vllm-cpu-avx512vnni 0.11.0.post2__cp313-cp313-manylinux_2_17_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of vllm-cpu-avx512vnni might be problematic. Click here for more details.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +220 -0
- vllm/_bc_linter.py +59 -0
- vllm/_custom_ops.py +2044 -0
- vllm/_ipex_ops.py +393 -0
- vllm/_version.py +34 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +45 -0
- vllm/assets/base.py +41 -0
- vllm/assets/image.py +50 -0
- vllm/assets/video.py +145 -0
- vllm/attention/__init__.py +15 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +204 -0
- vllm/attention/backends/utils.py +33 -0
- vllm/attention/layer.py +645 -0
- vllm/attention/layers/__init__.py +0 -0
- vllm/attention/layers/chunked_local_attention.py +93 -0
- vllm/attention/layers/cross_attention.py +162 -0
- vllm/attention/layers/encoder_only_attention.py +86 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/chunked_prefill_paged_decode.py +405 -0
- vllm/attention/ops/common.py +345 -0
- vllm/attention/ops/flashmla.py +192 -0
- vllm/attention/ops/merge_attn_states.py +43 -0
- vllm/attention/ops/paged_attn.py +262 -0
- vllm/attention/ops/pallas_kv_cache_update.py +124 -0
- vllm/attention/ops/prefix_prefill.py +928 -0
- vllm/attention/ops/rocm_aiter_mla.py +104 -0
- vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
- vllm/attention/ops/triton_decode_attention.py +691 -0
- vllm/attention/ops/triton_flash_attention.py +984 -0
- vllm/attention/ops/triton_merge_attn_states.py +97 -0
- vllm/attention/ops/triton_reshape_and_cache_flash.py +175 -0
- vllm/attention/ops/triton_unified_attention.py +894 -0
- vllm/attention/selector.py +245 -0
- vllm/attention/utils/__init__.py +0 -0
- vllm/attention/utils/fa_utils.py +85 -0
- vllm/attention/utils/kv_sharing_utils.py +33 -0
- vllm/beam_search.py +87 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +2723 -0
- vllm/benchmarks/latency.py +170 -0
- vllm/benchmarks/lib/__init__.py +3 -0
- vllm/benchmarks/lib/endpoint_request_func.py +533 -0
- vllm/benchmarks/lib/ready_checker.py +73 -0
- vllm/benchmarks/lib/utils.py +80 -0
- vllm/benchmarks/serve.py +1358 -0
- vllm/benchmarks/throughput.py +696 -0
- vllm/collect_env.py +823 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/activation_quant_fusion.py +189 -0
- vllm/compilation/backends.py +650 -0
- vllm/compilation/base_static_graph.py +56 -0
- vllm/compilation/collective_fusion.py +1188 -0
- vllm/compilation/compiler_interface.py +573 -0
- vllm/compilation/counter.py +47 -0
- vllm/compilation/cuda_graph.py +199 -0
- vllm/compilation/cuda_piecewise_backend.py +117 -0
- vllm/compilation/decorators.py +400 -0
- vllm/compilation/fix_functionalization.py +205 -0
- vllm/compilation/fusion.py +383 -0
- vllm/compilation/fusion_attn.py +295 -0
- vllm/compilation/fx_utils.py +84 -0
- vllm/compilation/inductor_pass.py +136 -0
- vllm/compilation/monitor.py +57 -0
- vllm/compilation/noop_elimination.py +158 -0
- vllm/compilation/pass_manager.py +125 -0
- vllm/compilation/post_cleanup.py +20 -0
- vllm/compilation/sequence_parallelism.py +478 -0
- vllm/compilation/torch25_custom_graph_pass.py +42 -0
- vllm/compilation/vllm_inductor_pass.py +156 -0
- vllm/compilation/wrapper.py +136 -0
- vllm/config/__init__.py +814 -0
- vllm/config/cache.py +220 -0
- vllm/config/compilation.py +673 -0
- vllm/config/device.py +74 -0
- vllm/config/kv_events.py +50 -0
- vllm/config/kv_transfer.py +111 -0
- vllm/config/load.py +113 -0
- vllm/config/lora.py +132 -0
- vllm/config/model.py +1912 -0
- vllm/config/multimodal.py +129 -0
- vllm/config/observability.py +99 -0
- vllm/config/parallel.py +524 -0
- vllm/config/pooler.py +97 -0
- vllm/config/scheduler.py +287 -0
- vllm/config/speculative.py +568 -0
- vllm/config/speech_to_text.py +39 -0
- vllm/config/structured_outputs.py +64 -0
- vllm/config/utils.py +145 -0
- vllm/connections.py +186 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +311 -0
- vllm/distributed/__init__.py +6 -0
- vllm/distributed/communication_op.py +41 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/all2all.py +440 -0
- vllm/distributed/device_communicators/all_reduce_utils.py +317 -0
- vllm/distributed/device_communicators/base_device_communicator.py +295 -0
- vllm/distributed/device_communicators/cpu_communicator.py +201 -0
