voly 0.0.50__py3-none-any.whl → 0.0.51__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- voly/core/data.py +13 -36
- voly/core/fit.py +76 -76
- voly/models.py +2 -2
- {voly-0.0.50.dist-info → voly-0.0.51.dist-info}/METADATA +1 -1
- {voly-0.0.50.dist-info → voly-0.0.51.dist-info}/RECORD +8 -8
- {voly-0.0.50.dist-info → voly-0.0.51.dist-info}/LICENSE +0 -0
- {voly-0.0.50.dist-info → voly-0.0.51.dist-info}/WHEEL +0 -0
- {voly-0.0.50.dist-info → voly-0.0.51.dist-info}/top_level.txt +0 -0
voly/core/data.py
CHANGED
|
@@ -12,7 +12,7 @@ import json
|
|
|
12
12
|
import pandas as pd
|
|
13
13
|
import requests
|
|
14
14
|
import time
|
|
15
|
-
import datetime
|
|
15
|
+
from datetime import datetime, timezone
|
|
16
16
|
import re
|
|
17
17
|
import numpy as np
|
|
18
18
|
from typing import List, Dict, Any, Optional, Union
|
|
@@ -183,62 +183,39 @@ async def get_deribit_data(currency: str = "BTC") -> pd.DataFrame:
|
|
|
183
183
|
|
|
184
184
|
|
|
185
185
|
@catch_exception
|
|
186
|
-
def process_option_chain(df: pd.DataFrame, currency: str
|
|
186
|
+
def process_option_chain(df: pd.DataFrame, currency: str) -> pd.DataFrame:
|
|
187
187
|
"""
|
|
188
188
|
Process raw option chain data into a standardized format.
|
|
189
189
|
|
|
190
190
|
Parameters:
|
|
191
191
|
df (pd.DataFrame): Raw option chain data
|
|
192
192
|
currency (str): Currency code (e.g., 'BTC', 'ETH')
|
|
193
|
-
min_dte (float): Minimum days to expiry to include
|
|
194
193
|
|
|
195
194
|
Returns:
|
|
196
195
|
pd.DataFrame: Processed option chain data
|
|
197
196
|
"""
|
|
198
197
|
logger.info(f"Processing data for {currency}...")
|
|
199
198
|
|
|
200
|
-
# Extract instrument details
|
|
201
|
-
# Format is typically BTC-DDMMMYY-STRIKE-C/P or ETH-DDMMMYY-STRIKE-C/P
|
|
202
|
-
def extract_details(instrument_name):
|
|
203
|
-
pattern = f"{currency}-([\\d]{{1,2}})([A-Z]{{3}})(\\d{{2}})-([\\d]+)-([CP])"
|
|
204
|
-
match = re.match(pattern, instrument_name)
|
|
205
|
-
if match:
|
|
206
|
-
day = int(match.group(1))
|
|
207
|
-
month_str = match.group(2)
|
|
208
|
-
year = 2000 + int(match.group(3))
|
|
209
|
-
strike = float(match.group(4))
|
|
210
|
-
option_type = match.group(5)
|
|
211
|
-
|
|
212
|
-
month_dict = {'JAN': 1, 'FEB': 2, 'MAR': 3, 'APR': 4, 'MAY': 5, 'JUN': 6,
|
|
213
|
-
'JUL': 7, 'AUG': 8, 'SEP': 9, 'OCT': 10, 'NOV': 11, 'DEC': 12}
|
|
214
|
-
month = month_dict.get(month_str)
|
|
215
|
-
|
|
216
|
-
maturity_name = f"{day}{month_str}{str(year)[-2:]}"
|
|
217
|
-
|
|
218
|
-
return {'day': day, 'month': month, 'year': year,
|
|
219
|
-
'strike': strike, 'option_type': option_type,
|
|
220
|
-
'maturity_name': maturity_name}
|
|
221
|
-
return None
|
|
222
|
-
|
|
223
199
|
# Apply extraction to create new columns
|
|
224
|
-
df['
|
|
225
|
-
df['
|
|
226
|
-
df['
|
|
227
|
-
df['
|
|
200
|
+
df['currency'] = df['instrument_name'].split('-')[0]
|
|
201
|
+
df['maturity_name'] = df['instrument_name'].split('-')[1]
|
|
202
|
+
df['strike'] = df['instrument_name'].split('-')[2]
|
|
203
|
+
df['option_type'] = df['instrument_name'].split('-')[3]
|
|
228
204
|
|
|
229
|
-
# Create
|
|
230
|
-
df['
|
|
231
|
-
lambda x: datetime.
