wandb 0.18.0rc1__py3-none-win_amd64.whl → 0.18.2__py3-none-win_amd64.whl
Sign up to get free protection for your applications and to get access to all the features.
- wandb/__init__.py +4 -4
- wandb/__init__.pyi +67 -12
- wandb/apis/internal.py +3 -0
- wandb/apis/public/api.py +128 -2
- wandb/apis/public/artifacts.py +11 -7
- wandb/apis/public/jobs.py +8 -0
- wandb/apis/public/runs.py +18 -5
- wandb/bin/wandb-core +0 -0
- wandb/cli/cli.py +0 -5
- wandb/data_types.py +9 -2019
- wandb/env.py +0 -5
- wandb/errors/__init__.py +11 -40
- wandb/errors/errors.py +37 -0
- wandb/errors/warnings.py +2 -0
- wandb/{sklearn → integration/sklearn}/calculate/calibration_curves.py +7 -7
- wandb/{sklearn → integration/sklearn}/calculate/class_proportions.py +1 -1
- wandb/{sklearn → integration/sklearn}/calculate/confusion_matrix.py +3 -2
- wandb/{sklearn → integration/sklearn}/calculate/elbow_curve.py +6 -6
- wandb/{sklearn → integration/sklearn}/calculate/learning_curve.py +2 -2
- wandb/{sklearn → integration/sklearn}/calculate/outlier_candidates.py +2 -2
- wandb/{sklearn → integration/sklearn}/calculate/residuals.py +8 -8
- wandb/{sklearn → integration/sklearn}/calculate/silhouette.py +2 -2
- wandb/{sklearn → integration/sklearn}/calculate/summary_metrics.py +2 -2
- wandb/{sklearn → integration/sklearn}/plot/classifier.py +5 -5
- wandb/{sklearn → integration/sklearn}/plot/clusterer.py +10 -6
- wandb/{sklearn → integration/sklearn}/plot/regressor.py +5 -5
- wandb/{sklearn → integration/sklearn}/plot/shared.py +3 -3
- wandb/{sklearn → integration/sklearn}/utils.py +8 -8
- wandb/integration/tensorboard/log.py +1 -1
- wandb/{wandb_torch.py → integration/torch/wandb_torch.py} +36 -32
- wandb/old/core.py +2 -80
- wandb/plot/bar.py +7 -4
- wandb/plot/confusion_matrix.py +5 -4
- wandb/plot/histogram.py +7 -4
- wandb/plot/line.py +7 -4
- wandb/proto/v3/wandb_base_pb2.py +2 -1
- wandb/proto/v3/wandb_internal_pb2.py +2 -1
- wandb/proto/v3/wandb_server_pb2.py +2 -1
- wandb/proto/v3/wandb_settings_pb2.py +3 -2
- wandb/proto/v3/wandb_telemetry_pb2.py +2 -1
- wandb/proto/v4/wandb_base_pb2.py +2 -1
- wandb/proto/v4/wandb_internal_pb2.py +2 -1
- wandb/proto/v4/wandb_server_pb2.py +2 -1
- wandb/proto/v4/wandb_settings_pb2.py +3 -2
- wandb/proto/v4/wandb_telemetry_pb2.py +2 -1
- wandb/proto/v5/wandb_base_pb2.py +3 -2
- wandb/proto/v5/wandb_internal_pb2.py +3 -2
- wandb/proto/v5/wandb_server_pb2.py +3 -2
- wandb/proto/v5/wandb_settings_pb2.py +4 -3
- wandb/proto/v5/wandb_telemetry_pb2.py +3 -2
- wandb/sdk/artifacts/_validators.py +48 -3
- wandb/sdk/artifacts/artifact.py +157 -183
- wandb/sdk/artifacts/artifact_file_cache.py +13 -11
- wandb/sdk/artifacts/artifact_instance_cache.py +4 -2
- wandb/sdk/artifacts/artifact_manifest.py +13 -11
- wandb/sdk/artifacts/artifact_manifest_entry.py +24 -22
- wandb/sdk/artifacts/artifact_manifests/artifact_manifest_v1.py +9 -7
- wandb/sdk/artifacts/artifact_saver.py +27 -25
- wandb/sdk/artifacts/exceptions.py +26 -25
- wandb/sdk/artifacts/storage_handler.py +11 -9
- wandb/sdk/artifacts/storage_handlers/azure_handler.py +16 -14
- wandb/sdk/artifacts/storage_handlers/gcs_handler.py +15 -13
- wandb/sdk/artifacts/storage_handlers/http_handler.py +15 -14
- wandb/sdk/artifacts/storage_handlers/local_file_handler.py +10 -8
- wandb/sdk/artifacts/storage_handlers/multi_handler.py +14 -12
