wandb 0.17.0rc2__py3-none-win32.whl → 0.17.1__py3-none-win32.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (159) hide show
  1. wandb/__init__.py +1 -2
  2. wandb/apis/importers/internals/internal.py +0 -1
  3. wandb/apis/importers/wandb.py +12 -7
  4. wandb/apis/internal.py +0 -3
  5. wandb/apis/public/api.py +213 -79
  6. wandb/apis/public/artifacts.py +335 -100
  7. wandb/apis/public/files.py +9 -9
  8. wandb/apis/public/jobs.py +16 -4
  9. wandb/apis/public/projects.py +26 -28
  10. wandb/apis/public/query_generator.py +1 -1
  11. wandb/apis/public/runs.py +163 -65
  12. wandb/apis/public/sweeps.py +2 -2
  13. wandb/apis/reports/__init__.py +1 -7
  14. wandb/apis/reports/v1/__init__.py +5 -27
  15. wandb/apis/reports/v2/__init__.py +7 -19
  16. wandb/apis/workspaces/__init__.py +8 -0
  17. wandb/beta/workflows.py +8 -3
  18. wandb/bin/wandb-core +0 -0
  19. wandb/cli/cli.py +131 -59
  20. wandb/docker/__init__.py +1 -1
  21. wandb/errors/term.py +10 -2
  22. wandb/filesync/step_checksum.py +1 -4
  23. wandb/filesync/step_prepare.py +4 -24
  24. wandb/filesync/step_upload.py +5 -107
  25. wandb/filesync/upload_job.py +0 -76
  26. wandb/integration/gym/__init__.py +35 -15
  27. wandb/integration/openai/fine_tuning.py +21 -3
  28. wandb/integration/prodigy/prodigy.py +1 -1
  29. wandb/jupyter.py +16 -17
  30. wandb/plot/pr_curve.py +2 -1
  31. wandb/plot/roc_curve.py +2 -1
  32. wandb/{plots → plot}/utils.py +13 -25
  33. wandb/proto/v3/wandb_internal_pb2.py +54 -54
  34. wandb/proto/v3/wandb_settings_pb2.py +2 -2
  35. wandb/proto/v3/wandb_telemetry_pb2.py +10 -10
  36. wandb/proto/v4/wandb_internal_pb2.py +54 -54
  37. wandb/proto/v4/wandb_settings_pb2.py +2 -2
  38. wandb/proto/v4/wandb_telemetry_pb2.py +10 -10
  39. wandb/proto/v5/wandb_base_pb2.py +30 -0
  40. wandb/proto/v5/wandb_internal_pb2.py +355 -0
  41. wandb/proto/v5/wandb_server_pb2.py +63 -0
  42. wandb/proto/v5/wandb_settings_pb2.py +45 -0
  43. wandb/proto/v5/wandb_telemetry_pb2.py +41 -0
  44. wandb/proto/wandb_base_pb2.py +2 -0
  45. wandb/proto/wandb_deprecated.py +9 -1
  46. wandb/proto/wandb_generate_deprecated.py +34 -0
  47. wandb/proto/{wandb_internal_codegen.py → wandb_generate_proto.py} +1 -35
  48. wandb/proto/wandb_internal_pb2.py +2 -0
  49. wandb/proto/wandb_server_pb2.py +2 -0
  50. wandb/proto/wandb_settings_pb2.py +2 -0
  51. wandb/proto/wandb_telemetry_pb2.py +2 -0
  52. wandb/sdk/artifacts/artifact.py +68 -22
  53. wandb/sdk/artifacts/artifact_manifest.py +1 -1
  54. wandb/sdk/artifacts/artifact_manifest_entry.py +6 -3
  55. wandb/sdk/artifacts/artifact_manifests/artifact_manifest_v1.py +1 -1
  56. wandb/sdk/artifacts/artifact_saver.py +1 -10
  57. wandb/sdk/artifacts/storage_handlers/local_file_handler.py +6 -2
  58. wandb/sdk/artifacts/storage_handlers/multi_handler.py +1 -1
  59. wandb/sdk/artifacts/storage_handlers/tracking_handler.py +6 -4
  60. wandb/sdk/artifacts/storage_policies/wandb_storage_policy.py +2 -42
  61. wandb/sdk/artifacts/storage_policy.py +1 -12
  62. wandb/sdk/data_types/image.py +1 -1
  63. wandb/sdk/data_types/video.py +4 -2
  64. wandb/sdk/interface/interface.py +13 -0
  65. wandb/sdk/interface/interface_shared.py +1 -1
  66. wandb/sdk/internal/file_pusher.py +2 -5
