wandb 0.18.0rc1__py3-none-win32.whl → 0.18.2__py3-none-win32.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (119) hide show
  1. wandb/__init__.py +4 -4
  2. wandb/__init__.pyi +67 -12
  3. wandb/apis/internal.py +3 -0
  4. wandb/apis/public/api.py +128 -2
  5. wandb/apis/public/artifacts.py +11 -7
  6. wandb/apis/public/jobs.py +8 -0
  7. wandb/apis/public/runs.py +18 -5
  8. wandb/bin/wandb-core +0 -0
  9. wandb/cli/cli.py +0 -5
  10. wandb/data_types.py +9 -2019
  11. wandb/env.py +0 -5
  12. wandb/errors/__init__.py +11 -40
  13. wandb/errors/errors.py +37 -0
  14. wandb/errors/warnings.py +2 -0
  15. wandb/{sklearn → integration/sklearn}/calculate/calibration_curves.py +7 -7
  16. wandb/{sklearn → integration/sklearn}/calculate/class_proportions.py +1 -1
  17. wandb/{sklearn → integration/sklearn}/calculate/confusion_matrix.py +3 -2
  18. wandb/{sklearn → integration/sklearn}/calculate/elbow_curve.py +6 -6
  19. wandb/{sklearn → integration/sklearn}/calculate/learning_curve.py +2 -2
  20. wandb/{sklearn → integration/sklearn}/calculate/outlier_candidates.py +2 -2
  21. wandb/{sklearn → integration/sklearn}/calculate/residuals.py +8 -8
  22. wandb/{sklearn → integration/sklearn}/calculate/silhouette.py +2 -2
  23. wandb/{sklearn → integration/sklearn}/calculate/summary_metrics.py +2 -2
  24. wandb/{sklearn → integration/sklearn}/plot/classifier.py +5 -5
  25. wandb/{sklearn → integration/sklearn}/plot/clusterer.py +10 -6
  26. wandb/{sklearn → integration/sklearn}/plot/regressor.py +5 -5
  27. wandb/{sklearn → integration/sklearn}/plot/shared.py +3 -3
  28. wandb/{sklearn → integration/sklearn}/utils.py +8 -8
  29. wandb/integration/tensorboard/log.py +1 -1
  30. wandb/{wandb_torch.py → integration/torch/wandb_torch.py} +36 -32
  31. wandb/old/core.py +2 -80
  32. wandb/plot/bar.py +7 -4
  33. wandb/plot/confusion_matrix.py +5 -4
  34. wandb/plot/histogram.py +7 -4
  35. wandb/plot/line.py +7 -4
  36. wandb/proto/v3/wandb_base_pb2.py +2 -1
  37. wandb/proto/v3/wandb_internal_pb2.py +2 -1
  38. wandb/proto/v3/wandb_server_pb2.py +2 -1
  39. wandb/proto/v3/wandb_settings_pb2.py +3 -2
  40. wandb/proto/v3/wandb_telemetry_pb2.py +2 -1
  41. wandb/proto/v4/wandb_base_pb2.py +2 -1
  42. wandb/proto/v4/wandb_internal_pb2.py +2 -1
  43. wandb/proto/v4/wandb_server_pb2.py +2 -1
  44. wandb/proto/v4/wandb_settings_pb2.py +3 -2
  45. wandb/proto/v4/wandb_telemetry_pb2.py +2 -1
  46. wandb/proto/v5/wandb_base_pb2.py +3 -2
  47. wandb/proto/v5/wandb_internal_pb2.py +3 -2
  48. wandb/proto/v5/wandb_server_pb2.py +3 -2
  49. wandb/proto/v5/wandb_settings_pb2.py +4 -3
  50. wandb/proto/v5/wandb_telemetry_pb2.py +3 -2
  51. wandb/sdk/artifacts/_validators.py +48 -3
  52. wandb/sdk/artifacts/artifact.py +157 -183
  53. wandb/sdk/artifacts/artifact_file_cache.py +13 -11
  54. wandb/sdk/artifacts/artifact_instance_cache.py +4 -2
  55. wandb/sdk/artifacts/artifact_manifest.py +13 -11
  56. wandb/sdk/artifacts/artifact_manifest_entry.py +24 -22
  57. wandb/sdk/artifacts/artifact_manifests/artifact_manifest_v1.py +9 -7
  58. wandb/sdk/artifacts/artifact_saver.py +27 -25
  59. wandb/sdk/artifacts/exceptions.py +26 -25
  60. wandb/sdk/artifacts/storage_handler.py +11 -9
  61. wandb/sdk/artifacts/storage_handlers/azure_handler.py +16 -14
  62. wandb/sdk/artifacts/storage_handlers/gcs_handler.py +15 -13
  63. wandb/sdk/artifacts/storage_handlers/http_handler.py +15 -14
