wandb 0.18.0__py3-none-macosx_10_13_x86_64.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (822) hide show
  1. package_readme.md +89 -0
  2. wandb/__init__.py +245 -0
  3. wandb/__init__.pyi +1084 -0
  4. wandb/__main__.py +3 -0
  5. wandb/_globals.py +19 -0
  6. wandb/agents/__init__.py +0 -0
  7. wandb/agents/pyagent.py +363 -0
  8. wandb/analytics/__init__.py +3 -0
  9. wandb/analytics/sentry.py +266 -0
  10. wandb/apis/__init__.py +48 -0
  11. wandb/apis/attrs.py +40 -0
  12. wandb/apis/importers/__init__.py +1 -0
  13. wandb/apis/importers/internals/internal.py +385 -0
  14. wandb/apis/importers/internals/protocols.py +99 -0
  15. wandb/apis/importers/internals/util.py +78 -0
  16. wandb/apis/importers/mlflow.py +254 -0
  17. wandb/apis/importers/validation.py +108 -0
  18. wandb/apis/importers/wandb.py +1603 -0
  19. wandb/apis/internal.py +229 -0
  20. wandb/apis/normalize.py +89 -0
  21. wandb/apis/paginator.py +81 -0
  22. wandb/apis/public/__init__.py +34 -0
  23. wandb/apis/public/api.py +1179 -0
  24. wandb/apis/public/artifacts.py +1086 -0
  25. wandb/apis/public/const.py +4 -0
  26. wandb/apis/public/files.py +195 -0
  27. wandb/apis/public/history.py +149 -0
  28. wandb/apis/public/jobs.py +651 -0
  29. wandb/apis/public/projects.py +154 -0
  30. wandb/apis/public/query_generator.py +166 -0
  31. wandb/apis/public/reports.py +469 -0
  32. wandb/apis/public/runs.py +901 -0
  33. wandb/apis/public/sweeps.py +240 -0
  34. wandb/apis/public/teams.py +198 -0
  35. wandb/apis/public/users.py +136 -0
  36. wandb/apis/reports/__init__.py +1 -0
  37. wandb/apis/reports/v1/__init__.py +8 -0
  38. wandb/apis/reports/v2/__init__.py +8 -0
  39. wandb/apis/workspaces/__init__.py +8 -0
  40. wandb/beta/workflows.py +288 -0
  41. wandb/bin/wandb-core +0 -0
  42. wandb/cli/__init__.py +0 -0
  43. wandb/cli/cli.py +3009 -0
  44. wandb/data_types.py +2073 -0
  45. wandb/docker/__init__.py +342 -0
  46. wandb/docker/auth.py +436 -0
  47. wandb/docker/wandb-entrypoint.sh +33 -0
  48. wandb/docker/www_authenticate.py +94 -0
  49. wandb/env.py +519 -0
  50. wandb/errors/__init__.py +46 -0
  51. wandb/errors/term.py +103 -0
  52. wandb/errors/util.py +57 -0
  53. wandb/filesync/__init__.py +0 -0
  54. wandb/filesync/dir_watcher.py +403 -0
  55. wandb/filesync/stats.py +100 -0
  56. wandb/filesync/step_checksum.py +142 -0
  57. wandb/filesync/step_prepare.py +179 -0
  58. wandb/filesync/step_upload.py +290 -0
  59. wandb/filesync/upload_job.py +142 -0
  60. wandb/integration/__init__.py +0 -0
  61. wandb/integration/catboost/__init__.py +5 -0
  62. wandb/integration/catboost/catboost.py +178 -0
  63. wandb/integration/cohere/__init__.py +3 -0
  64. wandb/integration/cohere/cohere.py +21 -0
  65. wandb/integration/cohere/resolver.py +347 -0
  66. wandb/integration/diffusers/__init__.py +3 -0
  67. wandb/integration/diffusers/autologger.py +76 -0
  68. wandb/integration/diffusers/pipeline_resolver.py +50 -0
  69. wandb/integration/diffusers/resolvers/__init__.py +9 -0
  70. wandb/integration/diffusers/resolvers/multimodal.py +882 -0
  71. wandb/integration/diffusers/resolvers/utils.py +102 -0
  72. wandb/integration/fastai/__init__.py +249 -0
  73. wandb/integration/gym/__init__.py +105 -0
  74. wandb/integration/huggingface/__init__.py +3 -0
  75. wandb/integration/huggingface/huggingface.py +18 -0
  76. wandb/integration/huggingface/resolver.py +213 -0
  77. wandb/integration/keras/__init__.py +11 -0
  78. wandb/integration/keras/callbacks/__init__.py +5 -0
  79. wandb/integration/keras/callbacks/metrics_logger.py +136 -0
  80. wandb/integration/keras/callbacks/model_checkpoint.py +195 -0
  81. wandb/integration/keras/callbacks/tables_builder.py +226 -0
  82. wandb/integration/keras/keras.py +1091 -0
  83. wandb/integration/kfp/__init__.py +6 -0
  84. wandb/integration/kfp/helpers.py +28 -0
  85. wandb/integration/kfp/kfp_patch.py +324 -0
  86. wandb/integration/kfp/wandb_logging.py +182 -0
  87. wandb/integration/langchain/__init__.py +3 -0
  88. wandb/integration/langchain/wandb_tracer.py +48 -0
  89. wandb/integration/lightgbm/__init__.py +239 -0
  90. wandb/integration/lightning/__init__.py +0 -0
  91. wandb/integration/lightning/fabric/__init__.py +3 -0
  92. wandb/integration/lightning/fabric/logger.py +762 -0
  93. wandb/integration/magic.py +556 -0
  94. wandb/integration/metaflow/__init__.py +3 -0
  95. wandb/integration/metaflow/metaflow.py +383 -0
  96. wandb/integration/openai/__init__.py +3 -0
  97. wandb/integration/openai/fine_tuning.py +480 -0
  98. wandb/integration/openai/openai.py +22 -0
  99. wandb/integration/openai/resolver.py +240 -0
  100. wandb/integration/prodigy/__init__.py +3 -0
  101. wandb/integration/prodigy/prodigy.py +299 -0
  102. wandb/integration/sacred/__init__.py +117 -0
  103. wandb/integration/sagemaker/__init__.py +12 -0
  104. wandb/integration/sagemaker/auth.py +28 -0
  105. wandb/integration/sagemaker/config.py +49 -0
  106. wandb/integration/sagemaker/files.py +3 -0
  107. wandb/integration/sagemaker/resources.py +34 -0
  108. wandb/integration/sb3/__init__.py +3 -0
  109. wandb/integration/sb3/sb3.py +153 -0
  110. wandb/integration/tensorboard/__init__.py +10 -0
  111. wandb/integration/tensorboard/log.py +355 -0
  112. wandb/integration/tensorboard/monkeypatch.py +185 -0
  113. wandb/integration/tensorflow/__init__.py +5 -0
  114. wandb/integration/tensorflow/estimator_hook.py +54 -0
  115. wandb/integration/torch/__init__.py +0 -0
  116. wandb/integration/ultralytics/__init__.py +11 -0
  117. wandb/integration/ultralytics/bbox_utils.py +208 -0
  118. wandb/integration/ultralytics/callback.py +524 -0
  119. wandb/integration/ultralytics/classification_utils.py +83 -0
  120. wandb/integration/ultralytics/mask_utils.py +202 -0
  121. wandb/integration/ultralytics/pose_utils.py +103 -0
  122. wandb/integration/xgboost/__init__.py +11 -0
  123. wandb/integration/xgboost/xgboost.py +189 -0
  124. wandb/integration/yolov8/__init__.py +0 -0
  125. wandb/integration/yolov8/yolov8.py +284 -0
  126. wandb/jupyter.py +515 -0
  127. wandb/magic.py +3 -0
  128. wandb/mpmain/__init__.py +0 -0
  129. wandb/mpmain/__main__.py +1 -0
  130. wandb/old/__init__.py +0 -0
  131. wandb/old/core.py +131 -0
  132. wandb/old/settings.py +173 -0
  133. wandb/old/summary.py +440 -0
  134. wandb/plot/__init__.py +19 -0
  135. wandb/plot/bar.py +42 -0
  136. wandb/plot/confusion_matrix.py +99 -0
  137. wandb/plot/histogram.py +36 -0
  138. wandb/plot/line.py +40 -0
  139. wandb/plot/line_series.py +88 -0
  140. wandb/plot/pr_curve.py +136 -0
  141. wandb/plot/roc_curve.py +118 -0
  142. wandb/plot/scatter.py +32 -0
  143. wandb/plot/utils.py +183 -0
  144. wandb/proto/__init__.py +0 -0
  145. wandb/proto/v3/__init__.py +0 -0
  146. wandb/proto/v3/wandb_base_pb2.py +54 -0
  147. wandb/proto/v3/wandb_internal_pb2.py +1607 -0
  148. wandb/proto/v3/wandb_server_pb2.py +207 -0
  149. wandb/proto/v3/wandb_settings_pb2.py +111 -0
  150. wandb/proto/v3/wandb_telemetry_pb2.py +105 -0
  151. wandb/proto/v4/__init__.py +0 -0
  152. wandb/proto/v4/wandb_base_pb2.py +29 -0
  153. wandb/proto/v4/wandb_internal_pb2.py +359 -0
  154. wandb/proto/v4/wandb_server_pb2.py +62 -0
  155. wandb/proto/v4/wandb_settings_pb2.py +44 -0
  156. wandb/proto/v4/wandb_telemetry_pb2.py +40 -0
  157. wandb/proto/v5/wandb_base_pb2.py +30 -0
  158. wandb/proto/v5/wandb_internal_pb2.py +360 -0
  159. wandb/proto/v5/wandb_server_pb2.py +63 -0
  160. wandb/proto/v5/wandb_settings_pb2.py +45 -0
  161. wandb/proto/v5/wandb_telemetry_pb2.py +41 -0
  162. wandb/proto/wandb_base_pb2.py +10 -0
  163. wandb/proto/wandb_deprecated.py +53 -0
  164. wandb/proto/wandb_generate_deprecated.py +34 -0
  165. wandb/proto/wandb_generate_proto.py +49 -0
  166. wandb/proto/wandb_internal_pb2.py +16 -0
  167. wandb/proto/wandb_server_pb2.py +10 -0
  168. wandb/proto/wandb_settings_pb2.py +10 -0
  169. wandb/proto/wandb_telemetry_pb2.py +10 -0
  170. wandb/py.typed +0 -0
  171. wandb/sdk/__init__.py +37 -0
  172. wandb/sdk/artifacts/__init__.py +0 -0
  173. wandb/sdk/artifacts/_validators.py +45 -0
  174. wandb/sdk/artifacts/artifact.py +2415 -0
  175. wandb/sdk/artifacts/artifact_download_logger.py +43 -0
  176. wandb/sdk/artifacts/artifact_file_cache.py +251 -0
  177. wandb/sdk/artifacts/artifact_instance_cache.py +15 -0
  178. wandb/sdk/artifacts/artifact_manifest.py +72 -0
  179. wandb/sdk/artifacts/artifact_manifest_entry.py +247 -0
  180. wandb/sdk/artifacts/artifact_manifests/__init__.py +0 -0
  181. wandb/sdk/artifacts/artifact_manifests/artifact_manifest_v1.py +90 -0
  182. wandb/sdk/artifacts/artifact_saver.py +267 -0
  183. wandb/sdk/artifacts/artifact_state.py +11 -0
  184. wandb/sdk/artifacts/artifact_ttl.py +7 -0
  185. wandb/sdk/artifacts/exceptions.py +56 -0
  186. wandb/sdk/artifacts/staging.py +25 -0
  187. wandb/sdk/artifacts/storage_handler.py +60 -0
  188. wandb/sdk/artifacts/storage_handlers/__init__.py +0 -0
  189. wandb/sdk/artifacts/storage_handlers/azure_handler.py +206 -0
  190. wandb/sdk/artifacts/storage_handlers/gcs_handler.py +226 -0
  191. wandb/sdk/artifacts/storage_handlers/http_handler.py +113 -0
  192. wandb/sdk/artifacts/storage_handlers/local_file_handler.py +139 -0
  193. wandb/sdk/artifacts/storage_handlers/multi_handler.py +54 -0
  194. wandb/sdk/artifacts/storage_handlers/s3_handler.py +300 -0
  195. wandb/sdk/artifacts/storage_handlers/tracking_handler.py +70 -0
  196. wandb/sdk/artifacts/storage_handlers/wb_artifact_handler.py +133 -0
  197. wandb/sdk/artifacts/storage_handlers/wb_local_artifact_handler.py +72 -0
  198. wandb/sdk/artifacts/storage_layout.py +6 -0
  199. wandb/sdk/artifacts/storage_policies/__init__.py +4 -0
  200. wandb/sdk/artifacts/storage_policies/register.py +1 -0
  201. wandb/sdk/artifacts/storage_policies/wandb_storage_policy.py +376 -0
  202. wandb/sdk/artifacts/storage_policy.py +72 -0
  203. wandb/sdk/backend/__init__.py +0 -0
  204. wandb/sdk/backend/backend.py +240 -0
  205. wandb/sdk/data_types/__init__.py +0 -0
  206. wandb/sdk/data_types/_dtypes.py +914 -0
  207. wandb/sdk/data_types/_private.py +10 -0
  208. wandb/sdk/data_types/base_types/__init__.py +0 -0