- wandb/sdk/artifacts/storage_handlers/s3_handler.py +19 -19
- wandb/sdk/artifacts/storage_handlers/tracking_handler.py +10 -8
- wandb/sdk/artifacts/storage_handlers/wb_artifact_handler.py +12 -10
- wandb/sdk/artifacts/storage_handlers/wb_local_artifact_handler.py +9 -7
- wandb/sdk/artifacts/storage_policies/wandb_storage_policy.py +31 -29
- wandb/sdk/artifacts/storage_policy.py +20 -20
- wandb/sdk/backend/backend.py +8 -26
- wandb/sdk/data_types/audio.py +165 -0
- wandb/sdk/data_types/base_types/wb_value.py +1 -3
- wandb/sdk/data_types/bokeh.py +70 -0
- wandb/sdk/data_types/graph.py +405 -0
- wandb/sdk/data_types/image.py +156 -0
- wandb/sdk/data_types/table.py +1204 -0
- wandb/sdk/data_types/trace_tree.py +2 -2
- wandb/sdk/data_types/utils.py +49 -0
- wandb/sdk/data_types/video.py +2 -2
- wandb/sdk/interface/interface.py +0 -24
- wandb/sdk/interface/interface_shared.py +0 -12
- wandb/sdk/internal/handler.py +0 -10
- wandb/sdk/internal/internal_api.py +71 -0
- wandb/sdk/internal/sender.py +0 -43
- wandb/sdk/internal/tb_watcher.py +1 -1
- wandb/sdk/lib/_settings_toposort_generated.py +1 -0
- wandb/sdk/lib/hashutil.py +34 -12
- wandb/sdk/lib/service_connection.py +216 -0
- wandb/sdk/lib/service_token.py +94 -0
- wandb/sdk/lib/sock_client.py +7 -3
- wandb/sdk/service/server.py +2 -5
- wandb/sdk/service/service.py +2 -31
- wandb/sdk/service/streams.py +0 -7
- wandb/sdk/wandb_init.py +42 -25
- wandb/sdk/wandb_run.py +18 -159
- wandb/sdk/wandb_settings.py +2 -0
- wandb/sdk/wandb_setup.py +25 -16
- wandb/sdk/wandb_sync.py +9 -3
- wandb/sdk/wandb_watch.py +31 -15
- wandb/sklearn.py +35 -0
- wandb/util.py +14 -3
- {wandb-0.18.0rc1.dist-info → wandb-0.18.2.dist-info}/METADATA +6 -5
- {wandb-0.18.0rc1.dist-info → wandb-0.18.2.dist-info}/RECORD +114 -110
- wandb/sdk/internal/update.py +0 -113
- wandb/sdk/lib/console.py +0 -39
- wandb/sdk/service/service_base.py +0 -50
- wandb/sdk/service/service_sock.py +0 -70
- wandb/sdk/wandb_manager.py +0 -232
- /wandb/{sklearn → integration/sklearn}/__init__.py +0 -0
- /wandb/{sklearn → integration/sklearn}/calculate/__init__.py +0 -0
- /wandb/{sklearn → integration/sklearn}/calculate/decision_boundaries.py +0 -0
- /wandb/{sklearn → integration/sklearn}/calculate/feature_importances.py +0 -0
- /wandb/{sklearn → integration/sklearn}/plot/__init__.py +0 -0
- /wandb/{sdk/lib → plot}/viz.py +0 -0
- {wandb-0.18.0rc1.dist-info → wandb-0.18.2.dist-info}/WHEEL +0 -0
- {wandb-0.18.0rc1.dist-info → wandb-0.18.2.dist-info}/entry_points.txt +0 -0
- {wandb-0.18.0rc1.dist-info → wandb-0.18.2.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,405 @@
|
|
1
|
+
import codecs
|
2
|
+
import os
|
3
|
+
import pprint
|
4
|
+
|
5
|
+
from wandb import util
|
6
|
+
from wandb.sdk.data_types._private import MEDIA_TMP
|
7
|
+
from wandb.sdk.data_types.base_types.media import Media, _numpy_arrays_to_lists
|
8
|
+
from wandb.sdk.data_types.base_types.wb_value import WBValue
|
9
|
+
from wandb.sdk.lib import runid
|
10
|
+
|
11
|
+
|
12
|
+
def _nest(thing):
|
13
|
+
# Use tensorflows nest function if available, otherwise just wrap object in an array"""
|
14
|
+
|
15
|
+
tfutil = util.get_module("tensorflow.python.util")
|
16
|
+
if tfutil:
|
17
|
+
return tfutil.nest.flatten(thing)
|
18
|
+
else:
|
19
|
+
return [thing]
|
20
|
+
|
21
|
+
|
22
|
+
class Edge(WBValue):
|
23
|
+
"""Edge used in `Graph`."""