  67. wandb/sdk/internal/file_stream.py +6 -19
  68. wandb/sdk/internal/internal_api.py +148 -136
  69. wandb/sdk/internal/job_builder.py +207 -135
  70. wandb/sdk/internal/progress.py +0 -28
  71. wandb/sdk/internal/sender.py +102 -39
  72. wandb/sdk/internal/settings_static.py +8 -1
  73. wandb/sdk/internal/system/assets/trainium.py +3 -3
  74. wandb/sdk/internal/system/system_info.py +4 -2
  75. wandb/sdk/internal/update.py +1 -1
  76. wandb/sdk/launch/__init__.py +9 -1
  77. wandb/sdk/launch/_launch.py +4 -24
  78. wandb/sdk/launch/_launch_add.py +1 -3
  79. wandb/sdk/launch/_project_spec.py +184 -224
  80. wandb/sdk/launch/agent/agent.py +58 -18
  81. wandb/sdk/launch/agent/config.py +0 -3
  82. wandb/sdk/launch/builder/abstract.py +67 -0
  83. wandb/sdk/launch/builder/build.py +165 -576
  84. wandb/sdk/launch/builder/context_manager.py +235 -0
  85. wandb/sdk/launch/builder/docker_builder.py +7 -23
  86. wandb/sdk/launch/builder/kaniko_builder.py +10 -23
  87. wandb/sdk/launch/builder/templates/dockerfile.py +92 -0
  88. wandb/sdk/launch/create_job.py +51 -45
  89. wandb/sdk/launch/environment/aws_environment.py +26 -1
  90. wandb/sdk/launch/inputs/files.py +148 -0
  91. wandb/sdk/launch/inputs/internal.py +224 -0
  92. wandb/sdk/launch/inputs/manage.py +95 -0
  93. wandb/sdk/launch/runner/abstract.py +2 -2
  94. wandb/sdk/launch/runner/kubernetes_monitor.py +45 -12
  95. wandb/sdk/launch/runner/kubernetes_runner.py +6 -8
  96. wandb/sdk/launch/runner/local_container.py +2 -3
  97. wandb/sdk/launch/runner/local_process.py +8 -29
  98. wandb/sdk/launch/runner/sagemaker_runner.py +20 -14
  99. wandb/sdk/launch/runner/vertex_runner.py +8 -7
  100. wandb/sdk/launch/sweeps/scheduler.py +2 -0
  101. wandb/sdk/launch/sweeps/utils.py +2 -2
  102. wandb/sdk/launch/utils.py +16 -138
  103. wandb/sdk/lib/_settings_toposort_generated.py +2 -5
  104. wandb/sdk/lib/apikey.py +4 -2
  105. wandb/sdk/lib/config_util.py +3 -3
  106. wandb/sdk/lib/proto_util.py +22 -1
  107. wandb/sdk/lib/redirect.py +1 -1
  108. wandb/sdk/service/service.py +2 -1
  109. wandb/sdk/service/streams.py +5 -5
  110. wandb/sdk/wandb_init.py +25 -59
  111. wandb/sdk/wandb_login.py +28 -25
  112. wandb/sdk/wandb_run.py +112 -45
  113. wandb/sdk/wandb_settings.py +33 -64
  114. wandb/sdk/wandb_watch.py +1 -1
  115. wandb/sklearn/plot/classifier.py +4 -6
  116. wandb/sync/sync.py +2 -2
  117. wandb/testing/relay.py +32 -17
  118. wandb/util.py +36 -37
  119. wandb/wandb_agent.py +3 -3
  120. wandb/wandb_controller.py +3 -2
  121. {wandb-0.17.0rc2.dist-info → wandb-0.17.1.dist-info}/METADATA +7 -9
  122. {wandb-0.17.0rc2.dist-info → wandb-0.17.1.dist-info}/RECORD +125 -147
  123. wandb/apis/reports/v1/_blocks.py +0 -1406
  124. wandb/apis/reports/v1/_helpers.py +0 -70
  125. wandb/apis/reports/v1/_panels.py +0 -1282
  126. wandb/apis/reports/v1/_templates.py +0 -478
  127. wandb/apis/reports/v1/blocks.py +0 -27
  128. wandb/apis/reports/v1/helpers.py +0 -2
  129. wandb/apis/reports/v1/mutations.py +0 -66
  130. wandb/apis/reports/v1/panels.py +0 -17
  131. wandb/apis/reports/v1/report.py +0 -268
  132. wandb/apis/reports/v1/runset.py +0 -144
  133. wandb/apis/reports/v1/templates.py +0 -7
  134. wandb/apis/reports/v1/util.py +0 -406