  209. wandb/sdk/data_types/base_types/json_metadata.py +55 -0
  210. wandb/sdk/data_types/base_types/media.py +315 -0
  211. wandb/sdk/data_types/base_types/wb_value.py +274 -0
  212. wandb/sdk/data_types/helper_types/__init__.py +0 -0
  213. wandb/sdk/data_types/helper_types/bounding_boxes_2d.py +295 -0
  214. wandb/sdk/data_types/helper_types/classes.py +159 -0
  215. wandb/sdk/data_types/helper_types/image_mask.py +235 -0
  216. wandb/sdk/data_types/histogram.py +96 -0
  217. wandb/sdk/data_types/html.py +115 -0
  218. wandb/sdk/data_types/image.py +689 -0
  219. wandb/sdk/data_types/molecule.py +241 -0
  220. wandb/sdk/data_types/object_3d.py +474 -0
  221. wandb/sdk/data_types/plotly.py +82 -0
  222. wandb/sdk/data_types/saved_model.py +446 -0
  223. wandb/sdk/data_types/trace_tree.py +438 -0
  224. wandb/sdk/data_types/utils.py +180 -0
  225. wandb/sdk/data_types/video.py +247 -0
  226. wandb/sdk/integration_utils/__init__.py +0 -0
  227. wandb/sdk/integration_utils/auto_logging.py +239 -0
  228. wandb/sdk/integration_utils/data_logging.py +475 -0
  229. wandb/sdk/interface/__init__.py +0 -0
  230. wandb/sdk/interface/constants.py +4 -0
  231. wandb/sdk/interface/interface.py +996 -0
  232. wandb/sdk/interface/interface_queue.py +59 -0
  233. wandb/sdk/interface/interface_relay.py +53 -0
  234. wandb/sdk/interface/interface_shared.py +549 -0
  235. wandb/sdk/interface/interface_sock.py +61 -0
  236. wandb/sdk/interface/message_future.py +27 -0
  237. wandb/sdk/interface/message_future_poll.py +50 -0
  238. wandb/sdk/interface/router.py +118 -0
  239. wandb/sdk/interface/router_queue.py +44 -0
  240. wandb/sdk/interface/router_relay.py +39 -0
  241. wandb/sdk/interface/router_sock.py +36 -0
  242. wandb/sdk/interface/summary_record.py +67 -0
  243. wandb/sdk/internal/__init__.py +0 -0
  244. wandb/sdk/internal/context.py +89 -0
  245. wandb/sdk/internal/datastore.py +297 -0
  246. wandb/sdk/internal/file_pusher.py +181 -0
  247. wandb/sdk/internal/file_stream.py +695 -0
  248. wandb/sdk/internal/flow_control.py +263 -0
  249. wandb/sdk/internal/handler.py +911 -0
  250. wandb/sdk/internal/internal.py +417 -0
  251. wandb/sdk/internal/internal_api.py +4287 -0
  252. wandb/sdk/internal/internal_util.py +100 -0
  253. wandb/sdk/internal/job_builder.py +629 -0
  254. wandb/sdk/internal/profiler.py +78 -0
  255. wandb/sdk/internal/progress.py +83 -0
  256. wandb/sdk/internal/run.py +25 -0
  257. wandb/sdk/internal/sample.py +70 -0
  258. wandb/sdk/internal/sender.py +1729 -0
  259. wandb/sdk/internal/sender_config.py +197 -0
  260. wandb/sdk/internal/settings_static.py +90 -0
  261. wandb/sdk/internal/system/__init__.py +0 -0
  262. wandb/sdk/internal/system/assets/__init__.py +27 -0
  263. wandb/sdk/internal/system/assets/aggregators.py +37 -0
  264. wandb/sdk/internal/system/assets/asset_registry.py +20 -0
  265. wandb/sdk/internal/system/assets/cpu.py +163 -0
  266. wandb/sdk/internal/system/assets/disk.py +210 -0
  267. wandb/sdk/internal/system/assets/gpu.py +416 -0
  268. wandb/sdk/internal/system/assets/gpu_amd.py +239 -0
  269. wandb/sdk/internal/system/assets/gpu_apple.py +177 -0
  270. wandb/sdk/internal/system/assets/interfaces.py +207 -0
  271. wandb/sdk/internal/system/assets/ipu.py +177 -0
  272. wandb/sdk/internal/system/assets/memory.py +166 -0
  273. wandb/sdk/internal/system/assets/network.py +125 -0
  274. wandb/sdk/internal/system/assets/open_metrics.py +299 -0
  275. wandb/sdk/internal/system/assets/tpu.py +154 -0
  276. wandb/sdk/internal/system/assets/trainium.py +399 -0
  277. wandb/sdk/internal/system/env_probe_helpers.py +13 -0
  278. wandb/sdk/internal/system/system_info.py +249 -0
  279. wandb/sdk/internal/system/system_monitor.py +229 -0
  280. wandb/sdk/internal/tb_watcher.py +518 -0
  281. wandb/sdk/internal/thread_local_settings.py +18 -0
  282. wandb/sdk/internal/update.py +113 -0
  283. wandb/sdk/internal/writer.py +206 -0
  284. wandb/sdk/launch/__init__.py +14 -0
  285. wandb/sdk/launch/_launch.py +330 -0
  286. wandb/sdk/launch/_launch_add.py +255 -0
  287. wandb/sdk/launch/_project_spec.py +566 -0
  288. wandb/sdk/launch/agent/__init__.py +5 -0
  289. wandb/sdk/launch/agent/agent.py +924 -0
  290. wandb/sdk/launch/agent/config.py +296 -0
  291. wandb/sdk/launch/agent/job_status_tracker.py +53 -0
  292. wandb/sdk/launch/agent/run_queue_item_file_saver.py +45 -0
  293. wandb/sdk/launch/builder/__init__.py +0 -0
  294. wandb/sdk/launch/builder/abstract.py +156 -0
  295. wandb/sdk/launch/builder/build.py +297 -0
  296. wandb/sdk/launch/builder/context_manager.py +235 -0
  297. wandb/sdk/launch/builder/docker_builder.py +177 -0
  298. wandb/sdk/launch/builder/kaniko_builder.py +595 -0
  299. wandb/sdk/launch/builder/noop.py +58 -0
  300. wandb/sdk/launch/builder/templates/_wandb_bootstrap.py +188 -0
  301. wandb/sdk/launch/builder/templates/dockerfile.py +92 -0
  302. wandb/sdk/launch/create_job.py +528 -0
  303. wandb/sdk/launch/environment/abstract.py +29 -0
  304. wandb/sdk/launch/environment/aws_environment.py +322 -0
  305. wandb/sdk/launch/environment/azure_environment.py +105 -0
  306. wandb/sdk/launch/environment/gcp_environment.py +335 -0
  307. wandb/sdk/launch/environment/local_environment.py +66 -0
  308. wandb/sdk/launch/errors.py +19 -0
  309. wandb/sdk/launch/git_reference.py +109 -0
  310. wandb/sdk/launch/inputs/files.py +148 -0
  311. wandb/sdk/launch/inputs/internal.py +315 -0
  312. wandb/sdk/launch/inputs/manage.py +113 -0
  313. wandb/sdk/launch/inputs/schema.py +39 -0
  314. wandb/sdk/launch/loader.py +249 -0
  315. wandb/sdk/launch/registry/abstract.py +48 -0
  316. wandb/sdk/launch/registry/anon.py +29 -0
  317. wandb/sdk/launch/registry/azure_container_registry.py +124 -0
  318. wandb/sdk/launch/registry/elastic_container_registry.py +192 -0
  319. wandb/sdk/launch/registry/google_artifact_registry.py +219 -0
  320. wandb/sdk/launch/registry/local_registry.py +67 -0
  321. wandb/sdk/launch/runner/__init__.py +0 -0
  322. wandb/sdk/launch/runner/abstract.py +195 -0
  323. wandb/sdk/launch/runner/kubernetes_monitor.py +474 -0
  324. wandb/sdk/launch/runner/kubernetes_runner.py +963 -0
  325. wandb/sdk/launch/runner/local_container.py +301 -0
  326. wandb/sdk/launch/runner/local_process.py +78 -0
  327. wandb/sdk/launch/runner/sagemaker_runner.py +426 -0
  328. wandb/sdk/launch/runner/vertex_runner.py +230 -0
  329. wandb/sdk/launch/sweeps/__init__.py +39 -0
  330. wandb/sdk/launch/sweeps/scheduler.py +742 -0
  331. wandb/sdk/launch/sweeps/scheduler_sweep.py +91 -0
  332. wandb/sdk/launch/sweeps/utils.py +316 -0
  333. wandb/sdk/launch/utils.py +746 -0
  334. wandb/sdk/launch/wandb_reference.py +138 -0
  335. wandb/sdk/lib/__init__.py +5 -0
  336. wandb/sdk/lib/_settings_toposort_generate.py +159 -0
  337. wandb/sdk/lib/_settings_toposort_generated.py +249 -0
  338. wandb/sdk/lib/_wburls_generate.py +25 -0
  339. wandb/sdk/lib/_wburls_generated.py +22 -0
  340. wandb/sdk/lib/apikey.py +273 -0
  341. wandb/sdk/lib/capped_dict.py +26 -0
  342. wandb/sdk/lib/config_util.py +101 -0
  343. wandb/sdk/lib/console.py +39 -0
  344. wandb/sdk/lib/credentials.py +141 -0
  345. wandb/sdk/lib/deprecate.py +42 -0
  346. wandb/sdk/lib/disabled.py +29 -0
  347. wandb/sdk/lib/exit_hooks.py +54 -0
  348. wandb/sdk/lib/file_stream_utils.py +118 -0
  349. wandb/sdk/lib/filenames.py +64 -0
  350. wandb/sdk/lib/filesystem.py +372 -0
  351. wandb/sdk/lib/fsm.py +174 -0
  352. wandb/sdk/lib/gitlib.py +239 -0
  353. wandb/sdk/lib/gql_request.py +65 -0
  354. wandb/sdk/lib/handler_util.py +21 -0
  355. wandb/sdk/lib/hashutil.py +62 -0
  356. wandb/sdk/lib/import_hooks.py +275 -0
  357. wandb/sdk/lib/ipython.py +146 -0
  358. wandb/sdk/lib/json_util.py +80 -0
  359. wandb/sdk/lib/lazyloader.py +63 -0
  360. wandb/sdk/lib/mailbox.py +460 -0
  361. wandb/sdk/lib/module.py +69 -0
  362. wandb/sdk/lib/paths.py +106 -0
  363. wandb/sdk/lib/preinit.py +42 -0
  364. wandb/sdk/lib/printer.py +313 -0
  365. wandb/sdk/lib/proto_util.py +90 -0
  366. wandb/sdk/lib/redirect.py +845 -0
  367. wandb/sdk/lib/reporting.py +99 -0
  368. wandb/sdk/lib/retry.py +289 -0
  369. wandb/sdk/lib/run_moment.py +78 -0
  370. wandb/sdk/lib/runid.py +12 -0
  371. wandb/sdk/lib/server.py +52 -0
  372. wandb/sdk/lib/sock_client.py +291 -0
  373. wandb/sdk/lib/sparkline.py +45 -0
  374. wandb/sdk/lib/telemetry.py +100 -0
  375. wandb/sdk/lib/timed_input.py +133 -0
  376. wandb/sdk/lib/timer.py +19 -0
  377. wandb/sdk/lib/tracelog.py +255 -0
  378. wandb/sdk/lib/viz.py +123 -0
  379. wandb/sdk/lib/wburls.py +46 -0
  380. wandb/sdk/service/__init__.py +0 -0
  381. wandb/sdk/service/_startup_debug.py +22 -0
  382. wandb/sdk/service/port_file.py +53 -0
  383. wandb/sdk/service/server.py +119 -0
  384. wandb/sdk/service/server_sock.py +276 -0
  385. wandb/sdk/service/service.py +271 -0
  386. wandb/sdk/service/service_base.py +50 -0
  387. wandb/sdk/service/service_sock.py +70 -0
  388. wandb/sdk/service/streams.py +424 -0
  389. wandb/sdk/verify/__init__.py +0 -0
  390. wandb/sdk/verify/verify.py +501 -0
  391. wandb/sdk/wandb_alerts.py +12 -0
  392. wandb/sdk/wandb_config.py +322 -0
  393. wandb/sdk/wandb_helper.py +54 -0
  394. wandb/sdk/wandb_init.py +1249 -0
  395. wandb/sdk/wandb_login.py +349 -0
  396. wandb/sdk/wandb_manager.py +232 -0
  397. wandb/sdk/wandb_metric.py +110 -0
  398. wandb/sdk/wandb_require.py +97 -0
  399. wandb/sdk/wandb_require_helpers.py +44 -0
  400. wandb/sdk/wandb_run.py +4377 -0
  401. wandb/sdk/wandb_settings.py +1999 -0
  402. wandb/sdk/wandb_setup.py +400 -0
  403. wandb/sdk/wandb_summary.py +150 -0
  404. wandb/sdk/wandb_sweep.py +119 -0
  405. wandb/sdk/wandb_sync.py +75 -0
  406. wandb/sdk/wandb_watch.py +128 -0
  407. wandb/sklearn/__init__.py +37 -0
  408. wandb/sklearn/calculate/__init__.py +32 -0
  409. wandb/sklearn/calculate/calibration_curves.py +125 -0
  410. wandb/sklearn/calculate/class_proportions.py +68 -0
  411. wandb/sklearn/calculate/confusion_matrix.py +92 -0
  412. wandb/sklearn/calculate/decision_boundaries.py +40 -0
  413. wandb/sklearn/calculate/elbow_curve.py +55 -0
  414. wandb/sklearn/calculate/feature_importances.py +67 -0
