voxcity 0.6.16__py3-none-any.whl → 0.6.18__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of voxcity might be problematic. Click here for more details.
- voxcity/downloader/osm.py +23 -7
- voxcity/downloader/overture.py +26 -1
- voxcity/exporter/__init__.py +2 -1
- voxcity/exporter/netcdf.py +211 -0
- voxcity/exporter/obj.py +538 -1
- voxcity/generator.py +102 -7
- voxcity/geoprocessor/grid.py +1738 -1732
- voxcity/utils/visualization.py +31 -0
- {voxcity-0.6.16.dist-info → voxcity-0.6.18.dist-info}/METADATA +4 -2
- {voxcity-0.6.16.dist-info → voxcity-0.6.18.dist-info}/RECORD +13 -12
- {voxcity-0.6.16.dist-info → voxcity-0.6.18.dist-info}/AUTHORS.rst +0 -0
- {voxcity-0.6.16.dist-info → voxcity-0.6.18.dist-info}/LICENSE +0 -0
- {voxcity-0.6.16.dist-info → voxcity-0.6.18.dist-info}/WHEEL +0 -0
voxcity/exporter/obj.py
CHANGED
|
@@ -652,4 +652,541 @@ def grid_to_obj(value_array_ori, dem_array_ori, output_dir, file_name, cell_size
|
|
|
652
652
|
f.write(f'd {a:.6f}\n') # Transparency (alpha)
|
|
653
653
|
f.write('\n')
|
|
654
654
|
|
|
655
|
-
print(f'OBJ and MTL files have been generated in {output_dir} with the base name "{file_name}".')
|
|
655
|
+
print(f'OBJ and MTL files have been generated in {output_dir} with the base name "{file_name}".')
|
|
656
|
+
|
|
657
|
+
|
|
658
|
+
def export_netcdf_to_obj(
|
|
659
|
+
voxcity_nc,
|
|
660
|
+
scalar_nc,
|
|
661
|
+
lonlat_txt,
|
|
662
|
+
output_dir,
|
|
663
|
+
vox_base_filename="voxcity_objects",
|
|
664
|
+
tm_base_filename="tm_isosurfaces",
|
|
665
|
+
scalar_var="tm",
|
|
666
|
+
scalar_building_value=-999.99,
|
|
667
|
+
scalar_building_tol=1e-4,
|
|
668
|
+
stride_vox=(1, 1, 1),
|
|
669
|
+
stride_scalar=(1, 1, 1),
|
|
670
|
+
contour_levels=24,
|
|
671
|
+
cmap_name="magma",
|
|
672
|
+
opacity_points=None,
|
|
673
|
+
max_opacity=0.10,
|
|
674
|
+
classes_to_show=None,
|
|
675
|
+
voxel_color_scheme="default",
|
|
676
|
+
max_faces_warn=1_000_000,
|
|
677
|
+
):
|
|
678
|
+
"""
|
|
679
|
+
Export two OBJ/MTL files using the same local meter frame:
|
|
680
|
+
- VoxCity voxels: opaque, per-class color, fixed face winding and normals
|
|
681
|
+
- Scalar iso-surfaces: colormap colors with variable transparency
|
|
682
|
+
|
|
683
|
+
The two outputs share the same XY origin and axes (X east, Y north, Z up),
|
|
684
|
+
anchored at the minimum lon/lat of the VoxCity bounding rectangle.
|
|
685
|
+
|
|
686
|
+
Args:
|
|
687
|
+
voxcity_nc (str): Path to VoxCity NetCDF (must include variable 'voxels' and coords 'x','y','z').
|
|
688
|
+
scalar_nc (str): Path to scalar NetCDF containing variable specified by scalar_var.
|
|
689
|
+
lonlat_txt (str): Text file with columns: i j lon lat (1-based indices) describing the scalar grid georef.
|
|
690
|
+
output_dir (str): Directory to write results.
|
|
691
|
+
vox_base_filename (str): Base filename for VoxCity OBJ/MTL.
|
|
692
|
+
tm_base_filename (str): Base filename for scalar iso-surfaces OBJ/MTL.
|
|
693
|
+
scalar_var (str): Name of scalar variable in scalar_nc.
|
|
694
|
+
scalar_building_value (float): Value used in scalar field to mark buildings (to be masked).
|
|
695
|
+
scalar_building_tol (float): Tolerance for building masking (isclose).
|
|
696
|
+
stride_vox (tuple[int,int,int]): Downsampling strides for VoxCity (z,y,x) in voxels.
|
|
697
|
+
stride_scalar (tuple[int,int,int]): Downsampling strides for scalar (k,j,i).
|
|
698
|
+
contour_levels (int): Number of iso-surface levels between vmin and vmax.
|
|
699
|
+
cmap_name (str): Matplotlib colormap name for iso-surfaces.
|
|
700
|
+
opacity_points (list[tuple[float,float]]|None): Transfer function control points (value, alpha in [0..1]).
|
|
701
|
+
max_opacity (float): Global max opacity multiplier for iso-surfaces (0..1).
