wandb 0.17.7__py3-none-win_amd64.whl → 0.17.8rc1__py3-none-win_amd64.whl
Sign up to get free protection for your applications and to get access to all the features.
- wandb/__init__.py +1 -1
- wandb/__init__.pyi +964 -0
- wandb/bin/wandb-core +0 -0
- wandb/proto/v3/wandb_internal_pb2.py +24 -24
- wandb/proto/v4/wandb_internal_pb2.py +24 -24
- wandb/proto/v5/wandb_internal_pb2.py +24 -24
- wandb/sdk/artifacts/artifact.py +15 -17
- wandb/sdk/data_types/video.py +2 -2
- wandb/sdk/internal/handler.py +5 -1
- wandb/sdk/wandb_config.py +3 -0
- wandb/sdk/wandb_run.py +28 -24
- wandb/sdk/wandb_settings.py +12 -0
- {wandb-0.17.7.dist-info → wandb-0.17.8rc1.dist-info}/METADATA +1 -1
- {wandb-0.17.7.dist-info → wandb-0.17.8rc1.dist-info}/RECORD +17 -16
- {wandb-0.17.7.dist-info → wandb-0.17.8rc1.dist-info}/WHEEL +0 -0
- {wandb-0.17.7.dist-info → wandb-0.17.8rc1.dist-info}/entry_points.txt +0 -0
- {wandb-0.17.7.dist-info → wandb-0.17.8rc1.dist-info}/licenses/LICENSE +0 -0
wandb/__init__.pyi
ADDED
@@ -0,0 +1,964 @@
|
|
1
|
+
"""Use wandb to track machine learning work.
|
2
|
+
|
3
|
+
Train and fine-tune models, manage models from experimentation to production.
|
4
|
+
|
5
|
+
For guides and examples, see https://docs.wandb.ai.
|
6
|
+
|
7
|
+
For scripts and interactive notebooks, see https://github.com/wandb/examples.
|
8
|
+
|
9
|
+
For reference documentation, see https://docs.wandb.com/ref/python.
|
10
|
+
"""
|
11
|
+
|
12
|
+
__all__ = (
|
13
|
+
"__version__",
|
14
|
+
"init",
|
15
|
+
"setup",
|
16
|
+
"save",
|
17
|
+
"sweep",
|
18
|
+
"controller",
|
19
|
+
"agent",
|
20
|
+
"config",
|
21
|
+
"log",
|
22
|
+
"summary",
|
23
|
+
"Api",
|
24
|
+
"Graph",
|
25
|
+
"Image",
|
26
|
+
"Plotly",
|
27
|
+
"Video",
|
28
|
+
"Audio",
|
29
|
+
"Table",
|
30
|
+
"Html",
|
31
|
+
"box3d",
|
32
|
+
"Object3D",
|
33
|
+
"Molecule",
|
34
|
+
"Histogram",
|
35
|
+
"ArtifactTTL",
|
36
|
+
"log_model",
|
37
|
+
"use_model",
|
38
|
+
"link_model",
|
39
|
+
"define_metric",
|
40
|
+
"Error",
|
41
|
+
"termsetup",
|
42
|
+
"termlog",
|
43
|
+
"termerror",
|
44
|
+
"termwarn",
|
45
|
+
"Artifact",
|
46
|
+
"Settings",
|
47
|
+
"teardown",
|
48
|
+
)
|
49
|
+
|
50
|
+
import os
|
51
|
+
from typing import Any, Callable, Dict, List, Optional, Sequence, Union
|
52
|
+
|
53
|
+
from wandb.analytics import Sentry as _Sentry
|
54
|
+
from wandb.apis import InternalApi, PublicApi
|
55
|
+
from wandb.data_types import (
|
56
|
+
Audio,
|
57
|
+
Graph,
|
58
|
+
Histogram,
|
59
|
+
Html,
|
60
|
+
Image,
|
61
|
+
Molecule,
|
62
|
+
Object3D,
|
63
|
+
Plotly,
|
64
|
+
Table,
|
65
|
+
Video,
|
66
|
+
box3d,
|
67
|
+
)
|
68
|
+
from wandb.errors import Error
|
69
|
+
from wandb.errors.term import termerror, termlog, termsetup, termwarn
|
70
|
+
from wandb.sdk import Artifact, Settings, wandb_config, wandb_metric, wandb_summary
|
71
|
+
from wandb.sdk.artifacts.artifact_ttl import ArtifactTTL
|
72
|
+
from wandb.sdk.interface.interface import PolicyName
|
73
|
+
from wandb.sdk.lib.paths import FilePathStr, StrPath
|
74
|
+
from wandb.sdk.wandb_run import Run
|
75
|
+
from wandb.sdk.wandb_setup import _WandbSetup
|
76
|
+
from wandb.wandb_controller import _WandbController
|
77
|
+
|
78
|
+
__version__: str = "0.17.8rc1"
|
79
|
+
|
80
|
+
run: Optional[Run] = None
|
81
|
+
config = wandb_config.Config
|
82
|
+
summary = wandb_summary.Summary
|
83
|
+
Api = PublicApi
|
84
|
+
api = InternalApi()
|
85
|
+
_sentry = _Sentry()
|
86
|
+
|
87
|
+
# record of patched libraries
|
88
|
+
patched = {"tensorboard": [], "keras": [], "gym": []} # type: ignore
|
89
|
+
|
90
|
+
def setup(
|
91
|
+
settings: Optional[Settings] = None,
|
92
|
+
) -> Optional[_WandbSetup]:
|
93
|
+
"""Prepares W&B for use in the current process and its children.
|
94
|
+
|
95
|
+
You can usually ignore this as it is implicitly called by `wandb.init()`.
|
96
|
+
|
97
|
+
When using wandb in multiple processes, calling `wandb.setup()`
|
98
|
+
in the parent process before starting child processes may improve
|
99
|
+
performance and resource utilization.
|
100
|
+
|
101
|
+
Note that `wandb.setup()` modifies `os.environ`, and it is important
|
102
|
+
that child processes inherit the modified environment variables.
|
103
|
+
|
104
|
+
See also `wandb.teardown()`.
|
105
|
+
|
106
|
+
Args:
|
107
|
+
settings (Optional[Union[Dict[str, Any], wandb.Settings]]): Configuration settings
|
108
|
+
to apply globally. These can be overridden by subsequent `wandb.init()` calls.
