wandb 0.18.0rc1__py3-none-macosx_11_0_arm64.whl → 0.18.1__py3-none-macosx_11_0_arm64.whl
Sign up to get free protection for your applications and to get access to all the features.
- wandb/__init__.py +2 -2
- wandb/__init__.pyi +1 -1
- wandb/apis/public/runs.py +2 -0
- wandb/bin/apple_gpu_stats +0 -0
- wandb/bin/wandb-core +0 -0
- wandb/cli/cli.py +0 -2
- wandb/data_types.py +9 -2019
- wandb/env.py +0 -5
- wandb/{sklearn → integration/sklearn}/calculate/calibration_curves.py +7 -7
- wandb/{sklearn → integration/sklearn}/calculate/class_proportions.py +1 -1
- wandb/{sklearn → integration/sklearn}/calculate/confusion_matrix.py +3 -2
- wandb/{sklearn → integration/sklearn}/calculate/elbow_curve.py +6 -6
- wandb/{sklearn → integration/sklearn}/calculate/learning_curve.py +2 -2
- wandb/{sklearn → integration/sklearn}/calculate/outlier_candidates.py +2 -2
- wandb/{sklearn → integration/sklearn}/calculate/residuals.py +8 -8
- wandb/{sklearn → integration/sklearn}/calculate/silhouette.py +2 -2
- wandb/{sklearn → integration/sklearn}/calculate/summary_metrics.py +2 -2
- wandb/{sklearn → integration/sklearn}/plot/classifier.py +5 -5
- wandb/{sklearn → integration/sklearn}/plot/clusterer.py +10 -6
- wandb/{sklearn → integration/sklearn}/plot/regressor.py +5 -5
- wandb/{sklearn → integration/sklearn}/plot/shared.py +3 -3
- wandb/{sklearn → integration/sklearn}/utils.py +8 -8
- wandb/{wandb_torch.py → integration/torch/wandb_torch.py} +36 -32
- wandb/proto/v3/wandb_base_pb2.py +2 -1
- wandb/proto/v3/wandb_internal_pb2.py +2 -1
- wandb/proto/v3/wandb_server_pb2.py +2 -1
- wandb/proto/v3/wandb_settings_pb2.py +2 -1
- wandb/proto/v3/wandb_telemetry_pb2.py +2 -1
- wandb/proto/v4/wandb_base_pb2.py +2 -1
- wandb/proto/v4/wandb_internal_pb2.py +2 -1
- wandb/proto/v4/wandb_server_pb2.py +2 -1
- wandb/proto/v4/wandb_settings_pb2.py +2 -1
- wandb/proto/v4/wandb_telemetry_pb2.py +2 -1
- wandb/proto/v5/wandb_base_pb2.py +3 -2
- wandb/proto/v5/wandb_internal_pb2.py +3 -2
- wandb/proto/v5/wandb_server_pb2.py +3 -2
- wandb/proto/v5/wandb_settings_pb2.py +3 -2
- wandb/proto/v5/wandb_telemetry_pb2.py +3 -2
- wandb/sdk/data_types/audio.py +165 -0
- wandb/sdk/data_types/bokeh.py +70 -0
- wandb/sdk/data_types/graph.py +405 -0
- wandb/sdk/data_types/image.py +156 -0
- wandb/sdk/data_types/table.py +1204 -0
- wandb/sdk/data_types/trace_tree.py +2 -2
- wandb/sdk/data_types/utils.py +49 -0
- wandb/sdk/service/service.py +2 -9
- wandb/sdk/service/streams.py +0 -7
- wandb/sdk/wandb_init.py +10 -3
- wandb/sdk/wandb_run.py +6 -152
- wandb/sdk/wandb_setup.py +1 -1
- wandb/sklearn.py +35 -0
- wandb/util.py +6 -2
- {wandb-0.18.0rc1.dist-info → wandb-0.18.1.dist-info}/METADATA +5 -5
- {wandb-0.18.0rc1.dist-info → wandb-0.18.1.dist-info}/RECORD +62 -58
- wandb/sdk/lib/console.py +0 -39
- /wandb/{sklearn → integration/sklearn}/__init__.py +0 -0
- /wandb/{sklearn → integration/sklearn}/calculate/__init__.py +0 -0
- /wandb/{sklearn → integration/sklearn}/calculate/decision_boundaries.py +0 -0
- /wandb/{sklearn → integration/sklearn}/calculate/feature_importances.py +0 -0
- /wandb/{sklearn → integration/sklearn}/plot/__init__.py +0 -0
- {wandb-0.18.0rc1.dist-info → wandb-0.18.1.dist-info}/WHEEL +0 -0
- {wandb-0.18.0rc1.dist-info → wandb-0.18.1.dist-info}/entry_points.txt +0 -0
- {wandb-0.18.0rc1.dist-info → wandb-0.18.1.dist-info}/licenses/LICENSE +0 -0
wandb/data_types.py
CHANGED
@@ -13,30 +13,10 @@ serialize to JSON, since that is what wandb uses to save the objects locally
|
|
13
13
|
and upload them to the W&B server.
|
14
14
|
"""
|
15
15
|
|
16
|
-
import
|
17
|
-
import binascii
|
18
|
-
import codecs
|
19
|
-
import datetime
|
20
|
-
import hashlib
|
21
|
-
import json
|
22
|
-
import logging
|
23
|
-
import os
|
24
|
-
import pprint
|
25
|
-
from decimal import Decimal
|
26
|
-
from typing import Optional
|
27
|
-
|
28
|
-
import wandb
|
29
|
-
from wandb import util
|
30
|
-
from wandb.sdk.lib import filesystem
|
31
|
-
|
32
|
-
from .sdk.data_types import _dtypes
|
33
|
-
from .sdk.data_types._private import MEDIA_TMP
|
34
|
-
from .sdk.data_types.base_types.media import (
|
35
|
-
BatchableMedia,
|
36
|
-
Media,
|
37
|
-
_numpy_arrays_to_lists,
|
38
|
-
)
|
16
|
+
from .sdk.data_types.audio import Audio
|
39
17
|
from .sdk.data_types.base_types.wb_value import WBValue
|
18
|
+
from .sdk.data_types.bokeh import Bokeh
|
19
|
+
from .sdk.data_types.graph import Graph, Node
|
40
20
|
from .sdk.data_types.helper_types.bounding_boxes_2d import BoundingBoxes2D
|
41
21
|
from .sdk.data_types.helper_types.classes import Classes
|
42
22
|
from .sdk.data_types.helper_types.image_mask import ImageMask
|
@@ -47,9 +27,9 @@ from .sdk.data_types.molecule import Molecule
|
|
47
27
|
from .sdk.data_types.object_3d import Object3D, box3d
|
48
28
|
from .sdk.data_types.plotly import Plotly
|
49
29
|
from .sdk.data_types.saved_model import _SavedModel
|
30
|
+
from .sdk.data_types.table import JoinedTable, PartitionedTable, Table
|
50
31
|
from .sdk.data_types.trace_tree import WBTraceTree
|
51
32
|
from .sdk.data_types.video import Video
|
52
|
-
from .sdk.lib import runid
|
53
33
|
|
54
34
|
# Note: we are importing everything from the sdk/data_types to maintain a namespace for now.
|
55
35
|
# Once we fully type this file and move it all into sdk, then we will need to clean up the
|
@@ -59,7 +39,11 @@ __all__ = [
|
|
59
39
|
# Untyped Exports
|
60
40
|
"Audio",
|
61
41
|
"Table",
|
42
|
+
"JoinedTable",
|
43
|
+
"PartitionedTable",
|
62
44
|
"Bokeh",
|
45
|
+
"Node",
|
46
|
+
"Graph",
|
63
47
|
# Typed Exports
|
64
48
|
"Histogram",
|
65
49
|
"Html",
|
@@ -71,2003 +55,9 @@ __all__ = [
|
|
71
55
|
"Video",
|
72
56
|
"WBTraceTree",
|
73
57
|
"_SavedModel",
|
58
|
+
"WBValue",
|
74
59
|
# Typed Legacy Exports (I'd like to remove these)
|
75
60
|
"ImageMask",
|
76
61
|
"BoundingBoxes2D",
|
77
62
|
"Classes",
|
78
63
|
]
|
79
|
-
|
80
|
-
|
81
|
-
class _TableLinkMixin:
|
82
|
-
def set_table(self, table):
|
83
|
-
self._table = table
|
84
|
-
|
85
|
-
|
86
|
-
class _TableKey(str, _TableLinkMixin):
|
87
|
-
def set_table(self, table, col_name):
|
88
|
-
assert col_name in table.columns
|
89
|
-
self._table = table
|
90
|
-
self._col_name = col_name
|
91
|
-
|
92
|
-
|
93
|
-
class _TableIndex(int, _TableLinkMixin):
|
94
|
-
def get_row(self):
|
95
|
-
row = {}
|
96
|
-
if self._table:
|
97
|
-
row = {
|
98
|
-
c: self._table.data[self][i] for i, c in enumerate(self._table.columns)
|
99
|
-
}
|
100
|
-
|
101
|
-
return row
|
102
|
-
|
103
|
-
|
104
|
-
def _json_helper(val, artifact):
|
105
|
-
if isinstance(val, WBValue):
|
106
|
-
return val.to_json(artifact)
|
107
|
-
elif val.__class__ is dict:
|
108
|
-
res = {}
|
109
|
-
for key in val:
|
110
|
-
res[key] = _json_helper(val[key], artifact)
|
111
|
-
return res
|
112
|
-
|
113
|
-
if hasattr(val, "tolist"):
|
114
|
-
py_val = val.tolist()
|
115
|
-
if val.__class__.__name__ == "datetime64" and isinstance(py_val, int):
|
116
|
-
# when numpy datetime64 .tolist() returns an int, it is nanoseconds.
|
117
|
-
# need to convert to milliseconds
|
118
|
-
return _json_helper(py_val / int(1e6), artifact)
|
119
|
-
return _json_helper(py_val, artifact)
|
120
|
-
elif hasattr(val, "item"):
|
121
|
-
return _json_helper(val.item(), artifact)
|
122
|
-
|
123
|
-
if isinstance(val, datetime.datetime):
|
124
|
-
if val.tzinfo is None:
|
125
|
-
val = datetime.datetime(
|
126
|
-
val.year,
|
127
|
-
val.month,
|
128
|
-
val.day,
|
129
|
-
val.hour,
|
130
|
-
val.minute,
|
131
|
-
val.second,
|
132
|
-
val.microsecond,
|
133
|
-
tzinfo=datetime.timezone.utc,
|
134
|
-
)
|
135
|
-
return int(val.timestamp() * 1000)
|
136
|
-
elif isinstance(val, datetime.date):
|
137
|
-
return int(
|
138
|
-
datetime.datetime(
|
139
|
-
val.year, val.month, val.day, tzinfo=datetime.timezone.utc
|
140
|
-
).timestamp()
|
141
|
-
* 1000
|
142
|
-
)
|
143
|
-
elif isinstance(val, (list, tuple)):
|
144
|
-
return [_json_helper(i, artifact) for i in val]
|
145
|
-
elif isinstance(val, Decimal):
|
146
|
-
return float(val)
|
147
|
-
else:
|
148
|
-
return util.json_friendly(val)[0]
|
149
|
-
|
150
|
-
|
151
|
-
class Table(Media):
|
152
|
-
"""The Table class used to display and analyze tabular data.
|
153
|
-
|
154
|
-
Unlike traditional spreadsheets, Tables support numerous types of data:
|
155
|
-
scalar values, strings, numpy arrays, and most subclasses of `wandb.data_types.Media`.
|
156
|
-
This means you can embed `Images`, `Video`, `Audio`, and other sorts of rich, annotated media
|
157
|
-
directly in Tables, alongside other traditional scalar values.
|
158
|
-
|
159
|
-
This class is the primary class used to generate the Table Visualizer
|
160
|
-
in the UI: https://docs.wandb.ai/guides/data-vis/tables.
|
161
|
-
|
162
|
-
Arguments:
|
163
|
-
columns: (List[str]) Names of the columns in the table.
|
164
|
-
Defaults to ["Input", "Output", "Expected"].
|
165
|
-
data: (List[List[any]]) 2D row-oriented array of values.
|
166
|
-
dataframe: (pandas.DataFrame) DataFrame object used to create the table.
|
167
|
-
When set, `data` and `columns` arguments are ignored.
|
168
|
-
optional: (Union[bool,List[bool]]) Determines if `None` values are allowed. Default to True
|
169
|
-
- If a singular bool value, then the optionality is enforced for all
|
170
|
-
columns specified at construction time
|
171
|
-
- If a list of bool values, then the optionality is applied to each
|
172
|
-
column - should be the same length as `columns`
|
173
|
-
applies to all columns. A list of bool values applies to each respective column.
|
174
|
-
allow_mixed_types: (bool) Determines if columns are allowed to have mixed types
|
175
|
-
(disables type validation). Defaults to False
|
176
|
-
"""
|
177
|
-
|
178
|
-
MAX_ROWS = 10000
|
179
|
-
MAX_ARTIFACT_ROWS = 200000
|
180
|
-
_MAX_EMBEDDING_DIMENSIONS = 150
|
181
|
-
_log_type = "table"
|
182
|
-
|
183
|
-
def __init__(
|
184
|
-
self,
|
185
|
-
columns=None,
|
186
|
-
data=None,
|
187
|
-
rows=None,
|
188
|
-
dataframe=None,
|
189
|
-
dtype=None,
|
190
|
-
optional=True,
|
191
|
-
allow_mixed_types=False,
|
192
|
-
):
|
193
|
-
"""Initializes a Table object.