  64. wandb/sdk/artifacts/storage_handlers/local_file_handler.py +10 -8
  65. wandb/sdk/artifacts/storage_handlers/multi_handler.py +14 -12
  66. wandb/sdk/artifacts/storage_handlers/s3_handler.py +19 -19
  67. wandb/sdk/artifacts/storage_handlers/tracking_handler.py +10 -8
  68. wandb/sdk/artifacts/storage_handlers/wb_artifact_handler.py +12 -10
  69. wandb/sdk/artifacts/storage_handlers/wb_local_artifact_handler.py +9 -7
  70. wandb/sdk/artifacts/storage_policies/wandb_storage_policy.py +31 -29
  71. wandb/sdk/artifacts/storage_policy.py +20 -20
  72. wandb/sdk/backend/backend.py +8 -26
  73. wandb/sdk/data_types/audio.py +165 -0
  74. wandb/sdk/data_types/base_types/wb_value.py +1 -3
  75. wandb/sdk/data_types/bokeh.py +70 -0
  76. wandb/sdk/data_types/graph.py +405 -0
  77. wandb/sdk/data_types/image.py +156 -0
  78. wandb/sdk/data_types/table.py +1204 -0
  79. wandb/sdk/data_types/trace_tree.py +2 -2
  80. wandb/sdk/data_types/utils.py +49 -0
  81. wandb/sdk/data_types/video.py +2 -2
  82. wandb/sdk/interface/interface.py +0 -24
  83. wandb/sdk/interface/interface_shared.py +0 -12
  84. wandb/sdk/internal/handler.py +0 -10
  85. wandb/sdk/internal/internal_api.py +71 -0
  86. wandb/sdk/internal/sender.py +0 -43
  87. wandb/sdk/internal/tb_watcher.py +1 -1
  88. wandb/sdk/lib/_settings_toposort_generated.py +1 -0
  89. wandb/sdk/lib/hashutil.py +34 -12
  90. wandb/sdk/lib/service_connection.py +216 -0
  91. wandb/sdk/lib/service_token.py +94 -0
  92. wandb/sdk/lib/sock_client.py +7 -3
  93. wandb/sdk/service/server.py +2 -5
  94. wandb/sdk/service/service.py +2 -31
  95. wandb/sdk/service/streams.py +0 -7
  96. wandb/sdk/wandb_init.py +42 -25
  97. wandb/sdk/wandb_run.py +18 -159
  98. wandb/sdk/wandb_settings.py +2 -0
  99. wandb/sdk/wandb_setup.py +25 -16
  100. wandb/sdk/wandb_sync.py +9 -3
  101. wandb/sdk/wandb_watch.py +31 -15
  102. wandb/sklearn.py +35 -0
  103. wandb/util.py +14 -3
  104. {wandb-0.18.0rc1.dist-info → wandb-0.18.2.dist-info}/METADATA +6 -5
  105. {wandb-0.18.0rc1.dist-info → wandb-0.18.2.dist-info}/RECORD +114 -110
  106. wandb/sdk/internal/update.py +0 -113
  107. wandb/sdk/lib/console.py +0 -39
  108. wandb/sdk/service/service_base.py +0 -50
  109. wandb/sdk/service/service_sock.py +0 -70
  110. wandb/sdk/wandb_manager.py +0 -232
  111. /wandb/{sklearn → integration/sklearn}/__init__.py +0 -0
  112. /wandb/{sklearn → integration/sklearn}/calculate/__init__.py +0 -0
  113. /wandb/{sklearn → integration/sklearn}/calculate/decision_boundaries.py +0 -0
  114. /wandb/{sklearn → integration/sklearn}/calculate/feature_importances.py +0 -0
  115. /wandb/{sklearn → integration/sklearn}/plot/__init__.py +0 -0
  116. /wandb/{sdk/lib → plot}/viz.py +0 -0
  117. {wandb-0.18.0rc1.dist-info → wandb-0.18.2.dist-info}/WHEEL +0 -0
  118. {wandb-0.18.0rc1.dist-info → wandb-0.18.2.dist-info}/entry_points.txt +0 -0
  119. {wandb-0.18.0rc1.dist-info → wandb-0.18.2.dist-info}/licenses/LICENSE +0 -0
wandb/env.py CHANGED
@@ -62,7 +62,6 @@ SAVE_CODE = "WANDB_SAVE_CODE"
62
62
  TAGS = "WANDB_TAGS"
63
63
  IGNORE = "WANDB_IGNORE_GLOBS"
64
64
  ERROR_REPORTING = "WANDB_ERROR_REPORTING"
65
- CORE_ERROR_REPORTING = "WANDB_CORE_ERROR_REPORTING"
66
65
  CORE_DEBUG = "WANDB_CORE_DEBUG"
67
66
  DOCKER = "WANDB_DOCKER"
68
67
  AGENT_REPORT_INTERVAL = "WANDB_AGENT_REPORT_INTERVAL"
@@ -172,10 +171,6 @@ def error_reporting_enabled() -> bool:
172
171
  return _env_as_bool(ERROR_REPORTING, default="True")
173
172
 
