wandb 0.17.8rc1__py3-none-any.whl → 0.18.0__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (55) hide show
  1. package_readme.md +47 -53
  2. wandb/__init__.py +8 -7
  3. wandb/__init__.pyi +134 -14
  4. wandb/analytics/sentry.py +1 -1
  5. wandb/bin/nvidia_gpu_stats +0 -0
  6. wandb/cli/cli.py +15 -10
  7. wandb/data_types.py +1 -0
  8. wandb/env.py +4 -3
  9. wandb/integration/keras/__init__.py +2 -5
  10. wandb/integration/keras/callbacks/metrics_logger.py +10 -4
  11. wandb/integration/keras/callbacks/model_checkpoint.py +0 -5
  12. wandb/integration/keras/keras.py +12 -1
  13. wandb/integration/openai/fine_tuning.py +5 -5
  14. wandb/integration/tensorboard/log.py +1 -4
  15. wandb/jupyter.py +18 -3
  16. wandb/proto/v3/wandb_internal_pb2.py +238 -228
  17. wandb/proto/v3/wandb_settings_pb2.py +2 -2
  18. wandb/proto/v3/wandb_telemetry_pb2.py +12 -12
  19. wandb/proto/v4/wandb_internal_pb2.py +230 -228
  20. wandb/proto/v4/wandb_settings_pb2.py +2 -2
  21. wandb/proto/v4/wandb_telemetry_pb2.py +12 -12
  22. wandb/proto/v5/wandb_internal_pb2.py +230 -228
  23. wandb/proto/v5/wandb_settings_pb2.py +2 -2
  24. wandb/proto/v5/wandb_telemetry_pb2.py +12 -12
  25. wandb/proto/wandb_deprecated.py +4 -0
  26. wandb/sdk/__init__.py +1 -1
  27. wandb/sdk/artifacts/_validators.py +45 -0
  28. wandb/sdk/artifacts/artifact.py +109 -56
  29. wandb/sdk/artifacts/artifact_manifest_entry.py +10 -2
  30. wandb/sdk/artifacts/artifact_saver.py +6 -0
  31. wandb/sdk/artifacts/storage_handlers/gcs_handler.py +31 -0
  32. wandb/sdk/interface/interface.py +7 -4
  33. wandb/sdk/internal/internal_api.py +16 -6
  34. wandb/sdk/internal/sender.py +1 -0
  35. wandb/sdk/internal/system/assets/gpu_amd.py +11 -2
  36. wandb/sdk/internal/system/assets/trainium.py +2 -1
  37. wandb/sdk/internal/tb_watcher.py +1 -1
  38. wandb/sdk/launch/inputs/internal.py +2 -2
  39. wandb/sdk/lib/_settings_toposort_generated.py +3 -3
  40. wandb/sdk/service/server_sock.py +1 -1
  41. wandb/sdk/service/service.py +6 -2
  42. wandb/sdk/wandb_init.py +12 -3
  43. wandb/sdk/wandb_login.py +1 -0
  44. wandb/sdk/wandb_manager.py +0 -3
  45. wandb/sdk/wandb_require.py +7 -2
  46. wandb/sdk/wandb_run.py +40 -14
  47. wandb/sdk/wandb_settings.py +32 -12
  48. wandb/sdk/wandb_setup.py +3 -0
  49. {wandb-0.17.8rc1.dist-info → wandb-0.18.0.dist-info}/METADATA +52 -58
  50. {wandb-0.17.8rc1.dist-info → wandb-0.18.0.dist-info}/RECORD +54 -54
  51. wandb/testing/relay.py +0 -874
  52. /wandb/{viz.py → sdk/lib/viz.py} +0 -0
  53. {wandb-0.17.8rc1.dist-info → wandb-0.18.0.dist-info}/WHEEL +0 -0
  54. {wandb-0.17.8rc1.dist-info → wandb-0.18.0.dist-info}/entry_points.txt +0 -0
  55. {wandb-0.17.8rc1.dist-info → wandb-0.18.0.dist-info}/licenses/LICENSE +0 -0
package_readme.md CHANGED
@@ -4,92 +4,86 @@
4
4
 
5
5
  # Weights and Biases [![PyPI](https://img.shields.io/pypi/v/wandb)](https://pypi.python.org/pypi/wandb) [![Conda (channel only)](https://img.shields.io/conda/vn/conda-forge/wandb)](https://anaconda.org/conda-forge/wandb) [![CircleCI](https://img.shields.io/circleci/build/github/wandb/wandb/main)](https://circleci.com/gh/wandb/wandb) [![Codecov](https://img.shields.io/codecov/c/gh/wandb/wandb)](https://codecov.io/gh/wandb/wandb)
6
6
 
