wandb 0.18.0__py3-none-win32.whl → 0.18.1__py3-none-win32.whl
Sign up to get free protection for your applications and to get access to all the features.
- wandb/__init__.py +2 -2
- wandb/__init__.pyi +1 -1
- wandb/apis/public/runs.py +2 -0
- wandb/bin/wandb-core +0 -0
- wandb/cli/cli.py +0 -2
- wandb/data_types.py +9 -2019
- wandb/env.py +0 -5
- wandb/{sklearn → integration/sklearn}/calculate/calibration_curves.py +7 -7
- wandb/{sklearn → integration/sklearn}/calculate/class_proportions.py +1 -1
- wandb/{sklearn → integration/sklearn}/calculate/confusion_matrix.py +3 -2
- wandb/{sklearn → integration/sklearn}/calculate/elbow_curve.py +6 -6
- wandb/{sklearn → integration/sklearn}/calculate/learning_curve.py +2 -2
- wandb/{sklearn → integration/sklearn}/calculate/outlier_candidates.py +2 -2
- wandb/{sklearn → integration/sklearn}/calculate/residuals.py +8 -8
- wandb/{sklearn → integration/sklearn}/calculate/silhouette.py +2 -2
- wandb/{sklearn → integration/sklearn}/calculate/summary_metrics.py +2 -2
- wandb/{sklearn → integration/sklearn}/plot/classifier.py +5 -5
- wandb/{sklearn → integration/sklearn}/plot/clusterer.py +10 -6
- wandb/{sklearn → integration/sklearn}/plot/regressor.py +5 -5
- wandb/{sklearn → integration/sklearn}/plot/shared.py +3 -3
- wandb/{sklearn → integration/sklearn}/utils.py +8 -8
- wandb/{wandb_torch.py → integration/torch/wandb_torch.py} +36 -32
- wandb/proto/v3/wandb_base_pb2.py +2 -1
- wandb/proto/v3/wandb_internal_pb2.py +2 -1
- wandb/proto/v3/wandb_server_pb2.py +2 -1
- wandb/proto/v3/wandb_settings_pb2.py +2 -1
- wandb/proto/v3/wandb_telemetry_pb2.py +2 -1
- wandb/proto/v4/wandb_base_pb2.py +2 -1
- wandb/proto/v4/wandb_internal_pb2.py +2 -1
- wandb/proto/v4/wandb_server_pb2.py +2 -1
- wandb/proto/v4/wandb_settings_pb2.py +2 -1
- wandb/proto/v4/wandb_telemetry_pb2.py +2 -1
- wandb/proto/v5/wandb_base_pb2.py +3 -2
- wandb/proto/v5/wandb_internal_pb2.py +3 -2
- wandb/proto/v5/wandb_server_pb2.py +3 -2
- wandb/proto/v5/wandb_settings_pb2.py +3 -2
- wandb/proto/v5/wandb_telemetry_pb2.py +3 -2
- wandb/sdk/data_types/audio.py +165 -0
- wandb/sdk/data_types/bokeh.py +70 -0
- wandb/sdk/data_types/graph.py +405 -0
- wandb/sdk/data_types/image.py +156 -0
- wandb/sdk/data_types/table.py +1204 -0
- wandb/sdk/data_types/trace_tree.py +2 -2
- wandb/sdk/data_types/utils.py +49 -0
- wandb/sdk/service/service.py +2 -9
- wandb/sdk/service/streams.py +0 -7
- wandb/sdk/wandb_init.py +10 -3
- wandb/sdk/wandb_run.py +6 -152
- wandb/sdk/wandb_setup.py +1 -1
- wandb/sklearn.py +35 -0
- wandb/util.py +6 -2
- {wandb-0.18.0.dist-info → wandb-0.18.1.dist-info}/METADATA +1 -1
- {wandb-0.18.0.dist-info → wandb-0.18.1.dist-info}/RECORD +61 -57
- wandb/sdk/lib/console.py +0 -39
- /wandb/{sklearn → integration/sklearn}/__init__.py +0 -0
- /wandb/{sklearn → integration/sklearn}/calculate/__init__.py +0 -0
- /wandb/{sklearn → integration/sklearn}/calculate/decision_boundaries.py +0 -0
- /wandb/{sklearn → integration/sklearn}/calculate/feature_importances.py +0 -0
- /wandb/{sklearn → integration/sklearn}/plot/__init__.py +0 -0
- {wandb-0.18.0.dist-info → wandb-0.18.1.dist-info}/WHEEL +0 -0
- {wandb-0.18.0.dist-info → wandb-0.18.1.dist-info}/entry_points.txt +0 -0
- {wandb-0.18.0.dist-info → wandb-0.18.1.dist-info}/licenses/LICENSE +0 -0
wandb/env.py
CHANGED
@@ -62,7 +62,6 @@ SAVE_CODE = "WANDB_SAVE_CODE"
|
|
62
62
|
TAGS = "WANDB_TAGS"
|
63
63
|
IGNORE = "WANDB_IGNORE_GLOBS"
|
64
64