- vllm/distributed/device_communicators/cuda_communicator.py +323 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +311 -0
- vllm/distributed/device_communicators/mnnvl_compat.py +28 -0
- vllm/distributed/device_communicators/pynccl.py +340 -0
- vllm/distributed/device_communicators/pynccl_allocator.py +186 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +416 -0
- vllm/distributed/device_communicators/quick_all_reduce.py +278 -0
- vllm/distributed/device_communicators/ray_communicator.py +258 -0
- vllm/distributed/device_communicators/shm_broadcast.py +589 -0
- vllm/distributed/device_communicators/shm_object_storage.py +635 -0
- vllm/distributed/device_communicators/symm_mem.py +136 -0
- vllm/distributed/device_communicators/tpu_communicator.py +102 -0
- vllm/distributed/device_communicators/xpu_communicator.py +94 -0
- vllm/distributed/eplb/__init__.py +8 -0
- vllm/distributed/eplb/eplb_state.py +620 -0
- vllm/distributed/eplb/rebalance_algo.py +239 -0
- vllm/distributed/eplb/rebalance_execute.py +424 -0
- vllm/distributed/kv_events.py +362 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +13 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +113 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +261 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +388 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +168 -0
- vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +100 -0
- vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +328 -0
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1473 -0
- vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +485 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +488 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +550 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +267 -0
- vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +418 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
- vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
- vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +290 -0
- vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +73 -0
- vllm/distributed/parallel_state.py +1532 -0
- vllm/distributed/tpu_distributed_utils.py +178 -0
- vllm/distributed/utils.py +536 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +1778 -0
- vllm/engine/async_llm_engine.py +6 -0
- vllm/engine/llm_engine.py +6 -0
- vllm/engine/metrics.py +577 -0
- vllm/engine/metrics_types.py +84 -0
- vllm/engine/protocol.py +333 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +178 -0
- vllm/entrypoints/chat_utils.py +1705 -0
- vllm/entrypoints/cli/__init__.py +12 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +25 -0
- vllm/entrypoints/cli/benchmark/latency.py +21 -0
- vllm/entrypoints/cli/benchmark/main.py +55 -0
- vllm/entrypoints/cli/benchmark/serve.py +21 -0
- vllm/entrypoints/cli/benchmark/throughput.py +21 -0
- vllm/entrypoints/cli/collect_env.py +36 -0
- vllm/entrypoints/cli/main.py +60 -0
- vllm/entrypoints/cli/openai.py +233 -0
- vllm/entrypoints/cli/run_batch.py +67 -0
- vllm/entrypoints/cli/serve.py +232 -0
- vllm/entrypoints/cli/types.py +29 -0
- vllm/entrypoints/constants.py +10 -0
- vllm/entrypoints/context.py +481 -0
- vllm/entrypoints/harmony_utils.py +436 -0
- vllm/entrypoints/launcher.py +164 -0
- vllm/entrypoints/llm.py +1629 -0
- vllm/entrypoints/logger.py +79 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +1953 -0
- vllm/entrypoints/openai/cli_args.py +288 -0
- vllm/entrypoints/openai/logits_processors.py +90 -0
- vllm/entrypoints/openai/protocol.py +2757 -0
- vllm/entrypoints/openai/run_batch.py +491 -0
- vllm/entrypoints/openai/serving_chat.py +1597 -0
- vllm/entrypoints/openai/serving_classification.py +173 -0
- vllm/entrypoints/openai/serving_completion.py +692 -0
- vllm/entrypoints/openai/serving_embedding.py +631 -0
- vllm/entrypoints/openai/serving_engine.py +992 -0
- vllm/entrypoints/openai/serving_models.py +288 -0
- vllm/entrypoints/openai/serving_pooling.py +276 -0
- vllm/entrypoints/openai/serving_responses.py +1709 -0
- vllm/entrypoints/openai/serving_score.py +479 -0
- vllm/entrypoints/openai/serving_tokenization.py +196 -0
- vllm/entrypoints/openai/serving_transcription.py +136 -0
- vllm/entrypoints/openai/speech_to_text.py +388 -0
