wandb 0.17.0rc2__py3-none-win32.whl → 0.17.1__py3-none-win32.whl
Sign up to get free protection for your applications and to get access to all the features.
- wandb/__init__.py +1 -2
- wandb/apis/importers/internals/internal.py +0 -1
- wandb/apis/importers/wandb.py +12 -7
- wandb/apis/internal.py +0 -3
- wandb/apis/public/api.py +213 -79
- wandb/apis/public/artifacts.py +335 -100
- wandb/apis/public/files.py +9 -9
- wandb/apis/public/jobs.py +16 -4
- wandb/apis/public/projects.py +26 -28
- wandb/apis/public/query_generator.py +1 -1
- wandb/apis/public/runs.py +163 -65
- wandb/apis/public/sweeps.py +2 -2
- wandb/apis/reports/__init__.py +1 -7
- wandb/apis/reports/v1/__init__.py +5 -27
- wandb/apis/reports/v2/__init__.py +7 -19
- wandb/apis/workspaces/__init__.py +8 -0
- wandb/beta/workflows.py +8 -3
- wandb/bin/wandb-core +0 -0
- wandb/cli/cli.py +131 -59
- wandb/docker/__init__.py +1 -1
- wandb/errors/term.py +10 -2
- wandb/filesync/step_checksum.py +1 -4
- wandb/filesync/step_prepare.py +4 -24
- wandb/filesync/step_upload.py +5 -107
- wandb/filesync/upload_job.py +0 -76
- wandb/integration/gym/__init__.py +35 -15
- wandb/integration/openai/fine_tuning.py +21 -3
- wandb/integration/prodigy/prodigy.py +1 -1
- wandb/jupyter.py +16 -17
- wandb/plot/pr_curve.py +2 -1
- wandb/plot/roc_curve.py +2 -1
- wandb/{plots → plot}/utils.py +13 -25
- wandb/proto/v3/wandb_internal_pb2.py +54 -54
- wandb/proto/v3/wandb_settings_pb2.py +2 -2
- wandb/proto/v3/wandb_telemetry_pb2.py +10 -10
- wandb/proto/v4/wandb_internal_pb2.py +54 -54
- wandb/proto/v4/wandb_settings_pb2.py +2 -2
- wandb/proto/v4/wandb_telemetry_pb2.py +10 -10
- wandb/proto/v5/wandb_base_pb2.py +30 -0
- wandb/proto/v5/wandb_internal_pb2.py +355 -0
- wandb/proto/v5/wandb_server_pb2.py +63 -0
- wandb/proto/v5/wandb_settings_pb2.py +45 -0
- wandb/proto/v5/wandb_telemetry_pb2.py +41 -0
- wandb/proto/wandb_base_pb2.py +2 -0
- wandb/proto/wandb_deprecated.py +9 -1
- wandb/proto/wandb_generate_deprecated.py +34 -0
- wandb/proto/{wandb_internal_codegen.py → wandb_generate_proto.py} +1 -35
- wandb/proto/wandb_internal_pb2.py +2 -0
- wandb/proto/wandb_server_pb2.py +2 -0
- wandb/proto/wandb_settings_pb2.py +2 -0
- wandb/proto/wandb_telemetry_pb2.py +2 -0
- wandb/sdk/artifacts/artifact.py +68 -22
- wandb/sdk/artifacts/artifact_manifest.py +1 -1
- wandb/sdk/artifacts/artifact_manifest_entry.py +6 -3
- wandb/sdk/artifacts/artifact_manifests/artifact_manifest_v1.py +1 -1
- wandb/sdk/artifacts/artifact_saver.py +1 -10
- wandb/sdk/artifacts/storage_handlers/local_file_handler.py +6 -2
- wandb/sdk/artifacts/storage_handlers/multi_handler.py +1 -1
- wandb/sdk/artifacts/storage_handlers/tracking_handler.py +6 -4
- wandb/sdk/artifacts/storage_policies/wandb_storage_policy.py +2 -42
- wandb/sdk/artifacts/storage_policy.py +1 -12
- wandb/sdk/data_types/image.py +1 -1
- wandb/sdk/data_types/video.py +4 -2
- wandb/sdk/interface/interface.py +13 -0
- wandb/sdk/interface/interface_shared.py +1 -1
- wandb/sdk/internal/file_pusher.py +2 -5
- wandb/sdk/internal/file_stream.py +6 -19
- wandb/sdk/internal/internal_api.py +148 -136
- wandb/sdk/internal/job_builder.py +207 -135
- wandb/sdk/internal/progress.py +0 -28
- wandb/sdk/internal/sender.py +102 -39
- wandb/sdk/internal/settings_static.py +8 -1
- wandb/sdk/internal/system/assets/trainium.py +3 -3
- wandb/sdk/internal/system/system_info.py +4 -2
- wandb/sdk/internal/update.py +1 -1
- wandb/sdk/launch/__init__.py +9 -1
- wandb/sdk/launch/_launch.py +4 -24
- wandb/sdk/launch/_launch_add.py +1 -3
