wafer-cli 0.2.8__py3-none-any.whl → 0.2.10__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
wafer/gpu_run.py CHANGED
@@ -19,7 +19,10 @@ CONTAINER_WORKSPACE = "/workspace"
19
19
  class PushResult:
20
20
  """Result of pushing a directory to remote target."""
21
21
 
22
- workspace_path: str # Absolute path on remote (tilde-expanded)
22
+ workspace_name: str # Just the workspace name (e.g., "project")
23
+ workspace_path: (
24
+ str # Full absolute path on remote (e.g., "/home/user/.wafer/workspaces/project")
25
+ )
23
26
  files_uploaded: list[str] # Relative paths of uploaded files
24
27
 
25
28
 
@@ -71,6 +74,7 @@ def push_directory(
71
74
  files_uploaded.append(str(file.relative_to(local_path)))
72
75
 
73
76
  return PushResult(
77
+ workspace_name=workspace_name,
74
78
  workspace_path=expanded_workspace,
75
79
  files_uploaded=files_uploaded,
76
80
  )
wafer/kernel_scope.py ADDED
@@ -0,0 +1,554 @@
1
+ """Unified ISA Analyzer - CLI for static ISA analysis of AMD GPU kernels.
2
+
3
+ This module provides the CLI wrapper for the `wafer amd isa` command.
4
+ It supports analysis of:
5
+ - AMD GPU code objects (.co) - Via API server with ROCm tools
6
+ - AMDGCN ISA files (.s, .gcn, .asm) - Local parsing
7
+ - LLVM-IR files (.ll) - Local parsing
8
+ - TTGIR files (.ttgir, .ttir, .mlir) - Local parsing
9
+
10
+ Design: Wafer-436 - AMD Kernel Scope / ISA Analyzer
11
+ """
12
+
13
+ import json
14
+ import sys
15
+ from pathlib import Path
16
+ from typing import Optional
17
+
18
+
19
+ def print_usage() -> None:
20
+ """Print CLI usage information."""
21
+ print("Usage: wafer amd isa <subcommand> [options]", file=sys.stderr)
22
+ print("", file=sys.stderr)
23
+ print("Subcommands:", file=sys.stderr)
24
+ print(" analyze <file|directory> Analyze ISA files (.co, .s, .ll, .ttgir)", file=sys.stderr)
25
+ print(" metrics List available metrics", file=sys.stderr)
26
+ print(" targets List supported GPU targets", file=sys.stderr)
27
+ print("", file=sys.stderr)
28
+ print("Supported File Types:", file=sys.stderr)
29
+ print(" .co AMD GPU code objects (requires API authentication)", file=sys.stderr)
30
+ print(" .s, .gcn, .asm AMDGCN ISA assembly (local parsing)", file=sys.stderr)
31
+ print(" .ll, .bc LLVM-IR (local parsing)", file=sys.stderr)
32
+ print(" .ttgir, .ttir, .mlir TTGIR / Triton IR (local parsing)", file=sys.stderr)
33
+ print("", file=sys.stderr)
34
+ print("Analyze Options:", file=sys.stderr)
35
+ print(" --json Output as JSON", file=sys.stderr)
36
+ print(" --csv Output as CSV", file=sys.stderr)
37
+ print(" --recursive / -r Scan directories recursively", file=sys.stderr)
38
+ print(" --filter EXPR Filter results (e.g., 'spills > 0')", file=sys.stderr)
39
+ print(" --output / -o FILE Write output to file", file=sys.stderr)
40
+ print(" --kernel INDEX Kernel index if multiple in file", file=sys.stderr)
41
+ print("", file=sys.stderr)
42
+ print("Examples:", file=sys.stderr)
43
+ print(" wafer amd isa analyze kernel.co # Analyze code object (requires login)", file=sys.stderr)
44
+ print(" wafer amd isa analyze kernel.s # Analyze ISA assembly", file=sys.stderr)
45
+ print(" wafer amd isa analyze kernel.s --json # Output as JSON", file=sys.stderr)
46
+ print(" wafer amd isa analyze ~/.triton/cache/ --filter 'spills > 0'", file=sys.stderr)
47
+ print(" wafer amd isa analyze . -r --csv -o metrics.csv", file=sys.stderr)
48
+ print(" wafer amd isa metrics # List available metrics", file=sys.stderr)
49
+ print(" wafer amd isa targets # List supported GPU targets", file=sys.stderr)
50
+
51
+
52
+ def analyze_command(
53
+ path: str,
54
+ json_output: bool = False,
55
+ csv_output: bool = False,
56
+ recursive: bool = True,
57
+ filter_expr: Optional[str] = None,
58
+ output_file: Optional[str] = None,
59
+ kernel_index: int = 0,
60
+ api_url: Optional[str] = None,
61
+ auth_headers: Optional[dict[str, str]] = None,
62
+ ) -> str:
63
+ """Analyze ISA/LLVM-IR/TTGIR/.co file or directory.