  415. wandb/sklearn/calculate/learning_curve.py +64 -0
  416. wandb/sklearn/calculate/outlier_candidates.py +69 -0
  417. wandb/sklearn/calculate/residuals.py +86 -0
  418. wandb/sklearn/calculate/silhouette.py +118 -0
  419. wandb/sklearn/calculate/summary_metrics.py +62 -0
  420. wandb/sklearn/plot/__init__.py +35 -0
  421. wandb/sklearn/plot/classifier.py +329 -0
  422. wandb/sklearn/plot/clusterer.py +142 -0
  423. wandb/sklearn/plot/regressor.py +121 -0
  424. wandb/sklearn/plot/shared.py +91 -0
  425. wandb/sklearn/utils.py +183 -0
  426. wandb/sync/__init__.py +3 -0
  427. wandb/sync/sync.py +443 -0
  428. wandb/trigger.py +29 -0
  429. wandb/util.py +1945 -0
  430. wandb/vendor/__init__.py +0 -0
  431. wandb/vendor/gql-0.2.0/setup.py +40 -0
  432. wandb/vendor/gql-0.2.0/tests/__init__.py +0 -0
  433. wandb/vendor/gql-0.2.0/tests/starwars/__init__.py +0 -0
  434. wandb/vendor/gql-0.2.0/tests/starwars/fixtures.py +96 -0
  435. wandb/vendor/gql-0.2.0/tests/starwars/schema.py +146 -0
  436. wandb/vendor/gql-0.2.0/tests/starwars/test_dsl.py +293 -0
  437. wandb/vendor/gql-0.2.0/tests/starwars/test_query.py +355 -0
  438. wandb/vendor/gql-0.2.0/tests/starwars/test_validation.py +171 -0
  439. wandb/vendor/gql-0.2.0/tests/test_client.py +31 -0
  440. wandb/vendor/gql-0.2.0/tests/test_transport.py +89 -0
  441. wandb/vendor/gql-0.2.0/wandb_gql/__init__.py +4 -0
  442. wandb/vendor/gql-0.2.0/wandb_gql/client.py +75 -0
  443. wandb/vendor/gql-0.2.0/wandb_gql/dsl.py +152 -0
  444. wandb/vendor/gql-0.2.0/wandb_gql/gql.py +10 -0
  445. wandb/vendor/gql-0.2.0/wandb_gql/transport/__init__.py +0 -0
  446. wandb/vendor/gql-0.2.0/wandb_gql/transport/http.py +6 -0
  447. wandb/vendor/gql-0.2.0/wandb_gql/transport/local_schema.py +15 -0
  448. wandb/vendor/gql-0.2.0/wandb_gql/transport/requests.py +46 -0
  449. wandb/vendor/gql-0.2.0/wandb_gql/utils.py +21 -0
  450. wandb/vendor/graphql-core-1.1/setup.py +86 -0
  451. wandb/vendor/graphql-core-1.1/wandb_graphql/__init__.py +287 -0
  452. wandb/vendor/graphql-core-1.1/wandb_graphql/error/__init__.py +6 -0
  453. wandb/vendor/graphql-core-1.1/wandb_graphql/error/base.py +42 -0
  454. wandb/vendor/graphql-core-1.1/wandb_graphql/error/format_error.py +11 -0
  455. wandb/vendor/graphql-core-1.1/wandb_graphql/error/located_error.py +29 -0
  456. wandb/vendor/graphql-core-1.1/wandb_graphql/error/syntax_error.py +36 -0
  457. wandb/vendor/graphql-core-1.1/wandb_graphql/execution/__init__.py +26 -0
  458. wandb/vendor/graphql-core-1.1/wandb_graphql/execution/base.py +311 -0
  459. wandb/vendor/graphql-core-1.1/wandb_graphql/execution/executor.py +398 -0
  460. wandb/vendor/graphql-core-1.1/wandb_graphql/execution/executors/__init__.py +0 -0
  461. wandb/vendor/graphql-core-1.1/wandb_graphql/execution/executors/asyncio.py +53 -0
  462. wandb/vendor/graphql-core-1.1/wandb_graphql/execution/executors/gevent.py +22 -0
  463. wandb/vendor/graphql-core-1.1/wandb_graphql/execution/executors/process.py +32 -0
  464. wandb/vendor/graphql-core-1.1/wandb_graphql/execution/executors/sync.py +7 -0
  465. wandb/vendor/graphql-core-1.1/wandb_graphql/execution/executors/thread.py +35 -0
  466. wandb/vendor/graphql-core-1.1/wandb_graphql/execution/executors/utils.py +6 -0
  467. wandb/vendor/graphql-core-1.1/wandb_graphql/execution/experimental/__init__.py +0 -0
  468. wandb/vendor/graphql-core-1.1/wandb_graphql/execution/experimental/executor.py +66 -0
  469. wandb/vendor/graphql-core-1.1/wandb_graphql/execution/experimental/fragment.py +252 -0
  470. wandb/vendor/graphql-core-1.1/wandb_graphql/execution/experimental/resolver.py +151 -0
  471. wandb/vendor/graphql-core-1.1/wandb_graphql/execution/experimental/utils.py +7 -0
  472. wandb/vendor/graphql-core-1.1/wandb_graphql/execution/middleware.py +57 -0
  473. wandb/vendor/graphql-core-1.1/wandb_graphql/execution/values.py +145 -0
  474. wandb/vendor/graphql-core-1.1/wandb_graphql/graphql.py +60 -0
  475. wandb/vendor/graphql-core-1.1/wandb_graphql/language/__init__.py +0 -0
  476. wandb/vendor/graphql-core-1.1/wandb_graphql/language/ast.py +1349 -0
  477. wandb/vendor/graphql-core-1.1/wandb_graphql/language/base.py +19 -0
  478. wandb/vendor/graphql-core-1.1/wandb_graphql/language/lexer.py +435 -0
  479. wandb/vendor/graphql-core-1.1/wandb_graphql/language/location.py +30 -0
  480. wandb/vendor/graphql-core-1.1/wandb_graphql/language/parser.py +779 -0
  481. wandb/vendor/graphql-core-1.1/wandb_graphql/language/printer.py +193 -0
  482. wandb/vendor/graphql-core-1.1/wandb_graphql/language/source.py +18 -0
  483. wandb/vendor/graphql-core-1.1/wandb_graphql/language/visitor.py +222 -0
  484. wandb/vendor/graphql-core-1.1/wandb_graphql/language/visitor_meta.py +82 -0
  485. wandb/vendor/graphql-core-1.1/wandb_graphql/pyutils/__init__.py +0 -0
  486. wandb/vendor/graphql-core-1.1/wandb_graphql/pyutils/cached_property.py +17 -0
  487. wandb/vendor/graphql-core-1.1/wandb_graphql/pyutils/contain_subset.py +28 -0
  488. wandb/vendor/graphql-core-1.1/wandb_graphql/pyutils/default_ordered_dict.py +40 -0
  489. wandb/vendor/graphql-core-1.1/wandb_graphql/pyutils/ordereddict.py +8 -0
  490. wandb/vendor/graphql-core-1.1/wandb_graphql/pyutils/pair_set.py +43 -0
  491. wandb/vendor/graphql-core-1.1/wandb_graphql/pyutils/version.py +78 -0
  492. wandb/vendor/graphql-core-1.1/wandb_graphql/type/__init__.py +67 -0
  493. wandb/vendor/graphql-core-1.1/wandb_graphql/type/definition.py +619 -0
  494. wandb/vendor/graphql-core-1.1/wandb_graphql/type/directives.py +132 -0
  495. wandb/vendor/graphql-core-1.1/wandb_graphql/type/introspection.py +440 -0
  496. wandb/vendor/graphql-core-1.1/wandb_graphql/type/scalars.py +131 -0
  497. wandb/vendor/graphql-core-1.1/wandb_graphql/type/schema.py +100 -0
  498. wandb/vendor/graphql-core-1.1/wandb_graphql/type/typemap.py +145 -0
  499. wandb/vendor/graphql-core-1.1/wandb_graphql/utils/__init__.py +0 -0
  500. wandb/vendor/graphql-core-1.1/wandb_graphql/utils/assert_valid_name.py +9 -0
  501. wandb/vendor/graphql-core-1.1/wandb_graphql/utils/ast_from_value.py +65 -0
  502. wandb/vendor/graphql-core-1.1/wandb_graphql/utils/ast_to_code.py +49 -0
  503. wandb/vendor/graphql-core-1.1/wandb_graphql/utils/ast_to_dict.py +24 -0
  504. wandb/vendor/graphql-core-1.1/wandb_graphql/utils/base.py +75 -0
  505. wandb/vendor/graphql-core-1.1/wandb_graphql/utils/build_ast_schema.py +291 -0
  506. wandb/vendor/graphql-core-1.1/wandb_graphql/utils/build_client_schema.py +250 -0
  507. wandb/vendor/graphql-core-1.1/wandb_graphql/utils/concat_ast.py +9 -0
  508. wandb/vendor/graphql-core-1.1/wandb_graphql/utils/extend_schema.py +357 -0
  509. wandb/vendor/graphql-core-1.1/wandb_graphql/utils/get_field_def.py +27 -0
  510. wandb/vendor/graphql-core-1.1/wandb_graphql/utils/get_operation_ast.py +21 -0
  511. wandb/vendor/graphql-core-1.1/wandb_graphql/utils/introspection_query.py +90 -0
  512. wandb/vendor/graphql-core-1.1/wandb_graphql/utils/is_valid_literal_value.py +67 -0
  513. wandb/vendor/graphql-core-1.1/wandb_graphql/utils/is_valid_value.py +66 -0
  514. wandb/vendor/graphql-core-1.1/wandb_graphql/utils/quoted_or_list.py +21 -0
  515. wandb/vendor/graphql-core-1.1/wandb_graphql/utils/schema_printer.py +168 -0
  516. wandb/vendor/graphql-core-1.1/wandb_graphql/utils/suggestion_list.py +56 -0
  517. wandb/vendor/graphql-core-1.1/wandb_graphql/utils/type_comparators.py +69 -0
  518. wandb/vendor/graphql-core-1.1/wandb_graphql/utils/type_from_ast.py +21 -0
  519. wandb/vendor/graphql-core-1.1/wandb_graphql/utils/type_info.py +149 -0
  520. wandb/vendor/graphql-core-1.1/wandb_graphql/utils/value_from_ast.py +69 -0
  521. wandb/vendor/graphql-core-1.1/wandb_graphql/validation/__init__.py +4 -0
  522. wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/__init__.py +79 -0
  523. wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/arguments_of_correct_type.py +24 -0
  524. wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/base.py +8 -0
  525. wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/default_values_of_correct_type.py +44 -0
  526. wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/fields_on_correct_type.py +113 -0
  527. wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/fragments_on_composite_types.py +33 -0
  528. wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/known_argument_names.py +70 -0
  529. wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/known_directives.py +97 -0
  530. wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/known_fragment_names.py +19 -0
  531. wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/known_type_names.py +43 -0
  532. wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/lone_anonymous_operation.py +23 -0
  533. wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/no_fragment_cycles.py +59 -0
  534. wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/no_undefined_variables.py +36 -0
  535. wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/no_unused_fragments.py +38 -0
  536. wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/no_unused_variables.py +37 -0
  537. wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/overlapping_fields_can_be_merged.py +529 -0
  538. wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/possible_fragment_spreads.py +44 -0
  539. wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/provided_non_null_arguments.py +46 -0
  540. wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/scalar_leafs.py +33 -0
  541. wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/unique_argument_names.py +32 -0
  542. wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/unique_fragment_names.py +28 -0
  543. wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/unique_input_field_names.py +33 -0
  544. wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/unique_operation_names.py +31 -0
  545. wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/unique_variable_names.py +27 -0
  546. wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/variables_are_input_types.py +21 -0
  547. wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/variables_in_allowed_position.py +53 -0
  548. wandb/vendor/graphql-core-1.1/wandb_graphql/validation/validation.py +158 -0