|
194
|
-
|
195
|
-
The rows is available for legacy reasons and should not be used.
|
196
|
-
The Table class uses data to mimic the Pandas API.
|
197
|
-
"""
|
198
|
-
super().__init__()
|
199
|
-
self._pk_col = None
|
200
|
-
self._fk_cols = set()
|
201
|
-
if allow_mixed_types:
|
202
|
-
dtype = _dtypes.AnyType
|
203
|
-
|
204
|
-
# This is kept for legacy reasons (tss: personally, I think we should remove this)
|
205
|
-
if columns is None:
|
206
|
-
columns = ["Input", "Output", "Expected"]
|
207
|
-
|
208
|
-
# Explicit dataframe option
|
209
|
-
if dataframe is not None:
|
210
|
-
self._init_from_dataframe(dataframe, columns, optional, dtype)
|
211
|
-
else:
|
212
|
-
# Expected pattern
|
213
|
-
if data is not None:
|
214
|
-
if util.is_numpy_array(data):
|
215
|
-
self._init_from_ndarray(data, columns, optional, dtype)
|
216
|
-
elif util.is_pandas_data_frame(data):
|
217
|
-
self._init_from_dataframe(data, columns, optional, dtype)
|
218
|
-
else:
|
219
|
-
self._init_from_list(data, columns, optional, dtype)
|
220
|
-
|
221
|
-
# legacy
|
222
|
-
elif rows is not None:
|
223
|
-
self._init_from_list(rows, columns, optional, dtype)
|
224
|
-
|
225
|
-
# Default empty case
|
226
|
-
else:
|
227
|
-
self._init_from_list([], columns, optional, dtype)
|
228
|
-
|
229
|
-
@staticmethod
|
230
|
-
def _assert_valid_columns(columns):
|
231
|
-
valid_col_types = [str, int]
|
232
|
-
assert isinstance(columns, list), "columns argument expects a `list` object"
|
233
|
-
assert len(columns) == 0 or all(
|
234
|
-
[type(col) in valid_col_types for col in columns]
|
235
|
-
), "columns argument expects list of strings or ints"
|
236
|
-
|
237
|
-
def _init_from_list(self, data, columns, optional=True, dtype=None):
|
238
|
-
assert isinstance(data, list), "data argument expects a `list` object"
|
239
|
-
self.data = []
|
240
|
-
self._assert_valid_columns(columns)
|
241
|
-
self.columns = columns
|
242
|
-
self._make_column_types(dtype, optional)
|
243
|
-
for row in data:
|
244
|
-
self.add_data(*row)
|
245
|
-
|
246
|
-
def _init_from_ndarray(self, ndarray, columns, optional=True, dtype=None):
|
247
|
-
assert util.is_numpy_array(
|
248
|
-
ndarray
|
249
|
-
), "ndarray argument expects a `numpy.ndarray` object"
|
250
|
-
self.data = []
|
251
|
-
self._assert_valid_columns(columns)
|
252
|
-
self.columns = columns
|
253
|
-
self._make_column_types(dtype, optional)
|
254
|
-
for row in ndarray:
|
255
|
-
self.add_data(*row)
|
256
|
-
|
257
|
-
def _init_from_dataframe(self, dataframe, columns, optional=True, dtype=None):
|
258
|
-
assert util.is_pandas_data_frame(
|
259
|
-
dataframe
|
260
|
-
), "dataframe argument expects a `pandas.core.frame.DataFrame` object"
|
261
|
-
self.data = []
|
262
|
-
columns = list(dataframe.columns)
|
263
|
-
self._assert_valid_columns(columns)
|
264
|
-
self.columns = columns
|
265
|
-
self._make_column_types(dtype, optional)
|
266
|
-
for row in range(len(dataframe)):
|
267
|
-
self.add_data(*tuple(dataframe[col].values[row] for col in self.columns))
|
268
|
-
|
269
|
-
def _make_column_types(self, dtype=None, optional=True):
|
270
|
-
if dtype is None:
|
271
|
-
dtype = _dtypes.UnknownType()
|
272
|
-
|
273
|
-
if optional.__class__ is not list:
|
274
|
-
optional = [optional for _ in range(len(self.columns))]
|
275
|
-
|
276
|
-
if dtype.__class__ is not list:
|
277
|
-
dtype = [dtype for _ in range(len(self.columns))]
|
278
|
-
|
279
|
-
self._column_types = _dtypes.TypedDictType({})
|
280
|
-
for col_name, opt, dt in zip(self.columns, optional, dtype):
|
281
|
-
self.cast(col_name, dt, opt)
|
282
|
-
|
283
|
-
def cast(self, col_name, dtype, optional=False):
|
284
|
-
"""Casts a column to a specific data type.
|
285
|
-
|
286
|
-
This can be one of the normal python classes, an internal W&B type, or an
|
287
|
-
example object, like an instance of wandb.Image or wandb.Classes.
|
288
|
-
|
289
|
-
Arguments:
|
290
|
-
col_name: (str) - The name of the column to cast.
|
291
|
-
dtype: (class, wandb.wandb_sdk.interface._dtypes.Type, any) - The target dtype.
|
292
|
-
optional: (bool) - If the column should allow Nones.
|
293
|
-
"""
|
294
|
-
assert col_name in self.columns
|
295
|
-
|
296
|
-
wbtype = _dtypes.TypeRegistry.type_from_dtype(dtype)
|
297
|
-
|
298
|
-
if optional:
|
299
|
-
wbtype = _dtypes.OptionalType(wbtype)
|
300
|
-
|
301
|
-
# Cast each value in the row, raising an error if there are invalid entries.
|
302
|
-
col_ndx = self.columns.index(col_name)
|
303
|
-
for row in self.data:
|
304
|
-
result_type = wbtype.assign(row[col_ndx])
|
305
|
-
if isinstance(result_type, _dtypes.InvalidType):
|
306
|
-
raise TypeError(
|
307
|
-
"Existing data {}, of type {} cannot be cast to {}".format(
|
308
|
-
row[col_ndx],
|
309
|
-
_dtypes.TypeRegistry.type_of(row[col_ndx]),
|
310
|
-
wbtype,
|
311
|
-
)
|
312
|
-
)
|
313
|
-
wbtype = result_type
|
314
|
-
|
315
|
-
# Assert valid options
|
316
|
-
is_pk = isinstance(wbtype, _PrimaryKeyType)
|
317
|
-
is_fk = isinstance(wbtype, _ForeignKeyType)
|
318
|
-
is_fi = isinstance(wbtype, _ForeignIndexType)
|
319
|
-
if is_pk or is_fk or is_fi:
|
320
|
-
assert (
|
321
|
-
not optional
|
322
|
-
), "Primary keys, foreign keys, and foreign indexes cannot be optional."
|
323
|
-
|
324
|
-
if (is_fk or is_fk) and id(wbtype.params["table"]) == id(self):
|
325
|
-
raise AssertionError("Cannot set a foreign table reference to same table.")
|
326
|
-
|
327
|
-
if is_pk:
|
328
|
-
assert (
|
329
|
-
self._pk_col is None
|
330
|
-
), "Cannot have multiple primary keys - {} is already set as the primary key.".format(
|
331
|
-
self._pk_col
|
332
|
-
)
|
333
|
-
|
334
|
-
# Update the column type
|
335
|
-
self._column_types.params["type_map"][col_name] = wbtype
|
336
|
-
|
337
|
-
# Wrap the data if needed
|
338
|
-
self._update_keys()
|
339
|
-
return wbtype
|
340
|
-
|
341
|
-
def __ne__(self, other):
|
342
|
-
return not self.__eq__(other)
|
343
|
-
|
344
|
-
def _eq_debug(self, other, should_assert=False):
|
345
|
-
eq = isinstance(other, Table)
|
346
|
-
assert not should_assert or eq, "Found type {}, expected {}".format(
|
347
|
-
other.__class__, Table
|
348
|
-
)
|
349
|
-
eq = eq and len(self.data) == len(other.data)
|
350
|
-
assert not should_assert or eq, "Found {} rows, expected {}".format(
|
351
|
-
len(other.data), len(self.data)
|
352
|
-
)
|
353
|
-
eq = eq and self.columns == other.columns
|
354
|
-
assert not should_assert or eq, "Found columns {}, expected {}".format(
|
355
|
-
other.columns, self.columns
|
356
|
-
)
|
357
|
-
eq = eq and self._column_types == other._column_types
|
358
|
-
assert (
|
359
|
-
not should_assert or eq
|
360
|
-
), "Found column type {}, expected column type {}".format(
|
361
|
-
other._column_types, self._column_types
|
362
|
-
)
|
363
|
-
if eq:
|
364
|
-
for row_ndx in range(len(self.data)):
|
365
|
-
for col_ndx in range(len(self.data[row_ndx])):
|
366
|
-
_eq = self.data[row_ndx][col_ndx] == other.data[row_ndx][col_ndx]
|
367
|
-
# equal if all are equal
|
368
|
-
if util.is_numpy_array(_eq):
|
369
|
-
_eq = ((_eq * -1) + 1).sum() == 0
|
370
|
-
eq = eq and _eq
|
371
|
-
assert (
|
372
|
-
not should_assert or eq
|
373
|
-
), "Unequal data at row_ndx {} col_ndx {}: found {}, expected {}".format(
|
374
|
-
row_ndx,
|
375
|
-
col_ndx,
|
376
|
-
other.data[row_ndx][col_ndx],
|
377
|
-
self.data[row_ndx][col_ndx],
|
378
|
-
)
|
379
|
-
if not eq:
|
380
|
-
return eq
|
381
|
-
return eq
|
382
|
-
|
383
|
-
def __eq__(self, other):
|
384
|
-
return self._eq_debug(other)
|
385
|
-
|
386
|
-
def add_row(self, *row):
|
387
|
-
"""Deprecated; use add_data instead."""
|
388
|
-
logging.warning("add_row is deprecated, use add_data")
|
389
|
-
self.add_data(*row)
|
390
|
-
|
391
|
-
def add_data(self, *data):
|
392
|
-
"""Adds a new row of data to the table. The maximum amount of rows in a table is determined by `wandb.Table.MAX_ARTIFACT_ROWS`.
|
393
|
-
|
394
|
-
The length of the data should match the length of the table column.
|
395
|
-
"""
|
396
|
-
if len(data) != len(self.columns):
|
397
|
-
raise ValueError(
|
398
|
-
"This table expects {} columns: {}, found {}".format(
|
399
|
-
len(self.columns), self.columns, len(data)
|
400
|
-
)
|
401
|
-
)
|
402
|
-
|
403
|
-
# Special case to pre-emptively cast a column as a key.
|
404
|
-
# Needed as String.assign(Key) is invalid
|
405
|
-
for ndx, item in enumerate(data):
|
406
|
-
if isinstance(item, _TableLinkMixin):
|
407
|
-
self.cast(
|
408
|
-
self.columns[ndx],
|
409
|
-
_dtypes.TypeRegistry.type_of(item),
|
410
|
-
optional=False,
|
411
|
-
)
|
412
|
-
|
413
|
-
# Update the table's column types
|
414
|
-
result_type = self._get_updated_result_type(data)
|
415
|
-
self._column_types = result_type
|
416
|
-
|
417
|
-
# rows need to be mutable
|
418
|
-
if isinstance(data, tuple):
|
419
|
-
data = list(data)
|
420
|
-
# Add the new data
|
421
|
-
self.data.append(data)
|
422
|
-
|
423
|
-
# Update the wrapper values if needed
|
424
|
-
self._update_keys(force_last=True)
|
425
|
-
|
426
|
-
def _get_updated_result_type(self, row):
|
427
|
-
"""Returns the updated result type based on the inputted row.
|
428
|
-
|
429
|
-
Raises:
|
430
|
-
TypeError: if the assignment is invalid.
|
431
|
-
"""
|
432
|
-
incoming_row_dict = {
|
433
|
-
col_key: row[ndx] for ndx, col_key in enumerate(self.columns)
|
434
|
-
}
|
435
|
-
current_type = self._column_types
|
436
|
-
result_type = current_type.assign(incoming_row_dict)
|
437
|
-
if isinstance(result_type, _dtypes.InvalidType):
|
438
|
-
raise TypeError(
|
439
|
-
"Data row contained incompatible types:\n{}".format(
|
440
|
-
current_type.explain(incoming_row_dict)
|
441
|
-
)
|
442
|
-
)
|
443
|
-
return result_type
|
444
|
-
|
445
|
-
def _to_table_json(self, max_rows=None, warn=True):
|
446
|
-
# separate this method for easier testing
|
447
|
-
if max_rows is None:
|
448
|
-
max_rows = Table.MAX_ROWS
|
449
|
-
n_rows = len(self.data)
|
450
|
-
if n_rows > max_rows and warn:
|
451
|
-
if wandb.run and (
|
452
|
-
wandb.run.settings.table_raise_on_max_row_limit_exceeded
|
453
|
-
or wandb.run.settings.strict
|
454
|
-
):
|
455
|
-
raise ValueError(
|
456
|
-
f"Table row limit exceeded: table has {n_rows} rows, limit is {max_rows}. "
|
457
|
-
f"To increase the maximum number of allowed rows in a wandb.Table, override "
|
458
|
-
f"the limit with `wandb.Table.MAX_ARTIFACT_ROWS = X` and try again. Note: "
|
459
|
-
f"this may cause slower queries in the W&B UI."