- vllm/entrypoints/openai/tool_parsers/__init__.py +55 -0
- vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +367 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
- vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +185 -0
- vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
- vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
- vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +455 -0
- vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +372 -0
- vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
- vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
- vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +377 -0
- vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
- vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +269 -0
- vllm/entrypoints/openai/tool_parsers/longcat_tool_parser.py +39 -0
- vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +816 -0
- vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
- vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +93 -0
- vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
- vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
- vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +707 -0
- vllm/entrypoints/openai/tool_parsers/qwen3xml_tool_parser.py +1137 -0
- vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +679 -0
- vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +296 -0
- vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
- vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +524 -0
- vllm/entrypoints/renderer.py +395 -0
- vllm/entrypoints/score_utils.py +232 -0
- vllm/entrypoints/ssl.py +75 -0
- vllm/entrypoints/tool.py +139 -0
- vllm/entrypoints/tool_server.py +206 -0
- vllm/entrypoints/utils.py +233 -0
- vllm/env_override.py +23 -0
- vllm/envs.py +1590 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/executor_base.py +381 -0
- vllm/executor/msgspec_utils.py +35 -0
- vllm/executor/ray_distributed_executor.py +699 -0
- vllm/executor/ray_utils.py +410 -0
- vllm/executor/uniproc_executor.py +176 -0
- vllm/forward_context.py +402 -0
- vllm/inputs/__init__.py +30 -0
- vllm/inputs/data.py +356 -0
- vllm/inputs/parse.py +151 -0
- vllm/inputs/preprocess.py +664 -0
- vllm/logger.py +229 -0
- vllm/logging_utils/__init__.py +10 -0
- vllm/logging_utils/dump_input.py +81 -0
- vllm/logging_utils/formatter.py +79 -0
- vllm/logging_utils/log_time.py +32 -0
- vllm/logits_process.py +119 -0
- vllm/logprobs.py +28 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/layers/__init__.py +34 -0
- vllm/lora/layers/base.py +69 -0
- vllm/lora/layers/base_linear.py +185 -0
- vllm/lora/layers/column_parallel_linear.py +609 -0
- vllm/lora/layers/logits_processor.py +247 -0
- vllm/lora/layers/qkv_x_parallel_linear.py +8 -0
- vllm/lora/layers/replicated_linear.py +60 -0
- vllm/lora/layers/row_parallel_linear.py +196 -0
- vllm/lora/layers/utils.py +65 -0
- vllm/lora/layers/vocal_parallel_embedding.py +174 -0
- vllm/lora/lora_weights.py +199 -0
- vllm/lora/models.py +816 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/ipex_ops/__init__.py +7 -0
- vllm/lora/ops/ipex_ops/lora_ops.py +44 -0
- vllm/lora/ops/torch_ops/__init__.py +16 -0
- vllm/lora/ops/torch_ops/lora_ops.py +119 -0
- vllm/lora/ops/triton_ops/__init__.py +12 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
- vllm/lora/ops/triton_ops/lora_expand_op.py +289 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
- vllm/lora/ops/triton_ops/lora_shrink_op.py +243 -0
- vllm/lora/ops/triton_ops/utils.py +126 -0
- vllm/lora/ops/xla_ops/__init__.py +7 -0
- vllm/lora/ops/xla_ops/lora_ops.py +144 -0
- vllm/lora/peft_helper.py +127 -0
- vllm/lora/punica_wrapper/__init__.py +10 -0
- vllm/lora/punica_wrapper/punica_base.py +458 -0
- vllm/lora/punica_wrapper/punica_cpu.py +349 -0
- vllm/lora/punica_wrapper/punica_gpu.py +272 -0
- vllm/lora/punica_wrapper/punica_selector.py +20 -0
- vllm/lora/punica_wrapper/punica_tpu.py +391 -0
- vllm/lora/punica_wrapper/punica_xpu.py +276 -0
- vllm/lora/punica_wrapper/utils.py +136 -0
- vllm/lora/request.py +97 -0
- vllm/lora/resolver.py +85 -0
- vllm/lora/utils.py +246 -0
- vllm/lora/worker_manager.py +267 -0
- vllm/model_executor/__init__.py +12 -0
- vllm/model_executor/custom_op.py +194 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +575 -0