174
173
 
175
- def core_error_reporting_enabled(default: Optional[str] = None) -> bool:
176
- return _env_as_bool(CORE_ERROR_REPORTING, default=default)
177
-
178
-
179
174
  def core_debug(default: Optional[str] = None) -> bool:
180
175
  return _env_as_bool(CORE_DEBUG, default=default)
181
176
 
wandb/errors/__init__.py CHANGED
@@ -1,46 +1,17 @@
1
- __all__ = [
1
+ __all__ = (
2
2
  "Error",
3
3
  "CommError",
4
4
  "AuthenticationError",
5
5
  "UsageError",
6
6
  "UnsupportedError",
7
7
  "WandbCoreNotAvailableError",
8
- ]
9
-
10
- from typing import Optional
11
-
12
-
13
- class Error(Exception):
14
- """Base W&B Error."""
15
-
16
- def __init__(self, message, context: Optional[dict] = None) -> None:
17
- super().__init__(message)
18
- self.message = message
19
- # sentry context capture
20
- if context:
21
- self.context = context
22
-
23
-
24
- class CommError(Error):
25
- """Error communicating with W&B servers."""
26
-
27
- def __init__(self, msg, exc=None) -> None:
28
- self.exc = exc
29
- self.message = msg
30
- super().__init__(self.message)
31
-
32
-
33
- class AuthenticationError(CommError):
34
- """Raised when authentication fails."""
35
-
36
-
37
- class UsageError(Error):
38
- """Raised when an invalid usage of the SDK API is detected."""
39
-
40
-
41
- class UnsupportedError(UsageError):
42
- """Raised when trying to use a feature that is not supported."""
43
-
44
-
45
- class WandbCoreNotAvailableError(Error):
46
- """Raised when wandb core is not available."""
8
+ )
9
+
10
+ from .errors import (
11
+ AuthenticationError,
12
+ CommError,
13
+ Error,
14
+ UnsupportedError,
15
+ UsageError,
16
+ WandbCoreNotAvailableError,
17
+ )
wandb/errors/errors.py ADDED
@@ -0,0 +1,37 @@
1
+ from typing import Optional
2
+
3
+
4
+ class Error(Exception):
5
+ """Base W&B Error."""
6
+
7
+ def __init__(self, message, context: Optional[dict] = None) -> None:
8
+ super().__init__(message)
9
+ self.message = message
10
+ # sentry context capture
11
+ if context:
12
+ self.context = context
13
+
14
+
15
+ class CommError(Error):
16
+ """Error communicating with W&B servers."""
17
+
18
+ def __init__(self, msg, exc=None) -> None:
19
+ self.exc = exc
20
+ self.message = msg
21
+ super().__init__(self.message)
22
+
23
+
24
+ class AuthenticationError(CommError):
25
+ """Raised when authentication fails."""
26
+
27
+
28
+ class UsageError(Error):
29
+ """Raised when an invalid usage of the SDK API is detected."""
30
+
31
+
32
+ class UnsupportedError(UsageError):
33
+ """Raised when trying to use a feature that is not supported."""
34
+
35
+
36
+ class WandbCoreNotAvailableError(Error):
37
+ """Raised when wandb core is not available."""
@@ -0,0 +1,2 @@
1
+ class WandbWarning(Warning):
2
+ """Base W&B Warning."""
@@ -7,18 +7,18 @@ from sklearn.calibration import CalibratedClassifierCV
7
7
  from sklearn.linear_model import LogisticRegression
8
8
 