  549. wandb/vendor/promise-2.3.0/conftest.py +30 -0
  550. wandb/vendor/promise-2.3.0/setup.py +64 -0
  551. wandb/vendor/promise-2.3.0/tests/__init__.py +0 -0
  552. wandb/vendor/promise-2.3.0/tests/conftest.py +8 -0
  553. wandb/vendor/promise-2.3.0/tests/test_awaitable.py +32 -0
  554. wandb/vendor/promise-2.3.0/tests/test_awaitable_35.py +47 -0
  555. wandb/vendor/promise-2.3.0/tests/test_benchmark.py +116 -0
  556. wandb/vendor/promise-2.3.0/tests/test_complex_threads.py +23 -0
  557. wandb/vendor/promise-2.3.0/tests/test_dataloader.py +452 -0
  558. wandb/vendor/promise-2.3.0/tests/test_dataloader_awaitable_35.py +99 -0
  559. wandb/vendor/promise-2.3.0/tests/test_dataloader_extra.py +65 -0
  560. wandb/vendor/promise-2.3.0/tests/test_extra.py +670 -0
  561. wandb/vendor/promise-2.3.0/tests/test_issues.py +132 -0
  562. wandb/vendor/promise-2.3.0/tests/test_promise_list.py +70 -0
  563. wandb/vendor/promise-2.3.0/tests/test_spec.py +584 -0
  564. wandb/vendor/promise-2.3.0/tests/test_thread_safety.py +115 -0
  565. wandb/vendor/promise-2.3.0/tests/utils.py +3 -0
  566. wandb/vendor/promise-2.3.0/wandb_promise/__init__.py +38 -0
  567. wandb/vendor/promise-2.3.0/wandb_promise/async_.py +135 -0
  568. wandb/vendor/promise-2.3.0/wandb_promise/compat.py +32 -0
  569. wandb/vendor/promise-2.3.0/wandb_promise/dataloader.py +326 -0
  570. wandb/vendor/promise-2.3.0/wandb_promise/iterate_promise.py +12 -0
  571. wandb/vendor/promise-2.3.0/wandb_promise/promise.py +848 -0
  572. wandb/vendor/promise-2.3.0/wandb_promise/promise_list.py +151 -0
  573. wandb/vendor/promise-2.3.0/wandb_promise/pyutils/__init__.py +0 -0
  574. wandb/vendor/promise-2.3.0/wandb_promise/pyutils/version.py +83 -0
  575. wandb/vendor/promise-2.3.0/wandb_promise/schedulers/__init__.py +0 -0
  576. wandb/vendor/promise-2.3.0/wandb_promise/schedulers/asyncio.py +22 -0
  577. wandb/vendor/promise-2.3.0/wandb_promise/schedulers/gevent.py +21 -0
  578. wandb/vendor/promise-2.3.0/wandb_promise/schedulers/immediate.py +27 -0
  579. wandb/vendor/promise-2.3.0/wandb_promise/schedulers/thread.py +18 -0
  580. wandb/vendor/promise-2.3.0/wandb_promise/utils.py +56 -0
  581. wandb/vendor/pygments/__init__.py +90 -0
  582. wandb/vendor/pygments/cmdline.py +568 -0
  583. wandb/vendor/pygments/console.py +74 -0
  584. wandb/vendor/pygments/filter.py +74 -0
  585. wandb/vendor/pygments/filters/__init__.py +350 -0
  586. wandb/vendor/pygments/formatter.py +95 -0
  587. wandb/vendor/pygments/formatters/__init__.py +153 -0
  588. wandb/vendor/pygments/formatters/_mapping.py +85 -0
  589. wandb/vendor/pygments/formatters/bbcode.py +109 -0
  590. wandb/vendor/pygments/formatters/html.py +851 -0
  591. wandb/vendor/pygments/formatters/img.py +600 -0
  592. wandb/vendor/pygments/formatters/irc.py +182 -0
  593. wandb/vendor/pygments/formatters/latex.py +482 -0
  594. wandb/vendor/pygments/formatters/other.py +160 -0
  595. wandb/vendor/pygments/formatters/rtf.py +147 -0
  596. wandb/vendor/pygments/formatters/svg.py +153 -0
  597. wandb/vendor/pygments/formatters/terminal.py +136 -0
  598. wandb/vendor/pygments/formatters/terminal256.py +309 -0
  599. wandb/vendor/pygments/lexer.py +871 -0
  600. wandb/vendor/pygments/lexers/__init__.py +329 -0
  601. wandb/vendor/pygments/lexers/_asy_builtins.py +1645 -0
  602. wandb/vendor/pygments/lexers/_cl_builtins.py +232 -0
  603. wandb/vendor/pygments/lexers/_cocoa_builtins.py +72 -0
  604. wandb/vendor/pygments/lexers/_csound_builtins.py +1346 -0
  605. wandb/vendor/pygments/lexers/_lasso_builtins.py +5327 -0
  606. wandb/vendor/pygments/lexers/_lua_builtins.py +295 -0
  607. wandb/vendor/pygments/lexers/_mapping.py +500 -0
  608. wandb/vendor/pygments/lexers/_mql_builtins.py +1172 -0
  609. wandb/vendor/pygments/lexers/_openedge_builtins.py +2547 -0
  610. wandb/vendor/pygments/lexers/_php_builtins.py +4756 -0
  611. wandb/vendor/pygments/lexers/_postgres_builtins.py +621 -0
  612. wandb/vendor/pygments/lexers/_scilab_builtins.py +3094 -0
  613. wandb/vendor/pygments/lexers/_sourcemod_builtins.py +1163 -0
  614. wandb/vendor/pygments/lexers/_stan_builtins.py +532 -0
  615. wandb/vendor/pygments/lexers/_stata_builtins.py +419 -0
  616. wandb/vendor/pygments/lexers/_tsql_builtins.py +1004 -0
  617. wandb/vendor/pygments/lexers/_vim_builtins.py +1939 -0
  618. wandb/vendor/pygments/lexers/actionscript.py +240 -0
  619. wandb/vendor/pygments/lexers/agile.py +24 -0
  620. wandb/vendor/pygments/lexers/algebra.py +221 -0
  621. wandb/vendor/pygments/lexers/ambient.py +76 -0
  622. wandb/vendor/pygments/lexers/ampl.py +87 -0
  623. wandb/vendor/pygments/lexers/apl.py +101 -0
  624. wandb/vendor/pygments/lexers/archetype.py +318 -0
  625. wandb/vendor/pygments/lexers/asm.py +641 -0
  626. wandb/vendor/pygments/lexers/automation.py +374 -0
  627. wandb/vendor/pygments/lexers/basic.py +500 -0
  628. wandb/vendor/pygments/lexers/bibtex.py +160 -0
  629. wandb/vendor/pygments/lexers/business.py +612 -0
  630. wandb/vendor/pygments/lexers/c_cpp.py +252 -0
  631. wandb/vendor/pygments/lexers/c_like.py +541 -0
  632. wandb/vendor/pygments/lexers/capnproto.py +78 -0
  633. wandb/vendor/pygments/lexers/chapel.py +102 -0
  634. wandb/vendor/pygments/lexers/clean.py +288 -0
  635. wandb/vendor/pygments/lexers/compiled.py +34 -0
  636. wandb/vendor/pygments/lexers/configs.py +833 -0
  637. wandb/vendor/pygments/lexers/console.py +114 -0
  638. wandb/vendor/pygments/lexers/crystal.py +393 -0
  639. wandb/vendor/pygments/lexers/csound.py +366 -0
  640. wandb/vendor/pygments/lexers/css.py +689 -0
  641. wandb/vendor/pygments/lexers/d.py +251 -0
  642. wandb/vendor/pygments/lexers/dalvik.py +125 -0
  643. wandb/vendor/pygments/lexers/data.py +555 -0
  644. wandb/vendor/pygments/lexers/diff.py +165 -0
  645. wandb/vendor/pygments/lexers/dotnet.py +691 -0
  646. wandb/vendor/pygments/lexers/dsls.py +878 -0
  647. wandb/vendor/pygments/lexers/dylan.py +289 -0
  648. wandb/vendor/pygments/lexers/ecl.py +125 -0
  649. wandb/vendor/pygments/lexers/eiffel.py +65 -0
  650. wandb/vendor/pygments/lexers/elm.py +121 -0
  651. wandb/vendor/pygments/lexers/erlang.py +533 -0
  652. wandb/vendor/pygments/lexers/esoteric.py +277 -0
  653. wandb/vendor/pygments/lexers/ezhil.py +69 -0
  654. wandb/vendor/pygments/lexers/factor.py +344 -0
  655. wandb/vendor/pygments/lexers/fantom.py +250 -0
  656. wandb/vendor/pygments/lexers/felix.py +273 -0
  657. wandb/vendor/pygments/lexers/forth.py +177 -0
  658. wandb/vendor/pygments/lexers/fortran.py +205 -0
  659. wandb/vendor/pygments/lexers/foxpro.py +428 -0
  660. wandb/vendor/pygments/lexers/functional.py +21 -0
  661. wandb/vendor/pygments/lexers/go.py +101 -0
  662. wandb/vendor/pygments/lexers/grammar_notation.py +213 -0
  663. wandb/vendor/pygments/lexers/graph.py +80 -0
  664. wandb/vendor/pygments/lexers/graphics.py +553 -0
  665. wandb/vendor/pygments/lexers/haskell.py +843 -0
  666. wandb/vendor/pygments/lexers/haxe.py +936 -0
  667. wandb/vendor/pygments/lexers/hdl.py +382 -0
  668. wandb/vendor/pygments/lexers/hexdump.py +103 -0
  669. wandb/vendor/pygments/lexers/html.py +602 -0
  670. wandb/vendor/pygments/lexers/idl.py +270 -0
  671. wandb/vendor/pygments/lexers/igor.py +288 -0
  672. wandb/vendor/pygments/lexers/inferno.py +96 -0
  673. wandb/vendor/pygments/lexers/installers.py +322 -0
  674. wandb/vendor/pygments/lexers/int_fiction.py +1343 -0
  675. wandb/vendor/pygments/lexers/iolang.py +63 -0
  676. wandb/vendor/pygments/lexers/j.py +146 -0
  677. wandb/vendor/pygments/lexers/javascript.py +1525 -0
  678. wandb/vendor/pygments/lexers/julia.py +333 -0
  679. wandb/vendor/pygments/lexers/jvm.py +1573 -0
  680. wandb/vendor/pygments/lexers/lisp.py +2621 -0
  681. wandb/vendor/pygments/lexers/make.py +202 -0
  682. wandb/vendor/pygments/lexers/markup.py +595 -0
  683. wandb/vendor/pygments/lexers/math.py +21 -0
  684. wandb/vendor/pygments/lexers/matlab.py +663 -0
  685. wandb/vendor/pygments/lexers/ml.py +769 -0
  686. wandb/vendor/pygments/lexers/modeling.py +358 -0
  687. wandb/vendor/pygments/lexers/modula2.py +1561 -0
  688. wandb/vendor/pygments/lexers/monte.py +204 -0
  689. wandb/vendor/pygments/lexers/ncl.py +894 -0
  690. wandb/vendor/pygments/lexers/nimrod.py +159 -0
  691. wandb/vendor/pygments/lexers/nit.py +64 -0
  692. wandb/vendor/pygments/lexers/nix.py +136 -0
  693. wandb/vendor/pygments/lexers/oberon.py +105 -0
  694. wandb/vendor/pygments/lexers/objective.py +504 -0
  695. wandb/vendor/pygments/lexers/ooc.py +85 -0
  696. wandb/vendor/pygments/lexers/other.py +41 -0
  697. wandb/vendor/pygments/lexers/parasail.py +79 -0
  698. wandb/vendor/pygments/lexers/parsers.py +835 -0
  699. wandb/vendor/pygments/lexers/pascal.py +644 -0
  700. wandb/vendor/pygments/lexers/pawn.py +199 -0
  701. wandb/vendor/pygments/lexers/perl.py +620 -0
  702. wandb/vendor/pygments/lexers/php.py +267 -0
  703. wandb/vendor/pygments/lexers/praat.py +294 -0
  704. wandb/vendor/pygments/lexers/prolog.py +306 -0
  705. wandb/vendor/pygments/lexers/python.py +939 -0
  706. wandb/vendor/pygments/lexers/qvt.py +152 -0
  707. wandb/vendor/pygments/lexers/r.py +453 -0
  708. wandb/vendor/pygments/lexers/rdf.py +270 -0
  709. wandb/vendor/pygments/lexers/rebol.py +431 -0
  710. wandb/vendor/pygments/lexers/resource.py +85 -0
  711. wandb/vendor/pygments/lexers/rnc.py +67 -0
  712. wandb/vendor/pygments/lexers/roboconf.py +82 -0
  713. wandb/vendor/pygments/lexers/robotframework.py +560 -0
  714. wandb/vendor/pygments/lexers/ruby.py +519 -0
  715. wandb/vendor/pygments/lexers/rust.py +220 -0
  716. wandb/vendor/pygments/lexers/sas.py +228 -0
  717. wandb/vendor/pygments/lexers/scripting.py +1222 -0
  718. wandb/vendor/pygments/lexers/shell.py +794 -0
  719. wandb/vendor/pygments/lexers/smalltalk.py +195 -0
  720. wandb/vendor/pygments/lexers/smv.py +79 -0
  721. wandb/vendor/pygments/lexers/snobol.py +83 -0
  722. wandb/vendor/pygments/lexers/special.py +103 -0
  723. wandb/vendor/pygments/lexers/sql.py +681 -0
  724. wandb/vendor/pygments/lexers/stata.py +108 -0
  725. wandb/vendor/pygments/lexers/supercollider.py +90 -0
  726. wandb/vendor/pygments/lexers/tcl.py +145 -0