|
|
232
|
-
|
|
205
|
+
# Create maturity date at 8:00 AM UTC
|
|
206
|
+
df['maturity_date'] = pd.to_datetime(df['maturity_name'].apply(
|
|
207
|
+
lambda x: int(datetime.strptime(x, "%d%b%y")
|
|
208
|
+
.replace(hour=8, minute=0, second=0, tzinfo=timezone.utc)
|
|
209
|
+
.timestamp() * 1000)), unit='ms')
|
|
233
210
|
|
|
234
211
|
# Get reference time from timestamp
|
|
235
212
|
reference_time = datetime.datetime.fromtimestamp(df['timestamp'].iloc[0] / 1000)
|
|
236
213
|
|
|
237
214
|
# Calculate days to expiry (DTE)
|
|
238
|
-
df['
|
|
215
|
+
df['dtm'] = (df['maturity_date'] - reference_time).dt.total_seconds() / (24 * 60 * 60)
|
|
239
216
|
|
|
240
217
|
# Calculate time to expiry in years
|
|
241
|
-
df['
|
|
218
|
+
df['ytm'] = df['dtm'] / 365.25
|
|
242
219
|
|
|
243
220
|
# Calculate implied volatility (convert from percentage)
|
|
244
221
|
df['mark_iv'] = df['mark_iv'] / 100
|
voly/core/fit.py
CHANGED
|
@@ -20,7 +20,7 @@ warnings.filterwarnings("ignore")
|
|
|
20
20
|
|
|
21
21
|
@catch_exception
|
|
22
22
|
def calculate_residuals(params: List[float],
|
|
23
|
-
|
|
23
|
+
ytm: float,
|
|
24
24
|
market_data: pd.DataFrame,
|
|
25
25
|
model: Any = SVIModel) -> np.ndarray:
|
|
26
26
|
"""
|
|
@@ -28,7 +28,7 @@ def calculate_residuals(params: List[float],
|
|
|
28
28
|
|
|
29
29
|
Parameters:
|
|
30
30
|
- params: Model parameters (e.g., SVI parameters [a, b, sigma, rho, m])
|
|
31
|
-
-
|
|
31
|
+
- ytm: The time to maturity in years
|
|
32
32
|
- market_data: DataFrame with market data
|
|
33
33
|
- model: Model class to use (default: SVIModel)
|
|
34
34
|
|
|
@@ -36,16 +36,16 @@ def calculate_residuals(params: List[float],
|
|
|
36
36
|
- Array of residuals
|
|
37
37
|
"""
|
|
38
38
|
# Filter market data for the specific time to expiry
|
|
39
|
-
|
|
39
|
+
maturity_data = market_data[market_data['ytm'] == ytm]
|
|
40
40
|
|
|
41
|
-
# Calculate the total implied variance using the model for filtered data
|
|
42
|
-
|
|
41
|
+
# Calculate the total implied variance (w) using the model for filtered data
|
|
42
|
+
w = np.array([model.svi(x, *params) for x in maturity_data['log_moneyness']])
|
|
43
43
|
|
|
44
44
|
# Extract the actual market implied volatilities
|
|
45
|
-
iv_actual =
|
|
45
|
+
iv_actual = maturity_data['mark_iv'].values
|
|
46
46
|
|
|
47
47
|
# Calculate residuals between market implied volatilities and model predictions
|
|
48
|
-
residuals = iv_actual - np.sqrt(
|
|
48
|
+
residuals = iv_actual - np.sqrt(w / ytm)
|
|
49
49
|
|
|
50
50
|
return residuals
|
|
51
51
|
|
|
@@ -74,17 +74,17 @@ def fit_svi_parameters(market_data: pd.DataFrame,
|
|
|
74
74
|
|
|
75
75
|
# Initialize data for fit performance
|
|
76
76
|
fit_data = {
|
|
77
|
-
'
|
|
78
|
-
'
|
|
79
|
-
'
|
|
80
|
-
'
|
|
81
|
-
'
|
|
82
|
-
'
|
|
83
|
-
'
|
|
84
|
-
'
|
|
85
|
-
'
|
|
86
|
-
'
|
|
87
|
-
'
|
|
77
|
+
'maturity_name': [],
|
|
78
|
+
'dtm': [],
|
|
79
|
+
'ytm': [],
|
|
80
|
+
'fit_success': [],
|
|
81
|
+
'cost': [],
|
|
82
|
+
'optimality': [],
|
|
83
|
+
'rmse': [],
|
|
84
|
+
'mae': [],
|
|
85
|
+
'r2': [],
|
|