7
- Use W&B to build better models faster. Track and visualize all the pieces of your machine learning pipeline, from datasets to production models.
7
+ Use W&B to build better models faster. Track and visualize all the pieces of your machine learning pipeline, from datasets to production machine learning models. Get started with W&B today, [sign up for an account!](https://wandb.com?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=readme)
8
8
 
9
- - Quickly identify model regressions. Use W&B to visualize results in real time, all in a central dashboard.
10
- - Focus on the interesting ML. Spend less time manually tracking results in spreadsheets and text files.
11
- - Capture dataset versions with W&B Artifacts to identify how changing data affects your resulting models.
12
- - Reproduce any model, with saved code, hyperparameters, launch commands, input data, and resulting model weights.
13
9
 
14
- [Sign up for a free account →](https://wandb.ai/login?signup=true)
15
10
 
16
- ## Features
11
+ See the [W&B Developer Guide](https://docs.wandb.ai/?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=documentation) and [API Reference Guide](https://docs.wandb.ai/ref?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=documentation) for a full technical description of the W&B platform.
17
12
 
18
- - Store hyper-parameters used in a training run
19
- - Search, compare, and visualize training runs
20
- - Analyze system usage metrics alongside runs
21
- - Collaborate with team members
22
- - Replicate historic results
23
- - Run parameter sweeps
24
- - Keep records of experiments available forever
13
+  
25
14
 
26
- [Documentation →](https://docs.wandb.com)
15
+ # Quickstart
27
16
 
28
- ## Quickstart
17
+ Get started with W&B in four steps:
18
+
19
+ 1. First, sign up for a [W&B account](https://wandb.ai/login?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=quickstart).
20
+
21
+ 2. Second, install the W&B SDK with [pip](https://pip.pypa.io/en/stable/). Navigate to your terminal and type the following command:
29
22
 
30
23
  ```shell
31
24
  pip install wandb
32
25
  ```
33
26
 
34
- In your training script:
27
+ 3. Third, log into W&B:
35
28
 
36
29
  ```python
37
- import wandb
30
+ wandb.login()
31
+ ```
38
32
 
39
- # Your custom arguments defined here
40
- args = ...
33
+ 4. Use the example code snippet below as a template to integrate W&B to your Python script:
41
34
 
42
- wandb.init(config=args, project="my-project")
43
- wandb.config["more"] = "custom"
35
+ ```python
36
+ import wandb
44
37
 
38
+ # Start a W&B Run with wandb.init
39
+ run = wandb.init(project="my_first_project")
45
40
 
46
- def training_loop():
47
- while True:
48
- # Do some machine learning
49
- epoch, loss, val_loss = ...
50
- # Framework agnostic / custom metrics
51
- wandb.log({"epoch": epoch, "loss": loss, "val_loss": val_loss})
52
- ```
41
+ # Save model inputs and hyperparameters in a wandb.config object
42
+ config = run.config
43
+ config.learning_rate = 0.01
53
44
 
54
- If you're already using Tensorboard or [TensorboardX](https://github.com/lanpa/tensorboardX), you can integrate with one line:
45
+ # Model training code here ...
55
46
 
56
- ```python
57
- wandb.init(sync_tensorboard=True)
47
+ # Log metrics over time to visualize performance with wandb.log
48
+ for i in range(10):
49
+ run.log({"loss": ...})
50
+
51
+ # Mark the run as finished, and finish uploading all data
52
+ run.finish()
58
53
  ```
59
54
 
60
- ## Running your script
55
+ For example, if the preceding code was stored in a script called train.py:
61
56
 
62
- Run `wandb login` from your terminal to signup or authenticate your machine (we store your api key in ~/.netrc). You can also set the `WANDB_API_KEY` environment variable with a key from your [settings](https://app.wandb.ai/settings).
57
+ ```shell
58
+ python train.py
59
+ ```
63
60
 
64
- Run your script with `python my_script.py` and all metadata will be synced to the cloud. You will see a url in your terminal logs when your script starts and finishes. Data is staged locally in a directory named _wandb_ relative to your script. If you want to test your script without syncing to the cloud you can set the environment variable `WANDB_MODE=dryrun`.
61
+ You will see a URL in your terminal logs when your script starts and finishes. Data is staged locally in a directory named _wandb_ relative to your script. Navigate to the W&B App to view a dashboard of your first W&B Experiment. Use the W&B App to compare multiple experiments in a unified place, dive into the results of a single run, and much more!
65
62
 