|
460
|
-
)
|
461
|
-
logging.warning("Truncating wandb.Table object to %i rows." % max_rows)
|
462
|
-
return {"columns": self.columns, "data": self.data[:max_rows]}
|
463
|
-
|
464
|
-
def bind_to_run(self, *args, **kwargs):
|
465
|
-
# We set `warn=False` since Tables will now always be logged to both
|
466
|
-
# files and artifacts. The file limit will never practically matter and
|
467
|
-
# this code path will be ultimately removed. The 10k limit warning confuses
|
468
|
-
# users given that we publicly say 200k is the limit.
|
469
|
-
data = self._to_table_json(warn=False)
|
470
|
-
tmp_path = os.path.join(MEDIA_TMP.name, runid.generate_id() + ".table.json")
|
471
|
-
data = _numpy_arrays_to_lists(data)
|
472
|
-
with codecs.open(tmp_path, "w", encoding="utf-8") as fp:
|
473
|
-
util.json_dump_safer(data, fp)
|
474
|
-
self._set_file(tmp_path, is_tmp=True, extension=".table.json")
|
475
|
-
super().bind_to_run(*args, **kwargs)
|
476
|
-
|
477
|
-
@classmethod
|
478
|
-
def get_media_subdir(cls):
|
479
|
-
return os.path.join("media", "table")
|
480
|
-
|
481
|
-
@classmethod
|
482
|
-
def from_json(cls, json_obj, source_artifact):
|
483
|
-
data = []
|
484
|
-
column_types = None
|
485
|
-
np_deserialized_columns = {}
|
486
|
-
timestamp_column_indices = set()
|
487
|
-
if json_obj.get("column_types") is not None:
|
488
|
-
column_types = _dtypes.TypeRegistry.type_from_dict(
|
489
|
-
json_obj["column_types"], source_artifact
|
490
|
-
)
|
491
|
-
for col_name in column_types.params["type_map"]:
|
492
|
-
col_type = column_types.params["type_map"][col_name]
|
493
|
-
ndarray_type = None
|
494
|
-
if isinstance(col_type, _dtypes.NDArrayType):
|
495
|
-
ndarray_type = col_type
|
496
|
-
elif isinstance(col_type, _dtypes.UnionType):
|
497
|
-
for t in col_type.params["allowed_types"]:
|
498
|
-
if isinstance(t, _dtypes.NDArrayType):
|
499
|
-
ndarray_type = t
|
500
|
-
elif isinstance(t, _dtypes.TimestampType):
|
501
|
-
timestamp_column_indices.add(
|
502
|
-
json_obj["columns"].index(col_name)
|
503
|
-
)
|
504
|
-
|
505
|
-
elif isinstance(col_type, _dtypes.TimestampType):
|
506
|
-
timestamp_column_indices.add(json_obj["columns"].index(col_name))
|
507
|
-
|
508
|
-
if (
|
509
|
-
ndarray_type is not None
|
510
|
-
and ndarray_type._get_serialization_path() is not None
|
511
|
-
):
|
512
|
-
serialization_path = ndarray_type._get_serialization_path()
|
513
|
-
np = util.get_module(
|
514
|
-
"numpy",
|
515
|
-
required="Deserializing NumPy columns requires NumPy to be installed.",
|
516
|
-
)
|
517
|
-
deserialized = np.load(
|
518
|
-
source_artifact.get_entry(serialization_path["path"]).download()
|
519
|
-
)
|
520
|
-
np_deserialized_columns[json_obj["columns"].index(col_name)] = (
|
521
|
-
deserialized[serialization_path["key"]]
|
522
|
-
)
|
523
|
-
ndarray_type._clear_serialization_path()
|
524
|
-
|
525
|
-
for r_ndx, row in enumerate(json_obj["data"]):
|
526
|
-
row_data = []
|
527
|
-
for c_ndx, item in enumerate(row):
|
528
|
-
cell = item
|
529
|
-
if c_ndx in timestamp_column_indices and isinstance(item, (int, float)):
|
530
|
-
cell = datetime.datetime.fromtimestamp(
|
531
|
-
item / 1000, tz=datetime.timezone.utc
|
532
|
-
)
|
533
|
-
elif c_ndx in np_deserialized_columns:
|
534
|
-
cell = np_deserialized_columns[c_ndx][r_ndx]
|
535
|
-
elif isinstance(item, dict) and "_type" in item:
|
536
|
-
obj = WBValue.init_from_json(item, source_artifact)
|
537
|
-
if obj is not None:
|
538
|
-
cell = obj
|
539
|
-
row_data.append(cell)
|
540
|
-
data.append(row_data)
|
541
|
-
|
542
|
-
# construct Table with dtypes for each column if type information exists
|
543
|
-
dtypes = None
|
544
|
-
if column_types is not None:
|
545
|
-
dtypes = [
|
546
|
-
column_types.params["type_map"][str(col)] for col in json_obj["columns"]
|
547
|
-
]
|
548
|
-
|
549
|
-
new_obj = cls(columns=json_obj["columns"], data=data, dtype=dtypes)
|
550
|
-
|
551
|
-
if column_types is not None:
|
552
|
-
new_obj._column_types = column_types
|
553
|
-
|
554
|
-
new_obj._update_keys()
|
555
|
-
return new_obj
|
556
|
-
|
557
|
-
def to_json(self, run_or_artifact):
|
558
|
-
json_dict = super().to_json(run_or_artifact)
|
559
|
-
|
560
|
-
if isinstance(run_or_artifact, wandb.wandb_sdk.wandb_run.Run):
|
561
|
-
json_dict.update(
|
562
|
-
{
|
563
|
-
"_type": "table-file",
|
564
|
-
"ncols": len(self.columns),
|
565
|
-
"nrows": len(self.data),
|
566
|
-
}
|
567
|
-
)
|
568
|
-
|
569
|
-
elif isinstance(run_or_artifact, wandb.Artifact):
|
570
|
-
artifact = run_or_artifact
|
571
|
-
mapped_data = []
|
572
|
-
data = self._to_table_json(Table.MAX_ARTIFACT_ROWS)["data"]
|
573
|
-
|
574
|
-
ndarray_col_ndxs = set()
|
575
|
-
for col_ndx, col_name in enumerate(self.columns):
|
576
|
-
col_type = self._column_types.params["type_map"][col_name]
|
577
|
-
ndarray_type = None
|
578
|
-
if isinstance(col_type, _dtypes.NDArrayType):
|
579
|
-
ndarray_type = col_type
|
580
|
-
elif isinstance(col_type, _dtypes.UnionType):
|
581
|
-
for t in col_type.params["allowed_types"]:
|
582
|
-
if isinstance(t, _dtypes.NDArrayType):
|
583
|
-
ndarray_type = t
|
584
|
-
|
585
|
-
# Do not serialize 1d arrays - these are likely embeddings and
|
586
|
-
# will not have the same cost as higher dimensional arrays
|
587
|
-
is_1d_array = (
|
588
|
-
ndarray_type is not None
|
589
|
-
and "shape" in ndarray_type._params
|
590
|
-
and isinstance(ndarray_type._params["shape"], list)
|
591
|
-
and len(ndarray_type._params["shape"]) == 1
|
592
|
-
and ndarray_type._params["shape"][0]
|
593
|
-
<= self._MAX_EMBEDDING_DIMENSIONS
|
594
|
-
)
|
595
|
-
if is_1d_array:
|
596
|
-
self._column_types.params["type_map"][col_name] = _dtypes.ListType(
|
597
|
-
_dtypes.NumberType, ndarray_type._params["shape"][0]
|
598
|
-
)
|
599
|
-
elif ndarray_type is not None:
|
600
|
-
np = util.get_module(
|
601
|
-
"numpy",
|
602
|
-
required="Serializing NumPy requires NumPy to be installed.",
|
603
|
-
)
|
604
|
-
file_name = f"{str(col_name)}_{runid.generate_id()}.npz"
|
605
|
-
npz_file_name = os.path.join(MEDIA_TMP.name, file_name)
|
606
|
-
np.savez_compressed(
|
607
|
-
npz_file_name,
|
608
|
-
**{
|
609
|
-
str(col_name): self.get_column(col_name, convert_to="numpy")
|
610
|
-
},
|
611
|
-
)
|
612
|
-
entry = artifact.add_file(
|
613
|
-
npz_file_name, "media/serialized_data/" + file_name, is_tmp=True
|
614
|
-
)
|
615
|
-
ndarray_type._set_serialization_path(entry.path, str(col_name))
|
616
|
-
ndarray_col_ndxs.add(col_ndx)
|
617
|
-
|
618
|
-
for row in data:
|
619
|
-
mapped_row = []
|
620
|
-
for ndx, v in enumerate(row):
|
621
|
-
if ndx in ndarray_col_ndxs:
|
622
|
-
mapped_row.append(None)
|
623
|
-
else:
|
624
|
-
mapped_row.append(_json_helper(v, artifact))
|
625
|
-
mapped_data.append(mapped_row)
|
626
|
-
|
627
|
-
json_dict.update(
|
628
|
-
{
|
629
|
-
"_type": Table._log_type,
|
630
|
-
"columns": self.columns,
|
631
|
-
"data": mapped_data,
|
632
|
-
"ncols": len(self.columns),
|
633
|
-
"nrows": len(mapped_data),
|
634
|
-
"column_types": self._column_types.to_json(artifact),
|
635
|
-
}
|
636
|
-
)
|
637
|
-
else:
|
638
|
-
raise ValueError("to_json accepts wandb_run.Run or wandb_artifact.Artifact")
|
639
|
-
|
640
|
-
return json_dict
|
641
|
-
|
642
|
-
def iterrows(self):
|
643
|
-
"""Returns the table data by row, showing the index of the row and the relevant data.
|
644
|
-
|
645
|
-
Yields:
|
646
|
-
------
|
647
|
-
index : int
|
648
|
-
The index of the row. Using this value in other W&B tables
|
649
|
-
will automatically build a relationship between the tables
|
650
|
-
row : List[any]
|
651
|
-
The data of the row.
|
652
|
-
"""
|
653
|
-
for ndx in range(len(self.data)):
|
654
|
-
index = _TableIndex(ndx)
|
655
|
-
index.set_table(self)
|
656
|
-
yield index, self.data[ndx]
|
657
|
-
|
658
|
-
def set_pk(self, col_name):
|
659
|
-
# TODO: Docs
|
660
|
-
assert col_name in self.columns
|
661
|
-
self.cast(col_name, _PrimaryKeyType())
|
662
|
-
|
663
|
-
def set_fk(self, col_name, table, table_col):
|
664
|
-
# TODO: Docs
|
665
|
-
assert col_name in self.columns
|
666
|
-
assert col_name != self._pk_col
|
667
|
-
self.cast(col_name, _ForeignKeyType(table, table_col))
|
668
|
-
|
669
|
-
def _update_keys(self, force_last=False):
|
670
|
-
"""Updates the known key-like columns based on current column types.
|
671
|
-
|
672
|
-
If the state has been updated since the last update, wraps the data
|
673
|
-
appropriately in the Key classes.
|
674
|
-
|
675
|
-
Arguments:
|
676
|
-
force_last: (bool) Wraps the last column of data even if there
|
677
|
-
are no key updates.
|
678
|
-
"""
|
679
|
-
_pk_col = None
|
680
|
-
_fk_cols = set()
|
681
|
-
|
682
|
-
# Buildup the known keys from column types
|
683
|
-
c_types = self._column_types.params["type_map"]
|
684
|
-
for t in c_types:
|
685
|
-
if isinstance(c_types[t], _PrimaryKeyType):
|
686
|
-
_pk_col = t
|
687
|
-
elif isinstance(c_types[t], _ForeignKeyType) or isinstance(
|
688
|
-
c_types[t], _ForeignIndexType
|
689
|
-
):
|
690
|
-
_fk_cols.add(t)
|
691
|
-
|
692
|
-
# If there are updates to perform, safely update them
|
693
|
-
has_update = _pk_col != self._pk_col or _fk_cols != self._fk_cols
|
694
|
-
if has_update:
|
695
|
-
# If we removed the PK
|
696
|
-
if _pk_col is None and self._pk_col is not None:
|
697
|
-
raise AssertionError(
|
698
|
-
f"Cannot unset primary key (column {self._pk_col})"
|
699
|
-
)
|
700
|
-
# If there is a removed FK
|
701
|
-
if len(self._fk_cols - _fk_cols) > 0:
|
702
|
-
raise AssertionError(
|
703
|
-
"Cannot unset foreign key. Attempted to unset ({})".format(
|
704
|
-
self._fk_cols - _fk_cols
|
705
|
-
)
|
706
|
-
)
|
707
|
-
|
708
|
-
self._pk_col = _pk_col
|
709
|
-
self._fk_cols = _fk_cols
|
710
|
-
|
711
|
-
# Apply updates to data only if there are update or the caller
|
712
|
-
# requested the final row to be updated
|
713
|
-
if has_update or force_last:
|
714
|
-
self._apply_key_updates(not has_update)
|
715
|
-
|
716
|
-
def _apply_key_updates(self, only_last=False):
|
717
|
-
"""Appropriately wraps the underlying data in special Key classes.