|
24
|
+
|
25
|
+
def __init__(self, from_node, to_node):
|
26
|
+
self._attributes = {}
|
27
|
+
self.from_node = from_node
|
28
|
+
self.to_node = to_node
|
29
|
+
|
30
|
+
def __repr__(self):
|
31
|
+
temp_attr = dict(self._attributes)
|
32
|
+
del temp_attr["from_node"]
|
33
|
+
del temp_attr["to_node"]
|
34
|
+
temp_attr["from_id"] = self.from_node.id
|
35
|
+
temp_attr["to_id"] = self.to_node.id
|
36
|
+
return str(temp_attr)
|
37
|
+
|
38
|
+
def to_json(self, run=None):
|
39
|
+
return [self.from_node.id, self.to_node.id]
|
40
|
+
|
41
|
+
@property
|
42
|
+
def name(self):
|
43
|
+
"""Optional, not necessarily unique."""
|
44
|
+
return self._attributes.get("name")
|
45
|
+
|
46
|
+
@name.setter
|
47
|
+
def name(self, val):
|
48
|
+
self._attributes["name"] = val
|
49
|
+
return val
|
50
|
+
|
51
|
+
@property
|
52
|
+
def from_node(self):
|
53
|
+
return self._attributes.get("from_node")
|
54
|
+
|
55
|
+
@from_node.setter
|
56
|
+
def from_node(self, val):
|
57
|
+
self._attributes["from_node"] = val
|
58
|
+
return val
|
59
|
+
|
60
|
+
@property
|
61
|
+
def to_node(self):
|
62
|
+
return self._attributes.get("to_node")
|
63
|
+
|
64
|
+
@to_node.setter
|
65
|
+
def to_node(self, val):
|
66
|
+
self._attributes["to_node"] = val
|
67
|
+
return val
|
68
|
+
|
69
|
+
|
70
|
+
class Node(WBValue):
|
71
|
+
"""Node used in `Graph`."""
|
72
|
+
|
73
|
+
def __init__(
|
74
|
+
self,
|
75
|
+
id=None,
|
76
|
+
name=None,
|
77
|
+
class_name=None,
|
78
|
+
size=None,
|
79
|
+
parameters=None,
|
80
|
+
output_shape=None,
|
81
|
+
is_output=None,
|
82
|
+
num_parameters=None,
|
83
|
+
node=None,
|
84
|
+
):
|
85
|
+
self._attributes = {"name": None}
|
86
|
+
self.in_edges = {} # indexed by source node id
|
87
|
+
self.out_edges = {} # indexed by dest node id
|
88
|
+
# optional object (e.g. PyTorch Parameter or Module) that this Node represents
|
89
|
+
self.obj = None
|
90
|
+
|
91
|
+
if node is not None:
|
92
|
+
self._attributes.update(node._attributes)
|
93
|
+
del self._attributes["id"]
|
94
|
+
self.obj = node.obj
|
95
|
+
|
96
|
+
if id is not None:
|
97
|
+
self.id = id
|
98
|
+
if name is not None:
|
99
|
+
self.name = name
|
100
|
+
if class_name is not None:
|
101
|
+
self.class_name = class_name
|
102
|
+
if size is not None:
|
103
|
+
self.size = size
|
104
|
+
if parameters is not None:
|
105
|
+
self.parameters = parameters
|
106
|
+
if output_shape is not None:
|
107
|
+
self.output_shape = output_shape
|
108
|
+
if is_output is not None:
|
109
|
+
self.is_output = is_output
|
110
|
+
if num_parameters is not None:
|
111
|
+
self.num_parameters = num_parameters
|
112
|
+
|
113
|
+
def to_json(self, run=None):
|
114
|
+
return self._attributes
|
115
|
+
|
116
|
+
def __repr__(self):
|
117
|
+
return repr(self._attributes)
|
118
|
+
|
119
|
+
@property
|
120
|
+
def id(self):
|
121
|
+
"""Must be unique in the graph."""
