "series_2"])
|
51
|
+
# Series 3: Linear increase with random noise
|
52
|
+
data.append([i, i / 10 + random.uniform(-0.5, 0.5), "series_3"])
|
52
53
|
|
53
|
-
|
54
|
-
|
54
|
+
# Define the columns for the table
|
55
|
+
table = wandb.Table(data=data, columns=["step", "value", "series"])
|
55
56
|
|
56
|
-
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
|
66
|
-
|
57
|
+
# Initialize wandb run and log the line chart
|
58
|
+
with wandb.init(project="line_chart_example") as run:
|
59
|
+
line_chart = wandb.plot.line(
|
60
|
+
table=table,
|
61
|
+
x="step",
|
62
|
+
y="value",
|
63
|
+
stroke="series", # Group by the "series" column
|
64
|
+
title="Multi-Series Line Plot",
|
65
|
+
)
|
66
|
+
run.log({"line-chart": line_chart})
|
67
|
+
```
|
67
68
|
"""
|
68
69
|
return plot_table(
|
69
70
|
data_table=table,
|
wandb/plot/line_series.py
CHANGED
@@ -20,18 +20,18 @@ def line_series(
|
|
20
20
|
"""Constructs a line series chart.
|
21
21
|
|
22
22
|
Args:
|
23
|
-
xs
|
23
|
+
xs: Sequence of x values. If a singular
|
24
24
|
array is provided, all y values are plotted against that x array. If
|
25
25
|
an array of arrays is provided, each y value is plotted against the
|
26
26
|
corresponding x array.
|
27
|
-
ys
|
27
|
+
ys: Sequence of y values, where each iterable represents
|
28
28
|
a separate line series.
|
29
|
-
keys
|
29
|
+
keys: Sequence of keys for labeling each line series. If
|
30
30
|
not provided, keys will be automatically generated as "line_1",
|
31
31
|
"line_2", etc.
|
32
|
-
title
|
33
|
-
xname
|
34
|
-
split_table
|
32
|
+
title: Title of the chart.
|
33
|
+
xname: Label for the x-axis.
|
34
|
+
split_table: Whether the table should be split into a separate section
|
35
35
|
in the W&B UI. If `True`, the table will be displayed in a section named
|
36
36
|
"Custom Chart Tables". Default is `False`.
|
37
37
|
|
@@ -40,103 +40,100 @@ def line_series(
|
|
40
40
|
chart, pass it to `wandb.log()`.
|
41
41
|
|
42
42
|
Examples:
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
|
51
|
-
|
52
|
-
|
53
|
-
|
54
|
-
|
55
|
-
|
56
|
-
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
|
80
|
-
|
81
|
-
#
|
82
|
-
|
83
|
-
#
|
84
|
-
|
85
|
-
|
86
|
-
|
87
|
-
|
88
|
-
|
89
|
-
|
90
|
-
#
|
91
|
-
|
92
|
-
|
93
|
-
|
94
|
-
|
95
|
-
|
96
|
-
|
97
|
-
|
98
|
-
|
99
|
-
|
100
|
-
|
101
|
-
|
102
|
-
|
103
|
-
|
104
|
-
|
105
|
-
|
106
|
-
|
107
|
-
|
108
|
-
|
109
|
-
|
110
|
-
|
111
|
-
|
112
|
-
|
113
|
-
#
|
114
|
-
|
115
|
-
|
116
|
-
|
117
|
-
|
118
|
-
|
119
|
-
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
|
124
|
-
|
125
|
-
|
126
|
-
|
127
|
-
|
128
|
-
|
129
|
-
|
130
|
-
|
131
|
-
|
132
|
-
|
133
|
-
|
134
|
-
|
135
|
-
|
136
|
-
|
137
|
-
the `keys` argument. The keys will appear in the legend as "Linear",
|
138
|
-
"Quadratic", and "Cubic".