  727. wandb/vendor/pygments/lexers/templates.py +2283 -0
  728. wandb/vendor/pygments/lexers/testing.py +207 -0
  729. wandb/vendor/pygments/lexers/text.py +25 -0
  730. wandb/vendor/pygments/lexers/textedit.py +169 -0
  731. wandb/vendor/pygments/lexers/textfmts.py +297 -0
  732. wandb/vendor/pygments/lexers/theorem.py +458 -0
  733. wandb/vendor/pygments/lexers/trafficscript.py +54 -0
  734. wandb/vendor/pygments/lexers/typoscript.py +226 -0
  735. wandb/vendor/pygments/lexers/urbi.py +133 -0
  736. wandb/vendor/pygments/lexers/varnish.py +190 -0
  737. wandb/vendor/pygments/lexers/verification.py +111 -0
  738. wandb/vendor/pygments/lexers/web.py +24 -0
  739. wandb/vendor/pygments/lexers/webmisc.py +988 -0
  740. wandb/vendor/pygments/lexers/whiley.py +116 -0
  741. wandb/vendor/pygments/lexers/x10.py +69 -0
  742. wandb/vendor/pygments/modeline.py +44 -0
  743. wandb/vendor/pygments/plugin.py +68 -0
  744. wandb/vendor/pygments/regexopt.py +92 -0
  745. wandb/vendor/pygments/scanner.py +105 -0
  746. wandb/vendor/pygments/sphinxext.py +158 -0
  747. wandb/vendor/pygments/style.py +155 -0
  748. wandb/vendor/pygments/styles/__init__.py +80 -0
  749. wandb/vendor/pygments/styles/abap.py +29 -0
  750. wandb/vendor/pygments/styles/algol.py +63 -0
  751. wandb/vendor/pygments/styles/algol_nu.py +63 -0
  752. wandb/vendor/pygments/styles/arduino.py +98 -0
  753. wandb/vendor/pygments/styles/autumn.py +65 -0
  754. wandb/vendor/pygments/styles/borland.py +51 -0
  755. wandb/vendor/pygments/styles/bw.py +49 -0
  756. wandb/vendor/pygments/styles/colorful.py +81 -0
  757. wandb/vendor/pygments/styles/default.py +73 -0
  758. wandb/vendor/pygments/styles/emacs.py +72 -0
  759. wandb/vendor/pygments/styles/friendly.py +72 -0
  760. wandb/vendor/pygments/styles/fruity.py +42 -0
  761. wandb/vendor/pygments/styles/igor.py +29 -0
  762. wandb/vendor/pygments/styles/lovelace.py +97 -0
  763. wandb/vendor/pygments/styles/manni.py +75 -0
  764. wandb/vendor/pygments/styles/monokai.py +106 -0
  765. wandb/vendor/pygments/styles/murphy.py +80 -0
  766. wandb/vendor/pygments/styles/native.py +65 -0
  767. wandb/vendor/pygments/styles/paraiso_dark.py +125 -0
  768. wandb/vendor/pygments/styles/paraiso_light.py +125 -0
  769. wandb/vendor/pygments/styles/pastie.py +75 -0
  770. wandb/vendor/pygments/styles/perldoc.py +69 -0
  771. wandb/vendor/pygments/styles/rainbow_dash.py +89 -0
  772. wandb/vendor/pygments/styles/rrt.py +33 -0
  773. wandb/vendor/pygments/styles/sas.py +44 -0
  774. wandb/vendor/pygments/styles/stata.py +40 -0
  775. wandb/vendor/pygments/styles/tango.py +141 -0
  776. wandb/vendor/pygments/styles/trac.py +63 -0
  777. wandb/vendor/pygments/styles/vim.py +63 -0
  778. wandb/vendor/pygments/styles/vs.py +38 -0
  779. wandb/vendor/pygments/styles/xcode.py +51 -0
  780. wandb/vendor/pygments/token.py +213 -0
  781. wandb/vendor/pygments/unistring.py +217 -0
  782. wandb/vendor/pygments/util.py +388 -0
  783. wandb/vendor/pynvml/__init__.py +0 -0
  784. wandb/vendor/pynvml/pynvml.py +4779 -0
  785. wandb/vendor/watchdog_0_9_0/wandb_watchdog/__init__.py +17 -0
  786. wandb/vendor/watchdog_0_9_0/wandb_watchdog/events.py +615 -0
  787. wandb/vendor/watchdog_0_9_0/wandb_watchdog/observers/__init__.py +98 -0
  788. wandb/vendor/watchdog_0_9_0/wandb_watchdog/observers/api.py +369 -0
  789. wandb/vendor/watchdog_0_9_0/wandb_watchdog/observers/fsevents.py +172 -0
  790. wandb/vendor/watchdog_0_9_0/wandb_watchdog/observers/fsevents2.py +239 -0
  791. wandb/vendor/watchdog_0_9_0/wandb_watchdog/observers/inotify.py +218 -0
  792. wandb/vendor/watchdog_0_9_0/wandb_watchdog/observers/inotify_buffer.py +81 -0
  793. wandb/vendor/watchdog_0_9_0/wandb_watchdog/observers/inotify_c.py +575 -0
  794. wandb/vendor/watchdog_0_9_0/wandb_watchdog/observers/kqueue.py +730 -0
  795. wandb/vendor/watchdog_0_9_0/wandb_watchdog/observers/polling.py +145 -0
  796. wandb/vendor/watchdog_0_9_0/wandb_watchdog/observers/read_directory_changes.py +133 -0
  797. wandb/vendor/watchdog_0_9_0/wandb_watchdog/observers/winapi.py +348 -0
  798. wandb/vendor/watchdog_0_9_0/wandb_watchdog/patterns.py +265 -0
  799. wandb/vendor/watchdog_0_9_0/wandb_watchdog/tricks/__init__.py +174 -0
  800. wandb/vendor/watchdog_0_9_0/wandb_watchdog/utils/__init__.py +151 -0
  801. wandb/vendor/watchdog_0_9_0/wandb_watchdog/utils/bricks.py +249 -0
  802. wandb/vendor/watchdog_0_9_0/wandb_watchdog/utils/compat.py +29 -0
  803. wandb/vendor/watchdog_0_9_0/wandb_watchdog/utils/decorators.py +198 -0
  804. wandb/vendor/watchdog_0_9_0/wandb_watchdog/utils/delayed_queue.py +88 -0
  805. wandb/vendor/watchdog_0_9_0/wandb_watchdog/utils/dirsnapshot.py +293 -0
  806. wandb/vendor/watchdog_0_9_0/wandb_watchdog/utils/echo.py +157 -0
  807. wandb/vendor/watchdog_0_9_0/wandb_watchdog/utils/event_backport.py +41 -0
  808. wandb/vendor/watchdog_0_9_0/wandb_watchdog/utils/importlib2.py +40 -0
  809. wandb/vendor/watchdog_0_9_0/wandb_watchdog/utils/platform.py +57 -0
  810. wandb/vendor/watchdog_0_9_0/wandb_watchdog/utils/unicode_paths.py +64 -0
  811. wandb/vendor/watchdog_0_9_0/wandb_watchdog/utils/win32stat.py +123 -0
  812. wandb/vendor/watchdog_0_9_0/wandb_watchdog/version.py +28 -0
  813. wandb/vendor/watchdog_0_9_0/wandb_watchdog/watchmedo.py +577 -0
  814. wandb/wandb_agent.py +588 -0
  815. wandb/wandb_controller.py +721 -0
  816. wandb/wandb_run.py +9 -0
  817. wandb/wandb_torch.py +550 -0
  818. wandb-0.18.0.dist-info/METADATA +212 -0
  819. wandb-0.18.0.dist-info/RECORD +822 -0
  820. wandb-0.18.0.dist-info/WHEEL +4 -0
  821. wandb-0.18.0.dist-info/entry_points.txt +3 -0
  822. wandb-0.18.0.dist-info/licenses/LICENSE +21 -0
@@ -0,0 +1,1091 @@
1
+ """keras init."""
2
+
3
+ import logging
4
+ import operator
5
+ import os
6
+ import shutil
7
+ import sys
8
+ from itertools import chain
9
+
10
+ import numpy as np
11
+ import tensorflow as tf
12
+ import tensorflow.keras.backend as K # noqa: N812
13
+
14
+ import wandb
15
+ from wandb.sdk.integration_utils.data_logging import ValidationDataLogger
16
+ from wandb.sdk.lib.deprecate import Deprecated, deprecate
17
+ from wandb.util import add_import_hook
18
+
19
+
20
+ def _check_keras_version():
21
+ from keras import __version__ as keras_version
22
+
23
+ from wandb.util import parse_version
24
+
25
+ if parse_version(keras_version) < parse_version("2.4.0"):
26
+ wandb.termwarn(
27
+ f"Keras version {keras_version} is not fully supported. Required keras >= 2.4.0"
28
+ )
29
+
30
+
31
+ def _can_compute_flops() -> bool:
32
+ """FLOPS computation is restricted to TF 2.x as it requires tf.compat.v1."""
33
+ from wandb.util import parse_version
34
+
35
+ if parse_version(tf.__version__) >= parse_version("2.0.0"):
36
+ return True
37
+
38
+ return False
39
+
40
+
41
+ if "keras" in sys.modules:
42
+ _check_keras_version()
43
+ else:
44
+ add_import_hook("keras", _check_keras_version)
45
+
46
+
47
+ logger = logging.getLogger(__name__)
48
+
49
+
50
+ def is_dataset(data):
51
+ dataset_ops = wandb.util.get_module("tensorflow.python.data.ops.dataset_ops")
52
+ if dataset_ops and hasattr(dataset_ops, "DatasetV2"):
53
+ dataset_types = (dataset_ops.DatasetV2,)
54
+ if hasattr(dataset_ops, "DatasetV1"):
55
+ dataset_types = dataset_types + (dataset_ops.DatasetV1,)
56
+ return isinstance(data, dataset_types)
57
+ else:
58
+ return False
59
+
60
+
61
+ def is_generator_like(data):
62
+ # Checks if data is a generator, Sequence, or Iterator.
63
+
64
+ types = (tf.keras.utils.Sequence,)
65
+ iterator_ops = wandb.util.get_module("tensorflow.python.data.ops.iterator_ops")
66
+ if iterator_ops:
67
+ types = types + (iterator_ops.Iterator,)
68
+ # EagerIterator was in tensorflow < 2
69
+ if hasattr(iterator_ops, "EagerIterator"):
70
+ types = types + (iterator_ops.EagerIterator,)
71
+ elif hasattr(iterator_ops, "IteratorV2"):
72
+ types = types + (iterator_ops.IteratorV2,)
73
+ return hasattr(data, "next") or hasattr(data, "__next__") or isinstance(data, types)
74
+
75
+
76
+ def patch_tf_keras(): # noqa: C901
77
+ from tensorflow.python.eager import context
78
+
79
+ from wandb.util import parse_version
80
+
81
+ if (
82
+ parse_version("2.6.0")
83
+ <= parse_version(tf.__version__)
84
+ < parse_version("2.13.0")
85
+ ):
86
+ keras_engine = "keras.engine"
87
+ try:
88
+ from keras.engine import training
89
+ from keras.engine import training_arrays_v1 as training_arrays
90
+ from keras.engine import training_generator_v1 as training_generator
91
+ except (ImportError, AttributeError):
92
+ wandb.termerror("Unable to patch Tensorflow/Keras")
93
+ logger.exception("exception while trying to patch_tf_keras")
94
+ return
95
+ else:
96
+ keras_engine = "tensorflow.python.keras.engine"
97
+
98
+ from tensorflow.python.keras.engine import training
99
+
100
+ try:
101
+ from tensorflow.python.keras.engine import (
102
+ training_arrays_v1 as training_arrays,
103
+ )
104
+ from tensorflow.python.keras.engine import (
105
+ training_generator_v1 as training_generator,
106
+ )
107
+ except (ImportError, AttributeError):
108
+ try:
109
+ from tensorflow.python.keras.engine import (
110
+ training_arrays,
111
+ training_generator,
112
+ )
113
+ except (ImportError, AttributeError):
114
+ wandb.termerror("Unable to patch Tensorflow/Keras")
115
+ logger.exception("exception while trying to patch_tf_keras")
116
+ return
117
+
118
+ # Tensorflow 2.1
119
+ training_v2_1 = wandb.util.get_module("tensorflow.python.keras.engine.training_v2")
120
+ # Tensorflow 2.2
121
+ training_v2_2 = wandb.util.get_module(f"{keras_engine}.training_v1")
122
+
123
+ if training_v2_1:
124
+ old_v2 = training_v2_1.Loop.fit
125
+ elif training_v2_2:
126
+ old_v2 = training.Model.fit
127
+
128
+ old_arrays = training_arrays.fit_loop
129
+ old_generator = training_generator.fit_generator
130
+
131
+ def set_wandb_attrs(cbk, val_data):
132
+ if isinstance(cbk, WandbCallback):
133
+ if is_generator_like(val_data):
134
+ cbk.generator = val_data
135
+ elif is_dataset(val_data):
136
+ if context.executing_eagerly():
137
+ cbk.generator = iter(val_data)
138
+ else:
139
+ wandb.termwarn(
140
+ "Found a validation dataset in graph mode, can't patch Keras."