66
- If you are using [docker](https://docker.com) to run your code, we provide a wrapper command `wandb docker` that mounts your current directory, sets environment variables, and ensures the wandb library is installed. Training your models in docker gives you the ability to restore the exact code and environment with the `wandb restore` command.
63
+  
67
64
 
68
- ## Web Interface
65
+ # Integrations
69
66
 
70
- [Sign up for a free account ](https://wandb.com)
71
- [![Watch the video](https://i.imgur.com/PW0Ejlc.png)](https://youtu.be/EeqhOSvNX-A)
72
- [Introduction video →](https://youtu.be/EeqhOSvNX-A)
67
+ Use your favorite framework with W&B. W&B integrations make it fast and easy to set up experiment tracking and data versioning inside existing projects. For more information on how to integrate W&B with the framework of your choice, see [W&B Integrations](https://docs.wandb.ai/guides/integrations) in the W&B Developer Guide.
73
68
 
74
- ## Detailed Usage
69
+  
75
70
 
76
- Framework specific and detailed usage can be found in our [documentation](http://docs.wandb.com/).
71
+ # Contribution guidelines
72
+ Weights & Biases ❤️ open source, and we welcome contributions from the community! See the [Contribution guide](https://github.com/wandb/wandb/blob/main/CONTRIBUTING.md) for more information on the development workflow and the internals of the wandb library. For wandb bugs and feature requests, visit [GitHub Issues](https://github.com/wandb/wandb/issues) or contact support@wandb.com.
77
73
 
78
- ## Testing
74
+  
79
75
 
80
- To run basic test use `make test`. More detailed information can be found at CONTRIBUTING.md.
76
+ # Academic Researchers
77
+ Reach out to W&B Support at support@wandb.com to get a [free academic license](https://www.wandb.com/academic) for you and your research group.
81
78
 
82
- We use [circleci](https://circleci.com) for CI.
79
+  
83
80
 
84
- # Academic Researchers
85
- If you'd like a free academic account for your research group, [reach out to us →](https://www.wandb.com/academic)
81
+ # W&B Community
86
82
 
87
- We make it easy to cite W&B in your published paper. [Learn more ](https://www.wandb.com/academic)
88
- [![](https://i.imgur.com/loKLiez.png)](https://www.wandb.com/academic)
83
+ Be a part of the growing W&B Community and interact with the W&B team in our [Discord](https://wandb.me/discord). Stay connected with the latest ML updates and tutorials with [W&B Fully Connected](https://wandb.ai/fully-connected).
89
84
 
90
- ## Community
91
- Got questions, feedback or want to join a community of ML engineers working on exciting projects?
85
+  
92
86
 
93
- <a href="https://bit.ly/wb-slack"><img src="https://svgshare.com/i/M93.svg" alt="slack" width="55"/></a> Join our [slack](https://bit.ly/wb-slack) community.
87
+ # License
94
88
 
95
- [![Twitter](https://img.shields.io/twitter/follow/weights_biases?style=social)](https://twitter.com/weights_biases) Follow us on [Twitter](https://twitter.com/weights_biases).
89
+ [MIT License](https://github.com/wandb/wandb/blob/main/LICENSE)
wandb/__init__.py CHANGED
@@ -8,7 +8,7 @@ For scripts and interactive notebooks, see https://github.com/wandb/examples.
8
8
 
9
9
  For reference documentation, see https://docs.wandb.com/ref/python.
10
10
  """
11
- __version__ = "0.17.8rc1"
11
+ __version__ = "0.18.0"
12
12
 
13
13
  from typing import Optional
14
14
 
@@ -76,8 +76,7 @@ from wandb.data_types import JoinedTable
76
76
 
77
77
  from wandb.wandb_agent import agent
78
78
 
79
- # from wandb.core import *
80
- from wandb.viz import visualize
79
+ from wandb.sdk.lib.viz import visualize
81
80
  from wandb import plot
82
81
  from wandb.integration.sagemaker import sagemaker_auth
83
82
  from wandb.sdk.internal import profiler
@@ -199,14 +198,13 @@ if wandb_sdk.lib.ipython.in_notebook():
199
198
  from .analytics import Sentry as _Sentry
200
199
 
201
200
  if "dev" in __version__:
201
+ import wandb.env
202
202
  import os
203
203
 