86
|
+
'max_error': [],
|
|
87
|
+
'n_point': []
|
|
88
88
|
}
|
|
89
89
|
|
|
90
90
|
# Dictionary to store parameters
|
|
@@ -96,13 +96,13 @@ def fit_svi_parameters(market_data: pd.DataFrame,
|
|
|
96
96
|
RESET = '\033[0m'
|
|
97
97
|
|
|
98
98
|
# Get unique expiries
|
|
99
|
-
|
|
99
|
+
unique_maturities = sorted(market_data['ytm'].unique())
|
|
100
100
|
|
|
101
|
-
for
|
|
101
|
+
for ytm in unique_maturities:
|
|
102
102
|
# Get maturity name for reporting
|
|
103
|
-
|
|
104
|
-
maturity_name =
|
|
105
|
-
|
|
103
|
+
maturity_data = market_data[market_data['ytm'] == ytm]
|
|
104
|
+
maturity_name = maturity_data['maturity_name'].iloc[0]
|
|
105
|
+
dtm = maturity_data['dtm'].iloc[0]
|
|
106
106
|
|
|
107
107
|
logger.info(f"Optimizing for {maturity_name}...")
|
|
108
108
|
|
|
@@ -111,7 +111,7 @@ def fit_svi_parameters(market_data: pd.DataFrame,
|
|
|
111
111
|
result = least_squares(
|
|
112
112
|
calculate_residuals,
|
|
113
113
|
initial_params,
|
|
114
|
-
args=(
|
|
114
|
+
args=(ytm, market_data, SVIModel),
|
|
115
115
|
bounds=param_bounds,
|
|
116
116
|
max_nfev=1000
|
|
117
117
|
)
|
|
@@ -122,14 +122,14 @@ def fit_svi_parameters(market_data: pd.DataFrame,
|
|
|
122
122
|
params = result.x
|
|
123
123
|
params_dict[maturity_name] = {
|
|
124
124
|
'params': params,
|
|
125
|
-
'
|
|
126
|
-
'
|
|
125
|
+
'dtm': dtm,
|
|
126
|
+
'ytm': ytm
|
|
127
127
|
}
|
|
128
128
|
|
|
129
129
|
# Calculate model predictions for statistics
|
|
130
|
-
|
|
131
|
-
iv_model = np.sqrt(
|
|
132
|
-
iv_market =
|
|
130
|
+
w = np.array([SVIModel.svi(x, *params) for x in maturity_data['log_moneyness']])
|
|
131
|
+
iv_model = np.sqrt(w / ytm)
|
|
132
|
+
iv_market = maturity_data['mark_iv'].values
|
|
133
133
|
|
|
134
134
|
# Calculate statistics
|
|
135
135
|
rmse = np.sqrt(mean_squared_error(iv_market, iv_model))
|
|
@@ -139,17 +139,17 @@ def fit_svi_parameters(market_data: pd.DataFrame,
|
|
|
139
139
|
num_points = len(expiry_data)
|
|
140
140
|
|
|
141
141
|
# Add to fit data
|
|
142
|
-
fit_data['
|
|
143
|
-
fit_data['
|
|
144
|
-
fit_data['
|
|
145
|
-
fit_data['
|
|
146
|
-
fit_data['
|
|
147
|
-
fit_data['
|
|
148
|
-
fit_data['
|
|
149
|
-
fit_data['
|
|
150
|
-
fit_data['
|
|
151
|
-
fit_data['
|
|
152
|
-
fit_data['
|
|
142
|
+
fit_data['maturity'].append(maturity_name)
|
|
143
|
+
fit_data['dtm'].append(dtm)
|
|
144
|
+
fit_data['ytm'].append(ytm)
|
|
145
|
+
fit_data['fit_success'].append(result.success)
|
|
146
|
+
fit_data['cost'].append(result.cost)
|
|
147
|
+
fit_data['optimality'].append(result.optimality)
|
|
148
|
+
fit_data['rmse'].append(rmse)
|
|
149
|
+
fit_data['mae'].append(mae)
|
|
150
|
+
fit_data['r2'].append(r2)
|
|
151
|
+
fit_data['max_error'].append(max_error)
|
|
152
|
+
fit_data['n_points'].append(num_points)
|
|
153
153
|
|
|
154
154
|
if result.success:
|
|
155
155
|
logger.info(f'Optimization for {maturity_name}: {GREEN}SUCCESS{RESET}')
|
|
@@ -171,7 +171,7 @@ def create_parameters_matrix(params_dict: Dict[str, Dict]) -> Tuple[pd.DataFrame
|
|
|
171
171
|
Uses maturity names as column names.