|
122
|
+
return self._attributes.get("id")
|
123
|
+
|
124
|
+
@id.setter
|
125
|
+
def id(self, val):
|
126
|
+
self._attributes["id"] = val
|
127
|
+
return val
|
128
|
+
|
129
|
+
@property
|
130
|
+
def name(self):
|
131
|
+
"""Usually the type of layer or sublayer."""
|
132
|
+
return self._attributes.get("name")
|
133
|
+
|
134
|
+
@name.setter
|
135
|
+
def name(self, val):
|
136
|
+
self._attributes["name"] = val
|
137
|
+
return val
|
138
|
+
|
139
|
+
@property
|
140
|
+
def class_name(self):
|
141
|
+
"""Usually the type of layer or sublayer."""
|
142
|
+
return self._attributes.get("class_name")
|
143
|
+
|
144
|
+
@class_name.setter
|
145
|
+
def class_name(self, val):
|
146
|
+
self._attributes["class_name"] = val
|
147
|
+
return val
|
148
|
+
|
149
|
+
@property
|
150
|
+
def functions(self):
|
151
|
+
return self._attributes.get("functions", [])
|
152
|
+
|
153
|
+
@functions.setter
|
154
|
+
def functions(self, val):
|
155
|
+
self._attributes["functions"] = val
|
156
|
+
return val
|
157
|
+
|
158
|
+
@property
|
159
|
+
def parameters(self):
|
160
|
+
return self._attributes.get("parameters", [])
|
161
|
+
|
162
|
+
@parameters.setter
|
163
|
+
def parameters(self, val):
|
164
|
+
self._attributes["parameters"] = val
|
165
|
+
return val
|
166
|
+
|
167
|
+
@property
|
168
|
+
def size(self):
|
169
|
+
return self._attributes.get("size")
|
170
|
+
|
171
|
+
@size.setter
|
172
|
+
def size(self, val):
|
173
|
+
"""Tensor size."""
|
174
|
+
self._attributes["size"] = tuple(val)
|
175
|
+
return val
|
176
|
+
|
177
|
+
@property
|
178
|
+
def output_shape(self):
|
179
|
+
return self._attributes.get("output_shape")
|
180
|
+
|
181
|
+
@output_shape.setter
|
182
|
+
def output_shape(self, val):
|
183
|
+
"""Tensor output_shape."""
|
184
|
+
self._attributes["output_shape"] = val
|
185
|
+
return val
|
186
|
+
|
187
|
+
@property
|
188
|
+
def is_output(self):
|
189
|
+
return self._attributes.get("is_output")
|
190
|
+
|
191
|
+
@is_output.setter
|
192
|
+
def is_output(self, val):
|
193
|
+
"""Tensor is_output."""
|
194
|
+
self._attributes["is_output"] = val
|
195
|
+
return val
|
196
|
+
|
197
|
+
@property
|
198
|
+
def num_parameters(self):
|
199
|
+
return self._attributes.get("num_parameters")
|
200
|
+
|
201
|
+
@num_parameters.setter
|
202
|
+
def num_parameters(self, val):
|
203
|
+
"""Tensor num_parameters."""
|
204
|
+
self._attributes["num_parameters"] = val
|
205
|
+
return val
|
206
|
+
|
207
|
+
@property
|
208
|
+
def child_parameters(self):
|
209
|
+
return self._attributes.get("child_parameters")
|
210
|
+
|
211
|
+
@child_parameters.setter
|
212
|
+
def child_parameters(self, val):
|
213
|
+
"""Tensor child_parameters."""
|
214
|
+
self._attributes["child_parameters"] = val
|
215
|
+
return val
|
216
|
+
|
217
|
+
@property
|
218
|
+
def is_constant(self):
|
219
|
+
return self._attributes.get("is_constant")
|
220
|
+
|
221
|
+
@is_constant.setter
|
222
|
+
def is_constant(self, val):
|
223
|
+
"""Tensor is_constant."""