|
|
702
|
+
classes_to_show (set[int]|None): Optional subset of voxel classes to export; None -> all present (except 0).
|
|
703
|
+
voxel_color_scheme (str): Color scheme name passed to get_voxel_color_map.
|
|
704
|
+
max_faces_warn (int): Warn if a single class exceeds this many faces.
|
|
705
|
+
|
|
706
|
+
Returns:
|
|
707
|
+
dict: Paths of written files: keys 'vox_obj','vox_mtl','tm_obj','tm_mtl' (values may be None).
|
|
708
|
+
"""
|
|
709
|
+
import json
|
|
710
|
+
import numpy as np
|
|
711
|
+
import os
|
|
712
|
+
import xarray as xr
|
|
713
|
+
import trimesh
|
|
714
|
+
|
|
715
|
+
try:
|
|
716
|
+
from skimage import measure as skim
|
|
717
|
+
except Exception as e: # pragma: no cover - optional dependency
|
|
718
|
+
raise ImportError(
|
|
719
|
+
"scikit-image is required for iso-surface generation. Install 'scikit-image'."
|
|
720
|
+
) from e
|
|
721
|
+
|
|
722
|
+
from matplotlib import cm
|
|
723
|
+
|
|
724
|
+
if opacity_points is None:
|
|
725
|
+
opacity_points = [(-0.2, 0.00), (2.0, 1.00)]
|
|
726
|
+
|
|
727
|
+
def find_dims(ds):
|
|
728
|
+
lvl = ["k", "level", "lev", "z", "height", "alt", "plev"]
|
|
729
|
+
yy = ["j", "y", "south_north", "lat", "latitude"]
|
|
730
|
+
xx = ["i", "x", "west_east", "lon", "longitude"]
|
|
731
|
+
tt = ["time", "Times"]
|
|
732
|
+
|
|
733
|
+
def pick(cands):
|
|
734
|
+
for c in cands:
|
|
735
|
+
if c in ds.dims:
|
|
736
|
+
return c
|
|
737
|
+
return None
|
|
738
|
+
|
|
739
|
+
t = pick(tt)
|
|
740
|
+
k = pick(lvl)
|
|
741
|
+
j = pick(yy)
|
|
742
|
+
i = pick(xx)
|
|
743
|
+
if (k is None or j is None or i is None) and len(ds.dims) >= 3:
|
|
744
|
+
dims = list(ds.dims)
|
|
745
|
+
k = k or dims[0]
|
|
746
|
+
j = j or dims[-2]
|
|
747
|
+
i = i or dims[-1]
|
|
748
|
+
return t, k, j, i
|
|
749
|
+
|
|
750
|
+
def squeeze_to_kji(da, tname, kname, jname, iname, time_index=0):
|
|
751
|
+
if tname and tname in da.dims:
|
|
752
|
+
da = da.isel({tname: time_index})
|
|
753
|
+
for d in list(da.dims):
|
|
754
|
+
if d not in (kname, jname, iname):
|
|
755
|
+
da = da.isel({d: 0})
|
|
756
|
+
return da.transpose(*(d for d in (kname, jname, iname) if d in da.dims))
|
|
757
|
+
|
|
758
|
+
def downsample3(a, sk, sj, si):
|
|
759
|
+
return a[:: max(1, sk), :: max(1, sj), :: max(1, si)]
|
|
760
|
+
|
|
761
|
+
def clip_minmax(arr, frac):
|
|
762
|
+
v = np.asarray(arr)
|
|
763
|
+
v = v[np.isfinite(v)]
|
|
764
|
+
if v.size == 0:
|
|
765
|
+
return 0.0, 1.0
|
|
766
|
+
if frac <= 0:
|
|
767
|
+
return float(np.nanmin(v)), float(np.nanmax(v))
|
|
768
|
+
vmin_ = float(np.nanpercentile(v, 100 * frac))
|
|
769
|
+
vmax_ = float(np.nanpercentile(v, 100 * (1 - frac)))
|
|
770
|
+
if vmin_ >= vmax_:
|
|
771
|
+
vmin_, vmax_ = float(np.nanmin(v)), float(np.nanmax(v))
|
|
772
|
+
return vmin_, vmax_
|
|
773
|
+
|
|
774
|
+
def meters_per_degree(lat_rad):
|
|
775
|
+
m_per_deg_lat = 111132.92 - 559.82 * np.cos(2 * lat_rad) + 1.175 * np.cos(4 * lat_rad) - 0.0023 * np.cos(6 * lat_rad)
|
|