64
+
65
+ Args:
66
+ path: Path to file or directory
67
+ json_output: Output as JSON
68
+ csv_output: Output as CSV
69
+ recursive: Scan directories recursively
70
+ filter_expr: Filter expression (e.g., "spills > 0")
71
+ output_file: Write output to file
72
+ kernel_index: Kernel index for multi-kernel files
73
+ api_url: API URL for .co file analysis (required for .co files)
74
+ auth_headers: Auth headers for .co file analysis
75
+
76
+ Returns:
77
+ Analysis output string
78
+ """
79
+ from wafer_core.lib.kernel_scope import (
80
+ analyze_isa_file,
81
+ analyze_code_object,
82
+ analyze_directory,
83
+ analyze_file,
84
+ )
85
+
86
+ target_path = Path(path).expanduser()
87
+
88
+ if not target_path.exists():
89
+ raise FileNotFoundError(f"Path not found: {path}")
90
+
91
+ # Single file analysis
92
+ if target_path.is_file():
93
+ suffix = target_path.suffix.lower()
94
+
95
+ # Code object files (.co) - need API
96
+ if suffix == ".co":
97
+ if not api_url or not auth_headers:
98
+ raise RuntimeError(
99
+ "API authentication required for .co file analysis. "
100
+ "Run 'wafer login' first."
101
+ )
102
+ result = analyze_code_object(target_path, api_url, auth_headers)
103
+ # ISA files - use kernel_index parameter
104
+ elif suffix in (".s", ".gcn", ".asm"):
105
+ result = analyze_isa_file(target_path, kernel_index=kernel_index)
106
+ else:
107
+ result = analyze_file(target_path, api_url=api_url, auth_headers=auth_headers)
108
+
109
+ if not result.success:
110
+ raise RuntimeError(f"Analysis failed: {result.error}")
111
+
112
+ output = _format_single_result(result, json_output, csv_output)
113
+
114
+ # Directory analysis
115
+ else:
116
+ batch_result = analyze_directory(
117
+ target_path,
118
+ recursive=recursive,
119
+ api_url=api_url,
120
+ auth_headers=auth_headers,
121
+ )
122
+
123
+ # Apply filter if specified
124
+ if filter_expr:
125
+ batch_result = _apply_filter(batch_result, filter_expr)
126
+
127
+ output = _format_batch_result(batch_result, json_output, csv_output)
128
+
129
+ # Write to file if specified
130
+ if output_file:
131
+ Path(output_file).write_text(output)
132
+ print(f"Output written to {output_file}", file=sys.stderr)
133
+ return f"Results saved to {output_file}"
134
+
135
+ return output
136
+
137
+
138
+ def metrics_command() -> str:
139
+ """List available metrics.