204
204
  # disable error reporting in dev versions for the python client
205
- os.environ["WANDB_ERROR_REPORTING"] = os.environ.get(
206
- "WANDB_ERROR_REPORTING", "false"
205
+ os.environ[wandb.env.ERROR_REPORTING] = os.environ.get(
206
+ wandb.env.ERROR_REPORTING, "false"
207
207
  )
208
- # turn on wandb-core for dev versions
209
- os.environ["WANDB__REQUIRE_CORE"] = os.environ.get("WANDB__REQUIRE_CORE", "true")
210
208
 
211
209
  _sentry = _Sentry()
212
210
  _sentry.setup()
@@ -215,6 +213,7 @@ _sentry.setup()
215
213
  __all__ = (
216
214
  "__version__",
217
215
  "init",
216
+ "finish",
218
217
  "setup",
219
218
  "save",
220
219
  "sweep",
@@ -237,6 +236,8 @@ __all__ = (
237
236
  "Molecule",
238
237
  "Histogram",
239
238
  "ArtifactTTL",
239
+ "log_artifact",
240
+ "use_artifact",
240
241
  "log_model",
241
242
  "use_model",
242
243
  "link_model",
wandb/__init__.pyi CHANGED
@@ -12,7 +12,9 @@ For reference documentation, see https://docs.wandb.com/ref/python.
12
12
  __all__ = (
13
13
  "__version__",
14
14
  "init",
15
+ "finish",
15
16
  "setup",
17
+ "login",
16
18
  "save",
17
19
  "sweep",
18
20
  "controller",
@@ -33,6 +35,8 @@ __all__ = (
33
35
  "Molecule",
34
36
  "Histogram",
35
37
  "ArtifactTTL",
38
+ "log_artifact",
39
+ "use_artifact",
36
40
  "log_model",
37
41
  "use_model",
38
42
  "link_model",
@@ -48,7 +52,7 @@ __all__ = (
48
52
  )
49
53
 
50
54
  import os
51
- from typing import Any, Callable, Dict, List, Optional, Sequence, Union
55
+ from typing import Any, Callable, Dict, List, Literal, Optional, Sequence, Union
52
56
 
53
57
  from wandb.analytics import Sentry as _Sentry
54
58
  from wandb.apis import InternalApi, PublicApi
@@ -75,7 +79,7 @@ from wandb.sdk.wandb_run import Run
75
79
  from wandb.sdk.wandb_setup import _WandbSetup
76
80
  from wandb.wandb_controller import _WandbController
77
81
 
78
- __version__: str = "0.17.8rc1"
82
+ __version__: str = "0.18.0"
79
83
 
80
84
  run: Optional[Run] = None
81
85
  config = wandb_config.Config
@@ -143,7 +147,7 @@ def setup(
143
147
 
144
148
  # Optional: Explicitly shut down the backend
145
149
  wandb.teardown()
146
- ```
150
+ ```
147
151
  """
148
152
  ...
149
153
 
@@ -339,6 +343,7 @@ def init(
339
343
  mode if a user isn't logged in to W&B. (default: `False`)
340
344
  sync_tensorboard: (bool, optional) Synchronize wandb logs from tensorboard or
341
345
  tensorboardX and save the relevant events file. (default: `False`)
346
+ tensorboard: (bool, optional) Alias for `sync_tensorboard`, deprecated.
342
347
  monitor_gym: (bool, optional) Automatically log videos of environment when
343
348
  using OpenAI Gym. (default: `False`)
344
349
  See [our guide to this integration](https://docs.wandb.com/guides/integrations/openai-gym).
@@ -352,6 +357,12 @@ def init(
352
357
  a moment in a previous run to fork a new run from. Creates a new run that picks up
353
358
  logging history from the specified run at the specified moment. The target run must
354
359
  be in the current project. Example: `fork_from="my-run-id?_step=1234"`.
360
+ resume_from: (str, optional) A string with the format {run_id}?_step={step} describing
361
+ a moment in a previous run to resume a run from. This allows users to truncate
362
+ the history logged to a run at an intermediate step and resume logging from that step.
363
+ It uses run forking under the hood. The target run must be in the
364
+ current project. Example: `resume_from="my-run-id?_step=1234"`.
365
+ settings: (dict, wandb.Settings, optional) Settings to use for this run. (default: None)
355
366
 
356
367
  Examples:
357
368
  ### Set where the run is logged
@@ -389,7 +400,56 @@ def init(
389
400
  KeyboardInterrupt: if user interrupts the run.
390
401
 