|
ERROR_REPORTING = "WANDB_ERROR_REPORTING"
|
65
|
-
CORE_ERROR_REPORTING = "WANDB_CORE_ERROR_REPORTING"
|
66
65
|
CORE_DEBUG = "WANDB_CORE_DEBUG"
|
67
66
|
DOCKER = "WANDB_DOCKER"
|
68
67
|
AGENT_REPORT_INTERVAL = "WANDB_AGENT_REPORT_INTERVAL"
|
@@ -172,10 +171,6 @@ def error_reporting_enabled() -> bool:
|
|
172
171
|
return _env_as_bool(ERROR_REPORTING, default="True")
|
173
172
|
|
174
173
|
|
175
|
-
def core_error_reporting_enabled(default: Optional[str] = None) -> bool:
|
176
|
-
return _env_as_bool(CORE_ERROR_REPORTING, default=default)
|
177
|
-
|
178
|
-
|
179
174
|
def core_debug(default: Optional[str] = None) -> bool:
|
180
175
|
return _env_as_bool(CORE_DEBUG, default=default)
|
181
176
|
|
@@ -7,18 +7,18 @@ from sklearn.calibration import CalibratedClassifierCV
|
|
7
7
|
from sklearn.linear_model import LogisticRegression
|
8
8
|
|
9
9
|
import wandb
|
10
|
-
from wandb.sklearn import utils
|
10
|
+
from wandb.integration.sklearn import utils
|
11
11
|
|
12
12
|
# ignore all future warnings
|
13
13
|
simplefilter(action="ignore", category=FutureWarning)
|
14
14
|
|
15
15
|
|
16
|
-
def calibration_curves(clf, X, y, clf_name):
|
16
|
+
def calibration_curves(clf, X, y, clf_name): # noqa: N803
|
17
17
|
# ComplementNB (introduced in 0.20.0) requires non-negative features
|
18
18
|
if int(sklearn.__version__.split(".")[1]) >= 20 and isinstance(
|
19
19
|
clf, naive_bayes.ComplementNB
|
20
20
|
):
|
21
|
-
X = X - X.min()
|
21
|
+
X = X - X.min() # noqa:N806
|
22
22
|
|
23
23
|
# Calibrated with isotonic calibration
|
24
24
|
isotonic = CalibratedClassifierCV(clf, cv=2, method="isotonic")
|
@@ -48,7 +48,7 @@ def calibration_curves(clf, X, y, clf_name):
|
|
48
48
|
frac_positives_column.append(1)
|
49
49
|
mean_pred_value_column.append(1)
|
50
50
|
|
51
|
-
|
51
|
+
x_train, x_test, y_train, y_test = model_selection.train_test_split(
|
52
52
|
X, y, test_size=0.9, random_state=42
|
53
53
|
)
|
54
54
|
|
@@ -58,11 +58,11 @@ def calibration_curves(clf, X, y, clf_name):
|
|
58
58
|
names = ["Logistic", f"{clf_name} Isotonic", f"{clf_name} Sigmoid"]
|
59
59
|
|
60
60
|
for model, name in zip(models, names):
|
61
|
-
model.fit(
|
61
|
+
model.fit(x_train, y_train)
|
62
62
|
if hasattr(model, "predict_proba"):
|
63
|
-
prob_pos = model.predict_proba(
|
63
|
+
prob_pos = model.predict_proba(x_test)[:, 1]
|
64
64
|
else: # use decision function
|
65
|
-
prob_pos = model.decision_function(
|
65
|
+
prob_pos = model.decision_function(x_test)
|
66
66
|
prob_pos = (prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min())
|
67
67
|
|
68
68
|
hist, edges = np.histogram(prob_pos, bins=10, density=False)
|
@@ -6,14 +6,15 @@ from sklearn import metrics
|
|
6
6
|
from sklearn.utils.multiclass import unique_labels
|
7
7
|
|
8
8
|
import wandb
|
9
|
-
|
9
|
+
|
10
|
+
from .. import utils
|
10
11
|
|
11
12
|
# ignore all future warnings
|
12
13
|
simplefilter(action="ignore", category=FutureWarning)
|
13
14
|
|
14
15
|
|
15
16
|
def validate_labels(*args, **kwargs): # FIXME
|
16
|
-
|
17
|
+
raise AssertionError()
|
17
18
|
|
18
19
|
|
19
20
|
def confusion_matrix(
|
@@ -11,7 +11,7 @@ import wandb
|
|
11
11
|
simplefilter(action="ignore", category=FutureWarning)
|
12
12
|
|
13
13
|
|
14
|
-
def elbow_curve(clusterer, X, cluster_ranges, n_jobs, show_cluster_time):
|
14
|
+
def elbow_curve(clusterer, X, cluster_ranges, n_jobs, show_cluster_time): # noqa: N803
|
15
15
|
if cluster_ranges is None:
|
16
16
|
cluster_ranges = range(1, 10, 2)
|
17
17
|
else:
|
@@ -37,19 +37,19 @@ def make_table(cluster_ranges, clfs, times):
|
|
37
37
|
return table
|
38
38
|
|
39
39
|
|
40
|
-
def _compute_results_parallel(n_jobs, clusterer,
|
40
|
+
def _compute_results_parallel(n_jobs, clusterer, x, cluster_ranges):
|
41
41
|
parallel_runner = Parallel(n_jobs=n_jobs)
|
42
42
|
_cluster_scorer = delayed(_clone_and_score_clusterer)
|
43
|
-
results = parallel_runner(_cluster_scorer(clusterer,
|
43
|
+
results = parallel_runner(_cluster_scorer(clusterer, x, i) for i in cluster_ranges)
|
44
44
|
|
45
45
|
clfs, times = zip(*results)
|
46
46
|
|
47
47
|
return clfs, times
|
48
48
|
|
49
49
|
|
50
|
-
def _clone_and_score_clusterer(clusterer,
|
50
|
+
def _clone_and_score_clusterer(clusterer, x, n_clusters):
|
51
51
|
start = time.time()
|
52
52
|
clusterer = clone(clusterer)
|
53
|
-
|
53
|
+
clusterer.n_clusters = n_clusters
|
54
54
|
|
55
|
-
return clusterer.fit(
|
55
|
+
return clusterer.fit(x).score(x), time.time() - start
|
@@ -4,7 +4,7 @@ import numpy as np
|
|
4
4
|
from sklearn import model_selection
|
5
5
|
|
6
6
|
import wandb
|
7
|
-
from wandb.sklearn import utils
|
7
|
+
from wandb.integration.sklearn import utils
|
8
8
|
|
9
9
|
# ignore all future warnings
|
10
10
|
simplefilter(action="ignore", category=FutureWarning)
|
@@ -12,7 +12,7 @@ simplefilter(action="ignore", category=FutureWarning)
|
|
12
12
|
|
13
13
|
def learning_curve(
|
14
14
|
model,
|
15
|
-
X,
|
15
|
+
X, # noqa: N803
|
16
16
|
y,
|
17
17
|
cv=None,
|
18
18
|
shuffle=False,
|
@@ -3,13 +3,13 @@ from warnings import simplefilter
|
|
3
3
|
import numpy as np
|
4
4
|
|
5
5
|
import wandb
|
6
|
-
from wandb.sklearn import utils
|
6
|
+
from wandb.integration.sklearn import utils
|
7
7
|
|
8
8
|
# ignore all future warnings
|
9
9
|
simplefilter(action="ignore", category=FutureWarning)
|
10
10
|
|
11
11
|
|
12
|
-
def outlier_candidates(regressor, X, y):
|
12
|
+
def outlier_candidates(regressor, X, y): # noqa: N803
|
13
13
|
# Fit a linear model to X and y to compute MSE
|
14
14
|
regressor.fit(X, y)
|
15
15
|
|
@@ -3,27 +3,27 @@ from warnings import simplefilter
|
|
3
3
|
from sklearn import model_selection
|
4
4
|
|
5
5
|
import wandb
|
6
|
-
from wandb.sklearn import utils
|
6
|
+
from wandb.integration.sklearn import utils
|
7
7
|
|
8
8
|
# ignore all future warnings
|
9
9
|
simplefilter(action="ignore", category=FutureWarning)
|
10
10
|
|
11
11
|
|
12
|
-
def residuals(regressor, X, y):
|
12
|
+
def residuals(regressor, X, y): # noqa: N803
|
13
13
|
# Create the train and test splits
|
14
|
-
|
14
|
+
x_train, x_test, y_train, y_test = model_selection.train_test_split(
|
15
15
|
X, y, test_size=0.2
|
16
16
|
)
|
17
17
|
|
18
18
|
# Store labels and colors for the legend ordered by call
|
19
|
-
regressor.fit(
|
20
|
-
train_score_ = regressor.score(
|
21
|
-
test_score_ = regressor.score(
|
19
|
+
regressor.fit(x_train, y_train)
|
20
|
+
train_score_ = regressor.score(x_train, y_train)
|
21
|
+
test_score_ = regressor.score(x_test, y_test)
|
22
22
|
|
23
|
-
y_pred_train = regressor.predict(
|
23
|
+
y_pred_train = regressor.predict(x_train)
|
24
24
|
residuals_train = y_pred_train - y_train
|
25
25
|
|
26
|
-
y_pred_test = regressor.predict(
|
26
|
+
y_pred_test = regressor.predict(x_test)
|
27
27
|
residuals_test = y_pred_test - y_test
|
28
28
|
|
29
29
|
table = make_table(
|