|
|
172
172
|
|
|
173
173
|
Parameters:
|
|
174
|
-
- params_dict: Dictionary of parameter results by maturity name
|
|
174
|
+
- params_dict: Dictionary of raw parameter results by maturity name
|
|
175
175
|
|
|
176
176
|
Returns:
|
|
177
177
|
- Tuple of DataFrames with optimized parameters:
|
|
@@ -180,23 +180,23 @@ def create_parameters_matrix(params_dict: Dict[str, Dict]) -> Tuple[pd.DataFrame
|
|
|
180
180
|
"""
|
|
181
181
|
# Get maturity names in order by DTE
|
|
182
182
|
maturity_names = sorted(params_dict.keys(),
|
|
183
|
-
key=lambda x: params_dict[x]['
|
|
183
|
+
key=lambda x: params_dict[x]['dtm'])
|
|
184
184
|
|
|
185
|
-
# Create DataFrame for raw parameters
|
|
186
|
-
|
|
185
|
+
# Create DataFrame for raw parameters
|
|
186
|
+
raw_params_matrix = pd.DataFrame(
|
|
187
187
|
columns=maturity_names,
|
|
188
188
|
index=SVIModel.PARAM_NAMES
|
|
189
189
|
)
|
|
190
190
|
|
|
191
191
|
# Create DataFrame for JW parameters
|
|
192
|
-
|
|
192
|
+
jw_params_matrix = pd.DataFrame(
|
|
193
193
|
columns=maturity_names,
|
|
194
194
|
index=SVIModel.JW_PARAM_NAMES
|
|
195
195
|
)
|
|
196
196
|
|
|
197
|
-
# Store
|
|
198
|
-
|
|
199
|
-
|
|
197
|
+
# Store YTM and DTM values for reference
|
|
198
|
+
ytm_values = {}
|
|
199
|
+
dtm_values = {}
|
|
200
200
|
|
|
201
201
|
# Fill the matrices with optimized parameters
|
|
202
202
|
for maturity_name in maturity_names:
|
|
@@ -204,27 +204,27 @@ def create_parameters_matrix(params_dict: Dict[str, Dict]) -> Tuple[pd.DataFrame
|
|
|
204
204
|
|
|
205
205
|
# Extract raw SVI parameters
|
|
206
206
|
a, b, sigma, rho, m = result['params']
|
|
207
|
-
|
|
207
|
+
raw_params_matrix[maturity_name] = [a, b, sigma, rho, m]
|
|
208
208
|
|
|
209
209
|
# Get time to expiry
|
|
210
|
-
|
|
211
|
-
|
|
212
|
-
|
|
210
|
+
ytm = result['ytm']
|
|
211
|
+
ytm_values[maturity_name] = ytm
|
|
212
|
+
dtm_values[maturity_name] = result['dtm']
|
|
213
213
|
|
|
214
214
|
# Calculate JW parameters
|
|
215
|
-
nu, psi, p, c, nu_tilde = SVIModel.raw_to_jw_params(a, b, sigma, rho, m,
|
|
216
|
-
|
|
215
|
+
nu, psi, p, c, nu_tilde = SVIModel.raw_to_jw_params(a, b, sigma, rho, m, ytm)
|
|
216
|
+
jw_params_matrix[maturity_name] = [nu, psi, p, c, nu_tilde]
|
|
217
217
|
|
|
218
218
|
# Store YTE and DTE as attributes in all DataFrames for reference
|
|
219
219
|
attrs = {
|
|
220
|
-
'
|
|
221
|
-
'
|
|
220
|
+
'ytm_values': ytm_values,
|
|
221
|
+
'dtm_values': dtm_values
|
|
222
222
|
}
|
|
223
223
|
|
|
224
|
-
|
|
225
|
-
|
|
224
|
+
raw_params_matrix.attrs.update(attrs)
|
|
225
|
+
