vllm-sr 0.1.0b2.dev20260129021916__py3-none-any.whl → 0.1.0b2.dev20260129090916__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -10,6 +10,7 @@
10
10
  # "models/mom-feedback-detector": "llm-semantic-router/feedback-detector"
11
11
  # "models/mom-embedding-pro": "Qwen/Qwen3-Embedding-0.6B"
12
12
  # "models/mom-embedding-flash": "google/embeddinggemma-300m"
13
+ # "models/mom-embedding-ultra": "llm-semantic-router/mmbert-embed-32k-2d-matryoshka"
13
14
 
14
15
  # Response API Configuration
15
16
  # Enables OpenAI Response API support with conversation chaining
@@ -19,15 +20,13 @@ response_api:
19
20
  ttl_seconds: 86400 # 24 hours
20
21
  max_responses: 1000
21
22
 
22
- # Router Replay Configuration
23
- # Records all routing decisions for debugging and analysis
23
+ # Router Replay Configuration (System-Level)
24
+ # Provides storage backend configuration for router_replay plugin
25
+ # Per-decision settings (max_records, capture settings) are configured via router_replay plugin
24
26
  router_replay:
25
- enabled: true
26
- store_backend: "memory" # Options: "memory"
27
- max_records: 1000
28
- capture_request_body: true
29
- capture_response_body: true
30
- max_body_bytes: 4096
27
+ store_backend: "memory" # Options: "memory", "redis", "postgres", "milvus"
28
+ ttl_seconds: 2592000 # 30 days retention (for persistent backends)
29
+ async_writes: false # Enable async writes for better performance
31
30
 
32
31
  semantic_cache:
33
32
  enabled: true
@@ -47,14 +46,9 @@ semantic_cache:
47
46
  # backend_config_path: "config/milvus.yaml" # Path to Milvus config
48
47
 
49
48
  # Embedding model for semantic similarity matching
50
- # Options: "bert" (fast, 384-dim), "qwen3" (high quality, 1024-dim, 32K context), "gemma" (balanced, 768-dim, 8K context)
51
- # Default: "bert" (fastest, lowest memory)
52
- embedding_model: "bert"
53
-
54
- bert_model:
55
- model_id: models/mom-embedding-light
56
- threshold: 0.6
57
- use_cpu: true
49
+ # If not specified, automatically uses the model configured in embedding_models section
50
+ # Options: "mmbert" (multilingual, 768-dim), "qwen3" (high quality, 1024-dim, 32K context), "gemma" (balanced, 768-dim, 8K context)
51
+ # embedding_model: "mmbert" # Optional: explicitly set if you want to override auto-detection
58
52
 
59
53
  tools:
60
54
  enabled: true
@@ -135,20 +129,29 @@ feedback_detector:
135
129
  # access_key: "" # Optional: for Authorization header (Bearer token)
136
130
 