|
718
|
-
|
719
|
-
Arguments:
|
720
|
-
only_last: only apply the updates to the last row (used for performance when
|
721
|
-
the caller knows that the only new data is the last row and no updates were
|
722
|
-
applied to the column types)
|
723
|
-
"""
|
724
|
-
c_types = self._column_types.params["type_map"]
|
725
|
-
|
726
|
-
# Define a helper function which will wrap the data of a single row
|
727
|
-
# in the appropriate class wrapper.
|
728
|
-
def update_row(row_ndx):
|
729
|
-
for fk_col in self._fk_cols:
|
730
|
-
col_ndx = self.columns.index(fk_col)
|
731
|
-
|
732
|
-
# Wrap the Foreign Keys
|
733
|
-
if isinstance(c_types[fk_col], _ForeignKeyType) and not isinstance(
|
734
|
-
self.data[row_ndx][col_ndx], _TableKey
|
735
|
-
):
|
736
|
-
self.data[row_ndx][col_ndx] = _TableKey(self.data[row_ndx][col_ndx])
|
737
|
-
self.data[row_ndx][col_ndx].set_table(
|
738
|
-
c_types[fk_col].params["table"],
|
739
|
-
c_types[fk_col].params["col_name"],
|
740
|
-
)
|
741
|
-
|
742
|
-
# Wrap the Foreign Indexes
|
743
|
-
elif isinstance(c_types[fk_col], _ForeignIndexType) and not isinstance(
|
744
|
-
self.data[row_ndx][col_ndx], _TableIndex
|
745
|
-
):
|
746
|
-
self.data[row_ndx][col_ndx] = _TableIndex(
|
747
|
-
self.data[row_ndx][col_ndx]
|
748
|
-
)
|
749
|
-
self.data[row_ndx][col_ndx].set_table(
|
750
|
-
c_types[fk_col].params["table"]
|
751
|
-
)
|
752
|
-
|
753
|
-
# Wrap the Primary Key
|
754
|
-
if self._pk_col is not None:
|
755
|
-
col_ndx = self.columns.index(self._pk_col)
|
756
|
-
self.data[row_ndx][col_ndx] = _TableKey(self.data[row_ndx][col_ndx])
|
757
|
-
self.data[row_ndx][col_ndx].set_table(self, self._pk_col)
|
758
|
-
|
759
|
-
if only_last:
|
760
|
-
update_row(len(self.data) - 1)
|
761
|
-
else:
|
762
|
-
for row_ndx in range(len(self.data)):
|
763
|
-
update_row(row_ndx)
|
764
|
-
|
765
|
-
def add_column(self, name, data, optional=False):
|
766
|
-
"""Adds a column of data to the table.
|
767
|
-
|
768
|
-
Arguments:
|
769
|
-
name: (str) - the unique name of the column
|
770
|
-
data: (list | np.array) - a column of homogeneous data
|
771
|
-
optional: (bool) - if null-like values are permitted
|
772
|
-
"""
|
773
|
-
assert isinstance(name, str) and name not in self.columns
|
774
|
-
is_np = util.is_numpy_array(data)
|
775
|
-
assert isinstance(data, list) or is_np
|
776
|
-
assert isinstance(optional, bool)
|
777
|
-
is_first_col = len(self.columns) == 0
|
778
|
-
assert is_first_col or len(data) == len(
|
779
|
-
self.data
|
780
|
-
), f"Expected length {len(self.data)}, found {len(data)}"
|
781
|
-
|
782
|
-
# Add the new data
|
783
|
-
for ndx in range(max(len(data), len(self.data))):
|
784
|
-
if is_first_col:
|
785
|
-
self.data.append([])
|
786
|
-
if is_np:
|
787
|
-
self.data[ndx].append(data[ndx])
|
788
|
-
else:
|
789
|
-
self.data[ndx].append(data[ndx])
|
790
|
-
# add the column
|
791
|
-
self.columns.append(name)
|
792
|
-
|
793
|
-
try:
|
794
|
-
self.cast(name, _dtypes.UnknownType(), optional=optional)
|
795
|
-
except TypeError as err:
|
796
|
-
# Undo the changes
|
797
|
-
if is_first_col:
|
798
|
-
self.data = []
|
799
|
-
self.columns = []
|
800
|
-
else:
|
801
|
-
for ndx in range(len(self.data)):
|
802
|
-
self.data[ndx] = self.data[ndx][:-1]
|
803
|
-
self.columns = self.columns[:-1]
|
804
|
-
raise err
|
805
|
-
|
806
|
-
def get_column(self, name, convert_to=None):
|
807
|
-
"""Retrieves a column from the table and optionally converts it to a NumPy object.
|
808
|
-
|
809
|
-
Arguments:
|
810
|
-
name: (str) - the name of the column
|
811
|
-
convert_to: (str, optional)
|
812
|
-
- "numpy": will convert the underlying data to numpy object
|
813
|
-
"""
|
814
|
-
assert name in self.columns
|
815
|
-
assert convert_to is None or convert_to == "numpy"
|
816
|
-
if convert_to == "numpy":
|
817
|
-
np = util.get_module(
|
818
|
-
"numpy", required="Converting to NumPy requires installing NumPy"
|
819
|
-
)
|
820
|
-
col = []
|
821
|
-
col_ndx = self.columns.index(name)
|
822
|
-
for row in self.data:
|
823
|
-
item = row[col_ndx]
|
824
|
-
if convert_to is not None and isinstance(item, WBValue):
|
825
|
-
item = item.to_data_array()
|
826
|
-
col.append(item)
|
827
|
-
if convert_to == "numpy":
|
828
|
-
col = np.array(col)
|
829
|
-
return col
|
830
|
-
|
831
|
-
def get_index(self):
|
832
|
-
"""Returns an array of row indexes for use in other tables to create links."""
|
833
|
-
ndxs = []
|
834
|
-
for ndx in range(len(self.data)):
|
835
|
-
index = _TableIndex(ndx)
|
836
|
-
index.set_table(self)
|
837
|
-
ndxs.append(index)
|
838
|
-
return ndxs
|
839
|
-
|
840
|
-
def get_dataframe(self):
|
841
|
-
"""Returns a `pandas.DataFrame` of the table."""
|
842
|
-
pd = util.get_module(
|
843
|
-
"pandas",
|
844
|
-
required="Converting to pandas.DataFrame requires installing pandas",
|
845
|
-
)
|
846
|
-
return pd.DataFrame.from_records(self.data, columns=self.columns)
|
847
|
-
|
848
|
-
def index_ref(self, index):
|
849
|
-
"""Gets a reference of the index of a row in the table."""
|
850
|
-
assert index < len(self.data)
|
851
|
-
_index = _TableIndex(index)
|
852
|
-
_index.set_table(self)
|
853
|
-
return _index
|
854
|
-
|
855
|
-
def add_computed_columns(self, fn):
|
856
|
-
"""Adds one or more computed columns based on existing data.
|
857
|
-
|
858
|
-
Args:
|
859
|
-
fn: A function which accepts one or two parameters, ndx (int) and row (dict),
|
860
|
-
which is expected to return a dict representing new columns for that row, keyed
|
861
|
-
by the new column names.
|
862
|
-
|
863
|
-
`ndx` is an integer representing the index of the row. Only included if `include_ndx`
|
864
|
-
is set to `True`.
|
865
|
-
|
866
|
-
`row` is a dictionary keyed by existing columns
|
867
|
-
"""
|
868
|
-
new_columns = {}
|
869
|
-
for ndx, row in self.iterrows():
|
870
|
-
row_dict = {self.columns[i]: row[i] for i in range(len(self.columns))}
|
871
|
-
new_row_dict = fn(ndx, row_dict)
|
872
|
-
assert isinstance(new_row_dict, dict)
|
873
|
-
for key in new_row_dict:
|
874
|
-
new_columns[key] = new_columns.get(key, [])
|
875
|
-
new_columns[key].append(new_row_dict[key])
|
876
|
-
for new_col_name in new_columns:
|
877
|
-
self.add_column(new_col_name, new_columns[new_col_name])
|
878
|
-
|
879
|
-
|
880
|
-
class _PartitionTablePartEntry:
|
881
|
-
"""Helper class for PartitionTable to track its parts."""
|
882
|
-
|
883
|
-
def __init__(self, entry, source_artifact):
|
884
|
-
self.entry = entry
|
885
|
-
self.source_artifact = source_artifact
|
886
|
-
self._part = None
|
887
|
-
|
888
|
-
def get_part(self):
|
889
|
-
if self._part is None:
|
890
|
-
self._part = self.source_artifact.get(self.entry.path)
|
891
|
-
return self._part
|
892
|
-
|
893
|
-
def free(self):
|
894
|
-
self._part = None
|
895
|
-
|
896
|
-
|
897
|
-
class PartitionedTable(Media):
|
898
|
-
"""A table which is composed of multiple sub-tables.
|
899
|
-
|
900
|
-
Currently, PartitionedTable is designed to point to a directory within an artifact.
|
901
|
-
"""
|
902
|
-
|
903
|
-
_log_type = "partitioned-table"
|
904
|
-
|
905
|
-
def __init__(self, parts_path):
|
906
|
-
"""Initialize a PartitionedTable.
|
907
|
-
|
908
|
-
Args:
|
909
|
-
parts_path (str): path to a directory of tables in the artifact.
|
910
|
-
"""
|
911
|
-
super().__init__()
|
912
|
-
self.parts_path = parts_path
|
913
|
-
self._loaded_part_entries = {}
|
914
|
-
|
915
|
-
def to_json(self, artifact_or_run):
|
916
|
-
json_obj = {
|
917
|
-
"_type": PartitionedTable._log_type,
|
918
|
-
}
|
919
|
-
if isinstance(artifact_or_run, wandb.wandb_sdk.wandb_run.Run):
|
920
|
-
artifact_entry_url = self._get_artifact_entry_ref_url()
|
921
|
-
if artifact_entry_url is None:
|
922
|
-
raise ValueError(
|
923
|
-
"PartitionedTables must first be added to an Artifact before logging to a Run"
|
924
|
-
)
|
925
|
-
json_obj["artifact_path"] = artifact_entry_url
|
926
|
-
else:
|
927
|
-
json_obj["parts_path"] = self.parts_path
|
928
|
-
return json_obj
|
929
|
-
|
930
|
-
@classmethod
|
931
|
-
def from_json(cls, json_obj, source_artifact):
|
932
|
-
instance = cls(json_obj["parts_path"])
|
933
|
-
entries = source_artifact.manifest.get_entries_in_directory(
|
934
|
-
json_obj["parts_path"]
|
935
|
-
)
|
936
|
-
for entry in entries:
|
937
|
-
instance._add_part_entry(entry, source_artifact)
|
938
|
-
return instance
|
939
|
-
|
940
|
-
def iterrows(self):
|
941
|
-
"""Iterate over rows as (ndx, row).
|
942
|
-
|
943
|
-
Yields:
|
944
|
-
------
|
945
|
-
index : int
|
946
|
-
The index of the row.
|
947
|
-
row : List[any]
|
948
|
-
The data of the row.
|
949
|
-
"""
|
950
|
-
columns = None
|
951
|
-
ndx = 0
|
952
|
-
for entry_path in self._loaded_part_entries:
|
953
|
-
part = self._loaded_part_entries[entry_path].get_part()
|
954
|
-
if columns is None:
|
955
|
-
columns = part.columns
|
956
|
-
elif columns != part.columns:
|
957
|
-
raise ValueError(
|
958
|
-
"Table parts have non-matching columns. {} != {}".format(
|
959
|
-
columns, part.columns
|
960
|
-
)
|
961
|
-
)
|
962
|
-
for _, row in part.iterrows():
|
963
|
-
yield ndx, row
|
964
|
-
ndx += 1
|
965
|
-
|
966
|
-
self._loaded_part_entries[entry_path].free()
|
967
|
-
|
968
|
-
def _add_part_entry(self, entry, source_artifact):
|
969
|
-
self._loaded_part_entries[entry.path] = _PartitionTablePartEntry(
|
970
|
-
entry, source_artifact
|
971
|
-
)
|
972
|
-
|
973
|
-
def __ne__(self, other):
|
974
|
-
return not self.__eq__(other)
|
975
|
-
|
976
|
-
def __eq__(self, other):
|
977
|
-
return isinstance(other, self.__class__) and self.parts_path == other.parts_path
|
978
|
-
|
979
|
-
def bind_to_run(self, *args, **kwargs):
|
980
|
-
raise ValueError("PartitionedTables cannot be bound to runs")
|
981
|
-
|
982
|
-
|
983
|
-
class Audio(BatchableMedia):
|
984
|
-
"""Wandb class for audio clips.