9
9
  import wandb
10
- from wandb.sklearn import utils
10
+ from wandb.integration.sklearn import utils
11
11
 
12
12
  # ignore all future warnings
13
13
  simplefilter(action="ignore", category=FutureWarning)
14
14
 
15
15
 
16
- def calibration_curves(clf, X, y, clf_name):
16
+ def calibration_curves(clf, X, y, clf_name): # noqa: N803
17
17
  # ComplementNB (introduced in 0.20.0) requires non-negative features
18
18
  if int(sklearn.__version__.split(".")[1]) >= 20 and isinstance(
19
19
  clf, naive_bayes.ComplementNB
20
20
  ):
21
- X = X - X.min()
21
+ X = X - X.min() # noqa:N806
22
22
 
23
23
  # Calibrated with isotonic calibration
24
24
  isotonic = CalibratedClassifierCV(clf, cv=2, method="isotonic")
@@ -48,7 +48,7 @@ def calibration_curves(clf, X, y, clf_name):
48
48
  frac_positives_column.append(1)
49
49
  mean_pred_value_column.append(1)
50
50
 
51
- X_train, X_test, y_train, y_test = model_selection.train_test_split(
51
+ x_train, x_test, y_train, y_test = model_selection.train_test_split(
52
52
  X, y, test_size=0.9, random_state=42
53
53
  )
54
54
 
@@ -58,11 +58,11 @@ def calibration_curves(clf, X, y, clf_name):
58
58
  names = ["Logistic", f"{clf_name} Isotonic", f"{clf_name} Sigmoid"]
59
59
 
60
60
  for model, name in zip(models, names):
61
- model.fit(X_train, y_train)
61
+ model.fit(x_train, y_train)
62
62
  if hasattr(model, "predict_proba"):
63
- prob_pos = model.predict_proba(X_test)[:, 1]
63
+ prob_pos = model.predict_proba(x_test)[:, 1]
64
64
  else: # use decision function
65
- prob_pos = model.decision_function(X_test)
65
+ prob_pos = model.decision_function(x_test)
66
66
  prob_pos = (prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min())
67
67
 
68
68
  hist, edges = np.histogram(prob_pos, bins=10, density=False)
@@ -4,7 +4,7 @@ import numpy as np
4
4
  from sklearn.utils.multiclass import unique_labels
5
5
 
6
6
  import wandb
7
- from wandb.sklearn import utils
7
+ from wandb.integration.sklearn import utils
8
8
 
9
9
  # ignore all future warnings
10
10
  simplefilter(action="ignore", category=FutureWarning)
@@ -6,14 +6,15 @@ from sklearn import metrics
6
6
  from sklearn.utils.multiclass import unique_labels
7
7
 
8
8
  import wandb
9
- from wandb.sklearn import utils
9
+
10
+ from .. import utils
10
11
 
11
12
  # ignore all future warnings
12
13
  simplefilter(action="ignore", category=FutureWarning)
13
14
 
14
15
 
15
16
  def validate_labels(*args, **kwargs): # FIXME
16
- assert False
17
+ raise AssertionError()
17
18
 
18
19
 
19
20
  def confusion_matrix(
@@ -11,7 +11,7 @@ import wandb
11
11
  simplefilter(action="ignore", category=FutureWarning)
12
12
 