jw_params_matrix.attrs.update(attrs)
|
|
226
226
|
|
|
227
|
-
return
|
|
227
|
+
return raw_params_matrix, jw_params_matrix
|
|
228
228
|
|
|
229
229
|
|
|
230
230
|
@catch_exception
|
|
@@ -255,46 +255,46 @@ def fit_model(market_data: pd.DataFrame,
|
|
|
255
255
|
)
|
|
256
256
|
|
|
257
257
|
# Step 2: Create parameter matrices
|
|
258
|
-
|
|
258
|
+
raw_params_matrix, jw_params_matrix = create_parameters_matrix(params_dict)
|
|
259
259
|
|
|
260
260
|
return {
|
|
261
|
-
'
|
|
262
|
-
'
|
|
261
|
+
'raw_params_matrix': raw_params_matrix,
|
|
262
|
+
'jw_params_matrix': jw_params_matrix,
|
|
263
263
|
'fit_performance': fit_performance,
|
|
264
264
|
}
|
|
265
265
|
|
|
266
266
|
|
|
267
267
|
@catch_exception
|
|
268
268
|
def get_iv_surface(fit_results: Dict[str, Any],
|
|
269
|
-
|
|
269
|
+
log_moneyness_params: Tuple[float, float, int] = (-2, 2, 500)
|
|
270
270
|
) -> Dict[str, Any]:
|
|
271
271
|
"""
|
|
272
272
|
Generate implied volatility surface using optimized SVI parameters.
|
|
273
273
|
|
|
274
274
|
Parameters:
|
|
275
275
|
- fit_results: results from fit_model()
|
|
276
|
-
-
|
|
276
|
+
- log_moneyness_params: Tuple of (min, max, num_points) for the moneyness grid
|
|
277
277
|
|
|
278
278
|
Returns:
|
|
279
|
-
-
|
|
279
|
+
- x_domain, iv_surface
|
|
280
280
|
"""
|
|
281
281
|
iv_surface = {}
|
|
282
282
|
|
|
283
283
|
# Extract moneyness parameters
|
|
284
|
-
min_m, max_m, num_points =
|
|
284
|
+
min_m, max_m, num_points = log_moneyness_params
|
|
285
285
|
|
|
286
|
-
# Generate moneyness
|
|
287
|
-
|
|
286
|
+
# Generate moneyness array
|
|
287
|
+
log_moneyness_array = np.linspace(min_m, max_m, num=num_points)
|
|
288
288
|
|
|
289
|
-
# Get
|
|
290
|
-
|
|
291
|
-
maturity_values = fit_results['fit_performance']['
|
|
292
|
-
|
|
289
|
+
# Get YTM values from the parameter matrix attributes
|
|
290
|
+
ytm_values = fit_results['fit_performance']['ytm']
|
|
291
|
+
maturity_values = fit_results['fit_performance']['maturity_name']
|
|
292
|
+
raw_params_matrix = fit_results['raw_params_matrix']
|
|
293
293
|
|
|
294
294
|
# Generate implied volatility for each expiry
|
|
295
|
-
for maturity,
|
|
296
|
-
svi_params =
|
|
297
|
-
w_svi = [SVIModel.svi(x, *svi_params) for x in
|
|
298
|
-
iv_surface[maturity] = np.sqrt(np.array(w_svi) /
|
|
295
|
+
for maturity, ytm in zip(maturity_values, ytm_values):
|
|
296
|
+
svi_params = raw_params_matrix[maturity].values
|
|
297
|
+
w_svi = [SVIModel.svi(x, *svi_params) for x in log_moneyness_array]
|
|
298
|
+
iv_surface[maturity] = np.sqrt(np.array(w_svi) / ytm)
|
|
299
299