- wandb/sdk/launch/_project_spec.py +184 -224
- wandb/sdk/launch/agent/agent.py +58 -18
- wandb/sdk/launch/agent/config.py +0 -3
- wandb/sdk/launch/builder/abstract.py +67 -0
- wandb/sdk/launch/builder/build.py +165 -576
- wandb/sdk/launch/builder/context_manager.py +235 -0
- wandb/sdk/launch/builder/docker_builder.py +7 -23
- wandb/sdk/launch/builder/kaniko_builder.py +10 -23
- wandb/sdk/launch/builder/templates/dockerfile.py +92 -0
- wandb/sdk/launch/create_job.py +51 -45
- wandb/sdk/launch/environment/aws_environment.py +26 -1
- wandb/sdk/launch/inputs/files.py +148 -0
- wandb/sdk/launch/inputs/internal.py +224 -0
- wandb/sdk/launch/inputs/manage.py +95 -0
- wandb/sdk/launch/runner/abstract.py +2 -2
- wandb/sdk/launch/runner/kubernetes_monitor.py +45 -12
- wandb/sdk/launch/runner/kubernetes_runner.py +6 -8
- wandb/sdk/launch/runner/local_container.py +2 -3
- wandb/sdk/launch/runner/local_process.py +8 -29
- wandb/sdk/launch/runner/sagemaker_runner.py +20 -14
- wandb/sdk/launch/runner/vertex_runner.py +8 -7
- wandb/sdk/launch/sweeps/scheduler.py +2 -0
- wandb/sdk/launch/sweeps/utils.py +2 -2
- wandb/sdk/launch/utils.py +16 -138
- wandb/sdk/lib/_settings_toposort_generated.py +2 -5
- wandb/sdk/lib/apikey.py +4 -2
- wandb/sdk/lib/config_util.py +3 -3
- wandb/sdk/lib/proto_util.py +22 -1
- wandb/sdk/lib/redirect.py +1 -1
- wandb/sdk/service/service.py +2 -1
- wandb/sdk/service/streams.py +5 -5
- wandb/sdk/wandb_init.py +25 -59
- wandb/sdk/wandb_login.py +28 -25
- wandb/sdk/wandb_run.py +112 -45
- wandb/sdk/wandb_settings.py +33 -64
- wandb/sdk/wandb_watch.py +1 -1
- wandb/sklearn/plot/classifier.py +4 -6
- wandb/sync/sync.py +2 -2
- wandb/testing/relay.py +32 -17
- wandb/util.py +36 -37
- wandb/wandb_agent.py +3 -3
- wandb/wandb_controller.py +3 -2
- {wandb-0.17.0rc2.dist-info → wandb-0.17.1.dist-info}/METADATA +7 -9
- {wandb-0.17.0rc2.dist-info → wandb-0.17.1.dist-info}/RECORD +125 -147
- wandb/apis/reports/v1/_blocks.py +0 -1406
- wandb/apis/reports/v1/_helpers.py +0 -70
- wandb/apis/reports/v1/_panels.py +0 -1282
- wandb/apis/reports/v1/_templates.py +0 -478
- wandb/apis/reports/v1/blocks.py +0 -27
- wandb/apis/reports/v1/helpers.py +0 -2
- wandb/apis/reports/v1/mutations.py +0 -66
- wandb/apis/reports/v1/panels.py +0 -17
- wandb/apis/reports/v1/report.py +0 -268
- wandb/apis/reports/v1/runset.py +0 -144
- wandb/apis/reports/v1/templates.py +0 -7
- wandb/apis/reports/v1/util.py +0 -406
- wandb/apis/reports/v1/validators.py +0 -131
- wandb/apis/reports/v2/blocks.py +0 -25
- wandb/apis/reports/v2/expr_parsing.py +0 -257
- wandb/apis/reports/v2/gql.py +0 -68
- wandb/apis/reports/v2/interface.py +0 -1911
- wandb/apis/reports/v2/internal.py +0 -867
- wandb/apis/reports/v2/metrics.py +0 -6
- wandb/apis/reports/v2/panels.py +0 -15
- wandb/catboost/__init__.py +0 -9
- wandb/fastai/__init__.py +0 -9
- wandb/keras/__init__.py +0 -19
- wandb/lightgbm/__init__.py +0 -9
- wandb/plots/__init__.py +0 -6
- wandb/plots/explain_text.py +0 -36
- wandb/plots/heatmap.py +0 -81
- wandb/plots/named_entity.py +0 -43
- wandb/plots/part_of_speech.py +0 -50
- wandb/plots/plot_definitions.py +0 -768
- wandb/plots/precision_recall.py +0 -121
- wandb/plots/roc.py +0 -103
- wandb/sacred/__init__.py +0 -3
- wandb/xgboost/__init__.py +0 -9
- {wandb-0.17.0rc2.dist-info → wandb-0.17.1.dist-info}/WHEEL +0 -0
- {wandb-0.17.0rc2.dist-info → wandb-0.17.1.dist-info}/entry_points.txt +0 -0
- {wandb-0.17.0rc2.dist-info → wandb-0.17.1.dist-info}/licenses/LICENSE +0 -0
wandb/plots/plot_definitions.py
DELETED
@@ -1,768 +0,0 @@
|
|
1
|
-
"""
|
2
|
-