776
|
+
m_per_deg_lon = 111412.84 * np.cos(lat_rad) - 93.5 * np.cos(3 * lat_rad) + 0.118 * np.cos(5 * lat_rad)
|
|
777
|
+
return m_per_deg_lat, m_per_deg_lon
|
|
778
|
+
|
|
779
|
+
def opacity_at(v, points):
|
|
780
|
+
if not points:
|
|
781
|
+
return 0.0 if np.isscalar(v) else np.zeros_like(v)
|
|
782
|
+
pts = sorted((float(x), float(a)) for x, a in points)
|
|
783
|
+
xs = np.array([p[0] for p in pts], dtype=float)
|
|
784
|
+
as_ = np.array([p[1] for p in pts], dtype=float)
|
|
785
|
+
v_arr = np.asarray(v, dtype=float)
|
|
786
|
+
out = np.empty_like(v_arr, dtype=float)
|
|
787
|
+
out[v_arr <= xs[0]] = as_[0]
|
|
788
|
+
out[v_arr >= xs[-1]] = as_[-1]
|
|
789
|
+
idx = np.searchsorted(xs, v_arr, side="right") - 1
|
|
790
|
+
idx = np.clip(idx, 0, len(xs) - 2)
|
|
791
|
+
x0, x1 = xs[idx], xs[idx + 1]
|
|
792
|
+
a0, a1 = as_[idx], as_[idx + 1]
|
|
793
|
+
t = np.where(x1 > x0, (v_arr - x0) / (x1 - x0), 0.0)
|
|
794
|
+
mid = (v_arr > xs[0]) & (v_arr < xs[-1])
|
|
795
|
+
out[mid] = a0[mid] + t[mid] * (a1[mid] - a0[mid])
|
|
796
|
+
return out.item() if np.isscalar(v) else out
|
|
797
|
+
|
|
798
|
+
def _exposed_face_masks(occ):
|
|
799
|
+
K, J, I = occ.shape
|
|
800
|
+
p = np.pad(occ, ((0, 0), (0, 0), (0, 1)), constant_values=False)
|
|
801
|
+
posx = occ & (~p[..., 1:])
|
|
802
|
+
p = np.pad(occ, ((0, 0), (0, 0), (1, 0)), constant_values=False)
|
|
803
|
+
negx = occ & (~p[..., :-1])
|
|
804
|
+
p = np.pad(occ, ((0, 0), (0, 1), (0, 0)), constant_values=False)
|
|
805
|
+
posy = occ & (~p[:, 1:, :])
|
|
806
|
+
p = np.pad(occ, ((0, 0), (1, 0), (0, 0)), constant_values=False)
|
|
807
|
+
negy = occ & (~p[:, :-1, :])
|
|
808
|
+
p = np.pad(occ, ((0, 1), (0, 0), (0, 0)), constant_values=False)
|
|
809
|
+
posz = occ & (~p[1:, :, :])
|
|
810
|
+
p = np.pad(occ, ((1, 0), (0, 0), (0, 0)), constant_values=False)
|
|
811
|
+
negz = occ & (~p[:-1, :, :])
|
|
812
|
+
return posx, negx, posy, negy, posz, negz
|
|
813
|
+
|
|
814
|
+
def _emit_faces_trimesh(k, j, i, plane, X, Y, Z, start_idx):
|
|
815
|
+
N = k.size
|
|
816
|
+
if N == 0:
|
|
817
|
+
return np.empty((0, 3)), np.empty((0, 3), dtype=np.int64), start_idx
|
|
818
|
+
|
|
819
|
+
dx = (X[1] - X[0]) if len(X) > 1 else 1.0
|
|
820
|
+
dy = (Y[1] - Y[0]) if len(Y) > 1 else 1.0
|
|
821
|
+
dz = (Z[1] - Z[0]) if len(Z) > 1 else 1.0
|
|
822
|
+
|
|
823
|
+
x = X[i].astype(np.float64)
|
|
824
|
+
y = Y[j].astype(np.float64)
|
|
825
|
+
z = Z[k].astype(np.float64)
|
|
826
|
+
hx, hy, hz = dx / 2.0, dy / 2.0, dz / 2.0
|
|
827
|
+
|
|
828
|
+
if plane == "+x":
|
|
829
|
+
P = np.column_stack([x + hx, y - hy, z - hz])
|
|
830
|
+
Q = np.column_stack([x + hx, y + hy, z - hz])
|
|
831
|
+
R = np.column_stack([x + hx, y + hy, z + hz])
|
|
832
|
+
S = np.column_stack([x + hx, y - hy, z + hz])
|
|
833
|
+
order = "default"
|
|
834
|
+
elif plane == "-x":
|
|
835
|
+
P = np.column_stack([x - hx, y - hy, z + hz])
|
|
836
|
+
Q = np.column_stack([x - hx, y + hy, z + hz])
|
|
837
|
+