|
109
|
+
|
110
|
+
Example:
|
111
|
+
```python
|
112
|
+
import multiprocessing
|
113
|
+
|
114
|
+
import wandb
|
115
|
+
|
116
|
+
|
117
|
+
def run_experiment(params):
|
118
|
+
with wandb.init(config=params):
|
119
|
+
# Run experiment
|
120
|
+
pass
|
121
|
+
|
122
|
+
|
123
|
+
if __name__ == "__main__":
|
124
|
+
# Start backend and set global config
|
125
|
+
wandb.setup(settings={"project": "my_project"})
|
126
|
+
|
127
|
+
# Define experiment parameters
|
128
|
+
experiment_params = [
|
129
|
+
{"learning_rate": 0.01, "epochs": 10},
|
130
|
+
{"learning_rate": 0.001, "epochs": 20},
|
131
|
+
]
|
132
|
+
|
133
|
+
# Start multiple processes, each running a separate experiment
|
134
|
+
processes = []
|
135
|
+
for params in experiment_params:
|
136
|
+
p = multiprocessing.Process(target=run_experiment, args=(params,))
|
137
|
+
p.start()
|
138
|
+
processes.append(p)
|
139
|
+
|
140
|
+
# Wait for all processes to complete
|
141
|
+
for p in processes:
|
142
|
+
p.join()
|
143
|
+
|
144
|
+
# Optional: Explicitly shut down the backend
|
145
|
+
wandb.teardown()
|
146
|
+
```
|
147
|
+
"""
|
148
|
+
...
|
149
|
+
|
150
|
+
def teardown(exit_code: Optional[int] = None) -> None:
|
151
|
+
"""Waits for wandb to finish and frees resources.
|
152
|
+
|
153
|
+
Completes any runs that were not explicitly finished
|
154
|
+
using `run.finish()` and waits for all data to be uploaded.
|
155
|
+
|
156
|
+
It is recommended to call this at the end of a session
|
157
|
+
that used `wandb.setup()`. It is invoked automatically
|
158
|
+
in an `atexit` hook, but this is not reliable in certain setups
|
159
|
+
such as when using Python's `multiprocessing` module.
|
160
|
+
"""
|
161
|
+
...
|
162
|
+
|
163
|
+
def init(
|
164
|
+
job_type: Optional[str] = None,
|
165
|
+
dir: Optional[StrPath] = None,
|
166
|
+
config: Union[Dict, str, None] = None,
|
167
|
+
project: Optional[str] = None,
|
168
|
+
entity: Optional[str] = None,
|
169
|
+
reinit: Optional[bool] = None,
|
170
|
+
tags: Optional[Sequence] = None,
|
171
|
+
group: Optional[str] = None,
|
172
|
+
name: Optional[str] = None,
|
173
|
+
notes: Optional[str] = None,
|
174
|
+
magic: Optional[Union[dict, str, bool]] = None,
|
175
|
+
config_exclude_keys: Optional[List[str]] = None,
|
176
|
+
config_include_keys: Optional[List[str]] = None,
|
177
|
+
anonymous: Optional[str] = None,
|
178
|
+
mode: Optional[str] = None,
|
179
|
+
allow_val_change: Optional[bool] = None,
|
180
|
+
resume: Optional[Union[bool, str]] = None,
|
181
|
+
force: Optional[bool] = None,
|
182
|
+
tensorboard: Optional[bool] = None, # alias for sync_tensorboard
|
183
|
+
sync_tensorboard: Optional[bool] = None,
|
184
|
+
monitor_gym: Optional[bool] = None,
|
185
|
+
save_code: Optional[bool] = None,
|
186
|
+
id: Optional[str] = None,
|
187
|
+
fork_from: Optional[str] = None,
|
188
|
+
resume_from: Optional[str] = None,
|
189
|
+
settings: Union[Settings, Dict[str, Any], None] = None,
|
190
|
+
) -> Run:
|
191
|
+
r"""Start a new run to track and log to W&B.
|
192
|
+
|
193
|
+
In an ML training pipeline, you could add `wandb.init()`
|
194
|
+
to the beginning of your training script as well as your evaluation
|
195
|
+
script, and each piece would be tracked as a run in W&B.
|
196
|
+
|
197
|
+
`wandb.init()` spawns a new background process to log data to a run, and it
|
198
|
+
also syncs data to wandb.ai by default, so you can see live visualizations.
|
199
|
+
|
200
|
+
Call `wandb.init()` to start a run before logging data with `wandb.log()`:
|
201
|
+
<!--yeadoc-test:init-method-log-->
|
202
|
+
```python
|
203
|
+
import wandb
|
204
|
+
|
205
|
+
wandb.init()
|
206
|
+
# ... calculate metrics, generate media
|
207
|
+
wandb.log({"accuracy": 0.9})
|
208
|
+
```
|
209
|
+
|
210
|
+
`wandb.init()` returns a run object, and you can also access the run object
|
211
|
+
via `wandb.run`:
|
212
|
+
<!--yeadoc-test:init-and-assert-global-->
|
213
|
+
```python
|
214
|
+
import wandb
|
215
|
+
|
216
|
+
run = wandb.init()
|
217
|
+
|
218
|
+
assert run is wandb.run
|
219
|
+
```
|
220
|
+
|
221
|
+
At the end of your script, we will automatically call `wandb.finish` to
|
222
|
+
finalize and cleanup the run. However, if you call `wandb.init` from a
|
223
|
+
child process, you must explicitly call `wandb.finish` at the end of the
|
224
|
+
child process.
|
225
|
+
|
226
|
+
For more on using `wandb.init()`, including detailed examples, check out our
|
227
|
+
[guide and FAQs](https://docs.wandb.ai/guides/track/launch).
|
228
|
+
|
229
|
+
Arguments:
|
230
|
+
project: (str, optional) The name of the project where you're sending
|
231
|
+
the new run. If the project is not specified, we will try to infer
|
232
|
+
the project name from git root or the current program file. If we
|
233
|
+
can't infer the project name, we will default to `"uncategorized"`.
|
234
|
+
entity: (str, optional) An entity is a username or team name where
|
235
|
+
you're sending runs. This entity must exist before you can send runs
|
236
|
+
there, so make sure to create your account or team in the UI before
|
237
|
+
starting to log runs.