plot_summary_metrics
|
3
|
-
{
|
4
|
-
"$schema": "https://vega.github.io/schema/vega-lite/v4.json",
|
5
|
-
"data": {
|
6
|
-
"name": "${history-table:rows:x-axis,key}"
|
7
|
-
},
|
8
|
-
"title": "Summary Metrics",
|
9
|
-
"encoding": {
|
10
|
-
"y": {"field": "metric_name", "type": "nominal"},
|
11
|
-
"x": {"field": "metric_value", "type": "quantitative"},
|
12
|
-
"color": {"field": "metric_name", "type": "nominal",
|
13
|
-
"scale": {
|
14
|
-
"range": ["#AB47BC", "#3498DB", "#5C6BC0", "#3F51B5"]
|
15
|
-
}},
|
16
|
-
"opacity": {"value": 0.8}
|
17
|
-
},
|
18
|
-
"layer": [{
|
19
|
-
"mark": "bar"
|
20
|
-
}, {
|
21
|
-
"mark": {
|
22
|
-
"type": "text",
|
23
|
-
"align": "left",
|
24
|
-
"baseline": "middle",
|
25
|
-
"dx": 3
|
26
|
-
},
|
27
|
-
"encoding": {
|
28
|
-
"text": {"field": "metric_value", "type": "quantitative"}
|
29
|
-
}
|
30
|
-
}]
|
31
|
-
}
|
32
|
-
|
33
|
-
plot_learning_curve
|
34
|
-
l2k2/sklearn_learningcurve
|
35
|
-
|
36
|
-
{
|
37
|
-
"$schema": "https://vega.github.io/schema/vega-lite/v4.json",
|
38
|
-
"padding": 5,
|
39
|
-
"width": "500",
|
40
|
-
"height": "500",
|
41
|
-
"data":
|
42
|
-
{
|
43
|
-
"name": "${history-table:rows:x-axis,key}"
|
44
|
-
},
|
45
|
-
"title": {
|
46
|
-
"text": "Learning Curve"
|
47
|
-
},
|
48
|
-
"layer": [
|
49
|
-
{
|
50
|
-
"encoding": {
|
51
|
-
"x": {"field": "train_size", "type": "quantitative"},
|
52
|
-
"y": {"field": "score", "type": "quantitative"},
|
53
|
-
"color": {"field": "dataset", "type": "nominal"},
|
54
|
-
"opacity": {"value": 0.7}
|
55
|
-
},
|
56
|
-
"layer": [
|
57
|
-
{"mark": "line"},
|
58
|
-
{
|
59
|
-
"selection": {
|
60
|
-
"label": {
|
61
|
-
"type": "single",
|
62
|
-
"nearest": true,
|
63
|
-
"on": "mouseover",
|
64
|
-
"encodings": ["x"],
|
65
|
-
"empty": "none"
|
66
|
-
}
|
67
|
-
},
|
68
|
-
"mark": "point",
|
69
|
-
"encoding": {
|
70
|
-
"opacity": {
|
71
|
-
"condition": {"selection": "label", "value": 1},
|
72
|
-
"value": 0
|
73
|
-
}
|
74
|
-
}
|
75
|
-
}
|
76
|
-
]
|
77
|
-
},
|
78
|
-
{
|
79
|
-
"transform": [{"filter": {"selection": "label"}}],
|
80
|
-
"layer": [
|
81
|
-
{
|
82
|
-
"mark": {"type": "rule", "color": "gray"},
|
83
|
-
"encoding": {
|
84
|
-
"x": {"type": "quantitative", "field": "train_size"}
|
85
|
-
}
|
86
|
-
},
|
87
|
-
{
|
88
|
-
"encoding": {
|
89
|
-
"text": {"type": "quantitative", "field": "score"},
|
90
|
-
"x": {"type": "quantitative", "field": "train_size"},
|
91
|
-
"y": {"type": "quantitative", "field": "score"}
|
92
|
-
},
|
93
|
-
"layer": [
|
94
|
-
{
|
95
|
-
"mark": {
|
96
|
-
"type": "text",
|
97
|
-
"stroke": "white",
|
98
|
-
"strokeWidth": 2,
|
99
|
-
"align": "left",
|
100
|
-
"dx": 5,
|
101
|
-
"dy": -5
|
102
|
-
}
|
103
|
-
},
|
104
|
-
{
|
105
|
-
"mark": {"type": "text", "align": "left", "dx": 5, "dy": -5},
|
106
|
-
"encoding": {
|
107
|
-
"color": {
|
108
|
-
"type": "nominal", "field": "dataset", "scale": {
|
109
|
-
"domain": ["train", "test"],
|
110
|
-
"range": ["#3498DB", "#AB47BC"]
|
111
|
-
},
|
112
|
-
"legend": {
|
113
|
-
"title": " "
|
114
|
-
}
|
115
|
-
}
|
116
|
-
}
|
117
|
-
}
|
118
|
-
]
|
119
|
-
}
|
120
|
-
]
|
121
|
-
}
|
122
|
-
]
|
123
|
-
}
|
124
|
-
|
125
|
-
plot_roc
|
126
|
-
{
|
127
|
-
"$schema": "https://vega.github.io/schema/vega-lite/v4.json",
|
128
|
-
"padding": 5,
|
129
|
-
"width": "500",
|
130
|
-
"height": "500",
|
131
|
-
"data":
|
132
|
-
{
|
133
|
-
"name": "${history-table:rows:x-axis,key}"
|
134
|
-
},
|
135
|
-
"title": {
|
136
|
-
"text": "ROC Curve"
|
137
|
-
},"layer": [
|
138
|
-
{
|