@@ -5,13 +5,13 @@ from sklearn.metrics import silhouette_samples, silhouette_score
|
|
5
5
|
from sklearn.preprocessing import LabelEncoder
|
6
6
|
|
7
7
|
import wandb
|
8
|
-
from wandb.sklearn import utils
|
8
|
+
from wandb.integration.sklearn import utils
|
9
9
|
|
10
10
|
# ignore all future warnings
|
11
11
|
simplefilter(action="ignore", category=FutureWarning)
|
12
12
|
|
13
13
|
|
14
|
-
def silhouette(clusterer, X, cluster_labels, labels, metric, kmeans):
|
14
|
+
def silhouette(clusterer, X, cluster_labels, labels, metric, kmeans): # noqa: N803
|
15
15
|
# Run clusterer for n_clusters in range(len(cluster_ranges), get cluster labels
|
16
16
|
# TODO - keep/delete once we decide if we should train clusterers
|
17
17
|
# or ask for trained models
|
@@ -4,13 +4,13 @@ import numpy as np
|
|
4
4
|
import sklearn
|
5
5
|
|
6
6
|
import wandb
|
7
|
-
from wandb.sklearn import utils
|
7
|
+
from wandb.integration.sklearn import utils
|
8
8
|
|
9
9
|
# ignore all future warnings
|
10
10
|
simplefilter(action="ignore", category=FutureWarning)
|
11
11
|
|
12
12
|
|
13
|
-
def summary_metrics(model=None, X=None, y=None, X_test=None, y_test=None):
|
13
|
+
def summary_metrics(model=None, X=None, y=None, X_test=None, y_test=None): # noqa: N803
|
14
14
|
"""Calculate summary metrics for both regressors and classifiers.
|
15
15
|
|
16
16
|
Called by plot_summary_metrics to visualize metrics. Please use the function
|
@@ -7,7 +7,7 @@ from sklearn import naive_bayes
|
|
7
7
|
|
8
8
|
import wandb
|
9
9
|
import wandb.plot
|
10
|
-
from wandb.sklearn import calculate, utils
|
10
|
+
from wandb.integration.sklearn import calculate, utils
|
11
11
|
|
12
12
|
from . import shared
|
13
13
|
|
@@ -17,8 +17,8 @@ simplefilter(action="ignore", category=FutureWarning)
|
|
17
17
|
|
18
18
|
def classifier(
|
19
19
|
model,
|
20
|
-
X_train,
|
21
|
-
X_test,
|
20
|
+
X_train, # noqa: N803
|
21
|
+
X_test, # noqa: N803
|
22
22
|
y_train,
|
23
23
|
y_test,
|
24
24
|
y_pred,
|
@@ -77,7 +77,7 @@ def classifier(
|
|
77
77
|
)
|
78
78
|
```
|
79
79
|
"""
|
80
|
-
wandb.termlog("\nPlotting
|
80
|
+
wandb.termlog(f"\nPlotting {model_name}.")
|
81
81
|
|
82
82
|
if not isinstance(model, naive_bayes.MultinomialNB):
|
83
83
|
feature_importances(model, feature_names)
|
@@ -280,7 +280,7 @@ def class_proportions(y_train=None, y_test=None, labels=None):
|
|
280
280
|
wandb.log({"class_proportions": class_proportions_chart})
|
281
281
|
|
282
282
|
|
283
|
-
def calibration_curve(clf=None, X=None, y=None, clf_name="Classifier"):
|
283
|
+
def calibration_curve(clf=None, X=None, y=None, clf_name="Classifier"): # noqa: N803
|
284
284
|
"""Log a plot depicting how well-calibrated the predicted probabilities of a classifier are.
|
285
285
|
|
286
286
|
Also suggests how to calibrate an uncalibrated classifier. Compares estimated predicted
|
@@ -6,13 +6,13 @@ import pandas as pd
|
|
6
6
|
import sklearn
|
7
7
|
|
8
8
|
import wandb
|
9
|
-
from wandb.sklearn import calculate, utils
|
9
|
+
from wandb.integration.sklearn import calculate, utils
|
10
10
|
|
11
11
|
# ignore all future warnings
|
12
12
|
simplefilter(action="ignore", category=FutureWarning)
|
13
13
|
|
14
14
|
|
15
|
-
def clusterer(model, X_train, cluster_labels, labels=None, model_name="Clusterer"):
|
15
|
+
def clusterer(model, X_train, cluster_labels, labels=None, model_name="Clusterer"): # noqa: N803
|
16
16
|
"""Generates all sklearn clusterer plots supported by W&B.