- vllm/model_executor/layers/attention_layer_base.py +23 -0
- vllm/model_executor/layers/fla/__init__.py +8 -0
- vllm/model_executor/layers/fla/ops/__init__.py +17 -0
- vllm/model_executor/layers/fla/ops/chunk.py +225 -0
- vllm/model_executor/layers/fla/ops/chunk_delta_h.py +290 -0
- vllm/model_executor/layers/fla/ops/chunk_o.py +177 -0
- vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +140 -0
- vllm/model_executor/layers/fla/ops/cumsum.py +226 -0
- vllm/model_executor/layers/fla/ops/fused_recurrent.py +366 -0
- vllm/model_executor/layers/fla/ops/index.py +39 -0
- vllm/model_executor/layers/fla/ops/l2norm.py +143 -0
- vllm/model_executor/layers/fla/ops/layernorm_guard.py +337 -0
- vllm/model_executor/layers/fla/ops/op.py +39 -0
- vllm/model_executor/layers/fla/ops/solve_tril.py +365 -0
- vllm/model_executor/layers/fla/ops/utils.py +180 -0
- vllm/model_executor/layers/fla/ops/wy_fast.py +114 -0
- vllm/model_executor/layers/fused_moe/__init__.py +89 -0
- vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +322 -0
- vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +141 -0
- vllm/model_executor/layers/fused_moe/config.py +804 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +300 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +957 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +362 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +413 -0
- vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +361 -0
- vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +274 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +268 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +300 -0
- vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +184 -0
- vllm/model_executor/layers/fused_moe/fused_batched_moe.py +993 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +239 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +1890 -0
- vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +307 -0
- vllm/model_executor/layers/fused_moe/layer.py +2195 -0
- vllm/model_executor/layers/fused_moe/modular_kernel.py +1038 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +87 -0
- vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
- vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +205 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
- vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +341 -0
- vllm/model_executor/layers/fused_moe/prepare_finalize.py +70 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +424 -0
- vllm/model_executor/layers/fused_moe/routing_simulator.py +291 -0
- vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +146 -0
- vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +143 -0
- vllm/model_executor/layers/fused_moe/trtllm_moe.py +191 -0
- vllm/model_executor/layers/fused_moe/utils.py +274 -0
- vllm/model_executor/layers/layernorm.py +395 -0
- vllm/model_executor/layers/lightning_attn.py +661 -0
- vllm/model_executor/layers/linear.py +1603 -0
- vllm/model_executor/layers/logits_processor.py +106 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/abstract.py +42 -0
- vllm/model_executor/layers/mamba/linear_attn.py +403 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +466 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +764 -0
- vllm/model_executor/layers/mamba/mamba_utils.py +186 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1092 -0
- vllm/model_executor/layers/mamba/ops/layernorm_gated.py +168 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +242 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +527 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +724 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +238 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +200 -0
- vllm/model_executor/layers/mamba/short_conv.py +253 -0
- vllm/model_executor/layers/mla.py +173 -0
- vllm/model_executor/layers/pooler.py +719 -0
- vllm/model_executor/layers/quantization/__init__.py +157 -0
- vllm/model_executor/layers/quantization/auto_round.py +388 -0
- vllm/model_executor/layers/quantization/awq.py +228 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +554 -0
- vllm/model_executor/layers/quantization/awq_triton.py +320 -0
- vllm/model_executor/layers/quantization/base_config.py +170 -0