  135. wandb/apis/reports/v1/validators.py +0 -131
  136. wandb/apis/reports/v2/blocks.py +0 -25
  137. wandb/apis/reports/v2/expr_parsing.py +0 -257
  138. wandb/apis/reports/v2/gql.py +0 -68
  139. wandb/apis/reports/v2/interface.py +0 -1911
  140. wandb/apis/reports/v2/internal.py +0 -867
  141. wandb/apis/reports/v2/metrics.py +0 -6
  142. wandb/apis/reports/v2/panels.py +0 -15
  143. wandb/catboost/__init__.py +0 -9
  144. wandb/fastai/__init__.py +0 -9
  145. wandb/keras/__init__.py +0 -19
  146. wandb/lightgbm/__init__.py +0 -9
  147. wandb/plots/__init__.py +0 -6
  148. wandb/plots/explain_text.py +0 -36
  149. wandb/plots/heatmap.py +0 -81
  150. wandb/plots/named_entity.py +0 -43
  151. wandb/plots/part_of_speech.py +0 -50
  152. wandb/plots/plot_definitions.py +0 -768
  153. wandb/plots/precision_recall.py +0 -121
  154. wandb/plots/roc.py +0 -103
  155. wandb/sacred/__init__.py +0 -3
  156. wandb/xgboost/__init__.py +0 -9
  157. {wandb-0.17.0rc2.dist-info → wandb-0.17.1.dist-info}/WHEEL +0 -0
  158. {wandb-0.17.0rc2.dist-info → wandb-0.17.1.dist-info}/entry_points.txt +0 -0
  159. {wandb-0.17.0rc2.dist-info → wandb-0.17.1.dist-info}/licenses/LICENSE +0 -0
@@ -1,768 +0,0 @@
1
- """
2
- plot_summary_metrics
3
- {
4
- "$schema": "https://vega.github.io/schema/vega-lite/v4.json",
5
- "data": {
6
- "name": "${history-table:rows:x-axis,key}"
7
- },
8
- "title": "Summary Metrics",
9
- "encoding": {
10
- "y": {"field": "metric_name", "type": "nominal"},
11
- "x": {"field": "metric_value", "type": "quantitative"},
12
- "color": {"field": "metric_name", "type": "nominal",
13
- "scale": {
14
- "range": ["#AB47BC", "#3498DB", "#5C6BC0", "#3F51B5"]
15
- }},
16
- "opacity": {"value": 0.8}
17
- },
18
- "layer": [{
19
- "mark": "bar"
20
- }, {
21
- "mark": {
22
- "type": "text",
23
- "align": "left",
24
- "baseline": "middle",
25
- "dx": 3
26
- },
27
- "encoding": {
28
- "text": {"field": "metric_value", "type": "quantitative"}
29
- }
30
- }]
31
- }
32
-
33
- plot_learning_curve
34
- l2k2/sklearn_learningcurve
35
-
36
- {
37
- "$schema": "https://vega.github.io/schema/vega-lite/v4.json",
38
- "padding": 5,
39
- "width": "500",
40
- "height": "500",
41
- "data":
42
- {
43
- "name": "${history-table:rows:x-axis,key}"
44
- },
45
- "title": {
46
- "text": "Learning Curve"
47
- },
48
- "layer": [
49
- {
50
- "encoding": {
51
- "x": {"field": "train_size", "type": "quantitative"},
52
- "y": {"field": "score", "type": "quantitative"},
53
- "color": {"field": "dataset", "type": "nominal"},
54
- "opacity": {"value": 0.7}
55
- },
56
- "layer": [
57
- {"mark": "line"},
58
- {
59
- "selection": {
60
- "label": {
61
- "type": "single",
62
- "nearest": true,
63
- "on": "mouseover",
64
- "encodings": ["x"],
65
- "empty": "none"
66
- }
67
- },
68
- "mark": "point",
69
- "encoding": {
70
- "opacity": {
71
- "condition": {"selection": "label", "value": 1},
72
- "value": 0
73
- }
74
- }
75
- }
76
- ]
77
- },
78
- {
79
- "transform": [{"filter": {"selection": "label"}}],
80
- "layer": [
81
- {
82
- "mark": {"type": "rule", "color": "gray"},
83
- "encoding": {
84
- "x": {"type": "quantitative", "field": "train_size"}
85
- }
86
- },
87
- {
88
- "encoding": {
89
- "text": {"type": "quantitative", "field": "score"},