|
139
|
-
|
43
|
+
Logging a single x array where all y series are plotted against the same x values:
|
44
|
+
|
45
|
+
```python
|
46
|
+
import wandb
|
47
|
+
|
48
|
+
# Initialize W&B run
|
49
|
+
with wandb.init(project="line_series_example") as run:
|
50
|
+
# x values shared across all y series
|
51
|
+
xs = list(range(10))
|
52
|
+
|
53
|
+
# Multiple y series to plot
|
54
|
+
ys = [
|
55
|
+
[i for i in range(10)], # y = x
|
56
|
+
[i**2 for i in range(10)], # y = x^2
|
57
|
+
[i**3 for i in range(10)], # y = x^3
|
58
|
+
]
|
59
|
+
|
60
|
+
# Generate and log the line series chart
|
61
|
+
line_series_chart = wandb.plot.line_series(
|
62
|
+
xs,
|
63
|
+
ys,
|
64
|
+
title="title",
|
65
|
+
xname="step",
|
66
|
+
)
|
67
|
+
run.log({"line-series-single-x": line_series_chart})
|
68
|
+
```
|
69
|
+
|
70
|
+
In this example, a single `xs` series (shared x-values) is used for all
|
71
|
+
`ys` series. This results in each y-series being plotted against the
|
72
|
+
same x-values (0-9).
|
73
|
+
|
74
|
+
Logging multiple x arrays where each y series is plotted against its corresponding x array:
|
75
|
+
|
76
|
+
```python
|
77
|
+
import wandb
|
78
|
+
|
79
|
+
# Initialize W&B run
|
80
|
+
with wandb.init(project="line_series_example") as run:
|
81
|
+
# Separate x values for each y series
|
82
|
+
xs = [
|
83
|
+
[i for i in range(10)], # x for first series
|
84
|
+
[2 * i for i in range(10)], # x for second series (stretched)
|
85
|
+
[3 * i for i in range(10)], # x for third series (stretched more)
|
86
|
+
]
|
87
|
+
|
88
|
+
# Corresponding y series
|
89
|
+
ys = [
|
90
|
+
[i for i in range(10)], # y = x
|
91
|
+
[i**2 for i in range(10)], # y = x^2
|
92
|
+
[i**3 for i in range(10)], # y = x^3
|
93
|
+
]
|
94
|
+
|
95
|
+
# Generate and log the line series chart
|
96
|
+
line_series_chart = wandb.plot.line_series(
|
97
|
+
xs, ys, title="Multiple X Arrays Example", xname="Step"
|
98
|
+
)
|
99
|
+
run.log({"line-series-multiple-x": line_series_chart})
|
100
|
+
```
|
101
|
+
|
102
|
+
In this example, each y series is plotted against its own unique x series.
|
103
|
+
This allows for more flexibility when the x values are not uniform across
|
104
|
+
the data series.
|
105
|
+
|
106
|
+
Customizing line labels using `keys`:
|
107
|
+
|
108
|
+
```python
|
109
|
+
import wandb
|
110
|
+
|
111
|
+
# Initialize W&B run
|
112
|
+
with wandb.init(project="line_series_example") as run:
|
113
|
+
xs = list(range(10)) # Single x array
|
114
|
+
ys = [
|
115
|
+
[i for i in range(10)], # y = x
|
116
|
+
[i**2 for i in range(10)], # y = x^2
|
117
|
+
[i**3 for i in range(10)], # y = x^3
|
118
|
+
]
|
119
|
+
|
120
|
+
# Custom labels for each line
|
121
|
+
keys = ["Linear", "Quadratic", "Cubic"]
|
122
|
+
|
123
|
+
# Generate and log the line series chart
|
124
|
+
line_series_chart = wandb.plot.line_series(
|
125
|
+
xs,
|
126
|
+
ys,
|
127
|
+
keys=keys, # Custom keys (line labels)
|
128
|
+
title="Custom Line Labels Example",
|
129
|
+
xname="Step",
|
130
|
+
)
|
131
|
+
run.log({"line-series-custom-keys": line_series_chart})
|
132
|
+
```
|
133
|
+
|
134
|
+
This example shows how to provide custom labels for the lines using
|
135
|
+
the `keys` argument. The keys will appear in the legend as "Linear",
|
136
|
+
"Quadratic", and "Cubic".