139
|
-
"encoding": {
|
140
|
-
"x": {"field": "fpr", "type": "quantitative", "axis": {"title": "False Positive Rate"}},
|
141
|
-
"y": {"field": "tpr", "type": "quantitative", "axis": {"title": "True Positive Rate"}},
|
142
|
-
"color": {"field": "class", "type": "nominal"},
|
143
|
-
"opacity": {"value": 0.7}
|
144
|
-
},
|
145
|
-
"layer": [
|
146
|
-
{"mark": "line"},
|
147
|
-
{
|
148
|
-
"selection": {
|
149
|
-
"label": {
|
150
|
-
"type": "single",
|
151
|
-
"nearest": true,
|
152
|
-
"on": "mouseover",
|
153
|
-
"encodings": ["x"],
|
154
|
-
"empty": "none"
|
155
|
-
}
|
156
|
-
},
|
157
|
-
"mark": "point",
|
158
|
-
"encoding": {
|
159
|
-
"opacity": {
|
160
|
-
"condition": {"selection": "label", "value": 1},
|
161
|
-
"value": 0
|
162
|
-
}
|
163
|
-
}
|
164
|
-
}
|
165
|
-
]
|
166
|
-
},
|
167
|
-
{
|
168
|
-
"transform": [{"filter": {"selection": "label"}}],
|
169
|
-
"layer": [
|
170
|
-
{
|
171
|
-
"mark": {"type": "rule", "color": "gray"},
|
172
|
-
"encoding": {
|
173
|
-
"x": {"type": "quantitative", "field": "train_size"}
|
174
|
-
}
|
175
|
-
},
|
176
|
-
{
|
177
|
-
"encoding": {
|
178
|
-
"text": {"type": "quantitative", "field": "fpr"},
|
179
|
-
"x": {"type": "quantitative", "field": "fpr"}
|
180
|
-
},
|
181
|
-
"layer": [
|
182
|
-
{
|
183
|
-
"mark": {
|
184
|
-
"type": "text",
|
185
|
-
"stroke": "white",
|
186
|
-
"strokeWidth": 2,
|
187
|
-
"align": "left",
|
188
|
-
"dx": 5,
|
189
|
-
"dy": -5
|
190
|
-
}
|
191
|
-
},
|
192
|
-
{
|
193
|
-
"mark": {"type": "text", "align": "left", "dx": 5, "dy": -5},
|
194
|
-
"encoding": {
|
195
|
-
"color": {
|
196
|
-
"type": "nominal", "field": "class", "scale": {
|
197
|
-
"range": ["#3498DB", "#AB47BC"]
|
198
|
-
},
|
199
|
-
"legend": {
|
200
|
-
"title": " "
|
201
|
-
}
|
202
|
-
}
|
203
|
-
}
|
204
|
-
}
|
205
|
-
]
|
206
|
-
}
|
207
|
-
]
|
208
|
-
}
|
209
|
-
]
|
210
|
-
}
|
211
|
-
|
212
|
-
plot_confusion_matrix
|
213
|
-
{
|
214
|
-
"$schema": "https://vega.github.io/schema/vega-lite/v4.json",
|
215
|
-
"padding": 5,
|
216
|
-
"width": 500,
|
217
|
-
"height": 500,
|
218
|
-
"data":
|
219
|
-
{
|
220
|
-
"name": "${history-table:rows:x-axis,key}"
|
221
|
-
},
|
222
|
-
"title": {
|
223
|
-
"text": "Confusion Matrix"
|
224
|
-
},
|
225
|
-
"mark": "circle",
|
226
|
-
"encoding": {
|
227
|
-
"x": {
|
228
|
-
"field": "Predicted",
|
229
|
-
"type": "nominal",
|
230
|
-
"axis": {
|
231
|
-
"maxExtent": 50,
|
232
|
-
"labelLimit": 40,
|
233
|
-
"labelAngle": -45
|
234
|
-
}
|
235
|
-
},
|
236
|
-
"y": {
|
237
|
-
"field": "Actual",
|
238
|
-
"type": "nominal"
|
239
|
-
|
240
|
-
},
|
241
|
-
"size": {
|
242
|
-
"field": "Count",
|
243
|
-
"type": "quantitative"
|
244
|
-
},
|
245
|
-
"color": {
|
246
|
-
"value": "#3498DB"
|
247
|
-
}
|
248
|
-
}
|
249
|
-
}
|
250
|
-
|
251
|
-
plot_precision_recall
|
252
|
-
{
|
253
|
-
"$schema": "https://vega.github.io/schema/vega-lite/v4.json",
|
254
|
-
"padding": 5,
|
255
|
-
"width": 500,
|
256
|
-
"height": 500,
|
257
|
-
"data":
|
258
|
-
{
|
259
|
-
"name": "${history-table:rows:x-axis,key}"
|
260
|
-
},
|
261
|
-
"title": {
|
262
|
-
"text": "Precision Recall"
|
263
|
-
},"layer": [
|
264
|
-
{
|
265
|
-
"encoding": {
|
266
|
-
"x": {"field": "precision", "type": "quantitative"},
|
267
|
-
"y": {"field": "recall", "type": "quantitative"},
|
268
|
-
"color": {"field": "class", "type": "nominal"},
|
269
|
-
"opacity": {"value": 0.7}
|
270
|
-
},
|
271
|
-
"layer": [
|
272
|
-
{"mark": "line"},
|
273
|
-
{
|
274
|
-
"selection": {
|
275
|
-
"label": {
|
276
|
-
"type": "single",