|
238
|
+
If you don't specify an entity, the run will be sent to your default
|
239
|
+
entity. Change your default entity
|
240
|
+
in [your settings](https://wandb.ai/settings) under "default location
|
241
|
+
to create new projects".
|
242
|
+
config: (dict, argparse, absl.flags, str, optional)
|
243
|
+
This sets `wandb.config`, a dictionary-like object for saving inputs
|
244
|
+
to your job, like hyperparameters for a model or settings for a data
|
245
|
+
preprocessing job. The config will show up in a table in the UI that
|
246
|
+
you can use to group, filter, and sort runs. Keys should not contain
|
247
|
+
`.` in their names, and values should be under 10 MB.
|
248
|
+
If dict, argparse or absl.flags: will load the key value pairs into
|
249
|
+
the `wandb.config` object.
|
250
|
+
If str: will look for a yaml file by that name, and load config from
|
251
|
+
that file into the `wandb.config` object.
|
252
|
+
save_code: (bool, optional) Turn this on to save the main script or
|
253
|
+
notebook to W&B. This is valuable for improving experiment
|
254
|
+
reproducibility and to diff code across experiments in the UI. By
|
255
|
+
default this is off, but you can flip the default behavior to on
|
256
|
+
in [your settings page](https://wandb.ai/settings).
|
257
|
+
group: (str, optional) Specify a group to organize individual runs into
|
258
|
+
a larger experiment. For example, you might be doing cross
|
259
|
+
validation, or you might have multiple jobs that train and evaluate
|
260
|
+
a model against different test sets. Group gives you a way to
|
261
|
+
organize runs together into a larger whole, and you can toggle this
|
262
|
+
on and off in the UI. For more details, see our
|
263
|
+
[guide to grouping runs](https://docs.wandb.com/guides/runs/grouping).
|
264
|
+
job_type: (str, optional) Specify the type of run, which is useful when
|
265
|
+
you're grouping runs together into larger experiments using group.
|
266
|
+
For example, you might have multiple jobs in a group, with job types
|
267
|
+
like train and eval. Setting this makes it easy to filter and group
|
268
|
+
similar runs together in the UI so you can compare apples to apples.
|
269
|
+
tags: (list, optional) A list of strings, which will populate the list
|
270
|
+
of tags on this run in the UI. Tags are useful for organizing runs
|
271
|
+
together, or applying temporary labels like "baseline" or
|
272
|
+
"production". It's easy to add and remove tags in the UI, or filter
|
273
|
+
down to just runs with a specific tag.
|
274
|
+
If you are resuming a run, its tags will be overwritten by the tags
|
275
|
+
you pass to `wandb.init()`. If you want to add tags to a resumed run
|
276
|
+
without overwriting its existing tags, use `run.tags += ["new_tag"]`
|
277
|
+
after `wandb.init()`.
|
278
|
+
name: (str, optional) A short display name for this run, which is how
|
279
|
+
you'll identify this run in the UI. By default, we generate a random
|
280
|
+
two-word name that lets you easily cross-reference runs from the
|
281
|
+
table to charts. Keeping these run names short makes the chart
|
282
|
+
legends and tables easier to read. If you're looking for a place to
|
283
|
+
save your hyperparameters, we recommend saving those in config.
|
284
|
+
notes: (str, optional) A longer description of the run, like a `-m` commit
|
285
|
+
message in git. This helps you remember what you were doing when you
|
286
|
+
ran this run.
|
287
|
+
dir: (str or pathlib.Path, optional) An absolute path to a directory where
|
288
|
+
metadata will be stored. When you call `download()` on an artifact,
|
289
|
+
this is the directory where downloaded files will be saved. By default,
|
290
|
+
this is the `./wandb` directory.
|
291
|
+
resume: (bool, str, optional) Sets the resuming behavior. Options:
|
292
|
+
`"allow"`, `"must"`, `"never"`, `"auto"` or `None`. Defaults to `None`.
|
293
|
+
Cases:
|
294
|
+
- `None` (default): If the new run has the same ID as a previous run,
|
295
|
+
this run overwrites that data.
|
296
|
+
- `"auto"` (or `True`): if the previous run on this machine crashed,
|
297
|
+
automatically resume it. Otherwise, start a new run.
|
298
|
+
- `"allow"`: if id is set with `init(id="UNIQUE_ID")` or
|
299
|
+
`WANDB_RUN_ID="UNIQUE_ID"` and it is identical to a previous run,
|
300
|
+
wandb will automatically resume the run with that id. Otherwise,
|
301
|
+
wandb will start a new run.
|
302
|
+
- `"never"`: if id is set with `init(id="UNIQUE_ID")` or
|
303
|
+
`WANDB_RUN_ID="UNIQUE_ID"` and it is identical to a previous run,
|
304
|
+
wandb will crash.
|
305
|
+
- `"must"`: if id is set with `init(id="UNIQUE_ID")` or
|
306
|
+
`WANDB_RUN_ID="UNIQUE_ID"` and it is identical to a previous run,
|
307
|
+
wandb will automatically resume the run with the id. Otherwise,
|
308
|
+
wandb will crash.
|
309
|
+
See [our guide to resuming runs](https://docs.wandb.com/guides/runs/resuming)
|
310
|
+
for more.
|
311
|
+
reinit: (bool, optional) Allow multiple `wandb.init()` calls in the same
|
312
|
+
process. (default: `False`)
|
313
|
+
magic: (bool, dict, or str, optional) The bool controls whether we try to
|
314
|
+
auto-instrument your script, capturing basic details of your run
|
315
|
+
without you having to add more wandb code. (default: `False`)
|
316
|
+
You can also pass a dict, json string, or yaml filename.
|
317
|
+
config_exclude_keys: (list, optional) string keys to exclude from
|
318
|
+
`wandb.config`.
|
319
|
+
config_include_keys: (list, optional) string keys to include in
|
320
|
+
`wandb.config`.
|
321
|
+
anonymous: (str, optional) Controls anonymous data logging. Options:
|
322
|
+
- `"never"` (default): requires you to link your W&B account before
|
323
|
+
tracking the run, so you don't accidentally create an anonymous
|
324
|
+
run.
|
325
|
+
- `"allow"`: lets a logged-in user track runs with their account, but
|
326
|
+
lets someone who is running the script without a W&B account see
|
327
|
+
the charts in the UI.