140
+
141
+ Returns:
142
+ Metrics list output
143
+ """
144
+ metrics = [
145
+ ("vgpr_count", "Vector GPR allocation", "From .amdhsa_next_free_vgpr directive"),
146
+ ("sgpr_count", "Scalar GPR allocation", "From .amdhsa_next_free_sgpr directive"),
147
+ ("agpr_count", "Accumulator GPR count", "For MFMA operations (MI100+)"),
148
+ ("lds_size", "LDS allocation (bytes)", "From .amdhsa_group_segment_fixed_size"),
149
+ ("scratch_size", "Scratch memory (bytes)", "From .amdhsa_private_segment_fixed_size"),
150
+ ("spill_count", "Register spill operations", "Count of scratch_store/load instructions"),
151
+ ("mfma_count", "MFMA instructions", "Count of v_mfma_* instructions"),
152
+ ("mfma_density_pct", "MFMA density (%)", "MFMA / total VALU * 100"),
153
+ ("packed_ops_count", "Packed instructions", "Count of v_pk_* instructions"),
154
+ ("fma_count", "FMA instructions", "Count of v_fma_* instructions"),
155
+ ("barrier_count", "Barriers", "Count of s_barrier instructions"),
156
+ ("full_stall_count", "Full stalls", "Count of waitcnt 0 instructions"),
157
+ ("global_load_count", "Global loads", "Count of global_load_* instructions"),
158
+ ("global_store_count", "Global stores", "Count of global_store_* instructions"),
159
+ ("lds_ops_count", "LDS operations", "Count of ds_read/write instructions"),
160
+ ("theoretical_occupancy", "Max waves/CU", "Limited by VGPR/SGPR/LDS"),
161
+ ]
162
+
163
+ lines = [
164
+ "Available Metrics for Kernel Scope Analysis",
165
+ "=" * 60,
166
+ "",
167
+ ]
168
+
169
+ for name, description, derivation in metrics:
170
+ lines.append(f" {name:<25} {description}")
171
+ lines.append(f" {'':<25} Derivation: {derivation}")
172
+ lines.append("")
173
+
174
+ lines.extend([
175
+ "Instruction Categories:",
176
+ " VALU - Vector ALU (v_add_*, v_mul_*, v_fma_*)",
177
+ " SALU - Scalar ALU (s_add_*, s_mul_*)",
178
+ " VMEM - Vector memory (global_load_*, global_store_*)",
179
+ " SMEM - Scalar memory (s_load_*, s_buffer_load_*)",
180
+ " LDS - Local Data Share (ds_read_*, ds_write_*)",
181
+ " MFMA - Matrix FMA (v_mfma_f32_*, v_mfma_f16_*)",
182
+ " SYNC - Synchronization (s_barrier, s_waitcnt)",
183
+ " SPILL - Spill operations (scratch_store_*, scratch_load_*)",
184
+ ])
185
+
186
+ return "\n".join(lines)
187
+
188
+
189
+ def targets_command() -> str:
190
+ """List supported GPU targets.
191
+
192
+ Returns:
193
+ Targets list output
194
+ """
195
+ from wafer_core.lib.kernel_scope.targets import SUPPORTED_TARGETS, get_target_specs
196
+
197
+ lines = [
198
+ "Supported GPU Targets",
199
+ "=" * 60,
200
+ "",
201
+ f"{'Architecture':<12} {'Series':<10} {'VGPRs/CU':<10} {'SGPRs/CU':<10} {'LDS/CU':<10} {'Max Waves':<10}",
202
+ "-" * 60,
203
+ ]
204
+
205
+ for target in SUPPORTED_TARGETS:
206
+ specs = get_target_specs(target)
207
+ lines.append(
208
+ f"{specs.name:<12} {specs.series:<10} {specs.vgprs_per_cu:<10} "
209
+ f"{specs.sgprs_per_cu:<10} {specs.lds_per_cu:<10} {specs.max_waves_per_cu:<10}"
210
+ )
211
+
212
+ lines.extend([
213
+ "",
214
+ "Note: Default values are used for unknown architectures.",
215
+ ])
216
+
217
+ return "\n".join(lines)
218
+
219
+
220
+ def _format_single_result(result, json_output: bool, csv_output: bool) -> str:
221
+ """Format a single analysis result."""
222
+ if json_output:
223
+ return result.to_json()
224
+
225
+ if csv_output:
226
+ return _result_to_csv(result)
227
+
228
+ return _result_to_text(result)
229
+
230
+
231
+ def _format_batch_result(batch_result, json_output: bool, csv_output: bool) -> str:
232
+ """Format batch analysis results."""
233
+ if json_output:
234
+ return batch_result.to_json()
235
+
236
+ if csv_output:
237
+ return _batch_to_csv(batch_result)
238
+
239
+ return _batch_to_text(batch_result)
240
+
241
+
242
+ def _result_to_text(result) -> str:
243
+ """Format single result as human-readable text."""