141
+ )
142
+ elif isinstance(val_data, tuple) and isinstance(val_data[0], tf.Tensor):
143
+ # Graph mode dataset generator
144
+ def gen():
145
+ while True:
146
+ yield K.get_session().run(val_data)
147
+
148
+ cbk.generator = gen()
149
+ else:
150
+ cbk.validation_data = val_data
151
+
152
+ def new_arrays(*args, **kwargs):
153
+ cbks = kwargs.get("callbacks", [])
154
+ val_inputs = kwargs.get("val_inputs")
155
+ val_targets = kwargs.get("val_targets")
156
+ # TODO: these could be generators, why index 0?
157
+ if val_inputs and val_targets:
158
+ for cbk in cbks:
159
+ set_wandb_attrs(cbk, (val_inputs[0], val_targets[0]))
160
+ return old_arrays(*args, **kwargs)
161
+
162
+ def new_generator(*args, **kwargs):
163
+ cbks = kwargs.get("callbacks", [])
164
+ val_data = kwargs.get("validation_data")
165
+ if val_data:
166
+ for cbk in cbks:
167
+ set_wandb_attrs(cbk, val_data)
168
+ return old_generator(*args, **kwargs)
169
+
170
+ def new_v2(*args, **kwargs):
171
+ cbks = kwargs.get("callbacks", [])
172
+ val_data = kwargs.get("validation_data")
173
+ if val_data:
174
+ for cbk in cbks:
175
+ set_wandb_attrs(cbk, val_data)
176
+ return old_v2(*args, **kwargs)
177
+
178
+ training_arrays.orig_fit_loop = old_arrays
179
+ training_arrays.fit_loop = new_arrays
180
+ training_generator.orig_fit_generator = old_generator
181
+ training_generator.fit_generator = new_generator
182
+ wandb.patched["keras"].append([f"{keras_engine}.training_arrays", "fit_loop"])
183
+ wandb.patched["keras"].append(
184
+ [f"{keras_engine}.training_generator", "fit_generator"]
185
+ )
186
+
187
+ if training_v2_1:
188
+ training_v2_1.Loop.fit = new_v2
189
+ wandb.patched["keras"].append(
190
+ ["tensorflow.python.keras.engine.training_v2.Loop", "fit"]
191
+ )
192
+ elif training_v2_2:
193
+ training.Model.fit = new_v2
194
+ wandb.patched["keras"].append([f"{keras_engine}.training.Model", "fit"])
195
+
196
+
197
+ def _array_has_dtype(array):
198
+ return hasattr(array, "dtype")
199
+
200
+
201
+ def _update_if_numeric(metrics, key, values):
202
+ if not _array_has_dtype(values):
203
+ _warn_not_logging(key)
204
+ return
205
+
206
+ if not is_numeric_array(values):
207
+ _warn_not_logging_non_numeric(key)
208
+ return
209
+
210
+ metrics[key] = wandb.Histogram(values)
211
+
212
+
213
+ def is_numeric_array(array):
214
+ return np.issubdtype(array.dtype, np.number)
215
+
216
+
217
+ def _warn_not_logging_non_numeric(name):
218
+ wandb.termwarn(
219
+ f"Non-numeric values found in layer: {name}, not logging this layer",
220
+ repeat=False,
221
+ )
222
+
223
+
224
+ def _warn_not_logging(name):
225
+ wandb.termwarn(
226
+ f"Layer {name} has undetermined datatype not logging this layer",
227
+ repeat=False,
228
+ )
229
+
230
+
231
+ tf_logger = tf.get_logger()
232
+
233
+ patch_tf_keras()
234
+
235
+
236
+ ### For gradient logging ###
237
+
238
+
239
+ def _get_custom_optimizer_parent_class():
240
+ from wandb.util import parse_version
241
+
242
+ if parse_version(tf.__version__) >= parse_version("2.9.0"):
243
+ custom_optimizer_parent_class = tf.keras.optimizers.legacy.Optimizer
244
+ else:
245
+ custom_optimizer_parent_class = tf.keras.optimizers.Optimizer
246
+
247
+ return custom_optimizer_parent_class
248
+
249
+
250
+ _custom_optimizer_parent_class = _get_custom_optimizer_parent_class()
251
+
252
+
253
+ class _CustomOptimizer(_custom_optimizer_parent_class):
254
+ def __init__(self):
255
+ super().__init__(name="CustomOptimizer")
256
+ self._resource_apply_dense = tf.function(self._resource_apply_dense)
257
+ self._resource_apply_sparse = tf.function(self._resource_apply_sparse)
258
+
259
+ def _resource_apply_dense(self, grad, var):
260
+ var.assign(grad)
261
+
262
+ # this needs to be implemented to prevent a NotImplementedError when
263
+ # using Lookup layers.
264
+ def _resource_apply_sparse(self, grad, var, indices):
265
+ pass
266
+
267
+ def get_config(self):
268
+ return super().get_config()
269
+
270
+
271
+ class _GradAccumulatorCallback(tf.keras.callbacks.Callback):
272
+ """Accumulates gradients during a fit() call when used in conjunction with the CustomOptimizer above."""
273
+
274
+ def set_model(self, model):
275
+ super().set_model(model)
276
+ self.og_weights = model.get_weights()
277
+ self.grads = [np.zeros(tuple(w.shape)) for w in model.trainable_weights]
278
+
279
+ def on_batch_end(self, batch, logs=None):
280
+ for g, w in zip(self.grads, self.model.trainable_weights):
281
+ g += w.numpy()
282
+ self.model.set_weights(self.og_weights)
283
+
284
+ def get_grads(self):
285
+ return [g.copy() for g in self.grads]
286
+
287
+
288
+ ###
289
+
290
+
291
+ class WandbCallback(tf.keras.callbacks.Callback):
292
+ """`WandbCallback` automatically integrates keras with wandb.
293
+
294
+ Example:
295
+ ```python
296
+ model.fit(
297
+ X_train,
298
+ y_train,
299
+ validation_data=(X_test, y_test),
300
+ callbacks=[WandbCallback()],
301
+ )
302
+ ```
303
+
304
+ `WandbCallback` will automatically log history data from any
305
+ metrics collected by keras: loss and anything passed into `keras_model.compile()`.
306
+
307
+ `WandbCallback` will set summary metrics for the run associated with the "best" training
308
+ step, where "best" is defined by the `monitor` and `mode` attributes. This defaults
309
+ to the epoch with the minimum `val_loss`. `WandbCallback` will by default save the model
310
+ associated with the best `epoch`.
311
+
312
+ `WandbCallback` can optionally log gradient and parameter histograms.
313
+
314
+ `WandbCallback` can optionally save training and validation data for wandb to visualize.
315
+
316
+ Arguments:
317
+ monitor: (str) name of metric to monitor. Defaults to `val_loss`.
318
+ mode: (str) one of {`auto`, `min`, `max`}.
319
+ `min` - save model when monitor is minimized
320
+ `max` - save model when monitor is maximized
321
+ `auto` - try to guess when to save the model (default).
322
+ save_model:
323
+ True - save a model when monitor beats all previous epochs
324
+ False - don't save models
325
+ save_graph: (boolean) if True save model graph to wandb (default to True).
326
+ save_weights_only: (boolean) if True, then only the model's weights will be
327
+ saved (`model.save_weights(filepath)`), else the full model
328
+ is saved (`model.save(filepath)`).
329
+ log_weights: (boolean) if True save histograms of the model's layer's weights.
330
+ log_gradients: (boolean) if True log histograms of the training gradients
331
+ training_data: (tuple) Same format `(X,y)` as passed to `model.fit`. This is needed
332
+ for calculating gradients - this is mandatory if `log_gradients` is `True`.
333
+ validation_data: (tuple) Same format `(X,y)` as passed to `model.fit`. A set of data
334
+ for wandb to visualize. If this is set, every epoch, wandb will
335
+ make a small number of predictions and save the results for later visualization. In case
336
+ you are working with image data, please also set `input_type` and `output_type` in order
337
+ to log correctly.
338
+ generator: (generator) a generator that returns validation data for wandb to visualize. This
339
+ generator should return tuples `(X,y)`. Either `validate_data` or generator should
340
+ be set for wandb to visualize specific data examples. In case you are working with image data,
341
+ please also set `input_type` and `output_type` in order to log correctly.
342
+ validation_steps: (int) if `validation_data` is a generator, how many
343
+ steps to run the generator for the full validation set.
344
+ labels: (list) If you are visualizing your data with wandb this list of labels
345
+ will convert numeric output to understandable string if you are building a
346
+ multiclass classifier. If you are making a binary classifier you can pass in
347
+ a list of two labels ["label for false", "label for true"]. If `validate_data`
348
+ and generator are both false, this won't do anything.
349
+ predictions: (int) the number of predictions to make for visualization each epoch, max
350
+ is 100.
351
+ input_type: (string) type of the model input to help visualization. can be one of:
352
+ (`image`, `images`, `segmentation_mask`, `auto`).
353
+ output_type: (string) type of the model output to help visualization. can be one of:
354
+ (`image`, `images`, `segmentation_mask`, `label`).
355
+ log_evaluation: (boolean) if True, save a Table containing validation data and the
356
+ model's predictions at each epoch. See `validation_indexes`,
357
+ `validation_row_processor`, and `output_row_processor` for additional details.
358
+ class_colors: ([float, float, float]) if the input or output is a segmentation mask,
359
+ an array containing an rgb tuple (range 0-1) for each class.
360
+ log_batch_frequency: (integer) if None, callback will log every epoch.
361
+ If set to integer, callback will log training metrics every `log_batch_frequency`
362
+ batches.
363
+ log_best_prefix: (string) if None, no extra summary metrics will be saved.
364
+ If set to a string, the monitored metric and epoch will be prepended with this value
365
+ and stored as summary metrics.
366
+ validation_indexes: ([wandb.data_types._TableLinkMixin]) an ordered list of index keys to associate
367
+ with each validation example. If log_evaluation is True and `validation_indexes` is provided,
368
+ then a Table of validation data will not be created and instead each prediction will
369
+ be associated with the row represented by the `TableLinkMixin`. The most common way to obtain
370
+ such keys are is use `Table.get_index()` which will return a list of row keys.
371
+ validation_row_processor: (Callable) a function to apply to the validation data, commonly used to visualize the data.
372
+ The function will receive an `ndx` (int) and a `row` (dict). If your model has a single input,
373
+ then `row["input"]` will be the input data for the row. Else, it will be keyed based on the name of the
374
+ input slot. If your fit function takes a single target, then `row["target"]` will be the target data for the row. Else,
375
+ it will be keyed based on the name of the output slots. For example, if your input data is a single ndarray,
376
+ but you wish to visualize the data as an Image, then you can provide `lambda ndx, row: {"img": wandb.Image(row["input"])}`
377
+ as the processor. Ignored if log_evaluation is False or `validation_indexes` are present.
378
+ output_row_processor: (Callable) same as `validation_row_processor`, but applied to the model's output. `row["output"]` will contain
379
+ the results of the model output.
380
+ infer_missing_processors: (bool) Determines if `validation_row_processor` and `output_row_processor`
381
+ should be inferred if missing. Defaults to True. If `labels` are provided, we will attempt to infer classification-type
382
+ processors where appropriate.
383
+ log_evaluation_frequency: (int) Determines the frequency which evaluation results will be logged. Default 0 (only at the end of training).
384
+ Set to 1 to log every epoch, 2 to log every other epoch, and so on. Has no effect when log_evaluation is False.
385
+ compute_flops: (bool) Compute the FLOPs of your Keras Sequential or Functional model in GigaFLOPs unit.
386
+ """
387
+
388
+ def __init__(
389
+ self,
390
+ monitor="val_loss",
391
+ verbose=0,
392
+ mode="auto",
393
+ save_weights_only=False,
394
+ log_weights=False,
395
+ log_gradients=False,
396
+ save_model=True,
397
+ training_data=None,
398
+ validation_data=None,
399
+ labels=None,
400
+ predictions=36,
401
+ generator=None,
402
+ input_type=None,
403
+ output_type=None,
404
+ log_evaluation=False,
405
+ validation_steps=None,
406
+ class_colors=None,
407
+ log_batch_frequency=None,
408
+ log_best_prefix="best_",
409
+ save_graph=True,
410
+ validation_indexes=None,
411
+ validation_row_processor=None,
412
+ prediction_row_processor=None,
413
+ infer_missing_processors=True,
414
+ log_evaluation_frequency=0,
415
+ compute_flops=False,
416
+ **kwargs,
417
+ ):
418
+ if wandb.run is None:
419
+ raise wandb.Error("You must call wandb.init() before WandbCallback()")
420
+
421
+ deprecate(
422
+ field_name=Deprecated.keras_callback,
423
+ warning_message=(
424
+ "WandbCallback is deprecated and will be removed in a future release. "
425
+ "Please use the WandbMetricsLogger, WandbModelCheckpoint, and WandbEvalCallback "
426
+ "callbacks instead. "
427
+ "See https://docs.wandb.ai/guides/integrations/keras for more information."