90
- "x": {"type": "quantitative", "field": "train_size"},
91
- "y": {"type": "quantitative", "field": "score"}
92
- },
93
- "layer": [
94
- {
95
- "mark": {
96
- "type": "text",
97
- "stroke": "white",
98
- "strokeWidth": 2,
99
- "align": "left",
100
- "dx": 5,
101
- "dy": -5
102
- }
103
- },
104
- {
105
- "mark": {"type": "text", "align": "left", "dx": 5, "dy": -5},
106
- "encoding": {
107
- "color": {
108
- "type": "nominal", "field": "dataset", "scale": {
109
- "domain": ["train", "test"],
110
- "range": ["#3498DB", "#AB47BC"]
111
- },
112
- "legend": {
113
- "title": " "
114
- }
115
- }
116
- }
117
- }
118
- ]
119
- }
120
- ]
121
- }
122
- ]
123
- }
124
-
125
- plot_roc
126
- {
127
- "$schema": "https://vega.github.io/schema/vega-lite/v4.json",
128
- "padding": 5,
129
- "width": "500",
130
- "height": "500",
131
- "data":
132
- {
133
- "name": "${history-table:rows:x-axis,key}"
134
- },
135
- "title": {
136
- "text": "ROC Curve"
137
- },"layer": [
138
- {
139
- "encoding": {
140
- "x": {"field": "fpr", "type": "quantitative", "axis": {"title": "False Positive Rate"}},
141
- "y": {"field": "tpr", "type": "quantitative", "axis": {"title": "True Positive Rate"}},
142
- "color": {"field": "class", "type": "nominal"},
143
- "opacity": {"value": 0.7}
144
- },
145
- "layer": [
146
- {"mark": "line"},
147
- {
148
- "selection": {
149
- "label": {
150
- "type": "single",
151
- "nearest": true,
152
- "on": "mouseover",
153
- "encodings": ["x"],
154
- "empty": "none"
155
- }
156
- },
157
- "mark": "point",
158
- "encoding": {
159
- "opacity": {
160
- "condition": {"selection": "label", "value": 1},
161
- "value": 0
162
- }
163
- }
164
- }
165
- ]
166
- },
167
- {
168
- "transform": [{"filter": {"selection": "label"}}],
169
- "layer": [
170
- {
171
- "mark": {"type": "rule", "color": "gray"},
172
- "encoding": {
173
- "x": {"type": "quantitative", "field": "train_size"}
174
- }
175
- },
176
- {
177
- "encoding": {
178
- "text": {"type": "quantitative", "field": "fpr"},
179
- "x": {"type": "quantitative", "field": "fpr"}
180
- },
181
- "layer": [
182
- {
183
- "mark": {
184
- "type": "text",
185
- "stroke": "white",
186
- "strokeWidth": 2,
187
- "align": "left",
188
- "dx": 5,
189
- "dy": -5
190
- }
191
- },
192
- {
193
- "mark": {"type": "text", "align": "left", "dx": 5, "dy": -5},
194
- "encoding": {
195
- "color": {
196
- "type": "nominal", "field": "class", "scale": {
197
- "range": ["#3498DB", "#AB47BC"]
198
- },
199
- "legend": {
200
- "title": " "
201
- }
202
- }
203
- }
204
- }
205
- ]
206
- }
207
- ]
208
- }
209
- ]
210
- }
211
-
212
- plot_confusion_matrix
213
- {
214
- "$schema": "https://vega.github.io/schema/vega-lite/v4.json",
215
- "padding": 5,
216
- "width": 500,
217
- "height": 500,
218
- "data":
219
- {
220
- "name": "${history-table:rows:x-axis,key}"
221
- },
222
- "title": {
223
- "text": "Confusion Matrix"
224
- },
225
- "mark": "circle",
226
- "encoding": {
227
- "x": {
228
- "field": "Predicted",
229
- "type": "nominal",
230
- "axis": {
231
- "maxExtent": 50,
232
- "labelLimit": 40,
233
- "labelAngle": -45
234
- }
235
- },
236
- "y": {
237
- "field": "Actual",
238
- "type": "nominal"
239
-
240
- },
241
- "size": {
242
- "field": "Count",
243
- "type": "quantitative"