|
985
|
-
|
986
|
-
Arguments:
|
987
|
-
data_or_path: (string or numpy array) A path to an audio file
|
988
|
-
or a numpy array of audio data.
|
989
|
-
sample_rate: (int) Sample rate, required when passing in raw
|
990
|
-
numpy array of audio data.
|
991
|
-
caption: (string) Caption to display with audio.
|
992
|
-
"""
|
993
|
-
|
994
|
-
_log_type = "audio-file"
|
995
|
-
|
996
|
-
def __init__(self, data_or_path, sample_rate=None, caption=None):
|
997
|
-
"""Accept a path to an audio file or a numpy array of audio data."""
|
998
|
-
super().__init__()
|
999
|
-
self._duration = None
|
1000
|
-
self._sample_rate = sample_rate
|
1001
|
-
self._caption = caption
|
1002
|
-
|
1003
|
-
if isinstance(data_or_path, str):
|
1004
|
-
if self.path_is_reference(data_or_path):
|
1005
|
-
self._path = data_or_path
|
1006
|
-
self._sha256 = hashlib.sha256(data_or_path.encode("utf-8")).hexdigest()
|
1007
|
-
self._is_tmp = False
|
1008
|
-
else:
|
1009
|
-
self._set_file(data_or_path, is_tmp=False)
|
1010
|
-
else:
|
1011
|
-
if sample_rate is None:
|
1012
|
-
raise ValueError(
|
1013
|
-
'Argument "sample_rate" is required when instantiating wandb.Audio with raw data.'
|
1014
|
-
)
|
1015
|
-
|
1016
|
-
soundfile = util.get_module(
|
1017
|
-
"soundfile",
|
1018
|
-
required='Raw audio requires the soundfile package. To get it, run "pip install soundfile"',
|
1019
|
-
)
|
1020
|
-
|
1021
|
-
tmp_path = os.path.join(MEDIA_TMP.name, runid.generate_id() + ".wav")
|
1022
|
-
soundfile.write(tmp_path, data_or_path, sample_rate)
|
1023
|
-
self._duration = len(data_or_path) / float(sample_rate)
|
1024
|
-
|
1025
|
-
self._set_file(tmp_path, is_tmp=True)
|
1026
|
-
|
1027
|
-
@classmethod
|
1028
|
-
def get_media_subdir(cls):
|
1029
|
-
return os.path.join("media", "audio")
|
1030
|
-
|
1031
|
-
@classmethod
|
1032
|
-
def from_json(cls, json_obj, source_artifact):
|
1033
|
-
return cls(
|
1034
|
-
source_artifact.get_entry(json_obj["path"]).download(),
|
1035
|
-
caption=json_obj["caption"],
|
1036
|
-
)
|
1037
|
-
|
1038
|
-
def bind_to_run(
|
1039
|
-
self, run, key, step, id_=None, ignore_copy_err: Optional[bool] = None
|
1040
|
-
):
|
1041
|
-
if self.path_is_reference(self._path):
|
1042
|
-
raise ValueError(
|
1043
|
-
"Audio media created by a reference to external storage cannot currently be added to a run"
|
1044
|
-
)
|
1045
|
-
|
1046
|
-
return super().bind_to_run(run, key, step, id_, ignore_copy_err)
|
1047
|
-
|
1048
|
-
def to_json(self, run):
|
1049
|
-
json_dict = super().to_json(run)
|
1050
|
-
json_dict.update(
|
1051
|
-
{
|
1052
|
-
"_type": self._log_type,
|
1053
|
-
"caption": self._caption,
|
1054
|
-
}
|
1055
|
-
)
|
1056
|
-
return json_dict
|
1057
|
-
|
1058
|
-
@classmethod
|
1059
|
-
def seq_to_json(cls, seq, run, key, step):
|
1060
|
-
audio_list = list(seq)
|
1061
|
-
|
1062
|
-
util.get_module(
|
1063
|
-
"soundfile",
|
1064
|
-
required="wandb.Audio requires the soundfile package. To get it, run: pip install soundfile",
|
1065
|
-
)
|
1066
|
-
base_path = os.path.join(run.dir, "media", "audio")
|
1067
|
-
filesystem.mkdir_exists_ok(base_path)
|
1068
|
-
meta = {
|
1069
|
-
"_type": "audio",
|
1070
|
-
"count": len(audio_list),
|
1071
|
-
"audio": [a.to_json(run) for a in audio_list],
|
1072
|
-
}
|
1073
|
-
sample_rates = cls.sample_rates(audio_list)
|
1074
|
-
if sample_rates:
|
1075
|
-
meta["sampleRates"] = sample_rates
|
1076
|
-
durations = cls.durations(audio_list)
|
1077
|
-
if durations:
|
1078
|
-
meta["durations"] = durations
|
1079
|
-
captions = cls.captions(audio_list)
|
1080
|
-
if captions:
|
1081
|
-
meta["captions"] = captions
|
1082
|
-
|
1083
|
-
return meta
|
1084
|
-
|
1085
|
-
@classmethod
|
1086
|
-
def durations(cls, audio_list):
|
1087
|
-
return [a._duration for a in audio_list]
|
1088
|
-
|
1089
|
-
@classmethod
|
1090
|
-
def sample_rates(cls, audio_list):
|
1091
|
-
return [a._sample_rate for a in audio_list]
|
1092
|
-
|
1093
|
-
@classmethod
|
1094
|
-
def captions(cls, audio_list):
|
1095
|
-
captions = [a._caption for a in audio_list]
|
1096
|
-
if all(c is None for c in captions):
|
1097
|
-
return False
|
1098
|
-
else:
|
1099
|
-
return ["" if c is None else c for c in captions]
|
1100
|
-
|
1101
|
-
def resolve_ref(self):
|
1102
|
-
if self.path_is_reference(self._path):
|
1103
|
-
# this object was already created using a ref:
|
1104
|
-
return self._path
|
1105
|
-
source_artifact = self._artifact_source.artifact
|
1106
|
-
|
1107
|
-
resolved_name = source_artifact._local_path_to_name(self._path)
|
1108
|
-
if resolved_name is not None:
|
1109
|
-
target_entry = source_artifact.manifest.get_entry_by_path(resolved_name)
|
1110
|
-
if target_entry is not None:
|
1111
|
-
return target_entry.ref
|
1112
|
-
|
1113
|
-
return None
|
1114
|
-
|
1115
|
-
def __eq__(self, other):
|
1116
|
-
if self.path_is_reference(self._path) or self.path_is_reference(other._path):
|
1117
|
-
# one or more of these objects is an unresolved reference -- we'll compare
|
1118
|
-
# their reference paths instead of their SHAs:
|
1119
|
-
return (
|
1120
|
-
self.resolve_ref() == other.resolve_ref()
|
1121
|
-
and self._caption == other._caption
|
1122
|
-
)
|
1123
|
-
|
1124
|
-
return super().__eq__(other) and self._caption == other._caption
|
1125
|
-
|
1126
|
-
def __ne__(self, other):
|
1127
|
-
return not self.__eq__(other)
|
1128
|
-
|
1129
|
-
|
1130
|
-
class JoinedTable(Media):
|
1131
|
-
"""Join two tables for visualization in the Artifact UI.
|
1132
|
-
|
1133
|
-
Arguments:
|
1134
|
-
table1 (str, wandb.Table, ArtifactManifestEntry):
|
1135
|
-
the path to a wandb.Table in an artifact, the table object, or ArtifactManifestEntry
|
1136
|
-
table2 (str, wandb.Table):
|
1137
|
-
the path to a wandb.Table in an artifact, the table object, or ArtifactManifestEntry
|
1138
|
-
join_key (str, [str, str]):
|
1139
|
-
key or keys to perform the join
|
1140
|
-
"""
|
1141
|
-
|
1142
|
-
_log_type = "joined-table"
|
1143
|
-
|
1144
|
-
def __init__(self, table1, table2, join_key):
|
1145
|
-
super().__init__()
|
1146
|
-
|
1147
|
-
if not isinstance(join_key, str) and (
|
1148
|
-
not isinstance(join_key, list) or len(join_key) != 2
|
1149
|
-
):
|
1150
|
-
raise ValueError(
|
1151
|
-
"JoinedTable join_key should be a string or a list of two strings"
|
1152
|
-
)
|
1153
|
-
|
1154
|
-
if not self._validate_table_input(table1):
|
1155
|
-
raise ValueError(
|
1156
|
-
"JoinedTable table1 should be an artifact path to a table or wandb.Table object"
|
1157
|
-
)
|
1158
|
-
|
1159
|
-
if not self._validate_table_input(table2):
|
1160
|
-
raise ValueError(
|
1161
|
-
"JoinedTable table2 should be an artifact path to a table or wandb.Table object"
|
1162
|
-
)
|
1163
|
-
|
1164
|
-
self._table1 = table1
|
1165
|
-
self._table2 = table2
|
1166
|
-
self._join_key = join_key
|
1167
|
-
|
1168
|
-
@classmethod
|
1169
|
-
def from_json(cls, json_obj, source_artifact):
|
1170
|
-
t1 = source_artifact.get(json_obj["table1"])
|
1171
|
-
if t1 is None:
|
1172
|
-
t1 = json_obj["table1"]
|
1173
|
-
|
1174
|
-
t2 = source_artifact.get(json_obj["table2"])
|
1175
|
-
if t2 is None:
|
1176
|
-
t2 = json_obj["table2"]
|
1177
|
-
|
1178
|
-
return cls(
|
1179
|
-
t1,
|
1180
|
-
t2,
|
1181
|
-
json_obj["join_key"],
|
1182
|
-
)
|
1183
|
-
|
1184
|
-
@staticmethod
|
1185
|
-
def _validate_table_input(table):
|
1186
|
-
"""Helper method to validate that the table input is one of the 3 supported types."""
|
1187
|
-
return (
|
1188
|
-
(isinstance(table, str) and table.endswith(".table.json"))
|
1189
|
-
or isinstance(table, Table)
|
1190
|
-
or isinstance(table, PartitionedTable)
|
1191
|
-
or (hasattr(table, "ref_url") and table.ref_url().endswith(".table.json"))
|
1192
|
-
)
|
1193
|
-
|
1194
|
-
def _ensure_table_in_artifact(self, table, artifact, table_ndx):
|
1195
|
-
"""Helper method to add the table to the incoming artifact. Returns the path."""
|
1196
|
-
if isinstance(table, Table) or isinstance(table, PartitionedTable):
|
1197
|
-
table_name = f"t{table_ndx}_{str(id(self))}"
|
1198
|
-
if (
|
1199
|
-
table._artifact_source is not None
|
1200
|
-
and table._artifact_source.name is not None
|
1201
|
-
):
|
1202
|
-
table_name = os.path.basename(table._artifact_source.name)
|
1203
|
-
entry = artifact.add(table, table_name)
|
1204
|
-
table = entry.path
|
1205
|
-
# Check if this is an ArtifactManifestEntry
|
1206
|
-
elif hasattr(table, "ref_url"):
|
1207
|
-
# Give the new object a unique, yet deterministic name
|
1208
|
-
name = binascii.hexlify(base64.standard_b64decode(table.digest)).decode(
|
1209
|
-
"ascii"
|
1210
|
-
)[:20]
|
1211
|
-
entry = artifact.add_reference(
|
1212
|
-
table.ref_url(), "{}.{}.json".format(name, table.name.split(".")[-2])
|
1213
|
-
)[0]
|
1214
|
-
table = entry.path
|
1215
|
-
|
1216
|
-
err_str = "JoinedTable table:{} not found in artifact. Add a table to the artifact using Artifact#add(<table>, {}) before adding this JoinedTable"
|
1217
|
-
if table not in artifact._manifest.entries:
|
1218
|
-
raise ValueError(err_str.format(table, table))
|
1219
|
-
|
1220
|
-
return table
|
1221
|
-
|
1222
|
-
def to_json(self, artifact_or_run):
|
1223
|
-
json_obj = {
|
1224
|
-
"_type": JoinedTable._log_type,
|
1225
|
-
}
|
1226
|
-
if isinstance(artifact_or_run, wandb.wandb_sdk.wandb_run.Run):
|
1227
|
-
artifact_entry_url = self._get_artifact_entry_ref_url()
|
1228
|
-
if artifact_entry_url is None:
|
1229
|
-
raise ValueError(
|
1230
|
-
"JoinedTables must first be added to an Artifact before logging to a Run"
|
1231
|
-
)
|
1232
|
-
json_obj["artifact_path"] = artifact_entry_url
|
1233
|
-
else:
|
1234
|
-
table1 = self._ensure_table_in_artifact(self._table1, artifact_or_run, 1)
|
1235
|
-
table2 = self._ensure_table_in_artifact(self._table2, artifact_or_run, 2)
|
1236
|
-
json_obj.update(
|
1237
|
-
{
|
1238
|
-
"table1": table1,
|
1239
|
-
"table2": table2,
|
1240
|
-
"join_key": self._join_key,
|
1241
|
-
}
|
1242
|
-
)
|
1243
|
-
return json_obj
|
1244
|
-
|
1245
|
-
def __ne__(self, other):
|
1246
|
-
return not self.__eq__(other)
|
1247
|
-
|
1248
|
-
def _eq_debug(self, other, should_assert=False):
|
1249
|
-
eq = isinstance(other, JoinedTable)
|
1250
|
-
assert not should_assert or eq, "Found type {}, expected {}".format(
|
1251
|
-
other.__class__, JoinedTable
|
1252
|
-
)
|
1253
|
-
eq = eq and self._join_key == other._join_key
|
1254
|
-
assert not should_assert or eq, "Found {} join key, expected {}".format(
|
1255
|
-
other._join_key, self._join_key
|
1256
|
-
)
|
1257
|
-
eq = eq and self._table1._eq_debug(other._table1, should_assert)
|
1258
|
-
eq = eq and self._table2._eq_debug(other._table2, should_assert)
|
1259
|
-
return eq
|
1260
|
-
|
1261
|
-
def __eq__(self, other):
|
1262
|
-
return self._eq_debug(other, False)
|
1263
|
-
|
1264
|
-
def bind_to_run(self, *args, **kwargs):
|
1265
|
-
raise ValueError("JoinedTables cannot be bound to runs")
|
1266
|
-
|
1267
|
-
|
1268
|
-
class Bokeh(Media):
|
1269
|
-
"""Wandb class for Bokeh plots.