|
17
17
|
|
18
18
|
The following plots are generated:
|
@@ -40,7 +40,7 @@ def clusterer(model, X_train, cluster_labels, labels=None, model_name="Clusterer
|
|
40
40
|
wandb.sklearn.plot_clusterer(kmeans, X, cluster_labels, labels, "KMeans")
|
41
41
|
```
|
42
42
|
"""
|
43
|
-
wandb.termlog("\nPlotting
|
43
|
+
wandb.termlog(f"\nPlotting {model_name}.")
|
44
44
|
if isinstance(model, sklearn.cluster.KMeans):
|
45
45
|
elbow_curve(model, X_train)
|
46
46
|
wandb.termlog("Logged elbow curve.")
|
@@ -54,7 +54,11 @@ def clusterer(model, X_train, cluster_labels, labels=None, model_name="Clusterer
|
|
54
54
|
|
55
55
|
|
56
56
|
def elbow_curve(
|
57
|
-
clusterer=None,
|
57
|
+
clusterer=None,
|
58
|
+
X=None, # noqa: N803
|
59
|
+
cluster_ranges=None,
|
60
|
+
n_jobs=1,
|
61
|
+
show_cluster_time=True,
|
58
62
|
):
|
59
63
|
"""Measures and plots variance explained as a function of the number of clusters.
|
60
64
|
|
@@ -97,7 +101,7 @@ def elbow_curve(
|
|
97
101
|
|
98
102
|
def silhouette(
|
99
103
|
clusterer=None,
|
100
|
-
X=None,
|
104
|
+
X=None, # noqa: N803
|
101
105
|
cluster_labels=None,
|
102
106
|
labels=None,
|
103
107
|
metric="euclidean",
|
@@ -135,7 +139,7 @@ def silhouette(
|
|
135
139
|
|
136
140
|
if not_missing and correct_types and is_fitted:
|
137
141
|
if isinstance(X, (pd.DataFrame)):
|
138
|
-
X = X.values
|
142
|
+
X = X.values # noqa: N806
|
139
143
|
silhouette_chart = calculate.silhouette(
|
140
144
|
clusterer, X, cluster_labels, labels, metric, kmeans
|
141
145
|
)
|
@@ -5,7 +5,7 @@ from warnings import simplefilter
|
|
5
5
|
import numpy as np
|
6
6
|
|
7
7
|
import wandb
|
8
|
-
from wandb.sklearn import calculate, utils
|
8
|
+
from wandb.integration.sklearn import calculate, utils
|
9
9
|
|
10
10
|
from . import shared
|
11
11
|
|
@@ -13,7 +13,7 @@ from . import shared
|
|
13
13
|
simplefilter(action="ignore", category=FutureWarning)
|
14
14
|
|
15
15
|
|
16
|
-
def regressor(model, X_train, X_test, y_train, y_test, model_name="Regressor"):
|
16
|
+
def regressor(model, X_train, X_test, y_train, y_test, model_name="Regressor"): # noqa: N803
|
17
17
|
"""Generates all sklearn regressor plots supported by W&B.
|
18
18
|
|
19
19
|
The following plots are generated:
|
@@ -38,7 +38,7 @@ def regressor(model, X_train, X_test, y_train, y_test, model_name="Regressor"):
|
|
38
38
|
wandb.sklearn.plot_regressor(reg, X_train, X_test, y_train, y_test, "Ridge")
|
39
39
|
```
|
40
40
|
"""
|
41
|
-
wandb.termlog("\nPlotting
|
41
|
+
wandb.termlog(f"\nPlotting {model_name}.")
|
42
42
|
|
43
43
|
shared.summary_metrics(model, X_train, y_train, X_test, y_test)
|
44
44
|
wandb.termlog("Logged summary metrics.")
|
@@ -53,7 +53,7 @@ def regressor(model, X_train, X_test, y_train, y_test, model_name="Regressor"):
|
|
53
53
|
wandb.termlog("Logged residuals.")
|
54
54
|
|
55
55
|
|
56
|
-
def outlier_candidates(regressor=None, X=None, y=None):
|
56
|
+
def outlier_candidates(regressor=None, X=None, y=None): # noqa: N803
|
57
57
|
"""Measures a datapoint's influence on regression model via cook's distance.
|
58
58
|
|
59
59
|
Instances with high influences could potentially be outliers.