R = np.column_stack([x - hx, y + hy, z - hz])
|
|
838
|
+
S = np.column_stack([x - hx, y - hy, z - hz])
|
|
839
|
+
order = "default"
|
|
840
|
+
elif plane == "+y":
|
|
841
|
+
P = np.column_stack([x - hx, y + hy, z - hz])
|
|
842
|
+
Q = np.column_stack([x + hx, y + hy, z - hz])
|
|
843
|
+
R = np.column_stack([x + hx, y + hy, z + hz])
|
|
844
|
+
S = np.column_stack([x - hx, y + hy, z + hz])
|
|
845
|
+
order = "flip" # enforce outward normals
|
|
846
|
+
elif plane == "-y":
|
|
847
|
+
P = np.column_stack([x - hx, y - hy, z + hz])
|
|
848
|
+
Q = np.column_stack([x + hx, y - hy, z + hz])
|
|
849
|
+
R = np.column_stack([x + hx, y - hy, z - hz])
|
|
850
|
+
S = np.column_stack([x - hx, y - hy, z - hz])
|
|
851
|
+
order = "flip"
|
|
852
|
+
elif plane == "+z":
|
|
853
|
+
P = np.column_stack([x - hx, y - hy, z + hz])
|
|
854
|
+
Q = np.column_stack([x + hx, y - hy, z + hz])
|
|
855
|
+
R = np.column_stack([x + hx, y + hy, z + hz])
|
|
856
|
+
S = np.column_stack([x - hx, y + hy, z + hz])
|
|
857
|
+
order = "default"
|
|
858
|
+
else: # "-z"
|
|
859
|
+
P = np.column_stack([x - hx, y + hy, z - hz])
|
|
860
|
+
Q = np.column_stack([x + hx, y + hy, z - hz])
|
|
861
|
+
R = np.column_stack([x + hx, y - hy, z - hz])
|
|
862
|
+
S = np.column_stack([x - hx, y - hy, z - hz])
|
|
863
|
+
order = "default"
|
|
864
|
+
|
|
865
|
+
verts = np.vstack([P, Q, R, S])
|
|
866
|
+
a = np.arange(N, dtype=np.int64) + start_idx
|
|
867
|
+
b = a + N
|
|
868
|
+
c = a + 2 * N
|
|
869
|
+
d = a + 3 * N
|
|
870
|
+
|
|
871
|
+
if order == "default":
|
|
872
|
+
tris = np.vstack([np.column_stack([a, b, c]), np.column_stack([a, c, d])])
|
|
873
|
+
else:
|
|
874
|
+
tris = np.vstack([np.column_stack([a, c, b]), np.column_stack([a, d, c])])
|
|
875
|
+
|
|
876
|
+
return verts, tris, start_idx + 4 * N
|
|
877
|
+
|
|
878
|
+
def make_voxel_mesh_uniform_color(occ_mask, X, Y, Z, rgb, name="class"):
|
|
879
|
+
posx, negx, posy, negy, posz, negz = _exposed_face_masks(occ_mask.astype(bool))
|
|
880
|
+
total_faces = int(posx.sum() + negx.sum() + posy.sum() + negy.sum() + posz.sum() + negz.sum())
|
|
881
|
+
if total_faces == 0:
|
|
882
|
+
return None, 0
|
|
883
|
+
if total_faces > max_faces_warn:
|
|
884
|
+
print(f" Warning: {name} faces={total_faces:,} (> {max_faces_warn:,}). Consider increasing stride.")
|
|
885
|
+
|
|
886
|
+
verts_all, tris_all, start_idx = [], [], 0
|
|
887
|
+
for plane, mask in (("+x", posx), ("-x", negx), ("+y", posy), ("-y", negy), ("+z", posz), ("-z", negz)):
|
|
888
|
+
idx = np.argwhere(mask)
|
|
889
|
+
if idx.size == 0:
|
|
890
|
+
continue
|
|
891
|
+
k, j, i = idx[:, 0], idx[:, 1], idx[:, 2]
|
|
892
|
+
Vp, Tp, start_idx = _emit_faces_trimesh(k, j, i, plane, X, Y, Z, start_idx)
|
|
893
|
+
verts_all.append(Vp)
|
|
894
|
+
tris_all.append(Tp)
|
|
895
|
+
|
|
896
|
+
V = np.vstack(verts_all)
|
|
897
|
+
F = np.vstack(tris_all)
|
|
898
|
+
mesh = trimesh.Trimesh(vertices=V, faces=F, process=False)
|
|
899
|
+
rgba = np.array([int(rgb[0]), int(rgb[1]), int(rgb[2]), 255], dtype=np.uint8)