13
13
 
14
- def elbow_curve(clusterer, X, cluster_ranges, n_jobs, show_cluster_time):
14
+ def elbow_curve(clusterer, X, cluster_ranges, n_jobs, show_cluster_time): # noqa: N803
15
15
  if cluster_ranges is None:
16
16
  cluster_ranges = range(1, 10, 2)
17
17
  else:
@@ -37,19 +37,19 @@ def make_table(cluster_ranges, clfs, times):
37
37
  return table
38
38
 
39
39
 
40
- def _compute_results_parallel(n_jobs, clusterer, X, cluster_ranges):
40
+ def _compute_results_parallel(n_jobs, clusterer, x, cluster_ranges):
41
41
  parallel_runner = Parallel(n_jobs=n_jobs)
42
42
  _cluster_scorer = delayed(_clone_and_score_clusterer)
43
- results = parallel_runner(_cluster_scorer(clusterer, X, i) for i in cluster_ranges)
43
+ results = parallel_runner(_cluster_scorer(clusterer, x, i) for i in cluster_ranges)
44
44
 
45
45
  clfs, times = zip(*results)
46
46
 
47
47
  return clfs, times
48
48
 
49
49
 
50
- def _clone_and_score_clusterer(clusterer, X, n_clusters):
50
+ def _clone_and_score_clusterer(clusterer, x, n_clusters):
51
51
  start = time.time()
52
52
  clusterer = clone(clusterer)
53
- setattr(clusterer, "n_clusters", n_clusters)
53
+ clusterer.n_clusters = n_clusters
54
54
 
55
- return clusterer.fit(X).score(X), time.time() - start
55
+ return clusterer.fit(x).score(x), time.time() - start
@@ -4,7 +4,7 @@ import numpy as np
4
4
  from sklearn import model_selection
5
5
 
6
6
  import wandb
7
- from wandb.sklearn import utils
7
+ from wandb.integration.sklearn import utils
8
8
 
9
9
  # ignore all future warnings
10
10
  simplefilter(action="ignore", category=FutureWarning)
@@ -12,7 +12,7 @@ simplefilter(action="ignore", category=FutureWarning)
12
12
 
13
13
  def learning_curve(
14
14
  model,
15
- X,
15
+ X, # noqa: N803
16
16
  y,
17
17
  cv=None,
18
18
  shuffle=False,
@@ -3,13 +3,13 @@ from warnings import simplefilter
3
3
  import numpy as np
4
4
 
5
5
  import wandb
6
- from wandb.sklearn import utils
6
+ from wandb.integration.sklearn import utils
7
7
 
8
8
  # ignore all future warnings
9
9
  simplefilter(action="ignore", category=FutureWarning)
10
10
 
11
11
 
12
- def outlier_candidates(regressor, X, y):
12
+ def outlier_candidates(regressor, X, y): # noqa: N803
13
13
  # Fit a linear model to X and y to compute MSE
14
14
  regressor.fit(X, y)
15
15
 
@@ -3,27 +3,27 @@ from warnings import simplefilter
3
3
  from sklearn import model_selection
4
4
 
5
5
  import wandb
6
- from wandb.sklearn import utils
6
+ from wandb.integration.sklearn import utils
7
7
 
8
8
  # ignore all future warnings
9
9
  simplefilter(action="ignore", category=FutureWarning)
10
10
 
11
11
 
12
- def residuals(regressor, X, y):
12
+ def residuals(regressor, X, y): # noqa: N803
13
13
  # Create the train and test splits
14
- X_train, X_test, y_train, y_test = model_selection.train_test_split(
14
+ x_train, x_test, y_train, y_test = model_selection.train_test_split(
15
15
  X, y, test_size=0.2
16
16
  )
17
17
 
18
18
  # Store labels and colors for the legend ordered by call
19
- regressor.fit(X_train, y_train)
20
- train_score_ = regressor.score(X_train, y_train)
21
- test_score_ = regressor.score(X_test, y_test)
19
+ regressor.fit(x_train, y_train)
20
+ train_score_ = regressor.score(x_train, y_train)
21
+ test_score_ = regressor.score(x_test, y_test)
22
22
 
23
- y_pred_train = regressor.predict(X_train)
23
+ y_pred_train = regressor.predict(x_train)
24
24
  residuals_train = y_pred_train - y_train
25
25
 