|
@@ -87,7 +87,7 @@ def outlier_candidates(regressor=None, X=None, y=None):
|
|
87
87
|
wandb.log({"outlier_candidates": outliers_chart})
|
88
88
|
|
89
89
|
|
90
|
-
def residuals(regressor=None, X=None, y=None):
|
90
|
+
def residuals(regressor=None, X=None, y=None): # noqa: N803
|
91
91
|
"""Measures and plots the regressor's predicted value against the residual.
|
92
92
|
|
93
93
|
The marginal distribution of residuals is also calculated and plotted.
|
@@ -5,13 +5,13 @@ from warnings import simplefilter
|
|
5
5
|
import numpy as np
|
6
6
|
|
7
7
|
import wandb
|
8
|
-
from wandb.sklearn import calculate, utils
|
8
|
+
from wandb.integration.sklearn import calculate, utils
|
9
9
|
|
10
10
|
# ignore all future warnings
|
11
11
|
simplefilter(action="ignore", category=FutureWarning)
|
12
12
|
|
13
13
|
|
14
|
-
def summary_metrics(model=None, X=None, y=None, X_test=None, y_test=None):
|
14
|
+
def summary_metrics(model=None, X=None, y=None, X_test=None, y_test=None): # noqa: N803
|
15
15
|
"""Logs a chart depicting summary metrics for a model.
|
16
16
|
|
17
17
|
Should only be called with a fitted model (otherwise an error is thrown).
|
@@ -47,7 +47,7 @@ def summary_metrics(model=None, X=None, y=None, X_test=None, y_test=None):
|
|
47
47
|
|
48
48
|
def learning_curve(
|
49
49
|
model=None,
|
50
|
-
X=None,
|
50
|
+
X=None, # noqa: N803
|
51
51
|
y=None,
|
52
52
|
cv=None,
|
53
53
|
shuffle=False,
|
@@ -61,7 +61,7 @@ def test_types(**kwargs):
|
|
61
61
|
list,
|
62
62
|
),
|
63
63
|
):
|
64
|
-
wandb.termerror("
|
64
|
+
wandb.termerror(f"{k} is not an array. Please try again.")
|
65
65
|
test_passed = False
|
66
66
|
# check for classifier types
|
67
67
|
if k == "model":
|
@@ -69,20 +69,20 @@ def test_types(**kwargs):
|
|
69
69
|
not sklearn.base.is_regressor(v)
|
70
70
|
):
|
71
71
|
wandb.termerror(
|
72
|
-
"
|
72
|
+
f"{k} is not a classifier or regressor. Please try again."
|
73
73
|
)
|
74
74
|
test_passed = False
|
75
75
|
elif k == "clf" or k == "binary_clf":
|
76
76
|
if not (sklearn.base.is_classifier(v)):
|
77
|
-
wandb.termerror("
|
77
|
+
wandb.termerror(f"{k} is not a classifier. Please try again.")
|
78
78
|
test_passed = False
|
79
79
|
elif k == "regressor":
|
80
80
|
if not sklearn.base.is_regressor(v):
|
81
|
-
wandb.termerror("
|
81
|
+
wandb.termerror(f"{k} is not a regressor. Please try again.")
|
82
82
|
test_passed = False
|
83
83
|
elif k == "clusterer":
|
84
84
|
if not (getattr(v, "_estimator_type", None) == "clusterer"):
|
85
|
-
wandb.termerror("
|
85
|
+
wandb.termerror(f"{k} is not a clusterer. Please try again.")
|
86
86
|
test_passed = False
|
87
87
|
return test_passed
|
88
88
|
|
@@ -129,7 +129,7 @@ def test_missing(**kwargs):
|
|
129
129
|
for k, v in kwargs.items():
|
130
130
|
# Missing/empty params/datapoint arrays
|
131
131
|
if v is None:
|
132
|
-
wandb.termerror("
|
132
|
+
wandb.termerror(f"{k} is None. Please try again.")
|
133
133
|
test_passed = False
|
134
134
|
if (k == "X") or (k == "X_test"):
|
135
135
|
if isinstance(v, scipy.sparse.csr.csr_matrix):
|
@@ -168,8 +168,8 @@ def test_missing(**kwargs):
|
|
168
168
|
)
|
169
169
|
if non_nums > 0:
|
170
170
|
wandb.termerror(
|
171
|
-
"
|
172
|
-
|
171
|
+
f"{k} contains values that are not numbers. Please vectorize, label encode or one hot encode {k} "
|
172
|
+
"and call the plotting function again."
|
173
173
|
)
|
174
174
|
test_passed = False
|
175
175
|
return test_passed
|
@@ -1,11 +1,9 @@
|
|
1
|
-
|
2
|
-
|
3
|
-
"""PyTorch-specific functionality"""
|
1
|
+
"""PyTorch-specific functionality."""