|
|
900
|
+
mesh.visual.face_colors = np.tile(rgba, (len(F), 1))
|
|
901
|
+
return mesh, len(F)
|
|
902
|
+
|
|
903
|
+
def build_tm_isosurfaces_regular_grid(A_scalar, vmin, vmax, levels, dx, dy, dz, origin_xyz, cmap_name, opacity_points, max_opacity):
|
|
904
|
+
cmap = cm.get_cmap(cmap_name)
|
|
905
|
+
meshes = []
|
|
906
|
+
if levels <= 0:
|
|
907
|
+
return meshes
|
|
908
|
+
iso_vals = np.linspace(vmin, vmax, int(levels))
|
|
909
|
+
for iso in iso_vals:
|
|
910
|
+
a_base = float(opacity_at(iso, opacity_points or []))
|
|
911
|
+
a_base = min(max(a_base, 0.0), 1.0)
|
|
912
|
+
alpha = a_base * max_opacity
|
|
913
|
+
if alpha <= 0.0:
|
|
914
|
+
continue
|
|
915
|
+
try:
|
|
916
|
+
verts, faces, _, _ = skim.marching_cubes(A_scalar, level=iso, spacing=(dz, dy, dx))
|
|
917
|
+
except Exception:
|
|
918
|
+
continue
|
|
919
|
+
if len(verts) == 0 or len(faces) == 0:
|
|
920
|
+
continue
|
|
921
|
+
V = verts[:, [2, 1, 0]].astype(np.float64)
|
|
922
|
+
V += np.array(origin_xyz, dtype=np.float64)[None, :]
|
|
923
|
+
m = trimesh.Trimesh(vertices=V, faces=faces.astype(np.int64), process=False)
|
|
924
|
+
t = 0.0 if vmax <= vmin else (iso - vmin) / (vmax - vmin)
|
|
925
|
+
r, g, b, _ = cmap(np.clip(t, 0.0, 1.0))
|
|
926
|
+
rgba = (
|
|
927
|
+
int(round(255 * r)),
|
|
928
|
+
int(round(255 * g)),
|
|
929
|
+
int(round(255 * b)),
|
|
930
|
+
int(round(255 * alpha)),
|
|
931
|
+
)
|
|
932
|
+
m.visual.face_colors = np.tile(np.array(rgba, dtype=np.uint8), (len(m.faces), 1))
|
|
933
|
+
meshes.append((iso, m, rgba))
|
|
934
|
+
print(f"Iso {iso:.4f}: faces={len(m.faces):,}, alpha={alpha:.4f}")
|
|
935
|
+
return meshes
|
|
936
|
+
|
|
937
|
+
def save_obj_with_mtl_and_normals(meshes_dict, output_path, base_filename):
|
|
938
|
+
os.makedirs(output_path, exist_ok=True)
|
|
939
|
+
obj_path = os.path.join(output_path, f"{base_filename}.obj")
|
|
940
|
+
mtl_path = os.path.join(output_path, f"{base_filename}.mtl")
|
|
941
|
+
|
|
942
|
+
def to_uint8_rgba(arr):
|
|
943
|
+
arr = np.asarray(arr)
|
|
944
|
+
if arr.dtype != np.uint8:
|
|
945
|
+
if arr.dtype.kind == "f":
|
|
946
|
+
arr = np.clip(arr, 0.0, 1.0)
|
|
947
|
+
arr = (arr * 255.0 + 0.5).astype(np.uint8)
|
|
948
|
+
else:
|
|
949
|
+
arr = arr.astype(np.uint8)
|
|
950
|
+
if arr.shape[1] == 3:
|
|
951
|
+
arr = np.concatenate([arr, np.full((arr.shape[0], 1), 255, np.uint8)], axis=1)
|
|
952
|
+
return arr
|
|
953
|
+
|
|
954
|
+
color_to_id, ordered = {}, []
|
|
955
|
+
|
|
956
|
+
def mid_of(rgba):
|
|
957
|
+
if rgba not in color_to_id:
|
|
958
|
+
color_to_id[rgba] = len(ordered)
|
|
959
|
+
ordered.append(rgba)
|
|
960
|
+
return color_to_id[rgba]
|
|
961
|
+
|
|
962
|
+
for m in meshes_dict.values():
|
|
963
|
+
fc = getattr(m.visual, "face_colors", None)
|
|
964
|
+
if fc is None or len(fc) == 0:
|
|
965
|
+
mid_of((200, 200, 200, 255))
|
|
966
|
+
continue
|
|
967
|
+
for rgba in np.unique(to_uint8_rgba(fc), axis=0):
|
|
968
|
+