|
328
|
+
- `"must"`: sends the run to an anonymous account instead of to a
|
329
|
+
signed-up user account.
|
330
|
+
mode: (str, optional) Can be `"online"`, `"offline"` or `"disabled"`. Defaults to
|
331
|
+
online.
|
332
|
+
allow_val_change: (bool, optional) Whether to allow config values to
|
333
|
+
change after setting the keys once. By default, we throw an exception
|
334
|
+
if a config value is overwritten. If you want to track something
|
335
|
+
like a varying learning rate at multiple times during training, use
|
336
|
+
`wandb.log()` instead. (default: `False` in scripts, `True` in Jupyter)
|
337
|
+
force: (bool, optional) If `True`, this crashes the script if a user isn't
|
338
|
+
logged in to W&B. If `False`, this will let the script run in offline
|
339
|
+
mode if a user isn't logged in to W&B. (default: `False`)
|
340
|
+
sync_tensorboard: (bool, optional) Synchronize wandb logs from tensorboard or
|
341
|
+
tensorboardX and save the relevant events file. (default: `False`)
|
342
|
+
monitor_gym: (bool, optional) Automatically log videos of environment when
|
343
|
+
using OpenAI Gym. (default: `False`)
|
344
|
+
See [our guide to this integration](https://docs.wandb.com/guides/integrations/openai-gym).
|
345
|
+
id: (str, optional) A unique ID for this run, used for resuming. It must
|
346
|
+
be unique in the project, and if you delete a run you can't reuse
|
347
|
+
the ID. Use the `name` field for a short descriptive name, or `config`
|
348
|
+
for saving hyperparameters to compare across runs. The ID cannot
|
349
|
+
contain the following special characters: `/\#?%:`.
|
350
|
+
See [our guide to resuming runs](https://docs.wandb.com/guides/runs/resuming).
|
351
|
+
fork_from: (str, optional) A string with the format {run_id}?_step={step} describing
|
352
|
+
a moment in a previous run to fork a new run from. Creates a new run that picks up
|
353
|
+
logging history from the specified run at the specified moment. The target run must
|
354
|
+
be in the current project. Example: `fork_from="my-run-id?_step=1234"`.
|
355
|
+
|
356
|
+
Examples:
|
357
|
+
### Set where the run is logged
|
358
|
+
|
359
|
+
You can change where the run is logged, just like changing
|
360
|
+
the organization, repository, and branch in git:
|
361
|
+
```python
|
362
|
+
import wandb
|
363
|
+
|
364
|
+
user = "geoff"
|
365
|
+
project = "capsules"
|
366
|
+
display_name = "experiment-2021-10-31"
|
367
|
+
|
368
|
+
wandb.init(entity=user, project=project, name=display_name)
|
369
|
+
```
|
370
|
+
|
371
|
+
### Add metadata about the run to the config
|
372
|
+
|
373
|
+
Pass a dictionary-style object as the `config` keyword argument to add
|
374
|
+
metadata, like hyperparameters, to your run.
|
375
|
+
<!--yeadoc-test:init-set-config-->
|
376
|
+
```python
|
377
|
+
import wandb
|
378
|
+
|
379
|
+
config = {"lr": 3e-4, "batch_size": 32}
|
380
|
+
config.update({"architecture": "resnet", "depth": 34})
|
381
|
+
wandb.init(config=config)
|
382
|
+
```
|
383
|
+
|
384
|
+
Raises:
|
385
|
+
Error: if some unknown or internal error happened during the run initialization.
|
386
|
+
AuthenticationError: if the user failed to provide valid credentials.
|
387
|
+
CommError: if there was a problem communicating with the WandB server.
|
388
|
+
UsageError: if the user provided invalid arguments.
|
389
|
+
KeyboardInterrupt: if user interrupts the run.
|
390
|
+
|
391
|
+
Returns:
|
392
|
+
A `Run` object.
|
393
|
+
"""
|
394
|
+
...
|
395
|
+
|
396
|
+
def log(
|
397
|
+
data: Dict[str, Any],
|
398
|
+
step: Optional[int] = None,
|
399
|
+
commit: Optional[bool] = None,
|
400
|
+
sync: Optional[bool] = None,
|
401
|
+
) -> None:
|
402
|
+
"""Upload run data.
|
403
|
+
|
404
|
+
Use `log` to log data from runs, such as scalars, images, video,
|
405
|
+
histograms, plots, and tables.
|
406
|
+
|
407
|
+
See our [guides to logging](https://docs.wandb.ai/guides/track/log) for
|
408
|
+
live examples, code snippets, best practices, and more.
|
409
|
+
|
410
|
+
The most basic usage is `run.log({"train-loss": 0.5, "accuracy": 0.9})`.
|
411
|
+
This will save the loss and accuracy to the run's history and update
|
412
|
+
the summary values for these metrics.
|
413
|
+
|
414
|
+
Visualize logged data in the workspace at [wandb.ai](https://wandb.ai),
|
415
|
+
or locally on a [self-hosted instance](https://docs.wandb.ai/guides/hosting)
|
416
|
+
of the W&B app, or export data to visualize and explore locally, e.g. in
|
417
|
+
Jupyter notebooks, with [our API](https://docs.wandb.ai/guides/track/public-api-guide).
|
418
|
+
|
419
|
+
Logged values don't have to be scalars. Logging any wandb object is supported.
|
420
|
+
For example `run.log({"example": wandb.Image("myimage.jpg")})` will log an
|
421
|
+
example image which will be displayed nicely in the W&B UI.
|
422
|
+
See the [reference documentation](https://docs.wandb.com/ref/python/data-types)
|
423
|
+
for all of the different supported types or check out our
|
424
|
+
[guides to logging](https://docs.wandb.ai/guides/track/log) for examples,
|
425
|
+
from 3D molecular structures and segmentation masks to PR curves and histograms.
|
426
|
+
You can use `wandb.Table` to log structured data. See our
|
427
|
+
[guide to logging tables](https://docs.wandb.ai/guides/data-vis/log-tables)
|
428
|
+
for details.