244
+ lines = []
245
+
246
+ if result.code_object_analysis:
247
+ # .co file analysis (via API)
248
+ a = result.code_object_analysis
249
+ lines.extend([
250
+ f"Kernel: {a.kernel_name}",
251
+ f"Architecture: {a.architecture}",
252
+ f"Source: Code Object (.co)",
253
+ "",
254
+ "=== Registers ===",
255
+ f" VGPRs: {a.vgpr_count}",
256
+ f" SGPRs: {a.sgpr_count}",
257
+ f" AGPRs: {a.agpr_count}",
258
+ ])
259
+
260
+ if a.vgpr_spill_count > 0 or a.sgpr_spill_count > 0:
261
+ lines.extend([
262
+ "",
263
+ "!!! SPILLS DETECTED !!!",
264
+ f" VGPR spills: {a.vgpr_spill_count}",
265
+ f" SGPR spills: {a.sgpr_spill_count}",
266
+ ])
267
+ else:
268
+ lines.append(" Spills: None (good)")
269
+
270
+ lines.extend([
271
+ "",
272
+ "=== Memory ===",
273
+ f" LDS: {a.lds_bytes} bytes",
274
+ f" Global loads: {a.global_loads}",
275
+ f" Global stores: {a.global_stores}",
276
+ f" LDS ops: {a.lds_ops}",
277
+ "",
278
+ "=== Instructions ===",
279
+ f" MFMA: {a.mfma_count}",
280
+ f" FMA: {a.fma_count}",
281
+ f" Packed (v_pk_*): {a.packed_ops_count}",
282
+ f" Full stalls (waitcnt 0): {a.waitcnt_full_stalls}",
283
+ f" Barriers: {a.barriers}",
284
+ ])
285
+
286
+ elif result.isa_analysis:
287
+ # .s/.gcn/.asm file analysis (local parsing)
288
+ a = result.isa_analysis
289
+ lines.extend([
290
+ f"Kernel: {a.kernel_name}",
291
+ f"Architecture: {a.architecture}",
292
+ f"Source: ISA Assembly (.s)",
293
+ "",
294
+ "=== Registers ===",
295
+ f" VGPRs: {a.vgpr_count}",
296
+ f" SGPRs: {a.sgpr_count}",
297
+ f" AGPRs: {a.agpr_count}",
298
+ ])
299
+
300
+ if a.spill_count > 0:
301
+ lines.extend([
302
+ "",
303
+ "!!! SPILLS DETECTED !!!",
304
+ f" Total spills: {a.spill_count}",
305
+ f" VGPR spills: {a.vgpr_spill_count}",
306
+ f" SGPR spills: {a.sgpr_spill_count}",
307
+ ])
308
+ else:
309
+ lines.append(" Spills: None (good)")
310
+
311
+ lines.extend([
312
+ "",
313
+ "=== Memory ===",
314
+ f" LDS: {a.lds_size} bytes",
315
+ f" Scratch: {a.scratch_size} bytes",
316
+ f" Global loads: {a.global_load_count}",
317
+ f" Global stores: {a.global_store_count}",
318
+ f" LDS ops: {a.lds_ops_count}",
319
+ "",
320
+ "=== Instructions ===",
321
+ f" MFMA: {a.mfma_count} ({a.mfma_density_pct:.1f}% density)",
322
+ f" FMA: {a.fma_count}",
323
+ f" Packed (v_pk_*): {a.packed_ops_count}",
324
+ f" Barriers: {a.barrier_count}",
325
+ f" Full stalls: {a.full_stall_count}",
326
+ "",
327
+ "=== Instruction Mix ===",
328
+ f" VALU: {a.instruction_mix.valu_count}",
329
+ f" SALU: {a.instruction_mix.salu_count}",
330
+ f" VMEM: {a.instruction_mix.vmem_count}",
331
+ f" SMEM: {a.instruction_mix.smem_count}",
332
+ f" LDS: {a.instruction_mix.lds_count}",
333
+ f" MFMA: {a.instruction_mix.mfma_count}",
334
+ f" Sync: {a.instruction_mix.sync_count}",
335
+ f" Total: {a.instruction_mix.total_count}",
336
+ "",
337
+ "=== Occupancy ===",
338
+ f" Max waves (VGPR): {a.max_waves_vgpr}",
339
+ f" Max waves (SGPR): {a.max_waves_sgpr}",
340
+ f" Max waves (LDS): {a.max_waves_lds}",
341
+ f" Theoretical: {a.theoretical_occupancy} waves/CU",
342
+ ])
343
+
344
+ if a.warnings:
345
+ lines.extend([
346
+ "",
347
+ "=== Warnings ===",
348
+ ])
349
+ for warning in a.warnings:
350
+ lines.append(f" {warning}")
351
+
352
+ elif result.ttgir_analysis:
353
+ a = result.ttgir_analysis
354
+ lines.extend([
355
+ "TTGIR Analysis",
356
+ "",
357
+ "=== Operations ===",
358
+ f" tt.dot: {a.dot_count}",
359
+ f" tt.load: {a.load_count}",
360
+ f" tt.store: {a.store_count}",
361
+ f" tt.reduce: {a.reduce_count}",
362
+ f" Barriers: {a.barrier_count}",
363
+ ])
364
+
365
+ if a.tile_info:
366
+ lines.extend([