mid_of(tuple(int(x) for x in rgba.tolist()))
|
|
969
|
+
|
|
970
|
+
with open(mtl_path, "w") as mtl:
|
|
971
|
+
for i, (r, g, b, a) in enumerate(ordered):
|
|
972
|
+
kd = (r / 255.0, g / 255.0, b / 255.0)
|
|
973
|
+
ka = kd
|
|
974
|
+
dval = a / 255.0
|
|
975
|
+
tr = max(0.0, min(1.0, 1.0 - dval))
|
|
976
|
+
mtl.write(f"newmtl material_{i}\n")
|
|
977
|
+
mtl.write(f"Kd {kd[0]:.6f} {kd[1]:.6f} {kd[2]:.6f}\n")
|
|
978
|
+
mtl.write(f"Ka {ka[0]:.6f} {ka[1]:.6f} {ka[2]:.6f}\n")
|
|
979
|
+
mtl.write("Ks 0.000000 0.000000 0.000000\n")
|
|
980
|
+
mtl.write("Ns 0.000000\n")
|
|
981
|
+
mtl.write("illum 1\n")
|
|
982
|
+
mtl.write(f"d {dval:.6f}\n")
|
|
983
|
+
mtl.write(f"Tr {tr:.6f}\n\n")
|
|
984
|
+
|
|
985
|
+
def face_normals(V, F):
|
|
986
|
+
v0, v1, v2 = V[F[:, 0]], V[F[:, 1]], V[F[:, 2]]
|
|
987
|
+
n = np.cross(v1 - v0, v2 - v0)
|
|
988
|
+
L = np.linalg.norm(n, axis=1)
|
|
989
|
+
mask = L > 0
|
|
990
|
+
n[mask] /= L[mask][:, None]
|
|
991
|
+
if (~mask).any():
|
|
992
|
+
n[~mask] = np.array([0.0, 0.0, 1.0])
|
|
993
|
+
return n
|
|
994
|
+
|
|
995
|
+
with open(obj_path, "w") as obj:
|
|
996
|
+
obj.write(f"mtllib {os.path.basename(mtl_path)}\n")
|
|
997
|
+
v_offset = 0
|
|
998
|
+
n_offset = 0
|
|
999
|
+
for name, m in meshes_dict.items():
|
|
1000
|
+
V = np.asarray(m.vertices, dtype=np.float64)
|
|
1001
|
+
F = np.asarray(m.faces, dtype=np.int64)
|
|
1002
|
+
if len(V) == 0 or len(F) == 0:
|
|
1003
|
+
continue
|
|
1004
|
+
obj.write(f"o {name}\n")
|
|
1005
|
+
obj.write("s off\n")
|
|
1006
|
+
for vx, vy, vz in V:
|
|
1007
|
+
obj.write(f"v {vx:.6f} {vy:.6f} {vz:.6f}\n")
|
|
1008
|
+
|
|
1009
|
+
fc = getattr(m.visual, "face_colors", None)
|
|
1010
|
+
if fc is None or len(fc) != len(F):
|
|
1011
|
+
fc = np.tile(np.array([200, 200, 200, 255], dtype=np.uint8), (len(F), 1))
|
|
1012
|
+
else:
|
|
1013
|
+
fc = to_uint8_rgba(fc)
|
|
1014
|
+
uniq, inv = np.unique(fc, axis=0, return_inverse=True)
|
|
1015
|
+
color2mid = {tuple(int(x) for x in c.tolist()): mid_of(tuple(int(x) for x in c.tolist())) for c in uniq}
|
|
1016
|
+
|
|
1017
|
+
FN = face_normals(V, F)
|
|
1018
|
+
for nx, ny, nz in FN:
|
|
1019
|
+
obj.write(f"vn {float(nx):.6f} {float(ny):.6f} {float(nz):.6f}\n")
|
|
1020
|
+
|
|
1021
|
+
current_mid = None
|
|
1022
|
+
for i_face, face in enumerate(F):
|
|
1023
|
+
key = tuple(int(x) for x in uniq[inv[i_face]].tolist())
|
|
1024
|
+
mid = color2mid[key]
|
|
1025
|
+
if current_mid != mid:
|
|
1026
|
+
obj.write(f"usemtl material_{mid}\n")
|
|
1027
|
+
current_mid = mid
|
|
1028
|
+
a, b, c = face + 1 + v_offset
|
|
1029
|
+
ni = n_offset + i_face + 1
|
|
1030
|
+
obj.write(f"f {a}//{ni} {b}//{ni} {c}//{ni}\n")
|
|
1031
|
+
|
|
1032
|
+
v_offset += len(V)
|
|
1033
|
+
n_offset += len(F)
|
|
1034
|
+
|
|
1035
|
+
return obj_path, mtl_path
|
|
1036
|
+
|
|
1037
|
+
# Load VoxCity
|
|
1038
|
+
dsv = xr.open_dataset(voxcity_nc)
|
|
1039
|
+
if "voxels" not in dsv:
|
|
1040
|
+
raise KeyError("'voxels' not found in VoxCity dataset.")