|
429
|
+
|
430
|
+
The W&B UI organizes metrics with a forward slash (`/`) in their name
|
431
|
+
into sections named using the text before the final slash. For example,
|
432
|
+
the following results in two sections named "train" and "validate":
|
433
|
+
|
434
|
+
```
|
435
|
+
run.log({
|
436
|
+
"train/accuracy": 0.9,
|
437
|
+
"train/loss": 30,
|
438
|
+
"validate/accuracy": 0.8,
|
439
|
+
"validate/loss": 20,
|
440
|
+
})
|
441
|
+
```
|
442
|
+
|
443
|
+
Only one level of nesting is supported; `run.log({"a/b/c": 1})`
|
444
|
+
produces a section named "a/b".
|
445
|
+
|
446
|
+
`run.log` is not intended to be called more than a few times per second.
|
447
|
+
For optimal performance, limit your logging to once every N iterations,
|
448
|
+
or collect data over multiple iterations and log it in a single step.
|
449
|
+
|
450
|
+
### The W&B step
|
451
|
+
|
452
|
+
With basic usage, each call to `log` creates a new "step".
|
453
|
+
The step must always increase, and it is not possible to log
|
454
|
+
to a previous step.
|
455
|
+
|
456
|
+
Note that you can use any metric as the X axis in charts.
|
457
|
+
In many cases, it is better to treat the W&B step like
|
458
|
+
you'd treat a timestamp rather than a training step.
|
459
|
+
|
460
|
+
```
|
461
|
+
# Example: log an "epoch" metric for use as an X axis.
|
462
|
+
run.log({"epoch": 40, "train-loss": 0.5})
|
463
|
+
```
|
464
|
+
|
465
|
+
See also [define_metric](https://docs.wandb.ai/ref/python/run#define_metric).
|
466
|
+
|
467
|
+
It is possible to use multiple `log` invocations to log to
|
468
|
+
the same step with the `step` and `commit` parameters.
|
469
|
+
The following are all equivalent:
|
470
|
+
|
471
|
+
```
|
472
|
+
# Normal usage:
|
473
|
+
run.log({"train-loss": 0.5, "accuracy": 0.8})
|
474
|
+
run.log({"train-loss": 0.4, "accuracy": 0.9})
|
475
|
+
|
476
|
+
# Implicit step without auto-incrementing:
|
477
|
+
run.log({"train-loss": 0.5}, commit=False)
|
478
|
+
run.log({"accuracy": 0.8})
|
479
|
+
run.log({"train-loss": 0.4}, commit=False)
|
480
|
+
run.log({"accuracy": 0.9})
|
481
|
+
|
482
|
+
# Explicit step:
|
483
|
+
run.log({"train-loss": 0.5}, step=current_step)
|
484
|
+
run.log({"accuracy": 0.8}, step=current_step)
|
485
|
+
current_step += 1
|
486
|
+
run.log({"train-loss": 0.4}, step=current_step)
|
487
|
+
run.log({"accuracy": 0.9}, step=current_step)
|
488
|
+
```
|
489
|
+
|
490
|
+
Arguments:
|
491
|
+
data: A `dict` with `str` keys and values that are serializable
|
492
|
+
Python objects including: `int`, `float` and `string`;
|
493
|
+
any of the `wandb.data_types`; lists, tuples and NumPy arrays
|
494
|
+
of serializable Python objects; other `dict`s of this
|
495
|
+
structure.
|
496
|
+
step: The step number to log. If `None`, then an implicit
|
497
|
+
auto-incrementing step is used. See the notes in
|
498
|
+
the description.
|
499
|
+
commit: If true, finalize and upload the step. If false, then
|
500
|
+
accumulate data for the step. See the notes in the description.
|
501
|
+
If `step` is `None`, then the default is `commit=True`;
|
502
|
+
otherwise, the default is `commit=False`.
|
503
|
+
sync: This argument is deprecated and does nothing.
|
504
|
+
|
505
|
+
Examples:
|
506
|
+
For more and more detailed examples, see
|
507
|
+
[our guides to logging](https://docs.wandb.com/guides/track/log).
|
508
|
+
|
509
|
+
### Basic usage
|
510
|
+
<!--yeadoc-test:init-and-log-basic-->
|
511
|
+
```python
|
512
|
+
import wandb
|
513
|
+
|
514
|
+
run = wandb.init()
|
515
|
+
run.log({"accuracy": 0.9, "epoch": 5})
|
516
|
+
```
|
517
|
+
|
518
|
+
### Incremental logging
|
519
|
+
<!--yeadoc-test:init-and-log-incremental-->
|
520
|
+
```python
|
521
|
+
import wandb
|
522
|
+
|
523
|
+
run = wandb.init()
|
524
|
+
run.log({"loss": 0.2}, commit=False)
|
525
|
+
# Somewhere else when I'm ready to report this step:
|
526
|
+
run.log({"accuracy": 0.8})
|
527
|
+
```
|
528
|
+
|
529
|
+
### Histogram
|
530
|
+
<!--yeadoc-test:init-and-log-histogram-->
|
531
|
+
```python
|
532
|
+
import numpy as np
|
533
|
+
import wandb
|
534
|
+
|
535
|
+
# sample gradients at random from normal distribution
|
536
|
+
gradients = np.random.randn(100, 100)
|
537
|
+
run = wandb.init()
|
538
|
+
run.log({"gradients": wandb.Histogram(gradients)})
|
539
|
+
```
|
540
|
+
|
541
|
+
### Image from numpy
|
542
|
+
<!--yeadoc-test:init-and-log-image-numpy-->
|
543
|
+
```python
|
544
|
+
import numpy as np
|
545
|
+
import wandb
|
546
|
+
|
547
|
+
run = wandb.init()
|
548
|
+
examples = []
|
549
|
+
for i in range(3):
|
550
|
+
pixels = np.random.randint(low=0, high=256, size=(100, 100, 3))
|
551
|
+
image = wandb.Image(pixels, caption=f"random field {i}")
|
552
|
+
examples.append(image)
|
553
|
+
run.log({"examples": examples})
|
554
|
+
```
|
555
|
+
|
556
|
+
### Image from PIL
|
557
|
+
<!--yeadoc-test:init-and-log-image-pillow-->
|
558
|
+
```python
|
559
|
+
import numpy as np
|
560
|
+
from PIL import Image as PILImage