- vllm/model_executor/layers/quantization/bitblas.py +464 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +627 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +797 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2074 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +27 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +366 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +105 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +185 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +169 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +135 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +157 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +238 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +153 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +46 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +196 -0
- vllm/model_executor/layers/quantization/experts_int8.py +223 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
- vllm/model_executor/layers/quantization/fp8.py +1098 -0
- vllm/model_executor/layers/quantization/gguf.py +599 -0
- vllm/model_executor/layers/quantization/gptq.py +340 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +448 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +751 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +333 -0
- vllm/model_executor/layers/quantization/inc.py +61 -0
- vllm/model_executor/layers/quantization/input_quant_fp8.py +156 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +415 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +91 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +93 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +302 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +92 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +117 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +92 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +144 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +139 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +89 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +161 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +206 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
- vllm/model_executor/layers/quantization/kv_cache.py +143 -0
- vllm/model_executor/layers/quantization/modelopt.py +1596 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +484 -0
- vllm/model_executor/layers/quantization/mxfp4.py +988 -0
- vllm/model_executor/layers/quantization/petit.py +306 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +129 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +432 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +561 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +239 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +163 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
- vllm/model_executor/layers/quantization/quark/utils.py +105 -0
- vllm/model_executor/layers/quantization/rtn.py +466 -0
- vllm/model_executor/layers/quantization/schema.py +86 -0
- vllm/model_executor/layers/quantization/torchao.py +214 -0
- vllm/model_executor/layers/quantization/tpu_int8.py +125 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +210 -0
- vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
- vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +79 -0
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +248 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +949 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +146 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +492 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +50 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +479 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +396 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +345 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
- vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +141 -0
- vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +20 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +137 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +59 -0
- vllm/model_executor/layers/quantization/utils/petit_utils.py +122 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +641 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +458 -0
- vllm/model_executor/layers/resampler.py +270 -0