|
1270
|
-
|
1271
|
-
Arguments:
|
1272
|
-
val: Bokeh plot
|
1273
|
-
"""
|
1274
|
-
|
1275
|
-
_log_type = "bokeh-file"
|
1276
|
-
|
1277
|
-
def __init__(self, data_or_path):
|
1278
|
-
super().__init__()
|
1279
|
-
bokeh = util.get_module("bokeh", required=True)
|
1280
|
-
if isinstance(data_or_path, str) and os.path.exists(data_or_path):
|
1281
|
-
with open(data_or_path) as file:
|
1282
|
-
b_json = json.load(file)
|
1283
|
-
self.b_obj = bokeh.document.Document.from_json(b_json)
|
1284
|
-
self._set_file(data_or_path, is_tmp=False, extension=".bokeh.json")
|
1285
|
-
elif isinstance(data_or_path, bokeh.model.Model):
|
1286
|
-
_data = bokeh.document.Document()
|
1287
|
-
_data.add_root(data_or_path)
|
1288
|
-
# serialize/deserialize pairing followed by sorting attributes ensures
|
1289
|
-
# that the file's sha's are equivalent in subsequent calls
|
1290
|
-
self.b_obj = bokeh.document.Document.from_json(_data.to_json())
|
1291
|
-
b_json = self.b_obj.to_json()
|
1292
|
-
if "references" in b_json["roots"]:
|
1293
|
-
b_json["roots"]["references"].sort(key=lambda x: x["id"])
|
1294
|
-
|
1295
|
-
tmp_path = os.path.join(MEDIA_TMP.name, runid.generate_id() + ".bokeh.json")
|
1296
|
-
with codecs.open(tmp_path, "w", encoding="utf-8") as fp:
|
1297
|
-
util.json_dump_safer(b_json, fp)
|
1298
|
-
self._set_file(tmp_path, is_tmp=True, extension=".bokeh.json")
|
1299
|
-
elif not isinstance(data_or_path, bokeh.document.Document):
|
1300
|
-
raise TypeError(
|
1301
|
-
"Bokeh constructor accepts Bokeh document/model or path to Bokeh json file"
|
1302
|
-
)
|
1303
|
-
|
1304
|
-
def get_media_subdir(self):
|
1305
|
-
return os.path.join("media", "bokeh")
|
1306
|
-
|
1307
|
-
def to_json(self, run):
|
1308
|
-
# TODO: (tss) this is getting redundant for all the media objects. We can probably
|
1309
|
-
# pull this into Media#to_json and remove this type override for all the media types.
|
1310
|
-
# There are only a few cases where the type is different between artifacts and runs.
|
1311
|
-
json_dict = super().to_json(run)
|
1312
|
-
json_dict["_type"] = self._log_type
|
1313
|
-
return json_dict
|
1314
|
-
|
1315
|
-
@classmethod
|
1316
|
-
def from_json(cls, json_obj, source_artifact):
|
1317
|
-
return cls(source_artifact.get_entry(json_obj["path"]).download())
|
1318
|
-
|
1319
|
-
|
1320
|
-
def _nest(thing):
|
1321
|
-
# Use tensorflows nest function if available, otherwise just wrap object in an array"""
|
1322
|
-
|
1323
|
-
tfutil = util.get_module("tensorflow.python.util")
|
1324
|
-
if tfutil:
|
1325
|
-
return tfutil.nest.flatten(thing)
|
1326
|
-
else:
|
1327
|
-
return [thing]
|
1328
|
-
|
1329
|
-
|
1330
|
-
class Graph(Media):
|
1331
|
-
"""Wandb class for graphs.
|
1332
|
-
|
1333
|
-
This class is typically used for saving and displaying neural net models. It
|
1334
|
-
represents the graph as an array of nodes and edges. The nodes can have
|
1335
|
-
labels that can be visualized by wandb.
|
1336
|
-
|
1337
|
-
Examples:
|
1338
|
-
Import a keras model:
|
1339
|
-
```
|
1340
|
-
Graph.from_keras(keras_model)
|
1341
|
-
```
|
1342
|
-
|
1343
|
-
Attributes:
|
1344
|
-
format (string): Format to help wandb display the graph nicely.
|
1345
|
-
nodes ([wandb.Node]): List of wandb.Nodes
|
1346
|
-
nodes_by_id (dict): dict of ids -> nodes
|
1347
|
-
edges ([(wandb.Node, wandb.Node)]): List of pairs of nodes interpreted as edges
|
1348
|
-
loaded (boolean): Flag to tell whether the graph is completely loaded
|
1349
|
-
root (wandb.Node): root node of the graph
|
1350
|
-
"""
|
1351
|
-
|
1352
|
-
_log_type = "graph-file"
|
1353
|
-
|
1354
|
-
def __init__(self, format="keras"):
|
1355
|
-
super().__init__()
|
1356
|
-
# LB: TODO: I think we should factor criterion and criterion_passed out
|
1357
|
-
self.format = format
|
1358
|
-
self.nodes = []
|
1359
|
-
self.nodes_by_id = {}
|
1360
|
-
self.edges = []
|
1361
|
-
self.loaded = False
|
1362
|
-
self.criterion = None
|
1363
|
-
self.criterion_passed = False
|
1364
|
-
self.root = None # optional root Node if applicable
|
1365
|
-
|
1366
|
-
def _to_graph_json(self, run=None):
|
1367
|
-
# Needs to be its own function for tests
|
1368
|
-
return {
|
1369
|
-
"format": self.format,
|
1370
|
-
"nodes": [node.to_json() for node in self.nodes],
|
1371
|
-
"edges": [edge.to_json() for edge in self.edges],
|
1372
|
-
}
|
1373
|
-
|
1374
|
-
def bind_to_run(self, *args, **kwargs):
|
1375
|
-
data = self._to_graph_json()
|
1376
|
-
tmp_path = os.path.join(MEDIA_TMP.name, runid.generate_id() + ".graph.json")
|
1377
|
-
data = _numpy_arrays_to_lists(data)
|
1378
|
-
with codecs.open(tmp_path, "w", encoding="utf-8") as fp:
|
1379
|
-
util.json_dump_safer(data, fp)
|
1380
|
-
self._set_file(tmp_path, is_tmp=True, extension=".graph.json")
|
1381
|
-
if self.is_bound():
|
1382
|
-
return
|
1383
|
-
super().bind_to_run(*args, **kwargs)
|
1384
|
-
|
1385
|
-
@classmethod
|
1386
|
-
def get_media_subdir(cls):
|
1387
|
-
return os.path.join("media", "graph")
|
1388
|
-
|
1389
|
-
def to_json(self, run):
|
1390
|
-
json_dict = super().to_json(run)
|
1391
|
-
json_dict["_type"] = self._log_type
|
1392
|
-
return json_dict
|
1393
|
-
|
1394
|
-
def __getitem__(self, nid):
|
1395
|
-
return self.nodes_by_id[nid]
|
1396
|
-
|
1397
|
-
def pprint(self):
|
1398
|
-
for edge in self.edges:
|
1399
|
-
pprint.pprint(edge.attributes)
|
1400
|
-
for node in self.nodes:
|
1401
|
-
pprint.pprint(node.attributes)
|
1402
|
-
|
1403
|
-
def add_node(self, node=None, **node_kwargs):
|
1404
|
-
if node is None:
|
1405
|
-
node = Node(**node_kwargs)
|
1406
|
-
elif node_kwargs:
|
1407
|
-
raise ValueError(
|
1408
|
-
f"Only pass one of either node ({node}) or other keyword arguments ({node_kwargs})"
|
1409
|
-
)
|
1410
|
-
self.nodes.append(node)
|
1411
|
-
self.nodes_by_id[node.id] = node
|
1412
|
-
|
1413
|
-
return node
|
1414
|
-
|
1415
|
-
def add_edge(self, from_node, to_node):
|
1416
|
-
edge = Edge(from_node, to_node)
|
1417
|
-
self.edges.append(edge)
|
1418
|
-
|
1419
|
-
return edge
|
1420
|
-
|
1421
|
-
@classmethod
|
1422
|
-
def from_keras(cls, model):
|
1423
|
-
# TODO: his method requires a refactor to work with the keras 3.
|
1424
|
-
graph = cls()
|
1425
|
-
# Shamelessly copied (then modified) from keras/keras/utils/layer_utils.py
|
1426
|
-
sequential_like = cls._is_sequential(model)
|
1427
|
-
|
1428
|
-
relevant_nodes = None
|
1429
|
-
if not sequential_like:
|
1430
|
-
relevant_nodes = []
|
1431
|
-
for v in model._nodes_by_depth.values():
|
1432
|
-
relevant_nodes += v
|
1433
|
-
|
1434
|
-
layers = model.layers
|
1435
|
-
for i in range(len(layers)):
|
1436
|
-
node = Node.from_keras(layers[i])
|
1437
|
-
if hasattr(layers[i], "_inbound_nodes"):
|
1438
|
-
for in_node in layers[i]._inbound_nodes:
|
1439
|
-
if relevant_nodes and in_node not in relevant_nodes:
|
1440
|
-
# node is not part of the current network
|
1441
|
-
continue
|
1442
|
-
for in_layer in _nest(in_node.inbound_layers):
|
1443
|
-
inbound_keras_node = Node.from_keras(in_layer)
|
1444
|
-
|
1445
|
-
if inbound_keras_node.id not in graph.nodes_by_id:
|
1446
|
-
graph.add_node(inbound_keras_node)
|
1447
|
-
inbound_node = graph.nodes_by_id[inbound_keras_node.id]
|
1448
|
-
|
1449
|
-
graph.add_edge(inbound_node, node)
|
1450
|
-
graph.add_node(node)
|
1451
|
-
return graph
|
1452
|
-
|
1453
|
-
@classmethod
|
1454
|
-
def _is_sequential(cls, model):
|
1455
|
-
sequential_like = True
|
1456
|
-
|
1457
|
-
if (
|
1458
|
-
model.__class__.__name__ != "Sequential"
|
1459
|
-
and hasattr(model, "_is_graph_network")
|
1460
|
-
and model._is_graph_network
|
1461
|
-
):
|
1462
|
-
nodes_by_depth = model._nodes_by_depth.values()
|
1463
|
-
nodes = []
|
1464
|
-
for v in nodes_by_depth:
|
1465
|
-
# TensorFlow2 doesn't insure inbound is always a list
|
1466
|
-
inbound = v[0].inbound_layers
|
1467
|
-
if not hasattr(inbound, "__len__"):
|
1468
|
-
inbound = [inbound]
|
1469
|
-
if (len(v) > 1) or (len(v) == 1 and len(inbound) > 1):
|
1470
|
-
# if the model has multiple nodes
|
1471
|
-
# or if the nodes have multiple inbound_layers
|
1472
|
-
# the model is no longer sequential
|
1473
|
-
sequential_like = False
|
1474
|
-
break
|
1475
|
-
nodes += v
|
1476
|
-
if sequential_like:
|
1477
|
-
# search for shared layers
|
1478
|
-
for layer in model.layers:
|
1479
|
-
flag = False
|
1480
|
-
if hasattr(layer, "_inbound_nodes"):
|
1481
|
-
for node in layer._inbound_nodes:
|
1482
|
-
if node in nodes:
|
1483
|
-
if flag:
|
1484
|
-
sequential_like = False
|
1485
|
-
break
|
1486
|
-
else:
|
1487
|
-
flag = True
|
1488
|
-
if not sequential_like:
|
1489
|
-
break
|
1490
|
-
return sequential_like
|
1491
|
-
|
1492
|
-
|
1493
|
-
class Node(WBValue):
|
1494
|
-
"""Node used in `Graph`."""