|
277
|
-
"nearest": true,
|
278
|
-
"on": "mouseover",
|
279
|
-
"encodings": ["x"],
|
280
|
-
"empty": "none"
|
281
|
-
}
|
282
|
-
},
|
283
|
-
"mark": "point",
|
284
|
-
"encoding": {
|
285
|
-
"opacity": {
|
286
|
-
"condition": {"selection": "label", "value": 1},
|
287
|
-
"value": 0
|
288
|
-
}
|
289
|
-
}
|
290
|
-
}
|
291
|
-
]
|
292
|
-
},
|
293
|
-
{
|
294
|
-
"transform": [{"filter": {"selection": "label"}}],
|
295
|
-
"layer": [
|
296
|
-
{
|
297
|
-
"encoding": {
|
298
|
-
"text": {"type": "nominal", "field": "class"},
|
299
|
-
"x": {"type": "quantitative", "field": "precision"},
|
300
|
-
"y": {"type": "quantitative", "field": "recall"}
|
301
|
-
},
|
302
|
-
"layer": [
|
303
|
-
{
|
304
|
-
"mark": {
|
305
|
-
"type": "text",
|
306
|
-
"stroke": "white",
|
307
|
-
"strokeWidth": 2,
|
308
|
-
"align": "left",
|
309
|
-
"dx": 5,
|
310
|
-
"dy": -5
|
311
|
-
}
|
312
|
-
},
|
313
|
-
{
|
314
|
-
"mark": {"type": "text", "align": "left", "dx": 5, "dy": -5},
|
315
|
-
"encoding": {
|
316
|
-
"color": {
|
317
|
-
"type": "nominal", "field": "class", "scale": {
|
318
|
-
"range": ["#3498DB", "#AB47BC", "#55BBBB", "#BB9955"]
|
319
|
-
},
|
320
|
-
"legend": {
|
321
|
-
"title": " "
|
322
|
-
}
|
323
|
-
}
|
324
|
-
}
|
325
|
-
}
|
326
|
-
]
|
327
|
-
}
|
328
|
-
]
|
329
|
-
}
|
330
|
-
]
|
331
|
-
}
|
332
|
-
|
333
|
-
plot_feature_importances
|
334
|
-
{
|
335
|
-
"$schema": "https://vega.github.io/schema/vega-lite/v4.json",
|
336
|
-
"data": {
|
337
|
-
"name": "${history-table:rows:x-axis,key}"
|
338
|
-
},
|
339
|
-
"title": "Feature Importances",
|
340
|
-
"mark": "bar",
|
341
|
-
"encoding": {
|
342
|
-
"y": {"field": "feature_names", "type": "nominal", "axis": {"title":"Features"},"sort": "-x"},
|
343
|
-
"x": {"field": "importances", "type": "quantitative", "axis": {"title":"Importances"}},
|
344
|
-
"color": {"value": "#3498DB"},
|
345
|
-
"opacity": {"value": 0.9}
|
346
|
-
}
|
347
|
-
}
|
348
|
-
|
349
|
-
plot_elbow_curve
|
350
|
-
{
|
351
|
-
"$schema": "https://vega.github.io/schema/vega-lite/v4.json",
|
352
|
-
"description": "A dual axis chart, created by setting y's scale resolution to `\"independent\"`",
|
353
|
-
"width": 400, "height": 300,
|
354
|
-
"data": {
|
355
|
-
"name": "${history-table:rows:x-axis,key}"
|
356
|
-
},
|
357
|
-
"title": "Elbow Plot - Errors vs Cluster Size",
|
358
|
-
"encoding": {
|
359
|
-
"x": {
|
360
|
-
"field": "cluster_ranges",
|
361
|
-
"bin": true,
|
362
|
-
"axis": {"title": "Number of Clusters"},
|
363
|
-
"type": "quantitative"
|
364
|
-
}
|
365
|
-
},
|
366
|
-
"layer": [
|
367
|
-
{
|
368
|
-
"mark": {"opacity": 0.5, "type": "line", "color": "#AB47BC"},
|
369
|
-
"encoding": {
|
370
|
-
"y": {
|
371
|
-
"field": "errors",
|
372
|
-
"type": "quantitative",
|
373
|
-
"axis": {"title": "Sum of Squared Errors", "titleColor": "#AB47BC"}
|
374
|
-
}
|
375
|
-
}
|
376
|
-
},
|
377
|
-
{
|
378
|
-
"mark": {"opacity": 0.3, "stroke": "#3498DB", "strokeDash": [6, 4], "type": "line"},
|
379
|
-
"encoding": {
|
380
|
-
"y": {
|
381
|
-
"field": "clustering_time",
|
382
|
-
"type": "quantitative",
|
383
|
-
"axis": {"title": "Clustering Time", "titleColor":"#3498DB"}
|
384
|
-
}
|
385
|
-
}
|
386
|
-
}
|
387
|
-
],
|
388
|
-
"resolve": {"scale": {"y": "independent"}}
|
389
|
-
}
|
390
|
-
|
391
|
-
plot_silhouette
|
392
|
-
{
|
393
|
-
"$schema": "https://vega.github.io/schema/vega-lite/v4.json",
|
394
|
-
"data": {"name": "${history-table:rows:x-axis,key}"},
|
395
|
-
"title": "Silhouette analysis of cluster centers",
|
396
|
-