|
224
|
+
self._attributes["is_constant"] = val
|
225
|
+
return val
|
226
|
+
|
227
|
+
@classmethod
|
228
|
+
def from_keras(cls, layer):
|
229
|
+
node = cls()
|
230
|
+
|
231
|
+
try:
|
232
|
+
output_shape = layer.output_shape
|
233
|
+
except AttributeError:
|
234
|
+
output_shape = ["multiple"]
|
235
|
+
|
236
|
+
node.id = layer.name
|
237
|
+
node.name = layer.name
|
238
|
+
node.class_name = layer.__class__.__name__
|
239
|
+
node.output_shape = output_shape
|
240
|
+
node.num_parameters = layer.count_params()
|
241
|
+
|
242
|
+
return node
|
243
|
+
|
244
|
+
|
245
|
+
class Graph(Media):
|
246
|
+
"""Wandb class for graphs.
|
247
|
+
|
248
|
+
This class is typically used for saving and displaying neural net models. It
|
249
|
+
represents the graph as an array of nodes and edges. The nodes can have
|
250
|
+
labels that can be visualized by wandb.
|
251
|
+
|
252
|
+
Examples:
|
253
|
+
Import a keras model:
|
254
|
+
```
|
255
|
+
Graph.from_keras(keras_model)
|
256
|
+
```
|
257
|
+
|
258
|
+
Attributes:
|
259
|
+
format (string): Format to help wandb display the graph nicely.
|
260
|
+
nodes ([wandb.Node]): List of wandb.Nodes
|
261
|
+
nodes_by_id (dict): dict of ids -> nodes
|
262
|
+
edges ([(wandb.Node, wandb.Node)]): List of pairs of nodes interpreted as edges
|
263
|
+
loaded (boolean): Flag to tell whether the graph is completely loaded
|
264
|
+
root (wandb.Node): root node of the graph
|
265
|
+
"""
|
266
|
+
|
267
|
+
_log_type = "graph-file"
|
268
|
+
|
269
|
+
def __init__(self, format="keras"):
|
270
|
+
super().__init__()
|
271
|
+
# LB: TODO: I think we should factor criterion and criterion_passed out
|
272
|
+
self.format = format
|
273
|
+
self.nodes = []
|
274
|
+
self.nodes_by_id = {}
|
275
|
+
self.edges = []
|
276
|
+
self.loaded = False
|
277
|
+
self.criterion = None
|
278
|
+
self.criterion_passed = False
|
279
|
+
self.root = None # optional root Node if applicable
|
280
|
+
|
281
|
+
def _to_graph_json(self, run=None):
|
282
|
+
# Needs to be its own function for tests
|
283
|
+
return {
|
284
|
+
"format": self.format,
|
285
|
+
"nodes": [node.to_json() for node in self.nodes],
|
286
|
+
"edges": [edge.to_json() for edge in self.edges],
|
287
|
+
}
|
288
|
+
|
289
|
+
def bind_to_run(self, *args, **kwargs):
|
290
|
+
data = self._to_graph_json()
|
291
|
+
tmp_path = os.path.join(MEDIA_TMP.name, runid.generate_id() + ".graph.json")
|
292
|
+
data = _numpy_arrays_to_lists(data)
|
293
|
+
with codecs.open(tmp_path, "w", encoding="utf-8") as fp:
|
294
|
+
util.json_dump_safer(data, fp)
|
295
|
+
self._set_file(tmp_path, is_tmp=True, extension=".graph.json")
|
296
|
+
if self.is_bound():
|
297
|
+
return
|
298
|
+
super().bind_to_run(*args, **kwargs)
|
299
|
+
|
300
|
+
@classmethod
|
301
|
+
def get_media_subdir(cls):
|
302
|
+
return os.path.join("media", "graph")
|
303
|
+
|
304
|
+
def to_json(self, run):
|
305
|
+
json_dict = super().to_json(run)
|
306
|
+
json_dict["_type"] = self._log_type
|
307
|
+
return json_dict
|
308
|
+
|
309
|
+
def __getitem__(self, nid):
|
310
|
+
return self.nodes_by_id[nid]
|
311
|
+
|
312
|
+
def pprint(self):
|
313
|
+
for edge in self.edges:
|
314
|
+
pprint.pprint(edge.attributes)
|
315
|
+
for node in self.nodes:
|
316
|
+
pprint.pprint(node.attributes)
|
317
|
+
|
318
|
+
def add_node(self, node=None, **node_kwargs):
|
319
|
+
if node is None:
|
320
|
+
node = Node(**node_kwargs)
|
321
|
+
elif node_kwargs:
|
322
|
+
raise ValueError(
|
323
|
+
f"Only pass one of either node ({node}) or other keyword arguments ({node_kwargs})"
|
324
|
+
)
|
325
|
+
self.nodes.append(node)
|
326
|
+
self.nodes_by_id[node.id] = node
|
327
|
+
|
328
|
+
return node
|
329
|
+
|
330
|
+
def add_edge(self, from_node, to_node):
|
331
|
+
edge = Edge(from_node, to_node)
|
332
|
+
self.edges.append(edge)
|
333
|
+
|
334
|
+
return edge
|
335
|
+
|
336
|
+
@classmethod
|
337
|
+
def from_keras(cls, model):