244
- },
245
- "color": {
246
- "value": "#3498DB"
247
- }
248
- }
249
- }
250
-
251
- plot_precision_recall
252
- {
253
- "$schema": "https://vega.github.io/schema/vega-lite/v4.json",
254
- "padding": 5,
255
- "width": 500,
256
- "height": 500,
257
- "data":
258
- {
259
- "name": "${history-table:rows:x-axis,key}"
260
- },
261
- "title": {
262
- "text": "Precision Recall"
263
- },"layer": [
264
- {
265
- "encoding": {
266
- "x": {"field": "precision", "type": "quantitative"},
267
- "y": {"field": "recall", "type": "quantitative"},
268
- "color": {"field": "class", "type": "nominal"},
269
- "opacity": {"value": 0.7}
270
- },
271
- "layer": [
272
- {"mark": "line"},
273
- {
274
- "selection": {
275
- "label": {
276
- "type": "single",
277
- "nearest": true,
278
- "on": "mouseover",
279
- "encodings": ["x"],
280
- "empty": "none"
281
- }
282
- },
283
- "mark": "point",
284
- "encoding": {
285
- "opacity": {
286
- "condition": {"selection": "label", "value": 1},
287
- "value": 0
288
- }
289
- }
290
- }
291
- ]
292
- },
293
- {
294
- "transform": [{"filter": {"selection": "label"}}],
295
- "layer": [
296
- {
297
- "encoding": {
298
- "text": {"type": "nominal", "field": "class"},
299
- "x": {"type": "quantitative", "field": "precision"},
300
- "y": {"type": "quantitative", "field": "recall"}
301
- },
302
- "layer": [
303
- {
304
- "mark": {
305
- "type": "text",
306
- "stroke": "white",
307
- "strokeWidth": 2,
308
- "align": "left",
309
- "dx": 5,
310
- "dy": -5
311
- }
312
- },
313
- {
314
- "mark": {"type": "text", "align": "left", "dx": 5, "dy": -5},
315
- "encoding": {
316
- "color": {
317
- "type": "nominal", "field": "class", "scale": {
318
- "range": ["#3498DB", "#AB47BC", "#55BBBB", "#BB9955"]
319
- },
320
- "legend": {
321
- "title": " "
322
- }
323
- }
324
- }
325
- }
326
- ]
327
- }
328
- ]
329
- }
330
- ]
331
- }
332
-
333
- plot_feature_importances
334
- {
335
- "$schema": "https://vega.github.io/schema/vega-lite/v4.json",
336
- "data": {
337
- "name": "${history-table:rows:x-axis,key}"
338
- },
339
- "title": "Feature Importances",
340
- "mark": "bar",
341
- "encoding": {
342
- "y": {"field": "feature_names", "type": "nominal", "axis": {"title":"Features"},"sort": "-x"},
343
- "x": {"field": "importances", "type": "quantitative", "axis": {"title":"Importances"}},
344
- "color": {"value": "#3498DB"},
345
- "opacity": {"value": 0.9}
346
- }
347
- }
348
-
349
- plot_elbow_curve
350
- {
351
- "$schema": "https://vega.github.io/schema/vega-lite/v4.json",
352
- "description": "A dual axis chart, created by setting y's scale resolution to `\"independent\"`",
353
- "width": 400, "height": 300,
354
- "data": {
355
- "name": "${history-table:rows:x-axis,key}"
356
- },
357
- "title": "Elbow Plot - Errors vs Cluster Size",
358
- "encoding": {
359
- "x": {
360
- "field": "cluster_ranges",
361
- "bin": true,
362
- "axis": {"title": "Number of Clusters"},
363
- "type": "quantitative"
364
- }
365
- },
366
- "layer": [
367
- {
368
- "mark": {"opacity": 0.5, "type": "line", "color": "#AB47BC"},
369
- "encoding": {
370
- "y": {
371
- "field": "errors",
372
- "type": "quantitative",
373
- "axis": {"title": "Sum of Squared Errors", "titleColor": "#AB47BC"}
374
- }
375
- }
376
- },
377
- {
378