|
561
|
+
import wandb
|
562
|
+
|
563
|
+
run = wandb.init()
|
564
|
+
examples = []
|
565
|
+
for i in range(3):
|
566
|
+
pixels = np.random.randint(low=0, high=256, size=(100, 100, 3), dtype=np.uint8)
|
567
|
+
pil_image = PILImage.fromarray(pixels, mode="RGB")
|
568
|
+
image = wandb.Image(pil_image, caption=f"random field {i}")
|
569
|
+
examples.append(image)
|
570
|
+
run.log({"examples": examples})
|
571
|
+
```
|
572
|
+
|
573
|
+
### Video from numpy
|
574
|
+
<!--yeadoc-test:init-and-log-video-numpy-->
|
575
|
+
```python
|
576
|
+
import numpy as np
|
577
|
+
import wandb
|
578
|
+
|
579
|
+
run = wandb.init()
|
580
|
+
# axes are (time, channel, height, width)
|
581
|
+
frames = np.random.randint(low=0, high=256, size=(10, 3, 100, 100), dtype=np.uint8)
|
582
|
+
run.log({"video": wandb.Video(frames, fps=4)})
|
583
|
+
```
|
584
|
+
|
585
|
+
### Matplotlib Plot
|
586
|
+
<!--yeadoc-test:init-and-log-matplotlib-->
|
587
|
+
```python
|
588
|
+
from matplotlib import pyplot as plt
|
589
|
+
import numpy as np
|
590
|
+
import wandb
|
591
|
+
|
592
|
+
run = wandb.init()
|
593
|
+
fig, ax = plt.subplots()
|
594
|
+
x = np.linspace(0, 10)
|
595
|
+
y = x * x
|
596
|
+
ax.plot(x, y) # plot y = x^2
|
597
|
+
run.log({"chart": fig})
|
598
|
+
```
|
599
|
+
|
600
|
+
### PR Curve
|
601
|
+
```python
|
602
|
+
import wandb
|
603
|
+
|
604
|
+
run = wandb.init()
|
605
|
+
run.log({"pr": wandb.plot.pr_curve(y_test, y_probas, labels)})
|
606
|
+
```
|
607
|
+
|
608
|
+
### 3D Object
|
609
|
+
```python
|
610
|
+
import wandb
|
611
|
+
|
612
|
+
run = wandb.init()
|
613
|
+
run.log(
|
614
|
+
{
|
615
|
+
"generated_samples": [
|
616
|
+
wandb.Object3D(open("sample.obj")),
|
617
|
+
wandb.Object3D(open("sample.gltf")),
|
618
|
+
wandb.Object3D(open("sample.glb")),
|
619
|
+
]
|
620
|
+
}
|
621
|
+
)
|
622
|
+
```
|
623
|
+
|
624
|
+
Raises:
|
625
|
+
wandb.Error: if called before `wandb.init`
|
626
|
+
ValueError: if invalid data is passed
|
627
|
+
"""
|
628
|
+
...
|
629
|
+
|
630
|
+
def save(
|
631
|
+
glob_str: Optional[Union[str, os.PathLike]] = None,
|
632
|
+
base_path: Optional[Union[str, os.PathLike]] = None,
|
633
|
+
policy: PolicyName = "live",
|
634
|
+
) -> Union[bool, List[str]]:
|
635
|
+
"""Sync one or more files to W&B.
|
636
|
+
|
637
|
+
Relative paths are relative to the current working directory.
|
638
|
+
|
639
|
+
A Unix glob, such as "myfiles/*", is expanded at the time `save` is
|
640
|
+
called regardless of the `policy`. In particular, new files are not
|
641
|
+
picked up automatically.
|
642
|
+
|
643
|
+
A `base_path` may be provided to control the directory structure of
|
644
|
+
uploaded files. It should be a prefix of `glob_str`, and the directory
|
645
|
+
structure beneath it is preserved. It's best understood through
|
646
|
+
examples:
|
647
|
+
|
648
|
+
```
|
649
|
+
wandb.save("these/are/myfiles/*")
|
650
|
+
# => Saves files in a "these/are/myfiles/" folder in the run.
|
651
|
+
|
652
|
+
wandb.save("these/are/myfiles/*", base_path="these")
|
653
|
+
# => Saves files in an "are/myfiles/" folder in the run.
|
654
|
+
|
655
|
+
wandb.save("/User/username/Documents/run123/*.txt")
|
656
|
+
# => Saves files in a "run123/" folder in the run. See note below.
|
657
|
+
|
658
|
+
wandb.save("/User/username/Documents/run123/*.txt", base_path="/User")
|
659
|
+
# => Saves files in a "username/Documents/run123/" folder in the run.
|
660
|
+
|
661
|
+
wandb.save("files/*/saveme.txt")
|
662
|
+
# => Saves each "saveme.txt" file in an appropriate subdirectory
|
663
|
+
# of "files/".
|
664
|
+
```
|
665
|
+
|
666
|
+
Note: when given an absolute path or glob and no `base_path`, one
|
667
|
+
directory level is preserved as in the example above.
|
668
|
+
|
669
|
+
Arguments:
|
670
|
+
glob_str: A relative or absolute path or Unix glob.
|
671
|
+
base_path: A path to use to infer a directory structure; see examples.
|
672
|
+
policy: One of `live`, `now`, or `end`.
|
673
|
+
* live: upload the file as it changes, overwriting the previous version
|
674
|
+
* now: upload the file once now
|
675
|
+
* end: upload file when the run ends
|
676
|
+
|
677
|
+
Returns:
|
678
|
+
Paths to the symlinks created for the matched files.
|
679
|
+
|
680
|
+
For historical reasons, this may return a boolean in legacy code.
|
681
|
+
"""
|
682
|
+
...
|
683
|
+
|
684
|
+
def sweep(
|
685
|
+
sweep: Union[dict, Callable],
|
686
|
+
entity: Optional[str] = None,
|
687
|
+
project: Optional[str] = None,
|
688
|
+
prior_runs: Optional[List[str]] = None,
|
689
|
+
) -> str:
|
690
|
+
"""Initialize a hyperparameter sweep.
|
691
|
+
|
692
|
+
Search for hyperparameters that optimizes a cost function
|
693
|
+
of a machine learning model by testing various combinations.
|
694
|
+
|
695
|
+
Make note the unique identifier, `sweep_id`, that is returned.
|
696
|
+
At a later step provide the `sweep_id` to a sweep agent.
|
697
|
+
|
698
|
+
Args:
|
699
|
+
sweep: The configuration of a hyperparameter search.