"hconcat": [
|
397
|
-
{
|
398
|
-
"width": 400,
|
399
|
-
"height": 400,
|
400
|
-
"layer": [
|
401
|
-
{
|
402
|
-
"mark": "area",
|
403
|
-
"encoding": {
|
404
|
-
"x": {
|
405
|
-
"field": "x1",
|
406
|
-
"type": "quantitative",
|
407
|
-
"axis": {"title":"Silhouette Coefficients"}
|
408
|
-
},
|
409
|
-
"x2": {
|
410
|
-
"field": "x2"
|
411
|
-
},
|
412
|
-
"y": {
|
413
|
-
"title": "Cluster Label",
|
414
|
-
"field": "y_sil",
|
415
|
-
"type": "quantitative",
|
416
|
-
"axis": {"title":"Clusters", "labels": false}
|
417
|
-
},
|
418
|
-
"color": {
|
419
|
-
"field": "color_sil",
|
420
|
-
"type": "nominal",
|
421
|
-
"axis": {"title":"Cluster Labels"},
|
422
|
-
"scale": {
|
423
|
-
"range": ["#AB47BC", "#3498DB", "#55BBBB", "#5C6BC0", "#FBC02D", "#3F51B5"]}
|
424
|
-
},
|
425
|
-
"opacity": { "value": 0.7 }
|
426
|
-
}},
|
427
|
-
{
|
428
|
-
|
429
|
-
"mark": {
|
430
|
-
"type":"rule",
|
431
|
-
"strokeDash": [6, 4],
|
432
|
-
"stroke":"#f88c99"},
|
433
|
-
"encoding": {
|
434
|
-
"x": {
|
435
|
-
"field": "silhouette_avg",
|
436
|
-
"type": "quantitative"
|
437
|
-
},
|
438
|
-
"color": {"value": "red"},
|
439
|
-
"size": {"value": 1},
|
440
|
-
"opacity": { "value": 0.5 }
|
441
|
-
}
|
442
|
-
}]
|
443
|
-
},
|
444
|
-
{
|
445
|
-
"width": 400,
|
446
|
-
"height": 400,
|
447
|
-
"layer": [
|
448
|
-
{
|
449
|
-
"mark": "circle",
|
450
|
-
"encoding": {
|
451
|
-
"x": {"field": "x", "type": "quantitative", "scale": {"zero": false}, "axis": {"title":"Feature Space for 1st Feature"}},
|
452
|
-
"y": {"field": "y", "type": "quantitative", "scale": {"zero": false}}, "axis": {"title":"Feature Space for 2nd Feature"},
|
453
|
-
"color": {"field": "colors", "type": "nominal", "axis": {"title":"Cluster Labels"}}
|
454
|
-
}
|
455
|
-
},
|
456
|
-
{
|
457
|
-
"mark": "point",
|
458
|
-
"encoding": {
|
459
|
-
"x": {"field": "centerx", "type": "quantitative", "scale": {"zero": false}, "axis": {"title":"Feature Space for 1st Feature"}},
|
460
|
-
"y": {"field": "centery", "type": "quantitative", "scale": {"zero": false}, "axis": {"title":"Feature Space for 2nd Feature"}},
|
461
|
-
"color": {"field": "colors", "type": "nominal", "axis": {"title":"Cluster Labels"}},
|
462
|
-
"size": {"value": 80}
|
463
|
-
}
|
464
|
-
}
|
465
|
-
]
|
466
|
-
}
|
467
|
-
]
|
468
|
-
}
|
469
|
-
|
470
|
-
plot_class_balance
|
471
|
-
{
|
472
|
-
"$schema": "https://vega.github.io/schema/vega-lite/v4.json",
|
473
|
-
"width": 500,
|
474
|
-
"height": 500,
|
475
|
-
"title": "Class Proportions in Target Variable",
|
476
|
-
"data": {
|
477
|
-
"name": "${history-table:rows:x-axis,key}"
|
478
|
-
},
|
479
|
-
"selection": {
|
480
|
-
"highlight": {"type": "single", "empty": "none", "on": "mouseover"},
|
481
|
-
"select": {"type": "multi"}
|
482
|
-
},
|
483
|
-
"mark": {
|
484
|
-
"type": "bar",
|
485
|
-
"stroke": "black",
|
486
|
-
"cursor": "pointer"
|
487
|
-
},
|
488
|
-
"encoding": {
|
489
|
-
"x": {"field": "class", "type": "ordinal", "axis": {"title": "Class"}},
|
490
|
-
"y": {"field": "count", "type": "quantitative", "axis": {"title": "Number of instances"}},
|
491
|
-
"fillOpacity": {
|
492
|
-
"condition": {"selection": "select", "value": 1},
|
493
|
-
"value": 0.3
|
494
|
-
},
|
495
|
-
"opacity": {"value": 0.9},
|
496
|
-
"color": {
|
497
|
-
"field": "dataset",
|
498
|
-
"type": "nominal",
|
499
|
-
"scale": {
|
500
|
-
"domain": ["train", "test"],
|
501
|
-
"range": ["#3498DB", "#4DB6AC"]
|
502
|
-
},
|
503
|
-
"legend": {"title": "Dataset"}
|
504
|
-
},
|
505
|
-
"strokeWidth": {
|
506
|
-