|
1495
|
-
|
1496
|
-
def __init__(
|
1497
|
-
self,
|
1498
|
-
id=None,
|
1499
|
-
name=None,
|
1500
|
-
class_name=None,
|
1501
|
-
size=None,
|
1502
|
-
parameters=None,
|
1503
|
-
output_shape=None,
|
1504
|
-
is_output=None,
|
1505
|
-
num_parameters=None,
|
1506
|
-
node=None,
|
1507
|
-
):
|
1508
|
-
self._attributes = {"name": None}
|
1509
|
-
self.in_edges = {} # indexed by source node id
|
1510
|
-
self.out_edges = {} # indexed by dest node id
|
1511
|
-
# optional object (e.g. PyTorch Parameter or Module) that this Node represents
|
1512
|
-
self.obj = None
|
1513
|
-
|
1514
|
-
if node is not None:
|
1515
|
-
self._attributes.update(node._attributes)
|
1516
|
-
del self._attributes["id"]
|
1517
|
-
self.obj = node.obj
|
1518
|
-
|
1519
|
-
if id is not None:
|
1520
|
-
self.id = id
|
1521
|
-
if name is not None:
|
1522
|
-
self.name = name
|
1523
|
-
if class_name is not None:
|
1524
|
-
self.class_name = class_name
|
1525
|
-
if size is not None:
|
1526
|
-
self.size = size
|
1527
|
-
if parameters is not None:
|
1528
|
-
self.parameters = parameters
|
1529
|
-
if output_shape is not None:
|
1530
|
-
self.output_shape = output_shape
|
1531
|
-
if is_output is not None:
|
1532
|
-
self.is_output = is_output
|
1533
|
-
if num_parameters is not None:
|
1534
|
-
self.num_parameters = num_parameters
|
1535
|
-
|
1536
|
-
def to_json(self, run=None):
|
1537
|
-
return self._attributes
|
1538
|
-
|
1539
|
-
def __repr__(self):
|
1540
|
-
return repr(self._attributes)
|
1541
|
-
|
1542
|
-
@property
|
1543
|
-
def id(self):
|
1544
|
-
"""Must be unique in the graph."""
|
1545
|
-
return self._attributes.get("id")
|
1546
|
-
|
1547
|
-
@id.setter
|
1548
|
-
def id(self, val):
|
1549
|
-
self._attributes["id"] = val
|
1550
|
-
return val
|
1551
|
-
|
1552
|
-
@property
|
1553
|
-
def name(self):
|
1554
|
-
"""Usually the type of layer or sublayer."""
|
1555
|
-
return self._attributes.get("name")
|
1556
|
-
|
1557
|
-
@name.setter
|
1558
|
-
def name(self, val):
|
1559
|
-
self._attributes["name"] = val
|
1560
|
-
return val
|
1561
|
-
|
1562
|
-
@property
|
1563
|
-
def class_name(self):
|
1564
|
-
"""Usually the type of layer or sublayer."""
|
1565
|
-
return self._attributes.get("class_name")
|
1566
|
-
|
1567
|
-
@class_name.setter
|
1568
|
-
def class_name(self, val):
|
1569
|
-
self._attributes["class_name"] = val
|
1570
|
-
return val
|
1571
|
-
|
1572
|
-
@property
|
1573
|
-
def functions(self):
|
1574
|
-
return self._attributes.get("functions", [])
|
1575
|
-
|
1576
|
-
@functions.setter
|
1577
|
-
def functions(self, val):
|
1578
|
-
self._attributes["functions"] = val
|
1579
|
-
return val
|
1580
|
-
|
1581
|
-
@property
|
1582
|
-
def parameters(self):
|
1583
|
-
return self._attributes.get("parameters", [])
|
1584
|
-
|
1585
|
-
@parameters.setter
|
1586
|
-
def parameters(self, val):
|
1587
|
-
self._attributes["parameters"] = val
|
1588
|
-
return val
|
1589
|
-
|
1590
|
-
@property
|
1591
|
-
def size(self):
|
1592
|
-
return self._attributes.get("size")
|
1593
|
-
|
1594
|
-
@size.setter
|
1595
|
-
def size(self, val):
|
1596
|
-
"""Tensor size."""
|
1597
|
-
self._attributes["size"] = tuple(val)
|
1598
|
-
return val
|
1599
|
-
|
1600
|
-
@property
|
1601
|
-
def output_shape(self):
|
1602
|
-
return self._attributes.get("output_shape")
|
1603
|
-
|
1604
|
-
@output_shape.setter
|
1605
|
-
def output_shape(self, val):
|
1606
|
-
"""Tensor output_shape."""
|
1607
|
-
self._attributes["output_shape"] = val
|
1608
|
-
return val
|
1609
|
-
|
1610
|
-
@property
|
1611
|
-
def is_output(self):
|
1612
|
-
return self._attributes.get("is_output")
|
1613
|
-
|
1614
|
-
@is_output.setter
|
1615
|
-
def is_output(self, val):
|
1616
|
-
"""Tensor is_output."""
|
1617
|
-
self._attributes["is_output"] = val
|
1618
|
-
return val
|
1619
|
-
|
1620
|
-
@property
|
1621
|
-
def num_parameters(self):
|
1622
|
-
return self._attributes.get("num_parameters")
|
1623
|
-
|
1624
|
-
@num_parameters.setter
|
1625
|
-
def num_parameters(self, val):
|
1626
|
-
"""Tensor num_parameters."""
|
1627
|
-
self._attributes["num_parameters"] = val
|
1628
|
-
return val
|
1629
|
-
|
1630
|
-
@property
|
1631
|
-
def child_parameters(self):
|
1632
|
-
return self._attributes.get("child_parameters")
|
1633
|
-
|
1634
|
-
@child_parameters.setter
|
1635
|
-
def child_parameters(self, val):
|
1636
|
-
"""Tensor child_parameters."""
|
1637
|
-
self._attributes["child_parameters"] = val
|
1638
|
-
return val
|
1639
|
-
|
1640
|
-
@property
|
1641
|
-
def is_constant(self):
|
1642
|
-
return self._attributes.get("is_constant")
|
1643
|
-
|
1644
|
-
@is_constant.setter
|
1645
|
-
def is_constant(self, val):
|
1646
|
-
"""Tensor is_constant."""
|
1647
|
-
self._attributes["is_constant"] = val
|
1648
|
-
return val
|
1649
|
-
|
1650
|
-
@classmethod
|
1651
|
-
def from_keras(cls, layer):
|
1652
|
-
node = cls()
|
1653
|
-
|
1654
|
-
try:
|
1655
|
-
output_shape = layer.output_shape
|
1656
|
-
except AttributeError:
|
1657
|
-
output_shape = ["multiple"]
|
1658
|
-
|
1659
|
-
node.id = layer.name
|
1660
|
-
node.name = layer.name
|
1661
|
-
node.class_name = layer.__class__.__name__
|
1662
|
-
node.output_shape = output_shape
|
1663
|
-
node.num_parameters = layer.count_params()
|
1664
|
-
|
1665
|
-
return node
|
1666
|
-
|
1667
|
-
|
1668
|
-
class Edge(WBValue):
|
1669
|
-
"""Edge used in `Graph`."""
|
1670
|
-
|
1671
|
-
def __init__(self, from_node, to_node):
|
1672
|
-
self._attributes = {}
|
1673
|
-
self.from_node = from_node
|
1674
|
-
self.to_node = to_node
|
1675
|
-
|
1676
|
-
def __repr__(self):
|
1677
|
-
temp_attr = dict(self._attributes)
|
1678
|
-
del temp_attr["from_node"]
|
1679
|
-
del temp_attr["to_node"]
|
1680
|
-
temp_attr["from_id"] = self.from_node.id
|
1681
|
-
temp_attr["to_id"] = self.to_node.id
|
1682
|
-
return str(temp_attr)
|
1683
|
-
|
1684
|
-
def to_json(self, run=None):
|
1685
|
-
return [self.from_node.id, self.to_node.id]
|
1686
|
-
|
1687
|
-
@property
|
1688
|
-
def name(self):
|
1689
|
-
"""Optional, not necessarily unique."""
|
1690
|
-
return self._attributes.get("name")
|
1691
|
-
|
1692
|
-
@name.setter
|
1693
|
-
def name(self, val):
|
1694
|
-
self._attributes["name"] = val
|
1695
|
-
return val
|
1696
|
-
|
1697
|
-
@property
|
1698
|
-
def from_node(self):
|
1699
|
-
return self._attributes.get("from_node")
|
1700
|
-
|
1701
|
-
@from_node.setter
|
1702
|
-
def from_node(self, val):
|
1703
|
-
self._attributes["from_node"] = val
|
1704
|
-
return val
|
1705
|
-
|
1706
|
-
@property
|
1707
|
-
def to_node(self):
|
1708
|
-
return self._attributes.get("to_node")
|
1709
|
-
|
1710
|
-
@to_node.setter
|
1711
|
-
def to_node(self, val):
|
1712
|
-
self._attributes["to_node"] = val
|
1713
|
-
return val
|
1714
|
-
|
1715
|
-
|
1716
|
-
# Custom dtypes for typing system
|
1717
|
-
class _ImageFileType(_dtypes.Type):
|
1718
|
-
name = "image-file"
|
1719
|
-
legacy_names = ["wandb.Image"]
|
1720
|
-
types = [Image]
|
1721
|
-
|
1722
|
-
def __init__(
|
1723
|
-
self,
|
1724
|
-
box_layers=None,
|
1725
|
-
box_score_keys=None,
|
1726
|
-
mask_layers=None,
|
1727
|
-
class_map=None,
|
1728
|
-
**kwargs,
|
1729
|
-
):
|
1730
|
-
box_layers = box_layers or {}
|
1731
|
-
box_score_keys = box_score_keys or []
|
1732
|
-
mask_layers = mask_layers or {}
|
1733
|
-
class_map = class_map or {}
|
1734
|
-
|
1735
|
-
if isinstance(box_layers, _dtypes.ConstType):
|
1736
|
-
box_layers = box_layers._params["val"]
|
1737
|
-
if not isinstance(box_layers, dict):
|
1738
|
-
raise TypeError("box_layers must be a dict")
|
1739
|
-
else:
|
1740
|
-
box_layers = _dtypes.ConstType(
|
1741
|
-
{layer_key: set(box_layers[layer_key]) for layer_key in box_layers}
|
1742
|
-
)
|
1743
|
-
|
1744
|
-
if isinstance(mask_layers, _dtypes.ConstType):
|
1745
|
-
mask_layers = mask_layers._params["val"]
|
1746
|
-
if not isinstance(mask_layers, dict):
|
1747
|
-
raise TypeError("mask_layers must be a dict")
|
1748
|
-
else:
|
1749
|
-
mask_layers = _dtypes.ConstType(
|
1750
|
-
{layer_key: set(mask_layers[layer_key]) for layer_key in mask_layers}
|
1751
|
-
)
|
1752
|
-
|
1753
|
-
if isinstance(box_score_keys, _dtypes.ConstType):
|
1754
|
-
box_score_keys = box_score_keys._params["val"]
|
1755
|
-
if not isinstance(box_score_keys, list) and not isinstance(box_score_keys, set):
|
1756
|
-
raise TypeError("box_score_keys must be a list or a set")
|
1757
|
-
else:
|
1758
|
-
box_score_keys = _dtypes.ConstType(set(box_score_keys))
|
1759
|
-
|
1760
|
-
if isinstance(class_map, _dtypes.ConstType):
|
1761
|
-
class_map = class_map._params["val"]
|
1762
|
-
if not isinstance(class_map, dict):
|
1763
|
-
raise TypeError("class_map must be a dict")
|
1764
|
-
else:
|
1765
|
-
class_map = _dtypes.ConstType(class_map)
|
1766
|
-
|
1767
|
-
self.params.update(
|
1768
|
-
{
|
1769
|
-
"box_layers": box_layers,
|
1770
|
-
"box_score_keys": box_score_keys,
|
1771
|
-
"mask_layers": mask_layers,
|
1772
|
-
"class_map": class_map,
|
1773
|
-
}
|
1774
|
-
)
|
1775
|
-
|
1776
|
-
def assign_type(self, wb_type=None):
|
1777
|
-
if isinstance(wb_type, _ImageFileType):
|
1778
|
-
box_layers_self = self.params["box_layers"].params["val"] or {}
|
1779
|
-
box_score_keys_self = self.params["box_score_keys"].params["val"] or []
|
1780
|
-
mask_layers_self = self.params["mask_layers"].params["val"] or {}
|
1781
|
-
class_map_self = self.params["class_map"].params["val"] or {}
|
1782
|
-
|
1783
|
-
box_layers_other = wb_type.params["box_layers"].params["val"] or {}
|
1784
|
-
box_score_keys_other = wb_type.params["box_score_keys"].params["val"] or []
|
1785
|
-
mask_layers_other = wb_type.params["mask_layers"].params["val"] or {}
|
1786
|
-
class_map_other = wb_type.params["class_map"].params["val"] or {}
|
1787
|
-
|
1788
|
-