391
402
  Returns:
392
- A `Run` object.
403
+ A `Run` object.
404
+ """
405
+ ...
406
+
407
+ def finish(exit_code: Optional[int] = None, quiet: Optional[bool] = None) -> None:
408
+ """Mark a run as finished, and finish uploading all data.
409
+
410
+ This is used when creating multiple runs in the same process.
411
+ We automatically call this method when your script exits.
412
+
413
+ Arguments:
414
+ exit_code: Set to something other than 0 to mark a run as failed
415
+ quiet: Set to true to minimize log output
416
+ """
417
+ ...
418
+
419
+ def login(
420
+ anonymous: Optional[Literal["must", "allow", "never"]] = None,
421
+ key: Optional[str] = None,
422
+ relogin: Optional[bool] = None,
423
+ host: Optional[str] = None,
424
+ force: Optional[bool] = None,
425
+ timeout: Optional[int] = None,
426
+ verify: bool = False,
427
+ ) -> bool:
428
+ """Set up W&B login credentials.
429
+
430
+ By default, this will only store credentials locally without
431
+ verifying them with the W&B server. To verify credentials, pass
432
+ `verify=True`.
433
+
434
+ Arguments:
435
+ anonymous: (string, optional) Can be "must", "allow", or "never".
436
+ If set to "must", always log a user in anonymously. If set to
437
+ "allow", only create an anonymous user if the user
438
+ isn't already logged in. If set to "never", never log a
439
+ user anonymously. Default set to "never".
440
+ key: (string, optional) The API key to use.
441
+ relogin: (bool, optional) If true, will re-prompt for API key.
442
+ host: (string, optional) The host to connect to.
443
+ force: (bool, optional) If true, will force a relogin.
444
+ timeout: (int, optional) Number of seconds to wait for user input.
445
+ verify: (bool) Verify the credentials with the W&B server.
446
+
447
+ Returns:
448
+ bool: if key is configured
449
+
450
+ Raises:
451
+ AuthenticationError - if api_key fails verification with the server
452
+ UsageError - if api_key cannot be configured and no tty
393
453
  """
394
454
  ...
395
455
 
@@ -623,7 +683,7 @@ def log(
623
683
 
624
684
  Raises:
625
685
  wandb.Error: if called before `wandb.init`
626
- ValueError: if invalid data is passed
686
+ ValueError: if invalid data is passed
627
687
  """
628
688
  ...
629
689
 
@@ -677,7 +737,7 @@ def save(
677
737
  Returns:
678
738
  Paths to the symlinks created for the matched files.
679
739
 
680
- For historical reasons, this may return a boolean in legacy code.
740
+ For historical reasons, this may return a boolean in legacy code.
681
741
  """
682
742
  ...
683
743
 
@@ -714,7 +774,7 @@ def sweep(
714
774
  prior_runs: The run IDs of existing runs to add to this sweep.
715
775
 
716
776
  Returns:
717
- sweep_id: str. A unique identifier for the sweep.
777
+ sweep_id: str. A unique identifier for the sweep.
718
778
  """
719
779
  ...
720
780
 
@@ -734,7 +794,7 @@ def controller(
734
794
  print(tuner.sweep_id)
735
795
  tuner.configure_search(...)
736
796
  tuner.configure_stopping(...)
737
- ```
797
+ ```
738
798
  """
739
799
  ...
740
800
 
@@ -764,7 +824,7 @@ def agent(
764
824
  project: The name of the project where W&B runs created from
765
825
  the sweep are sent to. If the project is not specified, the
766
826
  run is sent to a project labeled "Uncategorized".
767
- count: The number of sweep config trials to try.
827
+ count: The number of sweep config trials to try.
768
828
  """
769
829
  ...
770
830
 