26
- y_pred_test = regressor.predict(X_test)
26
+ y_pred_test = regressor.predict(x_test)
27
27
  residuals_test = y_pred_test - y_test
28
28
 
29
29
  table = make_table(
@@ -5,13 +5,13 @@ from sklearn.metrics import silhouette_samples, silhouette_score
5
5
  from sklearn.preprocessing import LabelEncoder
6
6
 
7
7
  import wandb
8
- from wandb.sklearn import utils
8
+ from wandb.integration.sklearn import utils
9
9
 
10
10
  # ignore all future warnings
11
11
  simplefilter(action="ignore", category=FutureWarning)
12
12
 
13
13
 
14
- def silhouette(clusterer, X, cluster_labels, labels, metric, kmeans):
14
+ def silhouette(clusterer, X, cluster_labels, labels, metric, kmeans): # noqa: N803
15
15
  # Run clusterer for n_clusters in range(len(cluster_ranges), get cluster labels
16
16
  # TODO - keep/delete once we decide if we should train clusterers
17
17
  # or ask for trained models
@@ -4,13 +4,13 @@ import numpy as np
4
4
  import sklearn
5
5
 
6
6
  import wandb
7
- from wandb.sklearn import utils
7
+ from wandb.integration.sklearn import utils
8
8
 
9
9
  # ignore all future warnings
10
10
  simplefilter(action="ignore", category=FutureWarning)
11
11
 
12
12
 
13
- def summary_metrics(model=None, X=None, y=None, X_test=None, y_test=None):
13
+ def summary_metrics(model=None, X=None, y=None, X_test=None, y_test=None): # noqa: N803
14
14
  """Calculate summary metrics for both regressors and classifiers.
15
15
 
16
16
  Called by plot_summary_metrics to visualize metrics. Please use the function
@@ -7,7 +7,7 @@ from sklearn import naive_bayes
7
7
 
8
8
  import wandb
9
9
  import wandb.plot
10
- from wandb.sklearn import calculate, utils
10
+ from wandb.integration.sklearn import calculate, utils
11
11
 
12
12
  from . import shared
13
13
 
@@ -17,8 +17,8 @@ simplefilter(action="ignore", category=FutureWarning)
17
17
 
18
18
  def classifier(
19
19
  model,
20
- X_train,
21
- X_test,
20
+ X_train, # noqa: N803
21
+ X_test, # noqa: N803
22
22
  y_train,
23
23
  y_test,
24
24
  y_pred,
@@ -77,7 +77,7 @@ def classifier(
77
77
  )
78
78
  ```
79
79
  """
80
- wandb.termlog("\nPlotting %s." % model_name)
80
+ wandb.termlog(f"\nPlotting {model_name}.")
81
81
 
82
82
  if not isinstance(model, naive_bayes.MultinomialNB):
83
83
  feature_importances(model, feature_names)
@@ -280,7 +280,7 @@ def class_proportions(y_train=None, y_test=None, labels=None):
280
280
  wandb.log({"class_proportions": class_proportions_chart})
281
281
 
282
282
 
283
- def calibration_curve(clf=None, X=None, y=None, clf_name="Classifier"):
283
+ def calibration_curve(clf=None, X=None, y=None, clf_name="Classifier"): # noqa: N803
284
284
  """Log a plot depicting how well-calibrated the predicted probabilities of a classifier are.
285
285
 
286
286
  Also suggests how to calibrate an uncalibrated classifier. Compares estimated predicted
@@ -6,13 +6,13 @@ import pandas as pd
6
6
  import sklearn
7
7
 
8
8
  import wandb
9
- from wandb.sklearn import calculate, utils
9
+ from wandb.integration.sklearn import calculate, utils
10
10
 
11
11
  # ignore all future warnings
12
12
  simplefilter(action="ignore", category=FutureWarning)
13
13
 
14
14
 
15
- def clusterer(model, X_train, cluster_labels, labels=None, model_name="Clusterer"):
15
+ def clusterer(model, X_train, cluster_labels, labels=None, model_name="Clusterer"): # noqa: N803
16
16
  """Generates all sklearn clusterer plots supported by W&B.
17
17
 
18
18
  The following plots are generated:
@@ -40,7 +40,7 @@ def clusterer(model, X_train, cluster_labels, labels=None, model_name="Clusterer
40
40
  wandb.sklearn.plot_clusterer(kmeans, X, cluster_labels, labels, "KMeans")
41
41
  ```
42
42
  """
43
- wandb.termlog("\nPlotting %s." % model_name)
43
+ wandb.termlog(f"\nPlotting {model_name}.")
44
44
  if isinstance(model, sklearn.cluster.KMeans):
45
45
  elbow_curve(model, X_train)
46
46
  wandb.termlog("Logged elbow curve.")
@@ -54,7 +54,11 @@ def clusterer(model, X_train, cluster_labels, labels=None, model_name="Clusterer
54
54
 