# Merge the class_ids from each set of box_layers
|
1789
|
-
box_layers = {
|
1790
|
-
str(key): set(
|
1791
|
-
list(box_layers_self.get(key, []))
|
1792
|
-
+ list(box_layers_other.get(key, []))
|
1793
|
-
)
|
1794
|
-
for key in set(
|
1795
|
-
list(box_layers_self.keys()) + list(box_layers_other.keys())
|
1796
|
-
)
|
1797
|
-
}
|
1798
|
-
|
1799
|
-
# Merge the class_ids from each set of mask_layers
|
1800
|
-
mask_layers = {
|
1801
|
-
str(key): set(
|
1802
|
-
list(mask_layers_self.get(key, []))
|
1803
|
-
+ list(mask_layers_other.get(key, []))
|
1804
|
-
)
|
1805
|
-
for key in set(
|
1806
|
-
list(mask_layers_self.keys()) + list(mask_layers_other.keys())
|
1807
|
-
)
|
1808
|
-
}
|
1809
|
-
|
1810
|
-
# Merge the box score keys
|
1811
|
-
box_score_keys = set(list(box_score_keys_self) + list(box_score_keys_other))
|
1812
|
-
|
1813
|
-
# Merge the class_map
|
1814
|
-
class_map = {
|
1815
|
-
str(key): class_map_self.get(key, class_map_other.get(key, None))
|
1816
|
-
for key in set(
|
1817
|
-
list(class_map_self.keys()) + list(class_map_other.keys())
|
1818
|
-
)
|
1819
|
-
}
|
1820
|
-
|
1821
|
-
return _ImageFileType(box_layers, box_score_keys, mask_layers, class_map)
|
1822
|
-
|
1823
|
-
return _dtypes.InvalidType()
|
1824
|
-
|
1825
|
-
@classmethod
|
1826
|
-
def from_obj(cls, py_obj):
|
1827
|
-
if not isinstance(py_obj, Image):
|
1828
|
-
raise TypeError("py_obj must be a wandb.Image")
|
1829
|
-
else:
|
1830
|
-
if hasattr(py_obj, "_boxes") and py_obj._boxes:
|
1831
|
-
box_layers = {
|
1832
|
-
str(key): set(py_obj._boxes[key]._class_labels.keys())
|
1833
|
-
for key in py_obj._boxes.keys()
|
1834
|
-
}
|
1835
|
-
box_score_keys = {
|
1836
|
-
key
|
1837
|
-
for val in py_obj._boxes.values()
|
1838
|
-
for box in val._val
|
1839
|
-
for key in box.get("scores", {}).keys()
|
1840
|
-
}
|
1841
|
-
|
1842
|
-
else:
|
1843
|
-
box_layers = {}
|
1844
|
-
box_score_keys = set()
|
1845
|
-
|
1846
|
-
if hasattr(py_obj, "_masks") and py_obj._masks:
|
1847
|
-
mask_layers = {
|
1848
|
-
str(key): set(
|
1849
|
-
py_obj._masks[key]._val["class_labels"].keys()
|
1850
|
-
if hasattr(py_obj._masks[key], "_val")
|
1851
|
-
else []
|
1852
|
-
)
|
1853
|
-
for key in py_obj._masks.keys()
|
1854
|
-
}
|
1855
|
-
else:
|
1856
|
-
mask_layers = {}
|
1857
|
-
|
1858
|
-
if hasattr(py_obj, "_classes") and py_obj._classes:
|
1859
|
-
class_set = {
|
1860
|
-
str(item["id"]): item["name"] for item in py_obj._classes._class_set
|
1861
|
-
}
|
1862
|
-
else:
|
1863
|
-
class_set = {}
|
1864
|
-
|
1865
|
-
return cls(box_layers, box_score_keys, mask_layers, class_set)
|
1866
|
-
|
1867
|
-
|
1868
|
-
class _TableType(_dtypes.Type):
|
1869
|
-
name = "table"
|
1870
|
-
legacy_names = ["wandb.Table"]
|
1871
|
-
types = [Table]
|
1872
|
-
|
1873
|
-
def __init__(self, column_types=None):
|
1874
|
-
if column_types is None:
|
1875
|
-
column_types = _dtypes.UnknownType()
|
1876
|
-
if isinstance(column_types, dict):
|
1877
|
-
column_types = _dtypes.TypedDictType(column_types)
|
1878
|
-
elif not (
|
1879
|
-
isinstance(column_types, _dtypes.TypedDictType)
|
1880
|
-
or isinstance(column_types, _dtypes.UnknownType)
|
1881
|
-
):
|
1882
|
-
raise TypeError("column_types must be a dict or TypedDictType")
|
1883
|
-
|
1884
|
-
self.params.update({"column_types": column_types})
|
1885
|
-
|
1886
|
-
def assign_type(self, wb_type=None):
|
1887
|
-
if isinstance(wb_type, _TableType):
|
1888
|
-
column_types = self.params["column_types"].assign_type(
|
1889
|
-
wb_type.params["column_types"]
|
1890
|
-
)
|
1891
|
-
if not isinstance(column_types, _dtypes.InvalidType):
|
1892
|
-
return _TableType(column_types)
|
1893
|
-
|
1894
|
-
return _dtypes.InvalidType()
|
1895
|
-
|
1896
|
-
@classmethod
|
1897
|
-
def from_obj(cls, py_obj):
|
1898
|
-
if not isinstance(py_obj, Table):
|
1899
|
-
raise TypeError("py_obj must be a wandb.Table")
|
1900
|
-
else:
|
1901
|
-
return cls(py_obj._column_types)
|
1902
|
-
|
1903
|
-
|
1904
|
-
class _ForeignKeyType(_dtypes.Type):
|
1905
|
-
name = "foreignKey"
|
1906
|
-
legacy_names = ["wandb.TableForeignKey"]
|
1907
|
-
types = [_TableKey]
|
1908
|
-
|
1909
|
-
def __init__(self, table, col_name):
|
1910
|
-
assert isinstance(table, Table)
|
1911
|
-
assert isinstance(col_name, str)
|
1912
|
-
assert col_name in table.columns
|
1913
|
-
self.params.update({"table": table, "col_name": col_name})
|
1914
|
-
|
1915
|
-
def assign_type(self, wb_type=None):
|
1916
|
-
if isinstance(wb_type, _dtypes.StringType):
|
1917
|
-
return self
|
1918
|
-
elif (
|
1919
|
-
isinstance(wb_type, _ForeignKeyType)
|
1920
|
-
and id(self.params["table"]) == id(wb_type.params["table"])
|
1921
|
-
and self.params["col_name"] == wb_type.params["col_name"]
|
1922
|
-
):
|
1923
|
-
return self
|
1924
|
-
|
1925
|
-
return _dtypes.InvalidType()
|
1926
|
-
|
1927
|
-
@classmethod
|
1928
|
-
def from_obj(cls, py_obj):
|
1929
|
-
if not isinstance(py_obj, _TableKey):
|
1930
|
-
raise TypeError("py_obj must be a _TableKey")
|
1931
|
-
else:
|
1932
|
-
return cls(py_obj._table, py_obj._col_name)
|
1933
|
-
|
1934
|
-
def to_json(self, artifact=None):
|
1935
|
-
res = super().to_json(artifact)
|
1936
|
-
if artifact is not None:
|
1937
|
-
table_name = f"media/tables/t_{runid.generate_id()}"
|
1938
|
-
entry = artifact.add(self.params["table"], table_name)
|
1939
|
-
res["params"]["table"] = entry.path
|
1940
|
-
else:
|
1941
|
-
raise AssertionError(
|
1942
|
-
"_ForeignKeyType does not support serialization without an artifact"
|
1943
|
-
)
|
1944
|
-
return res
|
1945
|
-
|
1946
|
-
@classmethod
|
1947
|
-
def from_json(
|
1948
|
-
cls,
|
1949
|
-
json_dict,
|
1950
|
-
artifact,
|
1951
|
-
):
|
1952
|
-
table = None
|
1953
|
-
col_name = None
|
1954
|
-
if artifact is None:
|
1955
|
-
raise AssertionError(
|
1956
|
-
"_ForeignKeyType does not support deserialization without an artifact"
|
1957
|
-
)
|
1958
|
-
else:
|
1959
|
-
table = artifact.get(json_dict["params"]["table"])
|
1960
|
-
col_name = json_dict["params"]["col_name"]
|
1961
|
-
|
1962
|
-
if table is None:
|
1963
|
-
raise AssertionError("Unable to deserialize referenced table")
|
1964
|
-
|
1965
|
-
return cls(table, col_name)
|
1966
|
-
|
1967
|
-
|
1968
|
-
class _ForeignIndexType(_dtypes.Type):
|
1969
|
-
name = "foreignIndex"
|
1970
|
-
legacy_names = ["wandb.TableForeignIndex"]
|
1971
|
-
types = [_TableIndex]
|
1972
|
-
|
1973
|
-
def __init__(self, table):
|
1974
|
-
assert isinstance(table, Table)
|
1975
|
-
self.params.update({"table": table})
|
1976
|
-
|
1977
|
-
def assign_type(self, wb_type=None):
|
1978
|
-
if isinstance(wb_type, _dtypes.NumberType):
|
1979
|
-
return self
|
1980
|
-
elif isinstance(wb_type, _ForeignIndexType) and id(self.params["table"]) == id(
|
1981
|
-
wb_type.params["table"]
|
1982
|
-
):
|
1983
|
-
return self
|
1984
|
-
|
1985
|
-
return _dtypes.InvalidType()
|
1986
|
-
|
1987
|
-
@classmethod
|
1988
|
-
def from_obj(cls, py_obj):
|
1989
|
-
if not isinstance(py_obj, _TableIndex):
|
1990
|
-
raise TypeError("py_obj must be a _TableIndex")
|
1991
|
-
else:
|
1992
|
-
return cls(py_obj._table)
|
1993
|
-
|
1994
|
-
def to_json(self, artifact=None):
|
1995
|
-
res = super().to_json(artifact)
|
1996
|
-
if artifact is not None:
|
1997
|
-
table_name = f"media/tables/t_{runid.generate_id()}"
|
1998
|
-
entry = artifact.add(self.params["table"], table_name)
|
1999
|
-
res["params"]["table"] = entry.path
|
2000
|
-
else:
|
2001
|
-
raise AssertionError(
|
2002
|
-
"_ForeignIndexType does not support serialization without an artifact"
|
2003
|
-
)
|
2004
|
-
return res
|
2005
|
-
|
2006
|
-
@classmethod
|
2007
|
-
def from_json(
|
2008
|
-
cls,
|
2009
|
-
json_dict,
|
2010
|
-
artifact,
|
2011
|
-
):
|
2012
|
-
table = None
|
2013
|
-
if artifact is None:
|
2014
|
-
raise AssertionError(
|
2015
|
-
"_ForeignIndexType does not support deserialization without an artifact"
|
2016
|
-
)
|
2017
|
-
else:
|
2018
|
-
table = artifact.get(json_dict["params"]["table"])
|
2019
|
-
|
2020
|
-
if table is None:
|
2021
|
-
raise AssertionError("Unable to deserialize referenced table")
|
2022
|
-
|
2023
|
-
return cls(table)
|
2024
|
-
|
2025
|
-
|
2026
|
-
class _PrimaryKeyType(_dtypes.Type):
|
2027
|
-
name = "primaryKey"
|
2028
|
-
legacy_names = ["wandb.TablePrimaryKey"]
|
2029
|
-
|
2030
|
-
def assign_type(self, wb_type=None):
|
2031
|
-
if isinstance(wb_type, _dtypes.StringType) or isinstance(
|
2032
|
-
wb_type, _PrimaryKeyType
|
2033
|
-
):
|
2034
|
-
return self
|
2035
|
-
return _dtypes.InvalidType()
|
2036
|
-
|
2037
|
-
@classmethod
|
2038
|
-
def from_obj(cls, py_obj):
|
2039
|
-
if not isinstance(py_obj, _TableKey):
|
2040
|
-
raise TypeError("py_obj must be a wandb.Table")
|
2041
|
-
else:
|
2042
|
-
return cls()
|
2043
|
-
|
2044
|
-
|
2045
|
-
class _AudioFileType(_dtypes.Type):
|
2046
|
-
name = "audio-file"
|
2047
|
-
types = [Audio]
|
2048
|
-
|
2049
|
-
|
2050
|
-
class _BokehFileType(_dtypes.Type):
|
2051
|
-
name = "bokeh-file"
|
2052
|
-
types = [Bokeh]
|
2053
|
-
|
2054
|
-
|
2055
|
-
class _JoinedTableType(_dtypes.Type):
|
2056
|
-
name = "joined-table"
|
2057
|
-
types = [JoinedTable]
|
2058
|
-
|
2059
|
-
|
2060
|
-
class _PartitionedTableType(_dtypes.Type):
|
2061
|
-
name = "partitioned-table"
|
2062
|
-
types = [PartitionedTable]
|
2063
|
-
|
2064
|
-
|
2065
|
-
_dtypes.TypeRegistry.add(_AudioFileType)
|
2066
|
-
_dtypes.TypeRegistry.add(_BokehFileType)
|
2067
|
-
_dtypes.TypeRegistry.add(_ImageFileType)
|
2068
|
-
_dtypes.TypeRegistry.add(_TableType)
|
2069
|
-
_dtypes.TypeRegistry.add(_JoinedTableType)
|
2070
|
-
_dtypes.TypeRegistry.add(_PartitionedTableType)
|
2071
|
-
_dtypes.TypeRegistry.add(_ForeignKeyType)
|
2072
|
-
_dtypes.TypeRegistry.add(_PrimaryKeyType)
|
2073
|
-
_dtypes.TypeRegistry.add(_ForeignIndexType)
|