- "mark": {"opacity": 0.3, "stroke": "#3498DB", "strokeDash": [6, 4], "type": "line"},
379
- "encoding": {
380
- "y": {
381
- "field": "clustering_time",
382
- "type": "quantitative",
383
- "axis": {"title": "Clustering Time", "titleColor":"#3498DB"}
384
- }
385
- }
386
- }
387
- ],
388
- "resolve": {"scale": {"y": "independent"}}
389
- }
390
-
391
- plot_silhouette
392
- {
393
- "$schema": "https://vega.github.io/schema/vega-lite/v4.json",
394
- "data": {"name": "${history-table:rows:x-axis,key}"},
395
- "title": "Silhouette analysis of cluster centers",
396
- "hconcat": [
397
- {
398
- "width": 400,
399
- "height": 400,
400
- "layer": [
401
- {
402
- "mark": "area",
403
- "encoding": {
404
- "x": {
405
- "field": "x1",
406
- "type": "quantitative",
407
- "axis": {"title":"Silhouette Coefficients"}
408
- },
409
- "x2": {
410
- "field": "x2"
411
- },
412
- "y": {
413
- "title": "Cluster Label",
414
- "field": "y_sil",
415
- "type": "quantitative",
416
- "axis": {"title":"Clusters", "labels": false}
417
- },
418
- "color": {
419
- "field": "color_sil",
420
- "type": "nominal",
421
- "axis": {"title":"Cluster Labels"},
422
- "scale": {
423
- "range": ["#AB47BC", "#3498DB", "#55BBBB", "#5C6BC0", "#FBC02D", "#3F51B5"]}
424
- },
425
- "opacity": { "value": 0.7 }
426
- }},
427
- {
428
-
429
- "mark": {
430
- "type":"rule",
431
- "strokeDash": [6, 4],
432
- "stroke":"#f88c99"},
433
- "encoding": {
434
- "x": {
435
- "field": "silhouette_avg",
436
- "type": "quantitative"
437
- },
438
- "color": {"value": "red"},
439
- "size": {"value": 1},
440
- "opacity": { "value": 0.5 }
441
- }
442
- }]
443
- },
444
- {
445
- "width": 400,
446
- "height": 400,
447
- "layer": [
448
- {
449
- "mark": "circle",
450
- "encoding": {
451
- "x": {"field": "x", "type": "quantitative", "scale": {"zero": false}, "axis": {"title":"Feature Space for 1st Feature"}},
452
- "y": {"field": "y", "type": "quantitative", "scale": {"zero": false}}, "axis": {"title":"Feature Space for 2nd Feature"},
453
- "color": {"field": "colors", "type": "nominal", "axis": {"title":"Cluster Labels"}}
454
- }
455
- },
456
- {
457
- "mark": "point",
458
- "encoding": {
459
- "x": {"field": "centerx", "type": "quantitative", "scale": {"zero": false}, "axis": {"title":"Feature Space for 1st Feature"}},
460
- "y": {"field": "centery", "type": "quantitative", "scale": {"zero": false}, "axis": {"title":"Feature Space for 2nd Feature"}},
461
- "color": {"field": "colors", "type": "nominal", "axis": {"title":"Cluster Labels"}},
462
- "size": {"value": 80}
463
- }
464
- }
465
- ]
466
- }
467
- ]
468
- }
469
-
470
- plot_class_balance
471
- {
472
- "$schema": "https://vega.github.io/schema/vega-lite/v4.json",
473
- "width": 500,
474
- "height": 500,
475
- "title": "Class Proportions in Target Variable",
476
- "data": {
477
- "name": "${history-table:rows:x-axis,key}"
478
- },
479
- "selection": {
480
- "highlight": {"type": "single", "empty": "none", "on": "mouseover"},
481
- "select": {"type": "multi"}
482
- },
483
- "mark": {
484
- "type": "bar",
485
- "stroke": "black",
486
- "cursor": "pointer"
487
- },
488
- "encoding": {
489
- "x": {"field": "class", "type": "ordinal", "axis": {"title": "Class"}},
490
