voly 0.0.134__py3-none-any.whl → 0.0.136__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
voly/core/hd.py CHANGED
@@ -449,7 +449,15 @@ def get_garch_hd_surface(model_results: pd.DataFrame,
449
449
  if missing_columns:
450
450
  raise VolyError(f"Required columns missing in model_results: {missing_columns}")
451
451
 
452
- # Calculate log returns from price history
452
+ # Determine granularity from df_hist
453
+ if len(df_hist) > 1:
454
+ # Calculate minutes between consecutive timestamps
455
+ minutes_diff = (df_hist.index[1] - df_hist.index[0]).total_seconds() / 60
456
+ minutes_per_period = int(minutes_diff)
457
+ else:
458
+ raise VolyError("Cannot determine granularity from df_hist.")
459
+
460
+ # Calculate log returns based on the determined granularity
453
461
  log_returns = np.log(df_hist['close'] / df_hist['close'].shift(1)) * 100
454
462
  log_returns = log_returns.dropna().values
455
463
 
@@ -465,15 +473,20 @@ def get_garch_hd_surface(model_results: pd.DataFrame,
465
473
  r = model_results.loc[i, 'r'] # Risk-free rate
466
474
  t = model_results.loc[i, 't'] # Time to maturity in years
467
475
 
468
- tau_day = int(t * 365.25) # Convert years to days
476
+ # Fix for very short-term maturities - use floating-point days
477
+ tau_days_float = t * 365.25 # Exact number of days (as float)
478
+ tau_day = max(1, int(tau_days_float)) # Ensure minimum of 1 day for simulation
469
479
 
470
- logger.info(f"Processing GARCH HD for maturity {i} (t={t:.4f} years, {tau_day} days)")
480
+ logger.info(f"Processing GARCH HD for maturity {i} (t={t:.4f} years, {tau_days_float:.2f} days)")
481
+
482
+ # Calculate the number of periods that match the time to expiry
483
+ n_periods = max(1, int(t * 365.25 * 24 * 60 / minutes_per_period))
471
484
 
472
485
  # Initialize GARCH model
473
486
  garch_model = GARCHModel(
474
487
  data=log_returns,
475
488
  data_name=str(i),
476
- n_fits=min(n_fits, len(log_returns) // 3), # Ensure we have enough data
489
+ n_fits=min(n_fits, len(log_returns) // 3),
477
490
  window_length=min(window_length, len(log_returns) // 3),
478
491
  z_h=0.1
479
492
  )
@@ -485,8 +498,27 @@ def get_garch_hd_surface(model_results: pd.DataFrame,
485
498
  variate_parameters=variate_parameters
486
499
  )
487
500
 
488
- # Convert to terminal prices
489
- simulated_prices = s * np.exp(simulated_log_returns / 100 + simulated_tau_mu / 100)
501
+ # Scale the simulated returns to match target time horizon
502
+ # Use floating-point days to avoid division by zero
503
+ scaling_factor = np.sqrt(n_periods / tau_days_float)
504
+ scaled_log_returns = simulated_log_returns * scaling_factor
505
+
506
+ # Risk-neutral adjustment (Girsanov transformation)
507
+ # Calculate empirical mean and volatility of the scaled returns
508
+ mu_scaled = scaled_log_returns.mean()
509
+ sigma_scaled = scaled_log_returns.std()
510
+
511
+ # Expected risk-neutral drift
512
+ expected_risk_neutral_mean = (r - 0.5 * (sigma_scaled / 100) ** 2) * 100 * np.sqrt(t)
513
+
514
+ # Calculate adjustment to shift physical to risk-neutral measure
515
+ adjustment = mu_scaled - expected_risk_neutral_mean
516
+
517
+ # Adjust the returns to the risk-neutral measure
518
+ risk_neutral_log_returns = scaled_log_returns - adjustment
519
+
520
+ # Convert to terminal prices using the risk-neutral returns
521
+ simulated_prices = s * np.exp(risk_neutral_log_returns / 100)
490
522
 
491
523
  # Convert to moneyness domain
492
524
  simulated_moneyness = s / simulated_prices
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: voly
3
- Version: 0.0.134
3
+ Version: 0.0.136
4
4
  Summary: Options & volatility research package
5
5
  Author-email: Manu de Cara <manu.de.cara@gmail.com>
6
6
  License: MIT
@@ -7,13 +7,13 @@ voly/core/__init__.py,sha256=bu6fS2I1Pj9fPPnl-zY3L7NqrZSY5Zy6NY2uMUvdhKs,183
7
7
  voly/core/charts.py,sha256=E21OZB5lTY4YL2flgaFJ6s5g3_ExtAQT2zryZZxLPyM,12735
8
8
  voly/core/data.py,sha256=pDeuYhP0GX4RbtlqByvsE3rfHcIkix0BU5MLW8sKIeI,8935
9
9
  voly/core/fit.py,sha256=Tb9eeG7e_2dQTcqt6aqEwFrZdy6jR9rSNqe6tzOdVhQ,9245
10
- voly/core/hd.py,sha256=mnQdLxWn9cBzTci6i_u3xKSDkH2uhjdpuRGXYpJydIk,19949
10
+ voly/core/hd.py,sha256=y6TNtfdY_Na-afjfbehhu_YvOkrHLJRX2Wv4tPx8H8M,21486
11
11
  voly/core/interpolate.py,sha256=JkK172-FXyhesW3hY4pEeuJWG3Bugq7QZXbeKoRpLuo,5305
12
12
  voly/core/rnd.py,sha256=0VE77lxesx_BPAO46QwKpcauZNaHnPTiDhmRbSURn3c,10022
13
13
  voly/utils/__init__.py,sha256=E05mWatyC-PDOsCxQV1p5Xi1IgpOomxrNURyCx_gB-w,200
14
14
  voly/utils/logger.py,sha256=4-_2bVJmq17Q0d7Rd2mPg1AeR8gxv6EPvcmBDMFWcSM,1744
15
- voly-0.0.134.dist-info/licenses/LICENSE,sha256=wcHIVbE12jfcBOai_wqBKY6xvNQU5E909xL1zZNq_2Q,1065
16
- voly-0.0.134.dist-info/METADATA,sha256=4kEvLCXW-Cey74FsVlF2P9CbhgyiisAHG02C6bhTXws,4115
17
- voly-0.0.134.dist-info/WHEEL,sha256=DK49LOLCYiurdXXOXwGJm6U4DkHkg4lcxjhqwRa0CP4,91
18
- voly-0.0.134.dist-info/top_level.txt,sha256=ZfLw2sSxF-LrKAkgGjOmeTcw6_gD-30zvtdEY5W4B7c,5
19
- voly-0.0.134.dist-info/RECORD,,
15
+ voly-0.0.136.dist-info/licenses/LICENSE,sha256=wcHIVbE12jfcBOai_wqBKY6xvNQU5E909xL1zZNq_2Q,1065
16
+ voly-0.0.136.dist-info/METADATA,sha256=e7hVkhX_aR0ENbpH-u_Q8NXgpgvj5oJIInJqdEc6p1Y,4115
17
+ voly-0.0.136.dist-info/WHEEL,sha256=DK49LOLCYiurdXXOXwGJm6U4DkHkg4lcxjhqwRa0CP4,91
18
+ voly-0.0.136.dist-info/top_level.txt,sha256=ZfLw2sSxF-LrKAkgGjOmeTcw6_gD-30zvtdEY5W4B7c,5
19
+ voly-0.0.136.dist-info/RECORD,,
File without changes