|
|
|
300
300
|
return moneyness_array, iv_surface
|
voly/models.py
CHANGED
|
@@ -67,11 +67,11 @@ class SVIModel:
|
|
|
67
67
|
return nu, psi, p, c, nu_tilde
|
|
68
68
|
|
|
69
69
|
@staticmethod
|
|
70
|
-
def jw_to_raw_params(nu: float,
|
|
70
|
+
def jw_to_raw_params(nu: float, psi: float, p: float, c: float, nu_tilde: float, t: float) -> Tuple[float, float, float, float, float]:
|
|
71
71
|
w = nu * t
|
|
72
72
|
b = (c + p) / 2
|
|
73
73
|
rho = (c - p) / (c + p)
|
|
74
|
-
beta = rho - ((2 * w *
|
|
74
|
+
beta = rho - ((2 * w * psi) / b)
|
|
75
75
|
alpha = np.sign(beta) * (np.sqrt((1 / (beta ** 2)) - 1))
|
|
76
76
|
m = (((nu ** 2) - (nu_tilde ** 2)) * t) / (
|
|
77
77
|
b * ((-rho) + (np.sign(alpha) * np.sqrt(1 + alpha ** 2)) - (alpha * np.sqrt(1 - rho ** 2))))
|
|
@@ -2,17 +2,17 @@ voly/__init__.py,sha256=8xyDk7rFCn_MOD5hxuv5cxxKZvBVRiSIM7TgaMPpwpw,211
|
|
|
2
2
|
voly/client.py,sha256=zOYgZA0TTJ5bHDCBWqEyeaQ0IKuee1uAIbzk0uyW_Uw,20350
|
|
3
3
|
voly/exceptions.py,sha256=PBsbn1vNMvKcCJwwJ4lBO6glD85jo1h2qiEmD7ArAjs,92
|
|
4
4
|
voly/formulas.py,sha256=Xgaq4lx1fNzRfu9W84fMNeH6GRJ0FNFNUUUYn5ffjjE,8843
|
|
5
|
-
voly/models.py,sha256=
|
|
5
|
+
voly/models.py,sha256=LXXIlpXZQEfXTuCngxC8Hd3bWtw6wdXDCSGxTLmHM-c,3659
|
|
6
6
|
voly/core/__init__.py,sha256=bu6fS2I1Pj9fPPnl-zY3L7NqrZSY5Zy6NY2uMUvdhKs,183
|
|
7
7
|
voly/core/charts.py,sha256=T8cogkiHj8NcFxfARumNvAjLJUAxsMlHUOVgshwjye8,26474
|
|
8
|
-
voly/core/data.py,sha256=
|
|
9
|
-
voly/core/fit.py,sha256=
|
|
8
|
+
voly/core/data.py,sha256=gEtmsp-cgCSdAWhnCrOHjrjUTfGJ_1NWkIEeHAkNkAg,8904
|
|
9
|
+
voly/core/fit.py,sha256=PCKedwjY2Xsl_Gv9t46dAnEnFbz0T1oJsZsb__GWCSw,9878
|
|
10
10
|
voly/core/interpolate.py,sha256=ztVIePJZOh-CIbn69wkh1JW2rKywNe2FEewRN0zcSAo,8185
|
|
11
11
|
voly/core/rnd.py,sha256=8FTU-Qp9epW9yE4XSOdiFGIRXrGyXqF6mVgZn1NMvxk,11813
|
|
12
12
|
voly/utils/__init__.py,sha256=E05mWatyC-PDOsCxQV1p5Xi1IgpOomxrNURyCx_gB-w,200
|
|
13
13
|
voly/utils/logger.py,sha256=4-_2bVJmq17Q0d7Rd2mPg1AeR8gxv6EPvcmBDMFWcSM,1744
|
|
14
|
-
voly-0.0.
|
|
15
|
-
voly-0.0.
|
|
16
|
-
voly-0.0.
|
|
17
|
-
voly-0.0.
|
|
18
|
-
voly-0.0.
|
|
14
|
+
voly-0.0.51.dist-info/LICENSE,sha256=wcHIVbE12jfcBOai_wqBKY6xvNQU5E909xL1zZNq_2Q,1065
|
|
15
|
+
voly-0.0.51.dist-info/METADATA,sha256=FCA6dznopdWOB3Yt7cwscidzTclrUT4og6kHq3F5xUY,4092
|
|
16
|
+
voly-0.0.51.dist-info/WHEEL,sha256=52BFRY2Up02UkjOa29eZOS2VxUrpPORXg1pkohGGUS8,91
|
|
17
|
+
voly-0.0.51.dist-info/top_level.txt,sha256=ZfLw2sSxF-LrKAkgGjOmeTcw6_gD-30zvtdEY5W4B7c,5
|
|
18
|
+
voly-0.0.51.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|