|
4
2
|
|
5
3
|
import itertools
|
6
4
|
from functools import reduce
|
7
5
|
from operator import mul
|
8
|
-
from typing import List
|
6
|
+
from typing import TYPE_CHECKING, List
|
9
7
|
|
10
8
|
import wandb
|
11
9
|
from wandb import util
|
@@ -13,13 +11,18 @@ from wandb.data_types import Node
|
|
13
11
|
|
14
12
|
torch = None
|
15
13
|
|
14
|
+
if TYPE_CHECKING:
|
15
|
+
from torch import Tensor
|
16
|
+
from torch.nn import Module
|
17
|
+
|
16
18
|
|
17
19
|
def nested_shape(array_or_tuple, seen=None):
|
18
|
-
"""Figure out the shape of tensors possibly embedded in tuples
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
(
|
20
|
+
"""Figure out the shape of tensors possibly embedded in tuples.
|
21
|
+
|
22
|
+
for example:
|
23
|
+
- [0,0] returns (2)
|
24
|
+
- ([0,0], [0,0]) returns (2,2)
|
25
|
+
- (([0,0], [0,0]),[0,0]) returns ((2,2),2).
|
23
26
|
"""
|
24
27
|
if seen is None:
|
25
28
|
seen = set()
|
@@ -49,14 +52,14 @@ LOG_TRACK_COUNT, LOG_TRACK_THRESHOLD = range(2)
|
|
49
52
|
|
50
53
|
|
51
54
|
def log_track_init(log_freq: int) -> List[int]:
|
52
|
-
"""
|
53
|
-
|
54
|
-
|
55
|
-
return
|
55
|
+
"""Create tracking structure used by log_track_update."""
|
56
|
+
log_track = [0, 0]
|
57
|
+
log_track[LOG_TRACK_THRESHOLD] = log_freq
|
58
|
+
return log_track
|
56
59
|
|
57
60
|
|
58
61
|
def log_track_update(log_track: int) -> bool:
|
59
|
-
"""
|
62
|
+
"""Count (log_track[0]) up to threshold (log_track[1]), reset count (log_track[0]) and return true when reached."""
|
60
63
|
log_track[LOG_TRACK_COUNT] += 1
|
61
64
|
if log_track[LOG_TRACK_COUNT] < log_track[LOG_TRACK_THRESHOLD]:
|
62
65
|
return False
|
@@ -65,7 +68,7 @@ def log_track_update(log_track: int) -> bool:
|
|
65
68
|
|
66
69
|
|
67
70
|
class TorchHistory:
|
68
|
-
"""History methods specific to PyTorch"""
|
71
|
+
"""History methods specific to PyTorch."""
|
69
72
|
|
70
73
|
def __init__(self):
|
71
74
|
global torch
|
@@ -77,14 +80,15 @@ class TorchHistory:
|
|
77
80
|
|
78
81
|
def add_log_parameters_hook(
|
79
82
|
self,
|
80
|
-
module: "
|
83
|
+
module: "Module",
|
81
84
|
name: str = "",
|
82
85
|
prefix: str = "",
|
83
86
|
log_freq: int = 0,
|
84
87
|
) -> None:
|
85
|
-
"""This instruments hooks into the pytorch module
|
88
|
+
"""This instruments hooks into the pytorch module.
|
89
|
+
|
86
90
|
log parameters after a forward pass
|
87
|
-
log_freq - log gradients/parameters every N batches
|
91
|
+
log_freq - log gradients/parameters every N batches.
|
88
92
|
"""
|
89
93
|
# if name is not None:
|
90
94
|
prefix = prefix + name
|
@@ -119,16 +123,19 @@ class TorchHistory:
|
|
119
123
|
|
120
124
|
def add_log_gradients_hook(
|
121
125
|
self,
|
122
|
-
module: "
|
126
|
+
module: "Module",
|
123
127
|
name: str = "",
|
124
128
|
prefix: str = "",
|
125
129
|
log_freq: int = 0,
|
126
130
|
) -> None:
|
127
|
-
"""This instruments hooks into the
|
128
|
-
log gradients after a backward pass
|
129
|
-
log_freq - log gradients/parameters every N batches
|
130
|
-
"""
|
131
|
+
"""This instruments hooks into the PyTorch module slog gradients after a backward pass.