@@ -801,7 +861,67 @@ def define_metric(
801
861
  previous calls.
802
862
 
803
863
  Returns:
804
- An object that represents this call but can otherwise be discarded.
864
+ An object that represents this call but can otherwise be discarded.
865
+ """
866
+ ...
867
+
868
+ def log_artifact(
869
+ artifact_or_path: Union[Artifact, StrPath],
870
+ name: Optional[str] = None,
871
+ type: Optional[str] = None,
872
+ aliases: Optional[List[str]] = None,
873
+ tags: Optional[List[str]] = None,
874
+ ) -> Artifact:
875
+ """Declare an artifact as an output of a run.
876
+
877
+ Arguments:
878
+ artifact_or_path: (str or Artifact) A path to the contents of this artifact,
879
+ can be in the following forms:
880
+ - `/local/directory`
881
+ - `/local/directory/file.txt`
882
+ - `s3://bucket/path`
883
+ You can also pass an Artifact object created by calling
884
+ `wandb.Artifact`.
885
+ name: (str, optional) An artifact name. Valid names can be in the following forms:
886
+ - name:version
887
+ - name:alias
888
+ - digest
889
+ This will default to the basename of the path prepended with the current
890
+ run id if not specified.
891
+ type: (str) The type of artifact to log, examples include `dataset`, `model`
892
+ aliases: (list, optional) Aliases to apply to this artifact,
893
+ defaults to `["latest"]`
894
+ tags: (list, optional) Tags to apply to this artifact, if any.
895
+
896
+ Returns:
897
+ An `Artifact` object.
898
+ """
899
+ ...
900
+
901
+ def use_artifact(
902
+ artifact_or_name: Union[str, Artifact],
903
+ type: Optional[str] = None,
904
+ aliases: Optional[List[str]] = None,
905
+ use_as: Optional[str] = None,
906
+ ) -> Artifact:
907
+ """Declare an artifact as an input to a run.
908
+
909
+ Call `download` or `file` on the returned object to get the contents locally.
910
+
911
+ Arguments:
912
+ artifact_or_name: (str or Artifact) An artifact name.
913
+ May be prefixed with entity/project/. Valid names
914
+ can be in the following forms:
915
+ - name:version
916
+ - name:alias
917
+ You can also pass an Artifact object created by calling `wandb.Artifact`
918
+ type: (str, optional) The type of artifact to use.
919
+ aliases: (list, optional) Aliases to apply to this artifact
920
+ use_as: (string, optional) Optional string indicating what purpose the artifact was used with.
921
+ Will be shown in UI.
922
+
923
+ Returns:
924
+ An `Artifact` object.
805
925
  """
806
926
  ...
807
927
 
@@ -847,7 +967,7 @@ def log_model(
847
967
  ValueError: if name has invalid special characters
848
968
 
849
969
  Returns:
850
- None
970
+ None
851
971
  """
852
972
  ...
853
973
 
@@ -888,7 +1008,7 @@ def use_model(name: str) -> FilePathStr:
888
1008
  AssertionError: if model artifact 'name' is of a type that does not contain the substring 'model'.
889
1009
 
890
1010
  Returns:
891
- path: (str) path to downloaded model artifact file(s).
1011
+ path: (str) path to downloaded model artifact file(s).
892
1012
  """
893
1013
  ...
894
1014
 
@@ -920,7 +1040,7 @@ def link_model(
920
1040
  registered_model_name: (str) - the name of the registered model that the model is to be linked to.
921
1041
  A registered model is a collection of model versions linked to the model registry, typically representing a
922
1042
  team's specific ML Task. The entity that this registered model belongs to will be derived from the run
923
- name: (str, optional) - the name of the model artifact that files in 'path' will be logged to. This will
1043
+ name: (str, optional) - the name of the model artifact that files in 'path' will be logged to. This will
924
1044
  default to the basename of the path prepended with the current run id if not specified.
925
1045
  aliases: (List[str], optional) - alias(es) that will only be applied on this linked artifact
926
1046
  inside the registered model.
@@ -959,6 +1079,6 @@ def link_model(
959
1079
  ValueError: if name has invalid special characters
960
1080
 
961
1081
  Returns:
962
- None
1082
+ None
963
1083
  """
964
1084
  ...
wandb/analytics/sentry.py CHANGED
@@ -211,7 +211,7 @@ class Sentry:
211
211
  "sweep_id",
212
212
  "deployment",
213
213
  "_disable_service",
214
- "_require_core",
214
+ "_require_legacy_service",
215
215
  "launch",
216
216
  )
217
217
 
Binary file
wandb/cli/cli.py CHANGED
@@ -35,7 +35,7 @@ import wandb.sdk.verify.verify as wandb_verify
35
35
  from wandb import Config, Error, env, util, wandb_agent, wandb_sdk
36
36
  from wandb.apis import InternalApi, PublicApi
37
37
  from wandb.apis.public import RunQueue
38
- from wandb.errors import WandbCoreNotAvailableError
38
+ from wandb.errors import UsageError, WandbCoreNotAvailableError
39
39
  from wandb.integration.magic import magic_install
40
40
  from wandb.sdk.artifacts.artifact_file_cache import get_artifact_file_cache
41
41
  from wandb.sdk.launch import utils as launch_utils
@@ -123,6 +123,9 @@ _api = None # caching api instance allows patching from unit tests
123
123
 