- "y": {"field": "count", "type": "quantitative", "axis": {"title": "Number of instances"}},
491
- "fillOpacity": {
492
- "condition": {"selection": "select", "value": 1},
493
- "value": 0.3
494
- },
495
- "opacity": {"value": 0.9},
496
- "color": {
497
- "field": "dataset",
498
- "type": "nominal",
499
- "scale": {
500
- "domain": ["train", "test"],
501
- "range": ["#3498DB", "#4DB6AC"]
502
- },
503
- "legend": {"title": "Dataset"}
504
- },
505
- "strokeWidth": {
506
- "condition": [
507
- {
508
- "test": {
509
- "and": [
510
- {"selection": "select"},
511
- "length(data(\"select_store\"))"
512
- ]
513
- },
514
- "value": 2
515
- },
516
- {"selection": "highlight", "value": 1}
517
- ],
518
- "value": 0
519
- }
520
- },
521
- "config": {
522
- "scale": {
523
- "bandPaddingInner": 0.2
524
- }
525
- }
526
- }
527
-
528
- plot_calibration_curve
529
- {
530
- "$schema": "https://vega.github.io/schema/vega-lite/v4.json",
531
- "padding": 5,
532
- "data":
533
- {
534
- "name": "${history-table:rows:x-axis,key}"
535
- },
536
- "title": "Calibration Curve",
537
- "vconcat": [
538
- {
539
- "layer": [
540
- {
541
- "encoding": {
542
- "x": {"field": "mean_predicted_value", "type": "quantitative", "axis": {"title": "Mean predicted value"}},
543
- "y": {"field": "fraction_of_positives", "type": "quantitative", "axis": {"title": "Fraction of positives"}},
544
- "color": {
545
- "field": "model",
546
- "type": "nominal",
547
- "axis": {"title": "Models"},
548
- "scale": {
549
- "range": ["#3498DB", "#AB47BC", "#55BBBB", "#BB9955", "#FBC02D"]
550
- }
551
- }
552
- },
553
- "layer": [
554
- {
555
- "mark": {
556
- "type": "line",
557
- "point": {
558
- "filled": false,
559
- "fill": "white"
560
- }
561
- }
562
- }
563
- ]
564
- }]
565
- },
566
- {
567
- "mark": {"type": "tick"},
568
- "encoding": {
569
- "x": {"field": "edge_dict", "type": "quantitative","bin":true, "axis": {"title": "Mean predicted value"}},
570
- "y": {"field": "hist_dict", "type": "quantitative", "axis": {"title": "Counts"}},
571
- "strokeWidth": {
572
- "value": 2
573
- },
574
- "color": {
575
- "field": "model",
576
- "type": "nominal",
577
- "axis": {"title": "Models"},
578
- "scale": {
579
- "range": ["#3498DB", "#AB47BC", "#55BBBB", "#BB9955"]
580
- }
581
- }
582
- }
583
- }
584
- ]
585
- }
586
-
587
- plot_outlier_candidates
588
- {
589
- "$schema": "https://vega.github.io/schema/vega-lite/v4.json",
590
- "padding": 5,
591
- "data":
592
- {
593
- "name": "${history-table:rows:x-axis,key}"
594
- },
595
- "title": {
596
- "text": "Cook's Distance Outlier Detection"
597
- },
598
- "layer": [{
599
- "mark": "bar",
600
- "encoding": {
601
- "x": {
602
- "field": "instance_indicies",
603
- "type": "quantitative",
604
- "axis": {"title": "Instances"}
605
- },
606
- "y": {
607
- "field": "distance",
608
- "type": "quantitative",
609
- "axis": {"title": "Influence (Cook's Distance)"}
610
- },
611
- "color": {"value": "#3498DB"},
612
- "opacity": {"value": 0.4}
613
- }
614
- },{
615
- "mark": {
616
- "type":"rule",
617
- "strokeDash": [6, 4],
618
- "stroke":"#f88c99"},
619
- "encoding": {
620
- "y": {
621
- "field": "influence_threshold",
622
- "type": "quantitative"
623
- },
624
- "color": {"value": "red"},
625
- "size": {"value": 1}
626
- }
627
- }, {
628
- "mark": {
629