|
|
1041
|
+
dav = dsv["voxels"]
|
|
1042
|
+
if tuple(dav.dims) != ("y", "x", "z") and all(d in dav.dims for d in ("y", "x", "z")):
|
|
1043
|
+
dav = dav.transpose("y", "x", "z")
|
|
1044
|
+
|
|
1045
|
+
Yv = dsv["y"].values.astype(float)
|
|
1046
|
+
Xv = dsv["x"].values.astype(float)
|
|
1047
|
+
Zv = dsv["z"].values.astype(float)
|
|
1048
|
+
|
|
1049
|
+
Av = dav.values # (y,x,z)
|
|
1050
|
+
Av_kji = np.transpose(Av, (2, 0, 1)) # (K=z, J=y, I=x)
|
|
1051
|
+
svz, svy, svx = stride_vox
|
|
1052
|
+
Av_kji = downsample3(Av_kji, svz, svy, svx)
|
|
1053
|
+
# Y flip (north-up)
|
|
1054
|
+
Av_kji = Av_kji[:, ::-1, :]
|
|
1055
|
+
|
|
1056
|
+
Zv_s = Zv[:: max(1, svz)].astype(float)
|
|
1057
|
+
Yv_s = (Yv[:: max(1, svy)] - Yv.min()).astype(float)
|
|
1058
|
+
Xv_s = (Xv[:: max(1, svx)] - Xv.min()).astype(float)
|
|
1059
|
+
|
|
1060
|
+
# Load scalar and georeference using lon/lat table
|
|
1061
|
+
dss = xr.open_dataset(scalar_nc, decode_coords="all", decode_times=True)
|
|
1062
|
+
tname, kname, jname, iname = find_dims(dss)
|
|
1063
|
+
if scalar_var not in dss:
|
|
1064
|
+
raise KeyError(f"{scalar_var} not found in scalar dataset")
|
|
1065
|
+
|
|
1066
|
+
A = squeeze_to_kji(dss[scalar_var], tname, kname, jname, iname).values # (K,J,I)
|
|
1067
|
+
K0, J0, I0 = map(int, A.shape)
|
|
1068
|
+
|
|
1069
|
+
ll = np.loadtxt(lonlat_txt, comments="#")
|
|
1070
|
+
ii = ll[:, 0].astype(int) - 1
|
|
1071
|
+
jj = ll[:, 1].astype(int) - 1
|
|
1072
|
+
lon = ll[:, 2].astype(float)
|
|
1073
|
+
lat = ll[:, 3].astype(float)
|
|
1074
|
+
I_ll = int(ii.max() + 1)
|
|
1075
|
+
J_ll = int(jj.max() + 1)
|
|
1076
|
+
lon_grid = np.full((J_ll, I_ll), np.nan, float)
|
|
1077
|
+
lat_grid = np.full((J_ll, I_ll), np.nan, float)
|
|
1078
|
+
lon_grid[jj, ii] = lon
|
|
1079
|
+
lat_grid[jj, ii] = lat
|
|
1080
|
+
|
|
1081
|
+
Jc = min(J0, J_ll)
|
|
1082
|
+
Ic = min(I0, I_ll)
|
|
1083
|
+
if (Jc != J0) or (Ic != I0):
|
|
1084
|
+
print(
|
|
1085
|
+
f"Warning: scalar (J,I)=({J0},{I0}) vs lonlat ({J_ll},{I_ll}); using common ({Jc},{Ic})."
|
|
1086
|
+
)
|
|
1087
|
+
A = A[:, :Jc, :Ic]
|
|
1088
|
+
lon_grid = lon_grid[:Jc, :Ic]
|
|
1089
|
+
lat_grid = lat_grid[:Jc, :Ic]
|
|
1090
|
+
|
|
1091
|
+
ssk, ssj, ssi = stride_scalar
|
|
1092
|
+
A_s = downsample3(A, ssk, ssj, ssi)
|
|
1093
|
+
lon_s = lon_grid[:: max(1, ssj), :: max(1, ssi)]
|
|
1094
|
+
lat_s = lat_grid[:: max(1, ssj), :: max(1, ssi)]
|
|
1095
|
+
Ks, Js, Is = A_s.shape
|
|
1096
|
+
|
|
1097
|
+
rect = np.array(json.loads(dsv.attrs.get("rectangle_vertices_lonlat_json", "[]")), float)
|
|
1098
|
+
if rect.size == 0:
|
|
1099
|
+
raise RuntimeError("VoxCity attribute 'rectangle_vertices_lonlat_json' missing.")
|
|
1100
|
+
lon0 = float(np.min(rect[:, 0]))
|
|
1101
|
+
lat0 = float(np.min(rect[:, 1]))
|
|
1102
|
+
lat_c = float(np.mean(rect[:, 1]))
|
|
1103
|
+
m_per_deg_lat, m_per_deg_lon = meters_per_degree(np.deg2rad(lat_c))
|
|
1104
|
+
Xs_m = (lon_s - lon0) * m_per_deg_lon
|
|
1105
|
+
Ys_m = (lat_s - lat0) * m_per_deg_lat
|
|
1106
|
+
|
|
1107
|
+
if (kname is not None) and (kname in dss.coords):
|
|
1108
|
+
zc = dss.coords[kname].values
|
|
1109
|
+
if np.issubdtype(zc.dtype, np.number) and zc.ndim == 1 and len(zc) >= Ks:
|
|
1110
|
+
Zk = zc.astype(float)[:: max(1, ssk)][:Ks]
|
|
1111
|
+
else:
|
|
1112
|
+
Zk = np.arange(Ks, dtype=float) * float(dsv.attrs.get("meshsize_m", 1.0))
|
|
1113
|
+
else:
|
|
1114
|
+
Zk = np.arange(Ks, dtype=float) * float(dsv.attrs.get("meshsize_m", 1.0))
|
|
1115
|
+
|
|
1116
|
+
# Mask scalar buildings
|
|
1117
|
+
bmask_scalar = downsample3(
|
|
1118
|
+
np.isclose(A, scalar_building_value, atol=scalar_building_tol), ssk, ssj, ssi
|
|
1119
|
+
)
|
|
1120
|
+
A_s = A_s.astype(float)
|
|
1121
|
+
A_s[bmask_scalar] = np.nan
|
|
1122
|
+
|
|
1123
|
+
finite_vals = A_s[np.isfinite(A_s)]
|
|
1124
|
+
if finite_vals.size == 0:
|
|
1125
|
+
raise RuntimeError("No finite scalar values after masking.")