|
131
132
|
|
133
|
+
Args:
|
134
|
+
module: torch.nn.Module - the module to instrument
|
135
|
+
name: str - the name of the module
|
136
|
+
prefix: str - the prefix to add to the name
|
137
|
+
log_freq: log gradients/parameters every N batches
|
138
|
+
"""
|
132
139
|
# if name is not None:
|
133
140
|
prefix = prefix + name
|
134
141
|
|
@@ -143,8 +150,8 @@ class TorchHistory:
|
|
143
150
|
parameter, "gradients/" + prefix + name, log_track_grad
|
144
151
|
)
|
145
152
|
|
146
|
-
def log_tensor_stats(self, tensor, name):
|
147
|
-
"""Add distribution statistics on a tensor's elements to the current History entry"""
|
153
|
+
def log_tensor_stats(self, tensor, name): # noqa: C901
|
154
|
+
"""Add distribution statistics on a tensor's elements to the current History entry."""
|
148
155
|
# TODO Handle the case of duplicate names.
|
149
156
|
if isinstance(tensor, (tuple, list)):
|
150
157
|
while isinstance(tensor, (tuple, list)) and isinstance(
|
@@ -250,9 +257,7 @@ class TorchHistory:
|
|
250
257
|
)
|
251
258
|
|
252
259
|
def _hook_variable_gradient_stats(self, var, name, log_track):
|
253
|
-
"""Logs a Variable's gradient's distribution statistics next time backward()
|
254
|
-
is called on it.
|
255
|
-
"""
|
260
|
+
"""Logs a Variable's gradient's distribution statistics next time backward() is called on it."""
|
256
261
|
if not isinstance(var, torch.autograd.Variable):
|
257
262
|
cls = type(var)
|
258
263
|
raise TypeError(
|
@@ -288,10 +293,10 @@ class TorchHistory:
|
|
288
293
|
else:
|
289
294
|
return handle.id in d
|
290
295
|
|
291
|
-
def _no_finite_values(self, tensor: "
|
296
|
+
def _no_finite_values(self, tensor: "Tensor") -> bool:
|
292
297
|
return tensor.shape == torch.Size([0]) or (~torch.isfinite(tensor)).all().item()
|
293
298
|
|
294
|
-
def _remove_infs_nans(self, tensor: "
|
299
|
+
def _remove_infs_nans(self, tensor: "Tensor") -> "Tensor":
|
295
300
|
if not torch.isfinite(tensor).all():
|
296
301
|
tensor = tensor[torch.isfinite(tensor)]
|
297
302
|
|
@@ -420,8 +425,7 @@ class TorchGraph(wandb.data_types.Graph):
|
|
420
425
|
|
421
426
|
@classmethod
|
422
427
|
def from_torch_layers(cls, module_graph, variable):
|
423
|
-
"""Recover something like neural net layers from PyTorch Module's and the
|
424
|
-
compute graph from a Variable.
|
428
|
+
"""Recover something like neural net layers from PyTorch Module's and the compute graph from a Variable.
|
425
429
|
|
426
430
|
Example output for a multi-layer RNN. We confusingly assign shared embedding values
|
427
431
|
to the encoder, but ordered next to the decoder.
|
wandb/proto/v3/wandb_base_pb2.py
CHANGED
@@ -14,7 +14,7 @@ _sym_db = _symbol_database.Default()
|
|
14
14
|
|
15
15
|
|
16
16
|
|
17
|
-
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x1cwandb/proto/wandb_base.proto\x12\x0ewandb_internal\"6\n\x0b_RecordInfo\x12\x11\n\tstream_id\x18\x01 \x01(\t\x12\x14\n\x0c_tracelog_id\x18\x64 \x01(\t\"!\n\x0c_RequestInfo\x12\x11\n\tstream_id\x18\x01 \x01(\t\"#\n\x0b_ResultInfo\x12\x14\n\x0c_tracelog_id\x18\x64 \x01(\
|
17
|
+
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x1cwandb/proto/wandb_base.proto\x12\x0ewandb_internal\"6\n\x0b_RecordInfo\x12\x11\n\tstream_id\x18\x01 \x01(\t\x12\x14\n\x0c_tracelog_id\x18\x64 \x01(\t\"!\n\x0c_RequestInfo\x12\x11\n\tstream_id\x18\x01 \x01(\t\"#\n\x0b_ResultInfo\x12\x14\n\x0c_tracelog_id\x18\x64 \x01(\tB\x1bZ\x19\x63ore/pkg/service_go_protob\x06proto3')
|
18
18
|
|
19
19
|
|
20
20
|
|
@@ -45,6 +45,7 @@ _sym_db.RegisterMessage(_ResultInfo)
|
|
45
45
|
if _descriptor._USE_C_DESCRIPTORS == False:
|
46
46
|
|
47
47
|
DESCRIPTOR._options = None
|
48
|
+
DESCRIPTOR._serialized_options = b'Z\031core/pkg/service_go_proto'
|
48
49
|
__RECORDINFO._serialized_start=48
|
49
50
|
__RECORDINFO._serialized_end=102
|
50
51
|
__REQUESTINFO._serialized_start=104
|