|
338
|
+
# TODO: his method requires a refactor to work with the keras 3.
|
339
|
+
graph = cls()
|
340
|
+
# Shamelessly copied (then modified) from keras/keras/utils/layer_utils.py
|
341
|
+
sequential_like = cls._is_sequential(model)
|
342
|
+
|
343
|
+
relevant_nodes = None
|
344
|
+
if not sequential_like:
|
345
|
+
relevant_nodes = []
|
346
|
+
for v in model._nodes_by_depth.values():
|
347
|
+
relevant_nodes += v
|
348
|
+
|
349
|
+
layers = model.layers
|
350
|
+
for i in range(len(layers)):
|
351
|
+
node = Node.from_keras(layers[i])
|
352
|
+
if hasattr(layers[i], "_inbound_nodes"):
|
353
|
+
for in_node in layers[i]._inbound_nodes:
|
354
|
+
if relevant_nodes and in_node not in relevant_nodes:
|
355
|
+
# node is not part of the current network
|
356
|
+
continue
|
357
|
+
for in_layer in _nest(in_node.inbound_layers):
|
358
|
+
inbound_keras_node = Node.from_keras(in_layer)
|
359
|
+
|
360
|
+
if inbound_keras_node.id not in graph.nodes_by_id:
|
361
|
+
graph.add_node(inbound_keras_node)
|
362
|
+
inbound_node = graph.nodes_by_id[inbound_keras_node.id]
|
363
|
+
|
364
|
+
graph.add_edge(inbound_node, node)
|
365
|
+
graph.add_node(node)
|
366
|
+
return graph
|
367
|
+
|
368
|
+
@classmethod
|
369
|
+
def _is_sequential(cls, model):
|
370
|
+
sequential_like = True
|
371
|
+
|
372
|
+
if (
|
373
|
+
model.__class__.__name__ != "Sequential"
|
374
|
+
and hasattr(model, "_is_graph_network")
|
375
|
+
and model._is_graph_network
|
376
|
+
):
|
377
|
+
nodes_by_depth = model._nodes_by_depth.values()
|
378
|
+
nodes = []
|
379
|
+
for v in nodes_by_depth:
|
380
|
+
# TensorFlow2 doesn't insure inbound is always a list
|
381
|
+
inbound = v[0].inbound_layers
|
382
|
+
if not hasattr(inbound, "__len__"):
|
383
|
+
inbound = [inbound]
|
384
|
+
if (len(v) > 1) or (len(v) == 1 and len(inbound) > 1):
|
385
|
+
# if the model has multiple nodes
|
386
|
+
# or if the nodes have multiple inbound_layers
|
387
|
+
# the model is no longer sequential
|
388
|
+
sequential_like = False
|
389
|
+
break
|
390
|
+
nodes += v
|
391
|
+
if sequential_like:
|
392
|
+
# search for shared layers
|
393
|
+
for layer in model.layers:
|
394
|
+
flag = False
|
395
|
+
if hasattr(layer, "_inbound_nodes"):
|
396
|
+
for node in layer._inbound_nodes:
|
397
|
+
if node in nodes:
|
398
|
+
if flag:
|
399
|
+
sequential_like = False
|
400
|
+
break
|
401
|
+
else:
|
402
|
+
flag = True
|
403
|
+
if not sequential_like:
|
404
|
+
break
|
405
|
+
return sequential_like
|
wandb/sdk/data_types/image.py
CHANGED
@@ -10,6 +10,7 @@ from wandb import util
|
|
10
10
|
from wandb.sdk.lib import hashutil, runid
|
11
11
|
from wandb.sdk.lib.paths import LogicalPath
|
12
12
|
|
13
|
+
from . import _dtypes
|
13
14
|
from ._private import MEDIA_TMP
|
14
15
|
from .base_types.media import BatchableMedia, Media
|
15
16
|
from .helper_types.bounding_boxes_2d import BoundingBoxes2D