"condition": [
|
507
|
-
{
|
508
|
-
"test": {
|
509
|
-
"and": [
|
510
|
-
{"selection": "select"},
|
511
|
-
"length(data(\"select_store\"))"
|
512
|
-
]
|
513
|
-
},
|
514
|
-
"value": 2
|
515
|
-
},
|
516
|
-
{"selection": "highlight", "value": 1}
|
517
|
-
],
|
518
|
-
"value": 0
|
519
|
-
}
|
520
|
-
},
|
521
|
-
"config": {
|
522
|
-
"scale": {
|
523
|
-
"bandPaddingInner": 0.2
|
524
|
-
}
|
525
|
-
}
|
526
|
-
}
|
527
|
-
|
528
|
-
plot_calibration_curve
|
529
|
-
{
|
530
|
-
"$schema": "https://vega.github.io/schema/vega-lite/v4.json",
|
531
|
-
"padding": 5,
|
532
|
-
"data":
|
533
|
-
{
|
534
|
-
"name": "${history-table:rows:x-axis,key}"
|
535
|
-
},
|
536
|
-
"title": "Calibration Curve",
|
537
|
-
"vconcat": [
|
538
|
-
{
|
539
|
-
"layer": [
|
540
|
-
{
|
541
|
-
"encoding": {
|
542
|
-
"x": {"field": "mean_predicted_value", "type": "quantitative", "axis": {"title": "Mean predicted value"}},
|
543
|
-
"y": {"field": "fraction_of_positives", "type": "quantitative", "axis": {"title": "Fraction of positives"}},
|
544
|
-
"color": {
|
545
|
-
"field": "model",
|
546
|
-
"type": "nominal",
|
547
|
-
"axis": {"title": "Models"},
|
548
|
-
"scale": {
|
549
|
-
"range": ["#3498DB", "#AB47BC", "#55BBBB", "#BB9955", "#FBC02D"]
|
550
|
-
}
|
551
|
-
}
|
552
|
-
},
|
553
|
-
"layer": [
|
554
|
-
{
|
555
|
-
"mark": {
|
556
|
-
"type": "line",
|
557
|
-
"point": {
|
558
|
-
"filled": false,
|
559
|
-
"fill": "white"
|
560
|
-
}
|
561
|
-
}
|
562
|
-
}
|
563
|
-
]
|
564
|
-
}]
|
565
|
-
},
|
566
|
-
{
|
567
|
-
"mark": {"type": "tick"},
|
568
|
-
"encoding": {
|
569
|
-
"x": {"field": "edge_dict", "type": "quantitative","bin":true, "axis": {"title": "Mean predicted value"}},
|
570
|
-
"y": {"field": "hist_dict", "type": "quantitative", "axis": {"title": "Counts"}},
|
571
|
-
"strokeWidth": {
|
572
|
-
"value": 2
|
573
|
-
},
|
574
|
-
"color": {
|
575
|
-
"field": "model",
|
576
|
-
"type": "nominal",
|
577
|
-
"axis": {"title": "Models"},
|
578
|
-
"scale": {
|
579
|
-
"range": ["#3498DB", "#AB47BC", "#55BBBB", "#BB9955"]
|
580
|
-
}
|
581
|
-
}
|
582
|
-
}
|
583
|
-
}
|
584
|
-
]
|
585
|
-
}
|
586
|
-
|
587
|
-
plot_outlier_candidates
|
588
|
-
{
|
589
|
-
"$schema": "https://vega.github.io/schema/vega-lite/v4.json",
|
590
|
-
"padding": 5,
|
591
|
-
"data":
|
592
|
-
{
|
593
|
-
"name": "${history-table:rows:x-axis,key}"
|
594
|
-
},
|
595
|
-
"title": {
|
596
|
-
"text": "Cook's Distance Outlier Detection"
|
597
|
-
},
|
598
|
-
"layer": [{
|
599
|
-
"mark": "bar",
|
600
|
-
"encoding": {
|
601
|
-
"x": {
|
602
|
-
"field": "instance_indicies",
|
603
|
-
"type": "quantitative",
|
604
|
-
"axis": {"title": "Instances"}
|
605
|
-
},
|
606
|
-
"y": {
|
607
|
-
"field": "distance",
|
608
|
-
"type": "quantitative",
|
609
|
-
"axis": {"title": "Influence (Cook's Distance)"}
|
610
|
-
},
|
611
|
-
"color": {"value": "#3498DB"},
|
612
|
-
"opacity": {"value": 0.4}
|
613
|
-
}
|
614
|
-
},{
|
615
|
-
"mark": {
|
616
|
-
"type":"rule",
|
617
|
-
"strokeDash": [6, 4],
|
618
|
-
"stroke":"#f88c99"},
|
619
|
-
"encoding": {
|
620
|
-
"y": {
|
621
|
-
"field": "influence_threshold",
|
622
|
-
"type": "quantitative"
|
623
|
-
},
|
624
|
-
"color": {"value": "red"},
|
625
|
-
"size": {"value": 1}
|
626
|
-
}
|
627
|
-
}, {
|
628
|
-
"mark": {
|
629
|
-
"type": "text",
|
630
|
-
"align": "left",
|
631
|
-
"baseline": "top",
|
632
|
-
"dx": 0
|
633
|
-
}
|
634
|
-
}]
|
635
|
-
}
|
636
|
-
|
637
|
-
plot_residuals
|
638
|
-
{
|
639
|
-
"$schema": "https://vega.github.io/schema/vega-lite/v4.json",
|
640
|