- vllm/model_executor/layers/rotary_embedding/__init__.py +204 -0
- vllm/model_executor/layers/rotary_embedding/base.py +177 -0
- vllm/model_executor/layers/rotary_embedding/common.py +150 -0
- vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +138 -0
- vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +197 -0
- vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +41 -0
- vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +67 -0
- vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +80 -0
- vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
- vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
- vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +81 -0
- vllm/model_executor/layers/rotary_embedding/mrope.py +1321 -0
- vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +42 -0
- vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +129 -0
- vllm/model_executor/layers/rotary_embedding/rocm_aiter_rope_ops.py +86 -0
- vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +68 -0
- vllm/model_executor/layers/shared_fused_moe/__init__.py +6 -0
- vllm/model_executor/layers/shared_fused_moe/shared_fused_moe.py +56 -0
- vllm/model_executor/layers/utils.py +195 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
- vllm/model_executor/model_loader/__init__.py +138 -0
- vllm/model_executor/model_loader/base_loader.py +52 -0
- vllm/model_executor/model_loader/bitsandbytes_loader.py +788 -0
- vllm/model_executor/model_loader/default_loader.py +277 -0
- vllm/model_executor/model_loader/dummy_loader.py +28 -0
- vllm/model_executor/model_loader/gguf_loader.py +155 -0
- vllm/model_executor/model_loader/runai_streamer_loader.py +104 -0
- vllm/model_executor/model_loader/sharded_state_loader.py +199 -0
- vllm/model_executor/model_loader/tensorizer.py +738 -0
- vllm/model_executor/model_loader/tensorizer_loader.py +143 -0
- vllm/model_executor/model_loader/tpu.py +114 -0
- vllm/model_executor/model_loader/utils.py +292 -0
- vllm/model_executor/model_loader/weight_utils.py +990 -0
- vllm/model_executor/models/__init__.py +33 -0
- vllm/model_executor/models/adapters.py +542 -0
- vllm/model_executor/models/aimv2.py +246 -0
- vllm/model_executor/models/apertus.py +579 -0
- vllm/model_executor/models/arcee.py +422 -0
- vllm/model_executor/models/arctic.py +558 -0
- vllm/model_executor/models/aria.py +650 -0
- vllm/model_executor/models/aya_vision.py +468 -0
- vllm/model_executor/models/baichuan.py +474 -0
- vllm/model_executor/models/bailing_moe.py +642 -0
- vllm/model_executor/models/bamba.py +514 -0
- vllm/model_executor/models/bert.py +665 -0
- vllm/model_executor/models/bert_with_rope.py +687 -0
- vllm/model_executor/models/blip.py +339 -0
- vllm/model_executor/models/blip2.py +712 -0
- vllm/model_executor/models/bloom.py +374 -0
- vllm/model_executor/models/chameleon.py +1139 -0
- vllm/model_executor/models/chatglm.py +476 -0
- vllm/model_executor/models/clip.py +407 -0
- vllm/model_executor/models/cohere2_vision.py +481 -0
- vllm/model_executor/models/commandr.py +465 -0
- vllm/model_executor/models/config.py +445 -0
- vllm/model_executor/models/dbrx.py +471 -0
- vllm/model_executor/models/deepseek.py +497 -0
- vllm/model_executor/models/deepseek_eagle.py +240 -0
- vllm/model_executor/models/deepseek_mtp.py +289 -0
- vllm/model_executor/models/deepseek_v2.py +1444 -0
- vllm/model_executor/models/deepseek_vl2.py +658 -0
- vllm/model_executor/models/dots1.py +546 -0
- vllm/model_executor/models/dots_ocr.py +873 -0
- vllm/model_executor/models/ernie45.py +43 -0
- vllm/model_executor/models/ernie45_moe.py +607 -0
- vllm/model_executor/models/ernie45_vl.py +1527 -0
- vllm/model_executor/models/ernie45_vl_moe.py +727 -0
- vllm/model_executor/models/ernie_mtp.py +268 -0
- vllm/model_executor/models/exaone.py +550 -0
- vllm/model_executor/models/exaone4.py +533 -0
- vllm/model_executor/models/fairseq2_llama.py +154 -0
- vllm/model_executor/models/falcon.py +509 -0
- vllm/model_executor/models/falcon_h1.py +674 -0
- vllm/model_executor/models/fuyu.py +399 -0
- vllm/model_executor/models/gemma.py +425 -0
- vllm/model_executor/models/gemma2.py +422 -0
- vllm/model_executor/models/gemma3.py +555 -0
- vllm/model_executor/models/gemma3_mm.py +721 -0
- vllm/model_executor/models/gemma3n.py +1113 -0