|
@@ -687,3 +688,158 @@ class Image(BatchableMedia):
|
|
687
688
|
self._image = pil_image.open(self._path)
|
688
689
|
self._image.load()
|
689
690
|
return self._image
|
691
|
+
|
692
|
+
|
693
|
+
# Custom dtypes for typing system
|
694
|
+
class _ImageFileType(_dtypes.Type):
|
695
|
+
name = "image-file"
|
696
|
+
legacy_names = ["wandb.Image"]
|
697
|
+
types = [Image]
|
698
|
+
|
699
|
+
def __init__(
|
700
|
+
self,
|
701
|
+
box_layers=None,
|
702
|
+
box_score_keys=None,
|
703
|
+
mask_layers=None,
|
704
|
+
class_map=None,
|
705
|
+
**kwargs,
|
706
|
+
):
|
707
|
+
box_layers = box_layers or {}
|
708
|
+
box_score_keys = box_score_keys or []
|
709
|
+
mask_layers = mask_layers or {}
|
710
|
+
class_map = class_map or {}
|
711
|
+
|
712
|
+
if isinstance(box_layers, _dtypes.ConstType):
|
713
|
+
box_layers = box_layers._params["val"]
|
714
|
+
if not isinstance(box_layers, dict):
|
715
|
+
raise TypeError("box_layers must be a dict")
|
716
|
+
else:
|
717
|
+
box_layers = _dtypes.ConstType(
|
718
|
+
{layer_key: set(box_layers[layer_key]) for layer_key in box_layers}
|
719
|
+
)
|
720
|
+
|
721
|
+
if isinstance(mask_layers, _dtypes.ConstType):
|
722
|
+
mask_layers = mask_layers._params["val"]
|
723
|
+
if not isinstance(mask_layers, dict):
|
724
|
+
raise TypeError("mask_layers must be a dict")
|
725
|
+
else:
|
726
|
+
mask_layers = _dtypes.ConstType(
|
727
|
+
{layer_key: set(mask_layers[layer_key]) for layer_key in mask_layers}
|
728
|
+
)
|
729
|
+
|
730
|
+
if isinstance(box_score_keys, _dtypes.ConstType):
|
731
|
+
box_score_keys = box_score_keys._params["val"]
|
732
|
+
if not isinstance(box_score_keys, list) and not isinstance(box_score_keys, set):
|
733
|
+
raise TypeError("box_score_keys must be a list or a set")
|
734
|
+
else:
|
735
|
+
box_score_keys = _dtypes.ConstType(set(box_score_keys))
|
736
|
+
|
737
|
+
if isinstance(class_map, _dtypes.ConstType):
|
738
|
+
class_map = class_map._params["val"]
|
739
|
+
if not isinstance(class_map, dict):
|
740
|
+
raise TypeError("class_map must be a dict")
|
741
|
+
else:
|
742
|
+
class_map = _dtypes.ConstType(class_map)
|
743
|
+
|
744
|
+
self.params.update(
|
745
|
+
{
|
746
|
+
"box_layers": box_layers,
|
747
|
+
"box_score_keys": box_score_keys,
|
748
|
+
"mask_layers": mask_layers,
|
749
|
+
"class_map": class_map,
|
750
|
+
}
|
751
|
+
)
|
752
|
+
|
753
|
+
def assign_type(self, wb_type=None):
|
754
|
+
if isinstance(wb_type, _ImageFileType):
|
755
|
+
box_layers_self = self.params["box_layers"].params["val"] or {}
|
756
|
+
box_score_keys_self = self.params["box_score_keys"].params["val"] or []
|
757
|
+
mask_layers_self = self.params["mask_layers"].params["val"] or {}
|
758
|
+
class_map_self = self.params["class_map"].params["val"] or {}
|
759
|
+
|
760
|
+
box_layers_other = wb_type.params["box_layers"].params["val"] or {}