367
+ "",
368
+ "=== Tiling ===",
369
+ f" BLOCK_M: {a.tile_info.block_m}",
370
+ f" BLOCK_N: {a.tile_info.block_n}",
371
+ f" BLOCK_K: {a.tile_info.block_k}",
372
+ f" num_warps: {a.tile_info.num_warps}",
373
+ f" num_stages: {a.tile_info.num_stages}",
374
+ ])
375
+
376
+ if a.has_software_pipelining:
377
+ lines.append(" Software pipelining: enabled")
378
+
379
+ if a.estimated_compute_intensity:
380
+ lines.append(f" Compute intensity: {a.estimated_compute_intensity:.1f} FLOPs/byte")
381
+
382
+ elif result.llvm_ir_analysis:
383
+ a = result.llvm_ir_analysis
384
+ lines.extend([
385
+ "LLVM-IR Analysis",
386
+ "",
387
+ f" Functions: {a.function_count}",
388
+ f" Total instructions: {a.total_instructions}",
389
+ f" Functions with loops: {a.functions_with_loops}",
390
+ f" Has vector ops: {a.has_vector_ops}",
391
+ ])
392
+
393
+ if a.kernel_functions:
394
+ lines.append(f" Kernel functions: {', '.join(a.kernel_functions)}")
395
+
396
+ return "\n".join(lines)
397
+
398
+
399
+ def _result_to_csv(result) -> str:
400
+ """Format single result as CSV."""
401
+ header = "kernel_name,architecture,source_type,vgpr_count,sgpr_count,vgpr_spills,sgpr_spills,mfma_count,lds_bytes,global_loads,global_stores"
402
+
403
+ if result.code_object_analysis:
404
+ a = result.code_object_analysis
405
+ row = f"{a.kernel_name},{a.architecture},code_object,{a.vgpr_count},{a.sgpr_count},{a.vgpr_spill_count},{a.sgpr_spill_count},{a.mfma_count},{a.lds_bytes},{a.global_loads},{a.global_stores}"
406
+ return f"{header}\n{row}"
407
+
408
+ if result.isa_analysis:
409
+ a = result.isa_analysis
410
+ row = f"{a.kernel_name},{a.architecture},isa_assembly,{a.vgpr_count},{a.sgpr_count},{a.vgpr_spill_count},{a.sgpr_spill_count},{a.mfma_count},{a.lds_size},{a.global_load_count},{a.global_store_count}"
411
+ return f"{header}\n{row}"
412
+
413
+ return "# Unsupported format for CSV"
414
+
415
+
416
+ def _batch_to_text(batch_result) -> str:
417
+ """Format batch results as text."""
418
+ lines = [
419
+ f"Analyzed {batch_result.total_files} files",
420
+ f" Successful: {batch_result.successful}",
421
+ f" Failed: {batch_result.failed}",
422
+ "",
423
+ ]
424
+
425
+ if batch_result.summary:
426
+ lines.extend([
427
+ "=== Summary ===",
428
+ f" Avg VGPRs: {batch_result.summary.get('total_vgpr_avg', 0):.1f}",
429
+ f" Avg SGPRs: {batch_result.summary.get('total_sgpr_avg', 0):.1f}",
430
+ f" Total spills: {batch_result.summary.get('total_spills', 0)}",
431
+ f" Files with spills: {batch_result.summary.get('files_with_spills', 0)}",
432
+ f" Total MFMA: {batch_result.summary.get('total_mfma', 0)}",
433
+ f" Avg MFMA density: {batch_result.summary.get('avg_mfma_density', 0):.1f}%",
434
+ "",
435
+ ])
436
+
437
+ # Show individual results
438
+ for result in batch_result.results:
439
+ if result.success and result.code_object_analysis:
440
+ a = result.code_object_analysis
441
+ spills = a.vgpr_spill_count + a.sgpr_spill_count
442
+ status = "⚠️" if spills > 0 else "✓"
443
+ lines.append(
444
+ f" {status} {result.file_path}: "
445
+ f"VGPRs={a.vgpr_count}, spills={spills}, MFMA={a.mfma_count}"
446
+ )
447
+ elif result.success and result.isa_analysis:
448
+ a = result.isa_analysis
449
+ status = "⚠️" if a.spill_count > 0 else "✓"
450
+ lines.append(
451
+ f" {status} {result.file_path}: "
452
+ f"VGPRs={a.vgpr_count}, spills={a.spill_count}, MFMA={a.mfma_count}"
453
+ )
454
+ elif not result.success:
455
+ lines.append(f" ✗ {result.file_path}: {result.error}")
456
+
457
+ return "\n".join(lines)
458
+
459
+
460
+ def _batch_to_csv(batch_result) -> str:
461
+ """Format batch results as CSV."""