|
|
1126
|
+
vmin, vmax = clip_minmax(finite_vals, 0.0)
|
|
1127
|
+
A_s[np.isnan(A_s)] = vmin - 1e6
|
|
1128
|
+
|
|
1129
|
+
Xmin, Xmax = np.nanmin(Xs_m), np.nanmax(Xs_m)
|
|
1130
|
+
Ymin, Ymax = np.nanmin(Ys_m), np.nanmax(Ys_m)
|
|
1131
|
+
dx_s = (Xmax - Xmin) / max(1, Is - 1)
|
|
1132
|
+
dy_s = (Ymax - Ymin) / max(1, Js - 1)
|
|
1133
|
+
dz_s = (Zk[-1] - Zk[0]) / max(1, Ks - 1) if Ks > 1 else 1.0
|
|
1134
|
+
origin_xyz = (float(Xmin), float(Ymin), float(Zk[0]))
|
|
1135
|
+
|
|
1136
|
+
vox_meshes = {}
|
|
1137
|
+
tm_meshes = {}
|
|
1138
|
+
|
|
1139
|
+
present = set(np.unique(Av_kji))
|
|
1140
|
+
present.discard(0)
|
|
1141
|
+
if classes_to_show is not None:
|
|
1142
|
+
present &= set(classes_to_show)
|
|
1143
|
+
present = sorted(present)
|
|
1144
|
+
|
|
1145
|
+
faces_total = 0
|
|
1146
|
+
voxel_color_map = get_voxel_color_map(color_scheme=voxel_color_scheme)
|
|
1147
|
+
for cls in present:
|
|
1148
|
+
mask = Av_kji == cls
|
|
1149
|
+
if not np.any(mask):
|
|
1150
|
+
continue
|
|
1151
|
+
rgb = voxel_color_map.get(int(cls), [200, 200, 200])
|
|
1152
|
+
m_cls, faces = make_voxel_mesh_uniform_color(mask, Xv_s, Yv_s, Zv_s, rgb=rgb, name=f"class_{int(cls)}")
|
|
1153
|
+
if m_cls is not None:
|
|
1154
|
+
vox_meshes[f"voxclass_{int(cls)}"] = m_cls
|
|
1155
|
+
faces_total += faces
|
|
1156
|
+
print(f"[VoxCity] total voxel faces: {faces_total:,}")
|
|
1157
|
+
|
|
1158
|
+
iso_meshes = build_tm_isosurfaces_regular_grid(
|
|
1159
|
+
A_scalar=A_s,
|
|
1160
|
+
vmin=vmin,
|
|
1161
|
+
vmax=vmax,
|
|
1162
|
+
levels=contour_levels,
|
|
1163
|
+
dx=dx_s,
|
|
1164
|
+
dy=dy_s,
|
|
1165
|
+
dz=dz_s,
|
|
1166
|
+
origin_xyz=origin_xyz,
|
|
1167
|
+
cmap_name=cmap_name,
|
|
1168
|
+
opacity_points=opacity_points,
|
|
1169
|
+
max_opacity=max_opacity,
|
|
1170
|
+
)
|
|
1171
|
+
for iso, m, rgba in iso_meshes:
|
|
1172
|
+
tm_meshes[f"iso_{iso:.6f}"] = m
|
|
1173
|
+
|
|
1174
|
+
if not vox_meshes and not tm_meshes:
|
|
1175
|
+
raise RuntimeError("Nothing to export.")
|
|
1176
|
+
|
|
1177
|
+
os.makedirs(output_dir, exist_ok=True)
|
|
1178
|
+
obj_vox = mtl_vox = obj_tm = mtl_tm = None
|
|
1179
|
+
if vox_meshes:
|
|
1180
|
+
obj_vox, mtl_vox = save_obj_with_mtl_and_normals(vox_meshes, output_dir, vox_base_filename)
|
|
1181
|
+
if tm_meshes:
|
|
1182
|
+
obj_tm, mtl_tm = save_obj_with_mtl_and_normals(tm_meshes, output_dir, tm_base_filename)
|
|
1183
|
+
|
|
1184
|
+
print("Export finished.")
|
|
1185
|
+
if obj_vox:
|
|
1186
|
+
print(f"VoxCity OBJ: {obj_vox}")
|
|
1187
|
+
print(f"VoxCity MTL: {mtl_vox}")
|
|
1188
|
+
if obj_tm:
|
|
1189
|
+
print(f"Scalar Iso OBJ: {obj_tm}")
|
|
1190
|
+
print(f"Scalar Iso MTL: {mtl_tm}")
|
|
1191
|
+
|
|
1192
|
+
return {"vox_obj": obj_vox, "vox_mtl": mtl_vox, "tm_obj": obj_tm, "tm_mtl": mtl_tm}
|