55
55
 
56
56
  def elbow_curve(
57
- clusterer=None, X=None, cluster_ranges=None, n_jobs=1, show_cluster_time=True
57
+ clusterer=None,
58
+ X=None, # noqa: N803
59
+ cluster_ranges=None,
60
+ n_jobs=1,
61
+ show_cluster_time=True,
58
62
  ):
59
63
  """Measures and plots variance explained as a function of the number of clusters.
60
64
 
@@ -97,7 +101,7 @@ def elbow_curve(
97
101
 
98
102
  def silhouette(
99
103
  clusterer=None,
100
- X=None,
104
+ X=None, # noqa: N803
101
105
  cluster_labels=None,
102
106
  labels=None,
103
107
  metric="euclidean",
@@ -135,7 +139,7 @@ def silhouette(
135
139
 
136
140
  if not_missing and correct_types and is_fitted:
137
141
  if isinstance(X, (pd.DataFrame)):
138
- X = X.values
142
+ X = X.values # noqa: N806
139
143
  silhouette_chart = calculate.silhouette(
140
144
  clusterer, X, cluster_labels, labels, metric, kmeans
141
145
  )
@@ -5,7 +5,7 @@ from warnings import simplefilter
5
5
  import numpy as np
6
6
 
7
7
  import wandb
8
- from wandb.sklearn import calculate, utils
8
+ from wandb.integration.sklearn import calculate, utils
9
9
 
10
10
  from . import shared
11
11
 
@@ -13,7 +13,7 @@ from . import shared
13
13
  simplefilter(action="ignore", category=FutureWarning)
14
14
 
15
15
 
16
- def regressor(model, X_train, X_test, y_train, y_test, model_name="Regressor"):
16
+ def regressor(model, X_train, X_test, y_train, y_test, model_name="Regressor"): # noqa: N803
17
17
  """Generates all sklearn regressor plots supported by W&B.
18
18
 