462
+ lines = ["file_path,kernel_name,architecture,source_type,vgpr_count,sgpr_count,vgpr_spills,sgpr_spills,mfma_count,lds_bytes"]
463
+
464
+ for result in batch_result.results:
465
+ if result.success and result.code_object_analysis:
466
+ a = result.code_object_analysis
467
+ lines.append(
468
+ f"{result.file_path},{a.kernel_name},{a.architecture},code_object,"
469
+ f"{a.vgpr_count},{a.sgpr_count},{a.vgpr_spill_count},{a.sgpr_spill_count},"
470
+ f"{a.mfma_count},{a.lds_bytes}"
471
+ )
472
+ elif result.success and result.isa_analysis:
473
+ a = result.isa_analysis
474
+ lines.append(
475
+ f"{result.file_path},{a.kernel_name},{a.architecture},isa_assembly,"
476
+ f"{a.vgpr_count},{a.sgpr_count},{a.vgpr_spill_count},{a.sgpr_spill_count},"
477
+ f"{a.mfma_count},{a.lds_size}"
478
+ )
479
+
480
+ return "\n".join(lines)
481
+
482
+
483
+ def _apply_filter(batch_result, filter_expr: str):
484
+ """Apply filter expression to batch results."""
485
+ # Simple filter parsing: "metric op value"
486
+ # Supported: spills > 0, vgpr_count > 128, mfma_count == 0
487
+ import re
488
+
489
+ match = re.match(r"(\w+)\s*(>|<|>=|<=|==|!=)\s*(\d+)", filter_expr)
490
+ if not match:
491
+ print(f"Warning: Invalid filter expression: {filter_expr}", file=sys.stderr)
492
+ return batch_result
493
+
494
+ metric = match.group(1)
495
+ op = match.group(2)
496
+ value = int(match.group(3))
497
+
498
+ # Map common aliases
499
+ metric_map = {
500
+ "spills": "spill_count",
501
+ "vgpr": "vgpr_count",
502
+ "sgpr": "sgpr_count",
503
+ "mfma": "mfma_count",
504
+ "occupancy": "theoretical_occupancy",
505
+ }
506
+ metric = metric_map.get(metric, metric)
507
+
508
+ # Filter function - supports both isa_analysis and code_object_analysis
509
+ def passes_filter(result):
510
+ if not result.success:
511
+ return False
512
+
513
+ # Try to get metric from either analysis type
514
+ actual = None
515
+ if result.isa_analysis:
516
+ actual = getattr(result.isa_analysis, metric, None)
517
+ elif result.code_object_analysis:
518
+ # Map isa_analysis metric names to code_object_analysis equivalents
519
+ co_metric_map = {
520
+ "spill_count": "vgpr_spill_count", # Use vgpr_spill_count as proxy
521
+ "lds_size": "lds_bytes",
522
+ }
523
+ co_metric = co_metric_map.get(metric, metric)
524
+ actual = getattr(result.code_object_analysis, co_metric, None)
525
+
526
+ if actual is None:
527
+ return False
528
+
529
+ if op == ">":
530
+ return actual > value
531
+ elif op == "<":
532
+ return actual < value
533
+ elif op == ">=":
534
+ return actual >= value
535
+ elif op == "<=":
536
+ return actual <= value
537
+ elif op == "==":
538
+ return actual == value
539
+ elif op == "!=":
540
+ return actual != value
541
+
542
+ return False
543
+
544
+ filtered_results = [r for r in batch_result.results if passes_filter(r)]
545
+
546
+ from wafer_core.lib.kernel_scope.api import BatchAnalysisResult
547
+
548
+ return BatchAnalysisResult(
549
+ total_files=len(filtered_results),
550
+ successful=sum(1 for r in filtered_results if r.success),
551
+ failed=sum(1 for r in filtered_results if not r.success),
552
+ results=tuple(filtered_results),
553
+ summary=batch_result.summary,
554
+ )