|
700
|
+
(or configuration generator). See
|
701
|
+
[Sweep configuration structure](https://docs.wandb.ai/guides/sweeps/define-sweep-configuration)
|
702
|
+
for information on how to define your sweep.
|
703
|
+
If you provide a callable, ensure that the callable does
|
704
|
+
not take arguments and that it returns a dictionary that
|
705
|
+
conforms to the W&B sweep config spec.
|
706
|
+
entity: The username or team name where you want to send W&B
|
707
|
+
runs created by the sweep to. Ensure that the entity you
|
708
|
+
specify already exists. If you don't specify an entity,
|
709
|
+
the run will be sent to your default entity,
|
710
|
+
which is usually your username.
|
711
|
+
project: The name of the project where W&B runs created from
|
712
|
+
the sweep are sent to. If the project is not specified, the
|
713
|
+
run is sent to a project labeled 'Uncategorized'.
|
714
|
+
prior_runs: The run IDs of existing runs to add to this sweep.
|
715
|
+
|
716
|
+
Returns:
|
717
|
+
sweep_id: str. A unique identifier for the sweep.
|
718
|
+
"""
|
719
|
+
...
|
720
|
+
|
721
|
+
def controller(
|
722
|
+
sweep_id_or_config: Optional[Union[str, Dict]] = None,
|
723
|
+
entity: Optional[str] = None,
|
724
|
+
project: Optional[str] = None,
|
725
|
+
) -> _WandbController:
|
726
|
+
"""Public sweep controller constructor.
|
727
|
+
|
728
|
+
Usage:
|
729
|
+
```python
|
730
|
+
import wandb
|
731
|
+
|
732
|
+
tuner = wandb.controller(...)
|
733
|
+
print(tuner.sweep_config)
|
734
|
+
print(tuner.sweep_id)
|
735
|
+
tuner.configure_search(...)
|
736
|
+
tuner.configure_stopping(...)
|
737
|
+
```
|
738
|
+
"""
|
739
|
+
...
|
740
|
+
|
741
|
+
def agent(
|
742
|
+
sweep_id: str,
|
743
|
+
function: Optional[Callable] = None,
|
744
|
+
entity: Optional[str] = None,
|
745
|
+
project: Optional[str] = None,
|
746
|
+
count: Optional[int] = None,
|
747
|
+
) -> None:
|
748
|
+
"""Start one or more sweep agents.
|
749
|
+
|
750
|
+
The sweep agent uses the `sweep_id` to know which sweep it
|
751
|
+
is a part of, what function to execute, and (optionally) how
|
752
|
+
many agents to run.
|
753
|
+
|
754
|
+
Arguments:
|
755
|
+
sweep_id: The unique identifier for a sweep. A sweep ID
|
756
|
+
is generated by W&B CLI or Python SDK.
|
757
|
+
function: A function to call instead of the "program"
|
758
|
+
specified in the sweep config.
|
759
|
+
entity: The username or team name where you want to send W&B
|
760
|
+
runs created by the sweep to. Ensure that the entity you
|
761
|
+
specify already exists. If you don't specify an entity,
|
762
|
+
the run will be sent to your default entity,
|
763
|
+
which is usually your username.
|
764
|
+
project: The name of the project where W&B runs created from
|
765
|
+
the sweep are sent to. If the project is not specified, the
|
766
|
+
run is sent to a project labeled "Uncategorized".
|
767
|
+
count: The number of sweep config trials to try.
|
768
|
+
"""
|
769
|
+
...
|
770
|
+
|
771
|
+
def define_metric(
|
772
|
+
name: str,
|
773
|
+
step_metric: Union[str, wandb_metric.Metric, None] = None,
|
774
|
+
step_sync: Optional[bool] = None,
|
775
|
+
hidden: Optional[bool] = None,
|
776
|
+
summary: Optional[str] = None,
|
777
|
+
goal: Optional[str] = None,
|
778
|
+
overwrite: Optional[bool] = None,
|
779
|
+
) -> wandb_metric.Metric:
|
780
|
+
"""Customize metrics logged with `wandb.log()`.
|
781
|
+
|
782
|
+
Arguments:
|
783
|
+
name: The name of the metric to customize.
|
784
|
+
step_metric: The name of another metric to serve as the X-axis
|
785
|
+
for this metric in automatically generated charts.
|
786
|
+
step_sync: Automatically insert the last value of step_metric into
|
787
|
+
`run.log()` if it is not provided explicitly. Defaults to True
|
788
|
+
if step_metric is specified.
|
789
|
+
hidden: Hide this metric from automatic plots.
|
790
|
+
summary: Specify aggregate metrics added to summary.
|
791
|
+
Supported aggregations include "min", "max", "mean", "last",
|
792
|
+
"best", "copy" and "none". "best" is used together with the
|
793
|
+
goal parameter. "none" prevents a summary from being generated.
|
794
|
+
"copy" is deprecated and should not be used.
|
795
|
+
goal: Specify how to interpret the "best" summary type.
|
796
|
+
Supported options are "minimize" and "maximize".
|
797
|
+
overwrite: If false, then this call is merged with previous
|
798
|
+
`define_metric` calls for the same metric by using their
|
799
|
+
values for any unspecified parameters. If true, then
|
800
|
+
unspecified parameters overwrite values specified by
|
801
|
+
previous calls.
|
802
|
+
|
803
|
+
Returns:
|
804
|
+
An object that represents this call but can otherwise be discarded.
|
805
|
+
"""
|
806
|
+
...
|
807
|
+
|
808
|
+
def log_model(
|
809
|
+
path: StrPath,
|
810
|
+
name: Optional[str] = None,
|
811
|
+
aliases: Optional[List[str]] = None,
|
812
|
+
) -> None:
|
813
|
+
"""Logs a model artifact containing the contents inside the 'path' to a run and marks it as an output to this run.
|
814
|
+
|
815
|
+
Arguments:
|
816
|
+
path: (str) A path to the contents of this model,
|
817
|
+
can be in the following forms:
|
818
|
+
- `/local/directory`
|
819
|
+
- `/local/directory/file.txt`
|
820
|
+
- `s3://bucket/path`
|
821
|
+
name: (str, optional) A name to assign to the model artifact that the file contents will be added to.
|
822
|
+
The string must contain only the following alphanumeric characters: dashes, underscores, and dots.