-
"width": "container",
|
641
|
-
"data":
|
642
|
-
{
|
643
|
-
"name": "${history-table:rows:x-axis,key}"
|
644
|
-
},
|
645
|
-
"title": "Residuals Plot",
|
646
|
-
"vconcat": [
|
647
|
-
{
|
648
|
-
"layer": [
|
649
|
-
{
|
650
|
-
"encoding": {
|
651
|
-
"y": {"field": "y_pred", "type": "quantitative", "axis": {"title": "Predicted Value"}},
|
652
|
-
"x": {"field": "residuals", "type": "quantitative", "axis": {"title": "Residuals"}},
|
653
|
-
"color": {
|
654
|
-
"field": "dataset",
|
655
|
-
"type": "nominal",
|
656
|
-
"axis": {"title": "Dataset"}
|
657
|
-
}
|
658
|
-
},
|
659
|
-
"layer": [
|
660
|
-
{
|
661
|
-
"mark": {
|
662
|
-
"type": "point",
|
663
|
-
"opacity": 0.5,
|
664
|
-
"filled" : true
|
665
|
-
}
|
666
|
-
}
|
667
|
-
]
|
668
|
-
}]
|
669
|
-
},
|
670
|
-
{
|
671
|
-
"mark": {"type": "bar",
|
672
|
-
"opacity": 0.8},
|
673
|
-
"encoding": {
|
674
|
-
"x": {"field": "residuals", "type": "quantitative", "bin": true, "axis": {"title": "Residuals"}},
|
675
|
-
"y": {
|
676
|
-
"aggregate": "count", "field": "residuals", "type": "quantitative", "axis": {"title": "Distribution"}},
|
677
|
-
"strokeWidth": {
|
678
|
-
"value": 1
|
679
|
-
},
|
680
|
-
"color": {
|
681
|
-
"field": "dataset",
|
682
|
-
"type": "nominal",
|
683
|
-
"axis": {"title": "Dataset"},
|
684
|
-
"scale": {
|
685
|
-
"range": ["#AB47BC", "#3498DB"]
|
686
|
-
}
|
687
|
-
}
|
688
|
-
}
|
689
|
-
}
|
690
|
-
]
|
691
|
-
}
|
692
|
-
|
693
|
-
plot_decision_boundaries
|
694
|
-
{
|
695
|
-
"$schema": "https://vega.github.io/schema/vega-lite/v4.json",
|
696
|
-
"data": {"name": "${history-table:rows:x-axis,key}"},
|
697
|
-
"title": "Decision Boundary - Projected Into 2D Space",
|
698
|
-
"width": 300,
|
699
|
-
"height": 200,
|
700
|
-
"layer": [
|
701
|
-
{
|
702
|
-
"mark": {"type" :"point", "opacity": 0.5},
|
703
|
-
"encoding": {
|
704
|
-
"x": {"field": "x", "type": "quantitative", "scale": {"zero": false}, "axis": {"title":"Principle Component Dimension 1"}},
|
705
|
-
"y": {"field": "y", "type": "quantitative", "scale": {"zero": false}, "axis": {"title":"Principle Component Dimension 2"}},
|
706
|
-
"color": {
|
707
|
-
"field": "color",
|
708
|
-
"type": "nominal",
|
709
|
-
"axis": {"title":"Cluster Labels"},
|
710
|
-
"scale": {
|
711
|
-
"range": ["#5C6BC0", "#AB47BC", "#4aa3df", "#3498DB", "#55BBBB"]
|
712
|
-
}
|
713
|
-
}
|
714
|
-
}
|
715
|
-
}
|
716
|
-
]
|
717
|
-
}
|
718
|
-
"""
|
719
|
-
|
720
|
-
"""
|
721
|
-
heatmap/v1
|
722
|
-
{
|
723
|
-
"$schema": "https://vega.github.io/schema/vega-lite/v4.json",
|
724
|
-
"padding": 5,
|
725
|
-
"width": 500,
|
726
|
-
"height": 500,
|
727
|
-
"data":
|
728
|
-
{
|
729
|
-
"name": "${history-table:rows:x-axis,key}"
|
730
|
-
},
|
731
|
-
"title": {
|
732
|
-
"text": {"value": ""}
|
733
|
-
},
|
734
|
-
"encoding": {
|
735
|
-
"x": {
|
736
|
-
"field": "x_axis",
|
737
|
-
"type": "nominal",
|
738
|
-
"axis": { "title": "" }
|
739
|
-
},
|
740
|
-
"y": {
|
741
|
-
"field": "y_axis",
|
742
|
-
"type": "nominal",
|
743
|
-
"axis": { "title": "" }
|
744
|
-
}
|
745
|
-
},
|
746
|
-
"layer": [
|
747
|
-
{
|
748
|
-
"mark": "rect",
|
749
|
-
"encoding": {
|
750
|
-
"color": {
|
751
|
-
"field": "values",
|
752
|
-
"type": "quantitative",
|
753
|
-
"title": "Values",
|
754
|
-
"scale": {
|
755
|
-
"scheme": "tealblues"
|
756
|
-
}
|
757
|
-
}
|
758
|
-
}
|
759
|
-
},
|
760
|
-
{
|
761
|
-
"mark": "text",
|
762
|
-
"encoding": {
|
763
|
-
"text": {"field": "values", "type": "quantitative"}
|
764
|
-
}
|
765
|
-
}
|
766
|
-
]
|
767
|
-
}
|
768
|
-
"""
|