124
124
  def _get_cling_api(reset=None):
125
125
  """Get a reference to the internal api with cling settings."""
126
+ # TODO: move CLI to wandb-core backend
127
+ wandb.require("legacy-service")
128
+
126
129
  global _api
127
130
  if reset:
128
131
  _api = None
@@ -226,6 +229,9 @@ def projects(entity, display=True):
226
229
  @click.option("--verify", default=False, is_flag=True, help="Verify login credentials")
227
230
  @display_error
228
231
  def login(key, host, cloud, relogin, anonymously, verify, no_offline=False):
232
+ # TODO: move CLI to wandb-core backend
233
+ wandb.require("legacy-service")
234
+
229
235
  # TODO: handle no_offline
230
236
  anon_mode = "must" if anonymously else "never"
231
237
 
@@ -433,8 +439,15 @@ def init(ctx, project, entity, reset, mode):
433
439
  def beta():
434
440
  """Beta versions of wandb CLI commands. Requires wandb-core."""
435
441
  # this is the future that requires wandb-core!
442
+ import wandb.env
443
+
436
444
  wandb._sentry.configure_scope(process_context="wandb_beta")
437
- wandb.require("core")
445
+
446
+ if wandb.env.is_require_legacy_service():
447
+ raise UsageError(
448
+ "wandb beta commands can only be used with wandb-core. "
449
+ f"Please make sure that `{wandb.env._REQUIRE_LEGACY_SERVICE}` is not set."
450
+ )
438
451
 
439
452
  try:
440
453
  get_core_path()
@@ -2942,14 +2955,6 @@ def enabled(service):
2942
2955
  )
2943
2956
 
2944
2957
 
2945
- @cli.command("gc", hidden=True, context_settings={"ignore_unknown_options": True})
2946
- @click.argument("args", nargs=-1)
2947
- def gc(args):
2948
- click.echo(
2949
- "`wandb gc` command has been removed. Use `wandb sync --clean` to clean up synced runs."
2950
- )
2951
-
2952
-
2953
2958
  @cli.command(context_settings=CONTEXT, help="Verify your local instance")
2954
2959
  @click.option("--host", default=None, help="Test a specific instance of W&B")
2955
2960
  def verify(host):
wandb/data_types.py CHANGED
@@ -1420,6 +1420,7 @@ class Graph(Media):
1420
1420
 
1421
1421
  @classmethod
1422
1422
  def from_keras(cls, model):
1423
+ # TODO: his method requires a refactor to work with the keras 3.
1423
1424
  graph = cls()
1424
1425
  # Shamelessly copied (then modified) from keras/keras/utils/layer_utils.py
1425
1426
  sequential_like = cls._is_sequential(model)
wandb/env.py CHANGED
@@ -90,7 +90,7 @@ _EXECUTABLE = "WANDB_EXECUTABLE"
90
90
  LAUNCH_QUEUE_NAME = "WANDB_LAUNCH_QUEUE_NAME"
91
91
  LAUNCH_QUEUE_ENTITY = "WANDB_LAUNCH_QUEUE_ENTITY"
92
92
  LAUNCH_TRACE_ID = "WANDB_LAUNCH_TRACE_ID"
93
- _REQUIRE_CORE = "WANDB__REQUIRE_CORE"
93
+ _REQUIRE_LEGACY_SERVICE = "WANDB__REQUIRE_LEGACY_SERVICE"
94
94
 
95
95
  # For testing, to be removed in future version
96
96
  USE_V1_ARTIFACTS = "_WANDB_USE_V1_ARTIFACTS"
@@ -153,8 +153,9 @@ def _env_as_bool(
153
153
  return False
154
154
 
155
155
 
156
- def is_require_core(env: Optional[Env] = None) -> bool:
157
- return _env_as_bool(_REQUIRE_CORE, default="False", env=env)
156
+ def is_require_legacy_service(env: Optional[Env] = None) -> bool:
157
+ """Return whether wandb.require("legacy-service") was used."""
158
+ return _env_as_bool(_REQUIRE_LEGACY_SERVICE, default="False", env=env)
158
159
 
159
160
 
160
161
  def is_debug(default: Optional[str] = None, env: Optional[Env] = None) -> bool:
@@ -1,7 +1,4 @@
1
- """Tools for integrating `wandb` with [`Keras`](https://keras.io/).
2
-
3
- Keras is a deep learning API for [`TensorFlow`](https://www.tensorflow.org/).
4
- """
1
+ """Tools for integrating `wandb` with [`Keras`](https://keras.io/)."""
5
2
 
6
3
  __all__ = (
7
4
  "WandbCallback",
@@ -11,4 +8,4 @@ __all__ = (
11
8
  )
12
9
 