428
+ ),
429
+ )
430
+
431
+ with wandb.wandb_lib.telemetry.context(run=wandb.run) as tel:
432
+ tel.feature.keras = True
433
+ self.validation_data = None
434
+ # This is kept around for legacy reasons
435
+ if validation_data is not None:
436
+ if is_generator_like(validation_data):
437
+ generator = validation_data
438
+ else:
439
+ self.validation_data = validation_data
440
+ if labels is None:
441
+ labels = []
442
+ self.labels = labels
443
+ self.predictions = min(predictions, 100)
444
+
445
+ self.monitor = monitor
446
+ self.verbose = verbose
447
+ self.save_weights_only = save_weights_only
448
+ self.save_graph = save_graph
449
+
450
+ wandb.save("model-best.h5")
451
+ self.filepath = os.path.join(wandb.run.dir, "model-best.h5")
452
+ self.save_model = save_model
453
+ if save_model:
454
+ deprecate(
455
+ field_name=Deprecated.keras_callback__save_model,
456
+ warning_message=(
457
+ "The save_model argument by default saves the model in the HDF5 format that cannot save "
458
+ "custom objects like subclassed models and custom layers. This behavior will be deprecated "
459
+ "in a future release in favor of the SavedModel format. Meanwhile, the HDF5 model is saved "
460
+ "as W&B files and the SavedModel as W&B Artifacts."
461
+ ),
462
+ )
463
+
464
+ self.save_model_as_artifact = True
465
+ self.log_weights = log_weights
466
+ self.log_gradients = log_gradients
467
+ self.training_data = training_data
468
+ self.generator = generator
469
+ self._graph_rendered = False
470
+
471
+ data_type = kwargs.get("data_type", None)
472
+ if data_type is not None:
473
+ deprecate(
474
+ field_name=Deprecated.keras_callback__data_type,
475
+ warning_message=(
476
+ "The data_type argument of wandb.keras.WandbCallback is deprecated "
477
+ "and will be removed in a future release. Please use input_type instead.\n"
478
+ "Setting input_type = data_type."
479
+ ),
480
+ )
481
+ input_type = data_type
482
+ self.input_type = input_type
483
+ self.output_type = output_type
484
+ self.log_evaluation = log_evaluation
485
+ self.validation_steps = validation_steps
486
+ self.class_colors = np.array(class_colors) if class_colors is not None else None
487
+ self.log_batch_frequency = log_batch_frequency
488
+ self.log_best_prefix = log_best_prefix
489
+ self.compute_flops = compute_flops
490
+
491
+ self._prediction_batch_size = None
492
+
493
+ if self.log_gradients:
494
+ if int(tf.__version__.split(".")[0]) < 2:
495
+ raise Exception("Gradient logging requires tensorflow 2.0 or higher.")
496
+ if self.training_data is None:
497
+ raise ValueError(
498
+ "training_data argument is required for gradient logging."
499
+ )
500
+ if isinstance(self.training_data, (list, tuple)):
501
+ if len(self.training_data) != 2:
502
+ raise ValueError("training data must be a tuple of length two")
503
+ self._training_data_x, self._training_data_y = self.training_data
504
+ else:
505
+ self._training_data_x = (
506
+ self.training_data
507
+ ) # generator, tf.data.Dataset etc
508
+ self._training_data_y = None
509
+
510
+ # From Keras
511
+ if mode not in ["auto", "min", "max"]:
512
+ print(f"WandbCallback mode {mode} is unknown, fallback to auto mode.")
513
+ mode = "auto"
514
+
515
+ if mode == "min":
516
+ self.monitor_op = operator.lt
517
+ self.best = float("inf")
518
+ elif mode == "max":
519
+ self.monitor_op = operator.gt
520
+ self.best = float("-inf")
521
+ else:
522
+ if "acc" in self.monitor or self.monitor.startswith("fmeasure"):
523
+ self.monitor_op = operator.gt
524
+ self.best = float("-inf")
525
+ else:
526
+ self.monitor_op = operator.lt
527
+ self.best = float("inf")
528
+ # Get the previous best metric for resumed runs
529
+ previous_best = wandb.run.summary.get(f"{self.log_best_prefix}{self.monitor}")
530
+ if previous_best is not None:
531
+ self.best = previous_best
532
+
533
+ self._validation_data_logger = None
534
+ self._validation_indexes = validation_indexes
535
+ self._validation_row_processor = validation_row_processor
536
+ self._prediction_row_processor = prediction_row_processor
537
+ self._infer_missing_processors = infer_missing_processors
538
+ self._log_evaluation_frequency = log_evaluation_frequency
539
+ self._model_trained_since_last_eval = False
540
+
541
+ def _build_grad_accumulator_model(self):
542
+ inputs = self.model.inputs
543
+ outputs = self.model(inputs)
544
+ grad_acc_model = tf.keras.models.Model(inputs, outputs)
545
+ grad_acc_model.compile(loss=self.model.loss, optimizer=_CustomOptimizer())
546
+
547
+ # make sure magic doesn't think this is a user model
548
+ grad_acc_model._wandb_internal_model = True
549
+
550
+ self._grad_accumulator_model = grad_acc_model
551
+ self._grad_accumulator_callback = _GradAccumulatorCallback()
552
+
553
+ def _implements_train_batch_hooks(self):
554
+ return self.log_batch_frequency is not None
555
+
556
+ def _implements_test_batch_hooks(self):
557
+ return self.log_batch_frequency is not None
558
+
559
+ def _implements_predict_batch_hooks(self):
560
+ return self.log_batch_frequency is not None
561
+
562
+ def set_params(self, params):
563
+ self.params = params
564
+
565
+ def set_model(self, model):
566
+ super().set_model(model)
567
+ if self.input_type == "auto" and len(model.inputs) == 1:
568
+ self.input_type = wandb.util.guess_data_type(
569
+ model.inputs[0].shape, risky=True
570
+ )
571
+ if self.input_type and self.output_type is None and len(model.outputs) == 1:
572
+ self.output_type = wandb.util.guess_data_type(model.outputs[0].shape)
573
+ if self.log_gradients:
574
+ self._build_grad_accumulator_model()
575
+
576
+ def _attempt_evaluation_log(self, commit=True):
577
+ if self.log_evaluation and self._validation_data_logger:
578
+ try:
579
+ if not self.model:
580
+ wandb.termwarn("WandbCallback unable to read model from trainer")
581
+ else:
582
+ self._validation_data_logger.log_predictions(
583
+ predictions=self._validation_data_logger.make_predictions(
584
+ self.model.predict
585
+ ),
586
+ commit=commit,
587
+ )
588
+ self._model_trained_since_last_eval = False
589
+ except Exception as e:
590
+ wandb.termwarn("Error during prediction logging for epoch: " + str(e))
591
+
592
+ def on_epoch_end(self, epoch, logs=None):
593
+ if logs is None:
594
+ logs = {}
595
+ if self.log_weights:
596
+ wandb.log(self._log_weights(), commit=False)
597
+
598
+ if self.log_gradients:
599
+ wandb.log(self._log_gradients(), commit=False)
600
+
601
+ if self.input_type in (
602
+ "image",
603
+ "images",
604
+ "segmentation_mask",
605
+ ) or self.output_type in ("image", "images", "segmentation_mask"):
606
+ if self.generator:
607
+ self.validation_data = next(self.generator)
608
+ if self.validation_data is None:
609
+ wandb.termwarn(
610
+ "No validation_data set, pass a generator to the callback."
611
+ )
612
+ elif self.validation_data and len(self.validation_data) > 0:
613
+ wandb.log(
614
+ {"examples": self._log_images(num_images=self.predictions)},
615
+ commit=False,
616
+ )
617
+
618
+ if (
619
+ self._log_evaluation_frequency > 0
620
+ and epoch % self._log_evaluation_frequency == 0
621
+ ):
622
+ self._attempt_evaluation_log(commit=False)
623
+
624
+ wandb.log({"epoch": epoch}, commit=False)
625
+ wandb.log(logs, commit=True)
626
+
627
+ self.current = logs.get(self.monitor)
628
+ if self.current and self.monitor_op(self.current, self.best):
629
+ if self.log_best_prefix:
630
+ wandb.run.summary[f"{self.log_best_prefix}{self.monitor}"] = (
631
+ self.current
632
+ )
633
+ wandb.run.summary["{}{}".format(self.log_best_prefix, "epoch")] = epoch
634
+ if self.verbose and not self.save_model:
635
+ print(
636
+ "Epoch %05d: %s improved from %0.5f to %0.5f"
637
+ % (epoch, self.monitor, self.best, self.current)
638
+ )
639
+ if self.save_model:
640
+ self._save_model(epoch)
641
+
642
+ if self.save_model and self.save_model_as_artifact:
643
+ self._save_model_as_artifact(epoch)
644
+
645
+ self.best = self.current
646
+
647
+ # This is what keras used pre tensorflow.keras
648
+ def on_batch_begin(self, batch, logs=None):
649
+ pass
650
+
651
+ # This is what keras used pre tensorflow.keras
652
+ def on_batch_end(self, batch, logs=None):
653
+ if self.save_graph and not self._graph_rendered:
654
+ # Couldn't do this in train_begin because keras may still not be built
655
+ wandb.run.summary["graph"] = wandb.Graph.from_keras(self.model)
656
+ self._graph_rendered = True
657
+
658
+ if self.log_batch_frequency and batch % self.log_batch_frequency == 0:
659
+ wandb.log(logs, commit=True)
660
+
661
+ def on_train_batch_begin(self, batch, logs=None):
662
+ self._model_trained_since_last_eval = True
663
+
664
+ def on_train_batch_end(self, batch, logs=None):
665
+ if self.save_graph and not self._graph_rendered:
666
+ # Couldn't do this in train_begin because keras may still not be built
667
+ wandb.run.summary["graph"] = wandb.Graph.from_keras(self.model)
668
+ self._graph_rendered = True
669
+
670
+ if self.log_batch_frequency and batch % self.log_batch_frequency == 0:
671
+ wandb.log(logs, commit=True)
672
+
673
+ def on_test_begin(self, logs=None):
674
+ pass
675
+
676
+ def on_test_end(self, logs=None):
677
+ pass
678
+
679
+ def on_test_batch_begin(self, batch, logs=None):
680
+ pass
681
+
682
+ def on_test_batch_end(self, batch, logs=None):
683
+ pass
684
+
685
+ def on_train_begin(self, logs=None):
686
+ if self.log_evaluation:
687
+ try:
688
+ validation_data = None
689
+ if self.validation_data:
690
+ validation_data = self.validation_data
691
+ elif self.generator:
692
+ if not self.validation_steps:
693
+ wandb.termwarn(
694
+ "WandbCallback is unable to log validation data. "
695
+ "When using a generator for validation_data, you must pass validation_steps"
696
+ )
697
+ else:
698
+ x = None
699
+ y_true = None
700
+ for _ in range(self.validation_steps):
701
+ bx, by_true = next(self.generator)
702
+ if x is None:
703
+ x, y_true = bx, by_true
704
+ else:
705
+ x, y_true = (
706
+ np.append(x, bx, axis=0),
707
+ np.append(y_true, by_true, axis=0),
708
+ )
709
+ validation_data = (x, y_true)
710
+ else:
711
+ wandb.termwarn(
712
+ "WandbCallback is unable to read validation_data from trainer "
713
+ "and therefore cannot log validation data. Ensure Keras is properly "
714
+ "patched by calling `from wandb.keras import WandbCallback` at the top of your script."
715
+ )
716
+ if validation_data:
717
+ self._validation_data_logger = ValidationDataLogger(
718
+ inputs=validation_data[0],
719
+ targets=validation_data[1],
720
+ indexes=self._validation_indexes,
721
+ validation_row_processor=self._validation_row_processor,
722
+ prediction_row_processor=self._prediction_row_processor,
723
+ class_labels=self.labels,
724
+ infer_missing_processors=self._infer_missing_processors,
725
+ )
726
+ except Exception as e:
727
+ wandb.termwarn(
728
+ "Error initializing ValidationDataLogger in WandbCallback. "
729
+ f"Skipping logging validation data. Error: {str(e)}"
730
+ )
731
+
732
+ if self.compute_flops and _can_compute_flops():
733
+ try:
734
+ wandb.summary["GFLOPs"] = self.get_flops()
735
+ except Exception as e:
736
+ wandb.termwarn("Unable to compute FLOPs for this model.")
737
+ logger.exception(e)
738
+
739
+ def on_train_end(self, logs=None):
740
+ if self._model_trained_since_last_eval:
741
+ self._attempt_evaluation_log()
742
+
743
+ def on_predict_begin(self, logs=None):
744
+ pass
745
+
746
+ def on_predict_end(self, logs=None):
747
+ pass
748
+
749
+ def on_predict_batch_begin(self, batch, logs=None):
750
+ pass
751
+
752
+ def on_predict_batch_end(self, batch, logs=None):
753
+ pass
754
+
755
+ def _logits_to_captions(self, logits):
756
+ if logits[0].shape[-1] == 1:
757
+ # Scalar output from the model
758
+ # TODO: handle validation_y
759
+ if len(self.labels) == 2:
760
+ # User has named true and false
761
+ captions = [
762
+ self.labels[1] if logits[0] > 0.5 else self.labels[0]
763
+ for logit in logits
764
+ ]
765
+ else:
766
+ if len(self.labels) != 0:
767
+ wandb.termwarn(
768
+ "keras model is producing a single output, "
769
+ 'so labels should be a length two array: ["False label", "True label"].'