|
823
|
+
This will default to the basename of the path prepended with the current
|
824
|
+
run id if not specified.
|
825
|
+
aliases: (list, optional) Aliases to apply to the created model artifact,
|
826
|
+
defaults to `["latest"]`
|
827
|
+
|
828
|
+
Examples:
|
829
|
+
```python
|
830
|
+
run.log_model(
|
831
|
+
path="/local/directory",
|
832
|
+
name="my_model_artifact",
|
833
|
+
aliases=["production"],
|
834
|
+
)
|
835
|
+
```
|
836
|
+
|
837
|
+
Invalid usage
|
838
|
+
```python
|
839
|
+
run.log_model(
|
840
|
+
path="/local/directory",
|
841
|
+
name="my_entity/my_project/my_model_artifact",
|
842
|
+
aliases=["production"],
|
843
|
+
)
|
844
|
+
```
|
845
|
+
|
846
|
+
Raises:
|
847
|
+
ValueError: if name has invalid special characters
|
848
|
+
|
849
|
+
Returns:
|
850
|
+
None
|
851
|
+
"""
|
852
|
+
...
|
853
|
+
|
854
|
+
def use_model(name: str) -> FilePathStr:
|
855
|
+
"""Download the files logged in a model artifact 'name'.
|
856
|
+
|
857
|
+
Arguments:
|
858
|
+
name: (str) A model artifact name. 'name' must match the name of an existing logged
|
859
|
+
model artifact.
|
860
|
+
May be prefixed with entity/project/. Valid names
|
861
|
+
can be in the following forms:
|
862
|
+
- model_artifact_name:version
|
863
|
+
- model_artifact_name:alias
|
864
|
+
|
865
|
+
Examples:
|
866
|
+
```python
|
867
|
+
run.use_model(
|
868
|
+
name="my_model_artifact:latest",
|
869
|
+
)
|
870
|
+
|
871
|
+
run.use_model(
|
872
|
+
name="my_project/my_model_artifact:v0",
|
873
|
+
)
|
874
|
+
|
875
|
+
run.use_model(
|
876
|
+
name="my_entity/my_project/my_model_artifact:<digest>",
|
877
|
+
)
|
878
|
+
```
|
879
|
+
|
880
|
+
Invalid usage
|
881
|
+
```python
|
882
|
+
run.use_model(
|
883
|
+
name="my_entity/my_project/my_model_artifact",
|
884
|
+
)
|
885
|
+
```
|
886
|
+
|
887
|
+
Raises:
|
888
|
+
AssertionError: if model artifact 'name' is of a type that does not contain the substring 'model'.
|
889
|
+
|
890
|
+
Returns:
|
891
|
+
path: (str) path to downloaded model artifact file(s).
|
892
|
+
"""
|
893
|
+
...
|
894
|
+
|
895
|
+
def link_model(
|
896
|
+
path: StrPath,
|
897
|
+
registered_model_name: str,
|
898
|
+
name: Optional[str] = None,
|
899
|
+
aliases: Optional[List[str]] = None,
|
900
|
+
) -> None:
|
901
|
+
"""Log a model artifact version and link it to a registered model in the model registry.
|
902
|
+
|
903
|
+
The linked model version will be visible in the UI for the specified registered model.
|
904
|
+
|
905
|
+
Steps:
|
906
|
+
- Check if 'name' model artifact has been logged. If so, use the artifact version that matches the files
|
907
|
+
located at 'path' or log a new version. Otherwise log files under 'path' as a new model artifact, 'name'
|
908
|
+
of type 'model'.
|
909
|
+
- Check if registered model with name 'registered_model_name' exists in the 'model-registry' project.
|
910
|
+
If not, create a new registered model with name 'registered_model_name'.
|
911
|
+
- Link version of model artifact 'name' to registered model, 'registered_model_name'.
|
912
|
+
- Attach aliases from 'aliases' list to the newly linked model artifact version.
|
913
|
+
|
914
|
+
Arguments:
|
915
|
+
path: (str) A path to the contents of this model,
|
916
|
+
can be in the following forms:
|
917
|
+
- `/local/directory`
|
918
|
+
- `/local/directory/file.txt`
|
919
|
+
- `s3://bucket/path`
|
920
|
+
registered_model_name: (str) - the name of the registered model that the model is to be linked to.
|
921
|
+
A registered model is a collection of model versions linked to the model registry, typically representing a
|
922
|
+
team's specific ML Task. The entity that this registered model belongs to will be derived from the run
|
923
|
+
name: (str, optional) - the name of the model artifact that files in 'path' will be logged to. This will
|
924
|
+
default to the basename of the path prepended with the current run id if not specified.
|
925
|
+
aliases: (List[str], optional) - alias(es) that will only be applied on this linked artifact
|
926
|
+
inside the registered model.
|
927
|
+
The alias "latest" will always be applied to the latest version of an artifact that is linked.
|
928
|
+
|
929
|
+
Examples:
|
930
|
+
```python
|
931
|
+
run.link_model(
|
932
|
+
path="/local/directory",
|
933
|
+
registered_model_name="my_reg_model",
|
934
|
+
name="my_model_artifact",
|
935
|
+
aliases=["production"],
|
936
|
+
)
|
937
|
+
```
|
938
|
+
|
939
|
+
Invalid usage
|
940
|
+
```python
|
941
|
+
run.link_model(
|
942
|
+
path="/local/directory",
|
943
|
+
registered_model_name="my_entity/my_project/my_reg_model",
|
944
|
+
name="my_model_artifact",
|
945
|
+
aliases=["production"],
|
946
|
+
)
|
947
|
+
|
948
|
+
run.link_model(
|
949
|
+
path="/local/directory",
|
950
|
+
registered_model_name="my_reg_model",
|
951
|
+
name="my_entity/my_project/my_model_artifact",
|
952
|
+
aliases=["production"],
|
953
|
+
)
|
954
|
+
```
|
955
|
+
|
956
|
+
Raises:
|
957
|
+
AssertionError: if registered_model_name is a path or
|
958
|
+
if model artifact 'name' is of a type that does not contain the substring 'model'
|
959
|
+
ValueError: if name has invalid special characters
|
960
|
+
|
961
|
+
Returns:
|
962
|
+
None
|
963
|
+
"""
|
964
|
+
...
|