19
19
  The following plots are generated:
@@ -38,7 +38,7 @@ def regressor(model, X_train, X_test, y_train, y_test, model_name="Regressor"):
38
38
  wandb.sklearn.plot_regressor(reg, X_train, X_test, y_train, y_test, "Ridge")
39
39
  ```
40
40
  """
41
- wandb.termlog("\nPlotting %s." % model_name)
41
+ wandb.termlog(f"\nPlotting {model_name}.")
42
42
 
43
43
  shared.summary_metrics(model, X_train, y_train, X_test, y_test)
44
44
  wandb.termlog("Logged summary metrics.")
@@ -53,7 +53,7 @@ def regressor(model, X_train, X_test, y_train, y_test, model_name="Regressor"):
53
53
  wandb.termlog("Logged residuals.")
54
54
 
55
55
 
56
- def outlier_candidates(regressor=None, X=None, y=None):
56
+ def outlier_candidates(regressor=None, X=None, y=None): # noqa: N803
57
57
  """Measures a datapoint's influence on regression model via cook's distance.
58
58
 
59
59
  Instances with high influences could potentially be outliers.
@@ -87,7 +87,7 @@ def outlier_candidates(regressor=None, X=None, y=None):
87
87
  wandb.log({"outlier_candidates": outliers_chart})
88
88
 
89
89
 
90
- def residuals(regressor=None, X=None, y=None):
90
+ def residuals(regressor=None, X=None, y=None): # noqa: N803
91
91
  """Measures and plots the regressor's predicted value against the residual.
92
92
 
93
93
  The marginal distribution of residuals is also calculated and plotted.
@@ -5,13 +5,13 @@ from warnings import simplefilter
5
5
  import numpy as np
6
6
 
7
7
  import wandb
8
- from wandb.sklearn import calculate, utils
8
+ from wandb.integration.sklearn import calculate, utils
9
9
 
10
10
  # ignore all future warnings
11
11
  simplefilter(action="ignore", category=FutureWarning)
12
12
 
13
13
 
14
- def summary_metrics(model=None, X=None, y=None, X_test=None, y_test=None):
14
+ def summary_metrics(model=None, X=None, y=None, X_test=None, y_test=None): # noqa: N803
15
15
  """Logs a chart depicting summary metrics for a model.
16
16
 
17
17
  Should only be called with a fitted model (otherwise an error is thrown).
@@ -47,7 +47,7 @@ def summary_metrics(model=None, X=None, y=None, X_test=None, y_test=None):
47
47
 
48
48
  def learning_curve(
49
49
  model=None,
50
- X=None,
50
+ X=None, # noqa: N803
51
51
  y=None,
52
52
  cv=None,
53
53
  shuffle=False,
@@ -61,7 +61,7 @@ def test_types(**kwargs):
61
61
  list,
62
62
  ),
63
63
  ):
64
- wandb.termerror("%s is not an array. Please try again." % (k))
64
+ wandb.termerror(f"{k} is not an array. Please try again.")
65
65
  test_passed = False
66
66
  # check for classifier types
67
67
  if k == "model":
@@ -69,20 +69,20 @@ def test_types(**kwargs):
69
69
  not sklearn.base.is_regressor(v)
70
70
  ):
71
71
  wandb.termerror(
72
- "%s is not a classifier or regressor. Please try again." % (k)
72
+ f"{k} is not a classifier or regressor. Please try again."
73
73
  )
74
74
  test_passed = False
75
75
  elif k == "clf" or k == "binary_clf":
76
76
  if not (sklearn.base.is_classifier(v)):
77
- wandb.termerror("%s is not a classifier. Please try again." % (k))
77
+ wandb.termerror(f"{k} is not a classifier. Please try again.")
78
78
  test_passed = False
79
79
  elif k == "regressor":
80
80
  if not sklearn.base.is_regressor(v):
81
- wandb.termerror("%s is not a regressor. Please try again." % (k))
81
+ wandb.termerror(f"{k} is not a regressor. Please try again.")
82
82
  test_passed = False
83
83
  elif k == "clusterer":
84
84
  if not (getattr(v, "_estimator_type", None) == "clusterer"):
85
- wandb.termerror("%s is not a clusterer. Please try again." % (k))
85
+ wandb.termerror(f"{k} is not a clusterer. Please try again.")
86
86
  test_passed = False
87
87
  return test_passed
88
88
 
@@ -129,7 +129,7 @@ def test_missing(**kwargs):
129
129
  for k, v in kwargs.items():
130
130
  # Missing/empty params/datapoint arrays
131
131
  if v is None:
132
- wandb.termerror("%s is None. Please try again." % (k))
132
+ wandb.termerror(f"{k} is None. Please try again.")
133
133
  test_passed = False
134
134
  if (k == "X") or (k == "X_test"):
135
135
  if isinstance(v, scipy.sparse.csr.csr_matrix):
@@ -168,8 +168,8 @@ def test_missing(**kwargs):
168
168
  )
169
169
  if non_nums > 0:
170
170
  wandb.termerror(
171
- "%s contains values that are not numbers. Please vectorize, label encode or one hot encode %s and call the plotting function again."
172
- % (k, k)
171
+ f"{k} contains values that are not numbers. Please vectorize, label encode or one hot encode {k} "
172
+ "and call the plotting function again."
173
173
  )
174
174
  test_passed = False
175
175
  return test_passed
@@ -5,8 +5,8 @@ from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
5
5
 
6
6
  import wandb
7
7
  import wandb.util
8
+ from wandb.plot.viz import custom_chart
8
9
  from wandb.sdk.lib import telemetry
9
- from wandb.sdk.lib.viz import custom_chart
10
10
 
11
11
  if TYPE_CHECKING:
12
12
  import numpy as np