770
+ )
771
+ captions = [logit[0] for logit in logits]
772
+ else:
773
+ # Vector output from the model
774
+ # TODO: handle validation_y
775
+ labels = np.argmax(np.stack(logits), axis=1)
776
+
777
+ if len(self.labels) > 0:
778
+ # User has named the categories in self.labels
779
+ captions = []
780
+ for label in labels:
781
+ try:
782
+ captions.append(self.labels[label])
783
+ except IndexError:
784
+ captions.append(label)
785
+ else:
786
+ captions = labels
787
+ return captions
788
+
789
+ def _masks_to_pixels(self, masks):
790
+ # if its a binary mask, just return it as grayscale instead of picking the argmax
791
+ if len(masks[0].shape) == 2 or masks[0].shape[-1] == 1:
792
+ return masks
793
+ class_colors = (
794
+ self.class_colors
795
+ if self.class_colors is not None
796
+ else np.array(wandb.util.class_colors(masks[0].shape[2]))
797
+ )
798
+ imgs = class_colors[np.argmax(masks, axis=-1)]
799
+ return imgs
800
+
801
+ def _log_images(self, num_images=36):
802
+ validation_X = self.validation_data[0] # noqa: N806
803
+ validation_y = self.validation_data[1]
804
+
805
+ validation_length = len(validation_X)
806
+
807
+ if validation_length > num_images:
808
+ # pick some data at random
809
+ indices = np.random.choice(validation_length, num_images, replace=False)
810
+ else:
811
+ indices = range(validation_length)
812
+
813
+ test_data = []
814
+ test_output = []
815
+ for i in indices:
816
+ test_example = validation_X[i]
817
+ test_data.append(test_example)
818
+ test_output.append(validation_y[i])
819
+
820
+ if self.model.stateful:
821
+ predictions = self.model.predict(np.stack(test_data), batch_size=1)
822
+ self.model.reset_states()
823
+ else:
824
+ predictions = self.model.predict(
825
+ np.stack(test_data), batch_size=self._prediction_batch_size
826
+ )
827
+ if len(predictions) != len(test_data):
828
+ self._prediction_batch_size = 1
829
+ predictions = self.model.predict(
830
+ np.stack(test_data), batch_size=self._prediction_batch_size
831
+ )
832
+
833
+ if self.input_type == "label":
834
+ if self.output_type in ("image", "images", "segmentation_mask"):
835
+ captions = self._logits_to_captions(test_data)
836
+ output_image_data = (
837
+ self._masks_to_pixels(predictions)
838
+ if self.output_type == "segmentation_mask"
839
+ else predictions
840
+ )
841
+ reference_image_data = (
842
+ self._masks_to_pixels(test_output)
843
+ if self.output_type == "segmentation_mask"
844
+ else test_output
845
+ )
846
+ output_images = [
847
+ wandb.Image(data, caption=captions[i], grouping=2)
848
+ for i, data in enumerate(output_image_data)
849
+ ]
850
+ reference_images = [
851
+ wandb.Image(data, caption=captions[i])
852
+ for i, data in enumerate(reference_image_data)
853
+ ]
854
+ return list(chain.from_iterable(zip(output_images, reference_images)))
855
+ elif self.input_type in ("image", "images", "segmentation_mask"):
856
+ input_image_data = (
857
+ self._masks_to_pixels(test_data)
858
+ if self.input_type == "segmentation_mask"
859
+ else test_data
860
+ )
861
+ if self.output_type == "label":
862
+ # we just use the predicted label as the caption for now
863
+ captions = self._logits_to_captions(predictions)
864
+ return [
865
+ wandb.Image(data, caption=captions[i])
866
+ for i, data in enumerate(test_data)
867
+ ]
868
+ elif self.output_type in ("image", "images", "segmentation_mask"):
869
+ output_image_data = (
870
+ self._masks_to_pixels(predictions)
871
+ if self.output_type == "segmentation_mask"
872
+ else predictions
873
+ )
874
+ reference_image_data = (
875
+ self._masks_to_pixels(test_output)
876
+ if self.output_type == "segmentation_mask"
877
+ else test_output
878
+ )
879
+ input_images = [
880
+ wandb.Image(data, grouping=3)
881
+ for i, data in enumerate(input_image_data)
882
+ ]
883
+ output_images = [
884
+ wandb.Image(data) for i, data in enumerate(output_image_data)
885
+ ]
886
+ reference_images = [
887
+ wandb.Image(data) for i, data in enumerate(reference_image_data)
888
+ ]
889
+ return list(
890
+ chain.from_iterable(
891
+ zip(input_images, output_images, reference_images)
892
+ )
893
+ )
894
+ else:
895
+ # unknown output, just log the input images
896
+ return [wandb.Image(img) for img in test_data]
897
+ elif self.output_type in ("image", "images", "segmentation_mask"):
898
+ # unknown input, just log the predicted and reference outputs without captions
899
+ output_image_data = (
900
+ self._masks_to_pixels(predictions)
901
+ if self.output_type == "segmentation_mask"
902
+ else predictions
903
+ )
904
+ reference_image_data = (
905
+ self._masks_to_pixels(test_output)
906
+ if self.output_type == "segmentation_mask"
907
+ else test_output
908
+ )
909
+ output_images = [
910
+ wandb.Image(data, grouping=2)
911
+ for i, data in enumerate(output_image_data)
912
+ ]
913
+ reference_images = [
914
+ wandb.Image(data) for i, data in enumerate(reference_image_data)
915
+ ]
916
+ return list(chain.from_iterable(zip(output_images, reference_images)))
917
+
918
+ def _log_weights(self):
919
+ metrics = {}
920
+ for layer in self.model.layers:
921
+ weights = layer.get_weights()
922
+ if len(weights) == 1:
923
+ _update_if_numeric(
924
+ metrics, "parameters/" + layer.name + ".weights", weights[0]
925
+ )
926
+ elif len(weights) == 2:
927
+ _update_if_numeric(
928
+ metrics, "parameters/" + layer.name + ".weights", weights[0]
929
+ )
930
+ _update_if_numeric(
931
+ metrics, "parameters/" + layer.name + ".bias", weights[1]
932
+ )
933
+ return metrics
934
+
935
+ def _log_gradients(self):
936
+ # Suppress callback warnings grad accumulator
937
+ og_level = tf_logger.level
938
+ tf_logger.setLevel("ERROR")
939
+
940
+ self._grad_accumulator_model.fit(
941
+ self._training_data_x,
942
+ self._training_data_y,
943
+ verbose=0,
944
+ callbacks=[self._grad_accumulator_callback],
945
+ )
946
+ tf_logger.setLevel(og_level)
947
+ weights = self.model.trainable_weights
948
+ grads = self._grad_accumulator_callback.grads
949
+ metrics = {}
950
+ for weight, grad in zip(weights, grads):
951
+ metrics["gradients/" + weight.name.split(":")[0] + ".gradient"] = (
952
+ wandb.Histogram(grad)
953
+ )
954
+ return metrics
955
+
956
+ def _log_dataframe(self):
957
+ x, y_true, y_pred = None, None, None
958
+
959
+ if self.validation_data:
960
+ x, y_true = self.validation_data[0], self.validation_data[1]
961
+ y_pred = self.model.predict(x)
962
+ elif self.generator:
963
+ if not self.validation_steps:
964
+ wandb.termwarn(
965
+ "when using a generator for validation data with dataframes, "
966
+ "you must pass validation_steps. skipping"
967
+ )
968
+ return None
969
+
970
+ for _ in range(self.validation_steps):
971
+ bx, by_true = next(self.generator)
972
+ by_pred = self.model.predict(bx)
973
+ if x is None:
974
+ x, y_true, y_pred = bx, by_true, by_pred
975
+ else:
976
+ x, y_true, y_pred = (
977
+ np.append(x, bx, axis=0),
978
+ np.append(y_true, by_true, axis=0),
979
+ np.append(y_pred, by_pred, axis=0),
980
+ )
981
+
982
+ if self.input_type in ("image", "images") and self.output_type == "label":
983
+ return wandb.image_categorizer_dataframe(
984
+ x=x, y_true=y_true, y_pred=y_pred, labels=self.labels
985
+ )
986
+ elif (
987
+ self.input_type in ("image", "images")
988
+ and self.output_type == "segmentation_mask"
989
+ ):
990
+ return wandb.image_segmentation_dataframe(
991
+ x=x,
992
+ y_true=y_true,
993
+ y_pred=y_pred,
994
+ labels=self.labels,
995
+ class_colors=self.class_colors,
996
+ )
997
+ else:
998
+ wandb.termwarn(
999
+ f"unknown dataframe type for input_type={self.input_type} and output_type={self.output_type}"
1000
+ )
1001
+ return None
1002
+
1003
+ def _save_model(self, epoch):
1004
+ if wandb.run.disabled:
1005
+ return
1006
+ if self.verbose > 0:
1007
+ print(
1008
+ "Epoch %05d: %s improved from %0.5f to %0.5f,"
1009
+ " saving model to %s"
1010
+ % (epoch, self.monitor, self.best, self.current, self.filepath)
1011
+ )
1012
+
1013
+ try:
1014
+ if self.save_weights_only:
1015
+ self.model.save_weights(self.filepath, overwrite=True)
1016
+ else:
1017
+ self.model.save(self.filepath, overwrite=True)
1018
+ # Was getting `RuntimeError: Unable to create link` in TF 1.13.1
1019
+ # also saw `TypeError: can't pickle _thread.RLock objects`
1020
+ except (ImportError, RuntimeError, TypeError, AttributeError) as e:
1021
+ wandb.termerror(
1022
+ "Can't save model in the h5py format. The model will be saved as "
1023
+ "as an W&B Artifact in the 'tf' format."
1024
+ )
1025
+ logger.exception(e)
1026
+
1027
+ def _save_model_as_artifact(self, epoch):
1028
+ if wandb.run.disabled:
1029
+ return
1030
+
1031
+ # Save the model in the SavedModel format.
1032
+ # TODO: Replace this manual artifact creation with the `log_model` method
1033
+ # after `log_model` is released from beta.
1034
+ self.model.save(self.filepath[:-3], overwrite=True, save_format="tf")
1035
+
1036
+ # Log the model as artifact.
1037
+ name = wandb.util.make_artifact_name_safe(f"model-{wandb.run.name}")
1038
+ model_artifact = wandb.Artifact(name, type="model")
1039
+ model_artifact.add_dir(self.filepath[:-3])
1040
+ wandb.run.log_artifact(model_artifact, aliases=["latest", f"epoch_{epoch}"])
1041
+
1042
+ # Remove the SavedModel from wandb dir as we don't want to log it to save memory.
1043
+ shutil.rmtree(self.filepath[:-3])
1044
+
1045
+ def get_flops(self) -> float:
1046
+ """Calculate FLOPS [GFLOPs] for a tf.keras.Model or tf.keras.Sequential model in inference mode.
1047
+
1048
+ It uses tf.compat.v1.profiler under the hood.
1049
+ """
1050
+ if not hasattr(self, "model"):
1051
+ raise wandb.Error("self.model must be set before using this method.")
1052
+
1053
+ if not isinstance(
1054
+ self.model, (tf.keras.models.Sequential, tf.keras.models.Model)
1055
+ ):
1056
+ raise ValueError(
1057
+ "Calculating FLOPS is only supported for "
1058
+ "`tf.keras.Model` and `tf.keras.Sequential` instances."
1059
+ )
1060
+
1061
+ from tensorflow.python.framework.convert_to_constants import (
1062
+ convert_variables_to_constants_v2_as_graph,
1063
+ )
1064
+
1065
+ # Compute FLOPs for one sample
1066
+ batch_size = 1
1067
+ inputs = [
1068
+ tf.TensorSpec([batch_size] + inp.shape[1:], inp.dtype)
1069
+ for inp in self.model.inputs
1070
+ ]
1071
+
1072
+ # convert tf.keras model into frozen graph to count FLOPs about operations used at inference
1073
+ real_model = tf.function(self.model).get_concrete_function(inputs)
1074
+ frozen_func, _ = convert_variables_to_constants_v2_as_graph(real_model)
1075
+
1076
+ # Calculate FLOPs with tf.profiler
1077
+ run_meta = tf.compat.v1.RunMetadata()
1078
+ opts = (
1079
+ tf.compat.v1.profiler.ProfileOptionBuilder(
1080
+ tf.compat.v1.profiler.ProfileOptionBuilder().float_operation()
1081
+ )
1082
+ .with_empty_output()
1083
+ .build()
1084
+ )
1085
+
1086
+ flops = tf.compat.v1.profiler.profile(
1087
+ graph=frozen_func.graph, run_meta=run_meta, cmd="scope", options=opts
1088
+ )
1089
+
1090
+ # convert to GFLOPs
1091
+ return (flops.total_float_ops / 1e9) / 2