- "type": "text",
630
- "align": "left",
631
- "baseline": "top",
632
- "dx": 0
633
- }
634
- }]
635
- }
636
-
637
- plot_residuals
638
- {
639
- "$schema": "https://vega.github.io/schema/vega-lite/v4.json",
640
- "width": "container",
641
- "data":
642
- {
643
- "name": "${history-table:rows:x-axis,key}"
644
- },
645
- "title": "Residuals Plot",
646
- "vconcat": [
647
- {
648
- "layer": [
649
- {
650
- "encoding": {
651
- "y": {"field": "y_pred", "type": "quantitative", "axis": {"title": "Predicted Value"}},
652
- "x": {"field": "residuals", "type": "quantitative", "axis": {"title": "Residuals"}},
653
- "color": {
654
- "field": "dataset",
655
- "type": "nominal",
656
- "axis": {"title": "Dataset"}
657
- }
658
- },
659
- "layer": [
660
- {
661
- "mark": {
662
- "type": "point",
663
- "opacity": 0.5,
664
- "filled" : true
665
- }
666
- }
667
- ]
668
- }]
669
- },
670
- {
671
- "mark": {"type": "bar",
672
- "opacity": 0.8},
673
- "encoding": {
674
- "x": {"field": "residuals", "type": "quantitative", "bin": true, "axis": {"title": "Residuals"}},
675
- "y": {
676
- "aggregate": "count", "field": "residuals", "type": "quantitative", "axis": {"title": "Distribution"}},
677
- "strokeWidth": {
678
- "value": 1
679
- },
680
- "color": {
681
- "field": "dataset",
682
- "type": "nominal",
683
- "axis": {"title": "Dataset"},
684
- "scale": {
685
- "range": ["#AB47BC", "#3498DB"]
686
- }
687
- }
688
- }
689
- }
690
- ]
691
- }
692
-
693
- plot_decision_boundaries
694
- {
695
- "$schema": "https://vega.github.io/schema/vega-lite/v4.json",
696
- "data": {"name": "${history-table:rows:x-axis,key}"},
697
- "title": "Decision Boundary - Projected Into 2D Space",
698
- "width": 300,
699
- "height": 200,
700
- "layer": [
701
- {
702
- "mark": {"type" :"point", "opacity": 0.5},
703
- "encoding": {
704
- "x": {"field": "x", "type": "quantitative", "scale": {"zero": false}, "axis": {"title":"Principle Component Dimension 1"}},
705
- "y": {"field": "y", "type": "quantitative", "scale": {"zero": false}, "axis": {"title":"Principle Component Dimension 2"}},
706
- "color": {
707
- "field": "color",
708
- "type": "nominal",
709
- "axis": {"title":"Cluster Labels"},
710
- "scale": {
711
- "range": ["#5C6BC0", "#AB47BC", "#4aa3df", "#3498DB", "#55BBBB"]
712
- }
713
- }
714
- }
715
- }
716
- ]
717
- }
718
- """
719
-
720
- """
721
- heatmap/v1
722
- {
723
- "$schema": "https://vega.github.io/schema/vega-lite/v4.json",
724
- "padding": 5,
725
- "width": 500,
726
- "height": 500,
727
- "data":
728
- {
729
- "name": "${history-table:rows:x-axis,key}"
730
- },
731
- "title": {
732
- "text": {"value": ""}
733
- },
734
- "encoding": {
735
- "x": {
736
- "field": "x_axis",
737
- "type": "nominal",
738
- "axis": { "title": "" }
739
- },
740
- "y": {
741
- "field": "y_axis",
742
- "type": "nominal",
743
- "axis": { "title": "" }
744
- }
745
- },
746
- "layer": [
747
- {
748
- "mark": "rect",
749
- "encoding": {
750
- "color": {
751
- "field": "values",
752
- "type": "quantitative",
753
- "title": "Values",
754
- "scale": {
755
- "scheme": "tealblues"
756
- }
757
- }
758
- }
759
- },
760
- {
761
- "mark": "text",
762
- "encoding": {
763
- "text": {"field": "values", "type": "quantitative"}
764
- }
765
- }
766
- ]
767
- }
768
- """