|
761
|
+
box_score_keys_other = wb_type.params["box_score_keys"].params["val"] or []
|
762
|
+
mask_layers_other = wb_type.params["mask_layers"].params["val"] or {}
|
763
|
+
class_map_other = wb_type.params["class_map"].params["val"] or {}
|
764
|
+
|
765
|
+
# Merge the class_ids from each set of box_layers
|
766
|
+
box_layers = {
|
767
|
+
str(key): set(
|
768
|
+
list(box_layers_self.get(key, []))
|
769
|
+
+ list(box_layers_other.get(key, []))
|
770
|
+
)
|
771
|
+
for key in set(
|
772
|
+
list(box_layers_self.keys()) + list(box_layers_other.keys())
|
773
|
+
)
|
774
|
+
}
|
775
|
+
|
776
|
+
# Merge the class_ids from each set of mask_layers
|
777
|
+
mask_layers = {
|
778
|
+
str(key): set(
|
779
|
+
list(mask_layers_self.get(key, []))
|
780
|
+
+ list(mask_layers_other.get(key, []))
|
781
|
+
)
|
782
|
+
for key in set(
|
783
|
+
list(mask_layers_self.keys()) + list(mask_layers_other.keys())
|
784
|
+
)
|
785
|
+
}
|
786
|
+
|
787
|
+
# Merge the box score keys
|
788
|
+
box_score_keys = set(list(box_score_keys_self) + list(box_score_keys_other))
|
789
|
+
|
790
|
+
# Merge the class_map
|
791
|
+
class_map = {
|
792
|
+
str(key): class_map_self.get(key, class_map_other.get(key, None))
|
793
|
+
for key in set(
|
794
|
+
list(class_map_self.keys()) + list(class_map_other.keys())
|
795
|
+
)
|
796
|
+
}
|
797
|
+
|
798
|
+
return _ImageFileType(box_layers, box_score_keys, mask_layers, class_map)
|
799
|
+
|
800
|
+
return _dtypes.InvalidType()
|
801
|
+
|
802
|
+
@classmethod
|
803
|
+
def from_obj(cls, py_obj):
|
804
|
+
if not isinstance(py_obj, Image):
|
805
|
+
raise TypeError("py_obj must be a wandb.Image")
|
806
|
+
else:
|
807
|
+
if hasattr(py_obj, "_boxes") and py_obj._boxes:
|
808
|
+
box_layers = {
|
809
|
+
str(key): set(py_obj._boxes[key]._class_labels.keys())
|
810
|
+
for key in py_obj._boxes.keys()
|
811
|
+
}
|
812
|
+
box_score_keys = {
|
813
|
+
key
|
814
|
+
for val in py_obj._boxes.values()
|
815
|
+
for box in val._val
|
816
|
+
for key in box.get("scores", {}).keys()
|
817
|
+
}
|
818
|
+
|
819
|
+
else:
|
820
|
+
box_layers = {}
|
821
|
+
box_score_keys = set()
|
822
|
+
|
823
|
+
if hasattr(py_obj, "_masks") and py_obj._masks:
|
824
|
+
mask_layers = {
|
825
|
+
str(key): set(
|
826
|
+
py_obj._masks[key]._val["class_labels"].keys()
|
827
|
+
if hasattr(py_obj._masks[key], "_val")
|
828
|
+
else []
|
829
|
+
)
|
830
|
+
for key in py_obj._masks.keys()
|
831
|
+
}
|
832
|
+
else:
|
833
|
+
mask_layers = {}
|
834
|
+
|
835
|
+
if hasattr(py_obj, "_classes") and py_obj._classes:
|
836
|
+
class_set = {
|
837
|
+
str(item["id"]): item["name"] for item in py_obj._classes._class_set
|
838
|
+
}
|
839
|
+
else:
|
840
|
+
class_set = {}
|
841
|
+
|
842
|
+
return cls(box_layers, box_score_keys, mask_layers, class_set)
|
843
|
+
|
844
|
+
|
845
|
+
_dtypes.TypeRegistry.add(_ImageFileType)
|