137
131
  # Embedding Models Configuration
138
- # These models provide intelligent embedding generation with automatic routing:
139
- # - Qwen3-Embedding-0.6B: Up to 32K context, high quality,
140
- # - EmbeddingGemma-300M: Up to 8K context, fast inference, Matryoshka support (768/512/256/128)
132
+ # This is the UNIFIED configuration for all embedding-related features:
133
+ # - Semantic Cache: Automatically uses the configured model
134
+ # - Tool Selection: Uses the configured model for tool matching
135
+ # - Embedding Signal: Uses the model specified in hnsw_config.model_type
136
+ # - Complexity Signal: Uses the model specified in hnsw_config.model_type
137
+ #
138
+ # Available models:
139
+ # - Qwen3-Embedding-0.6B (Pro): Up to 32K context, high quality, 1024-dim
140
+ # - EmbeddingGemma-300M (Flash): Up to 8K context, fast inference, Matryoshka support (768/512/256/128)
141
+ # - mmBERT-Embed-32K-2D-Matryoshka (Ultra): Up to 32K context, 1800+ languages, 2D Matryoshka (layer early exit + dimension reduction)
141
142
  embedding_models:
142
- qwen3_model_path: "models/mom-embedding-pro"
143
+ # qwen3_model_path: "models/mom-embedding-pro"
143
144
  # gemma_model_path: "models/mom-embedding-flash"
145
+ mmbert_model_path: "models/mom-embedding-ultra"
144
146
  use_cpu: true # Set to false for GPU acceleration (requires CUDA)
145
147
  # HNSW Configuration
146
148
  # Improves performance by preloading candidate embeddings at startup
147
149
  # and using HNSW index for O(log n) similarity search
148
150
  hnsw_config:
149
- model_type: "qwen3" # Which model to use: "qwen3" (high quality) or "gemma" (fast)
151
+ model_type: "mmbert" # Which model to use: "qwen3" (high quality), "gemma" (fast), or "mmbert" (multilingual)
150
152
  preload_embeddings: true # Precompute candidate embeddings at startup
151
- target_dimension: 1024 # Embedding dimension
153
+ target_dimension: 768 # Embedding dimension (1024 for qwen3, 768 for gemma/mmbert)
154
+ # For mmbert only: target_layer (3/6/11/22) for layer early exit
152
155
  enable_soft_matching: true
153
156
  min_score_threshold: 0.5
154
157
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: vllm-sr
3
- Version: 0.1.0b2.dev20260129021916
3
+ Version: 0.1.0b2.dev20260129090916
4
4
  Summary: vLLM Semantic Router - Intelligent routing for Mixture-of-Models
5
5
  Author: vLLM-SR Team
6
6
  License: Apache-2.0
@@ -28,10 +28,10 @@ cli/templates/grafana-datasource.serve.yaml,sha256=Cxjz1zVWoUdSzbSsS_iJhMHRrmRi6
28
28
  cli/templates/grafana.serve.ini,sha256=x9bCkzxqm5gC4fKToY2lhNPdWhwAaJGVe5ABMW6Dv-c,1674
29
29
  cli/templates/llm-router-dashboard.serve.json,sha256=pwnTjUh7z3_3LnIwtaLXjDWH4aHd2Mc57z0oekgt-Bk,60903
30
30
  cli/templates/prometheus.serve.yaml,sha256=MGYq8dlRq_i2m5sogQ--kwTvJpkf44QQoCNoI7oyVT8,270
31
- cli/templates/router-defaults.yaml,sha256=YgAQqFW6EYvgOPfzdeZDtOQ_J2gDPmO46y69yrwf7fA,7713
31
+ cli/templates/router-defaults.yaml,sha256=crPnhOGAQYMgnIjHJEU8aNtlplau8wjrvGLrjqPsnwY,8647
32
32
  cli/templates/tools_db.json,sha256=CPqPBkd5nc966m1YEozz06frrmv3Pd5rrkxKkO3rTiA,4537
33
- vllm_sr-0.1.0b2.dev20260129021916.dist-info/METADATA,sha256=O5l3aYiYbvJ3vOQMHt-8zM41Yz-aiwNvGNIrsp28CvY,7173
34
- vllm_sr-0.1.0b2.dev20260129021916.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
35
- vllm_sr-0.1.0b2.dev20260129021916.dist-info/entry_points.txt,sha256=WhlBPbLHUpWUsMuUQX9cnvsYMf0ih5i57vvJ1jJNi0k,42
36
- vllm_sr-0.1.0b2.dev20260129021916.dist-info/top_level.txt,sha256=2ImG917oaVHlm0nP9oJE-Qrgs-fq_fGWgba2H1f8fpE,4
37
- vllm_sr-0.1.0b2.dev20260129021916.dist-info/RECORD,,
33
+ vllm_sr-0.1.0b2.dev20260129090916.dist-info/METADATA,sha256=gTVobiYaKZegLtgsJEbCDBd6y9uX43gcHisMGzdexfA,7173
34
+ vllm_sr-0.1.0b2.dev20260129090916.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
35
+ vllm_sr-0.1.0b2.dev20260129090916.dist-info/entry_points.txt,sha256=WhlBPbLHUpWUsMuUQX9cnvsYMf0ih5i57vvJ1jJNi0k,42
36
+ vllm_sr-0.1.0b2.dev20260129090916.dist-info/top_level.txt,sha256=2ImG917oaVHlm0nP9oJE-Qrgs-fq_fGWgba2H1f8fpE,4
37
+ vllm_sr-0.1.0b2.dev20260129090916.dist-info/RECORD,,