|
140
137
|
"""
|
141
138
|
# If xs is a single array, repeat it for each y in ys
|
142
139
|
if not isinstance(xs[0], Iterable) or isinstance(xs[0], (str, bytes)):
|
wandb/plot/pr_curve.py
CHANGED
@@ -34,24 +34,24 @@ def pr_curve(
|
|
34
34
|
a model's performance.
|
35
35
|
|
36
36
|
Args:
|
37
|
-
y_true
|
38
|
-
y_probas
|
37
|
+
y_true: True binary labels. The shape should be (`num_samples`,).
|
38
|
+
y_probas: Predicted scores or probabilities for each class.
|
39
39
|
These can be probability estimates, confidence scores, or non-thresholded
|
40
40
|
decision values. The shape should be (`num_samples`, `num_classes`).
|
41
|
-
labels
|
41
|
+
labels: Optional list of class names to replace
|
42
42
|
numeric values in `y_true` for easier plot interpretation.
|
43
43
|
For example, `labels = ['dog', 'cat', 'owl']` will replace 0 with
|
44
44
|
'dog', 1 with 'cat', and 2 with 'owl' in the plot. If not provided,
|
45
45
|
numeric values from `y_true` will be used.
|
46
|
-
classes_to_plot
|
46
|
+
classes_to_plot: Optional list of unique class values from
|
47
47
|
y_true to be included in the plot. If not specified, all unique
|
48
48
|
classes in y_true will be plotted.
|
49
|
-
interp_size
|
49
|
+
interp_size: Number of points to interpolate recall values. The
|
50
50
|
recall values will be fixed to `interp_size` uniformly distributed
|
51
51
|
points in the range [0, 1], and the precision will be interpolated
|
52
52
|
accordingly.
|
53
|
-
title
|
54
|
-
split_table
|
53
|
+
title: Title of the plot. Defaults to "Precision-Recall Curve".
|
54
|
+
split_table: Whether the table should be split into a separate section
|
55
55
|
in the W&B UI. If `True`, the table will be displayed in a section named
|
56
56
|
"Custom Chart Tables". Default is `False`.
|
57
57
|
|
@@ -60,34 +60,35 @@ def pr_curve(
|
|
60
60
|
chart, pass it to `wandb.log()`.
|
61
61
|
|
62
62
|
Raises:
|
63
|
-
wandb.Error: If
|
63
|
+
wandb.Error: If NumPy, pandas, or scikit-learn is not installed.
|
64
64
|
|
65
65
|
|
66
66
|
Example:
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
]
|
79
|
-
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
84
|
-
|
85
|
-
|
86
|
-
|
87
|
-
|
88
|
-
|
89
|
-
|
90
|
-
|
67
|
+
|
68
|
+
```python
|
69
|
+
import wandb
|
70
|
+
|
71
|
+
# Example for spam detection (binary classification)
|
72
|
+
y_true = [0, 1, 1, 0, 1] # 0 = not spam, 1 = spam
|
73
|
+
y_probas = [
|
74
|
+
[0.9, 0.1], # Predicted probabilities for the first sample (not spam)
|
75
|
+
[0.2, 0.8], # Second sample (spam), and so on
|
76
|
+
[0.1, 0.9],
|
77
|
+
[0.8, 0.2],
|
78
|
+
[0.3, 0.7],
|
79
|
+
]
|
80
|
+
|
81
|
+
labels = ["not spam", "spam"] # Optional class names for readability
|
82
|
+
|
83
|
+
with wandb.init(project="spam-detection") as run:
|
84
|
+
pr_curve = wandb.plot.pr_curve(
|
85
|
+
y_true=y_true,
|
86
|
+
y_probas=y_probas,
|
87
|
+
labels=labels,
|
88
|
+
title="Precision-Recall Curve for Spam Detection",
|
89
|
+
)
|
90
|
+
run.log({"pr-curve": pr_curve})
|
91
|
+
```
|
91
92
|
"""
|
92
93
|
np = util.get_module(
|
93
94
|
"numpy",
|