13
10
  from .callbacks import WandbEvalCallback, WandbMetricsLogger, WandbModelCheckpoint
14
- from .keras import WandbCallback # todo: legacy callback to be deprecated
11
+ from .keras import WandbCallback # TODO: legacy callback to be deprecated
@@ -2,7 +2,7 @@ import sys
2
2
  from typing import Any, Dict, Optional, Union
3
3
 
4
4
  import tensorflow as tf # type: ignore
5
- from tensorflow.keras import callbacks # type: ignore
5
+ from tensorflow.keras import callbacks
6
6
 
7
7
  import wandb
8
8
  from wandb.integration.keras.keras import patch_tf_keras
@@ -86,14 +86,20 @@ class WandbMetricsLogger(callbacks.Callback):
86
86
  wandb.define_metric("epoch/*", step_metric="epoch/epoch")
87
87
 
88
88
  def _get_lr(self) -> Union[float, None]:
89
- if isinstance(self.model.optimizer.learning_rate, tf.Variable):
89
+ if isinstance(
90
+ self.model.optimizer.learning_rate,
91
+ (tf.Variable, tf.Tensor),
92
+ ) or (
93
+ hasattr(self.model.optimizer.learning_rate, "shape")
94
+ and self.model.optimizer.learning_rate.shape == ()
95
+ ):
90
96
  return float(self.model.optimizer.learning_rate.numpy().item())
91
97
  try:
92
98
  return float(
93
99
  self.model.optimizer.learning_rate(step=self.global_step).numpy().item()
94
100
  )
95
- except Exception:
96
- wandb.termerror("Unable to log learning rate.", repeat=False)
101
+ except Exception as e:
102
+ wandb.termerror(f"Unable to log learning rate: {e}", repeat=False)
97
103
  return None
98
104
 
99
105
  def on_epoch_end(self, epoch: int, logs: Optional[Dict[str, Any]] = None) -> None:
@@ -71,9 +71,6 @@ class WandbModelCheckpoint(callbacks.ModelCheckpoint):
71
71
  Note that when monitoring validation metrics such as `val_acc` or `val_loss`,
72
72
  save_freq must be set to "epoch" as those metrics are only available at the
73
73
  end of an epoch.
74
- options: (Optional[str]) Optional `tf.train.CheckpointOptions` object if
75
- `save_weights_only` is true or optional `tf.saved_model.SaveOptions`
76
- object if `save_weights_only` is false.
77
74
  initial_value_threshold: (Optional[float]) Floating point initial "best" value of the metric
78
75
  to be monitored.
79
76
  """
@@ -87,7 +84,6 @@ class WandbModelCheckpoint(callbacks.ModelCheckpoint):
87
84
  save_weights_only: bool = False,
88
85
  mode: Mode = "auto",
89
86
  save_freq: Union[SaveStrategy, int] = "epoch",
90
- options: Optional[str] = None,
91
87
  initial_value_threshold: Optional[float] = None,
92
88
  **kwargs: Any,
93
89
  ) -> None:
@@ -99,7 +95,6 @@ class WandbModelCheckpoint(callbacks.ModelCheckpoint):
99
95
  save_weights_only=save_weights_only,
100
96
  mode=mode,
101
97
  save_freq=save_freq,
102
- options=options,
103
98
  initial_value_threshold=initial_value_threshold,
104
99
  **kwargs,
105
100
  )
@@ -417,6 +417,17 @@ class WandbCallback(tf.keras.callbacks.Callback):
417
417
  ):
418
418
  if wandb.run is None:
419
419
  raise wandb.Error("You must call wandb.init() before WandbCallback()")
420
+
421
+ deprecate(
422
+ field_name=Deprecated.keras_callback,
423
+ warning_message=(
424
+ "WandbCallback is deprecated and will be removed in a future release. "
425
+ "Please use the WandbMetricsLogger, WandbModelCheckpoint, and WandbEvalCallback "
426
+ "callbacks instead. "
427
+ "See https://docs.wandb.ai/guides/integrations/keras for more information."
428
+ ),
429
+ )
430
+
420
431
  with wandb.wandb_lib.telemetry.context(run=wandb.run) as tel:
421
432
  tel.feature.keras = True
422
433
  self.validation_data = None
@@ -552,7 +563,7 @@ class WandbCallback(tf.keras.callbacks.Callback):
552
563
  self.params = params
553
564
 
554
565
  def set_model(self, model):
555
- self.model = model
566
+ super().set_model(model)
556
567
  if self.input_type == "auto" and len(model.inputs) == 1:
557
568
  self.input_type = wandb.util.guess_data_type(
558
569
  model.inputs[0].shape, risky=True