- vllm/model_executor/models/gemma3n_mm.py +761 -0
- vllm/model_executor/models/glm.py +23 -0
- vllm/model_executor/models/glm4.py +304 -0
- vllm/model_executor/models/glm4_1v.py +1690 -0
- vllm/model_executor/models/glm4_moe.py +727 -0
- vllm/model_executor/models/glm4_moe_mtp.py +301 -0
- vllm/model_executor/models/glm4v.py +654 -0
- vllm/model_executor/models/gpt2.py +380 -0
- vllm/model_executor/models/gpt_bigcode.py +344 -0
- vllm/model_executor/models/gpt_j.py +339 -0
- vllm/model_executor/models/gpt_neox.py +330 -0
- vllm/model_executor/models/gpt_oss.py +712 -0
- vllm/model_executor/models/granite.py +489 -0
- vllm/model_executor/models/granite_speech.py +794 -0
- vllm/model_executor/models/granitemoe.py +550 -0
- vllm/model_executor/models/granitemoehybrid.py +614 -0
- vllm/model_executor/models/granitemoeshared.py +332 -0
- vllm/model_executor/models/gritlm.py +262 -0
- vllm/model_executor/models/grok1.py +547 -0
- vllm/model_executor/models/h2ovl.py +536 -0
- vllm/model_executor/models/hunyuan_v1.py +1042 -0
- vllm/model_executor/models/hyperclovax_vision.py +1192 -0
- vllm/model_executor/models/idefics2_vision_model.py +417 -0
- vllm/model_executor/models/idefics3.py +756 -0
- vllm/model_executor/models/interfaces.py +959 -0
- vllm/model_executor/models/interfaces_base.py +192 -0
- vllm/model_executor/models/intern_vit.py +441 -0
- vllm/model_executor/models/internlm2.py +450 -0
- vllm/model_executor/models/internlm2_ve.py +148 -0
- vllm/model_executor/models/interns1.py +838 -0
- vllm/model_executor/models/interns1_vit.py +418 -0
- vllm/model_executor/models/internvl.py +1423 -0
- vllm/model_executor/models/jais.py +373 -0
- vllm/model_executor/models/jamba.py +591 -0
- vllm/model_executor/models/jina_vl.py +144 -0
- vllm/model_executor/models/keye.py +1680 -0
- vllm/model_executor/models/keye_vl1_5.py +602 -0
- vllm/model_executor/models/kimi_vl.py +618 -0
- vllm/model_executor/models/lfm2.py +548 -0
- vllm/model_executor/models/llama.py +669 -0
- vllm/model_executor/models/llama4.py +746 -0
- vllm/model_executor/models/llama4_eagle.py +239 -0
- vllm/model_executor/models/llama_eagle.py +179 -0
- vllm/model_executor/models/llama_eagle3.py +296 -0
- vllm/model_executor/models/llava.py +870 -0
- vllm/model_executor/models/llava_next.py +571 -0
- vllm/model_executor/models/llava_next_video.py +476 -0
- vllm/model_executor/models/llava_onevision.py +942 -0
- vllm/model_executor/models/longcat_flash.py +715 -0
- vllm/model_executor/models/longcat_flash_mtp.py +352 -0
- vllm/model_executor/models/mamba.py +275 -0
- vllm/model_executor/models/mamba2.py +291 -0
- vllm/model_executor/models/medusa.py +169 -0
- vllm/model_executor/models/midashenglm.py +792 -0
- vllm/model_executor/models/mimo.py +188 -0
- vllm/model_executor/models/mimo_mtp.py +280 -0
- vllm/model_executor/models/minicpm.py +631 -0
- vllm/model_executor/models/minicpm3.py +230 -0
- vllm/model_executor/models/minicpm_eagle.py +389 -0
- vllm/model_executor/models/minicpmo.py +770 -0
- vllm/model_executor/models/minicpmv.py +1784 -0
- vllm/model_executor/models/minimax_text_01.py +986 -0
- vllm/model_executor/models/minimax_vl_01.py +426 -0
- vllm/model_executor/models/mistral3.py +628 -0
- vllm/model_executor/models/mixtral.py +606 -0
- vllm/model_executor/models/mllama4.py +1076 -0
- vllm/model_executor/models/mlp_speculator.py +206 -0
- vllm/model_executor/models/modernbert.py +374 -0
- vllm/model_executor/models/module_mapping.py +72 -0
- vllm/model_executor/models/molmo.py +1567 -0
- vllm/model_executor/models/moonvit.py +673 -0
- vllm/model_executor/models/motif.py +345 -0
- vllm/model_executor/models/mpt.py +329 -0
- vllm/model_executor/models/nano_nemotron_vl.py +1394 -0
- vllm/model_executor/models/nemotron.py +507 -0
- vllm/model_executor/models/nemotron_h.py +565 -0
- vllm/model_executor/models/nemotron_nas.py +481 -0
- vllm/model_executor/models/nemotron_vl.py +652 -0
- vllm/model_executor/models/nvlm_d.py +203 -0
- vllm/model_executor/models/olmo.py +404 -0
- vllm/model_executor/models/olmo2.py +439 -0
- vllm/model_executor/models/olmoe.py +483 -0
- vllm/model_executor/models/opt.py +412 -0
- vllm/model_executor/models/orion.py +348 -0
- vllm/model_executor/models/ovis.py +559 -0
- vllm/model_executor/models/ovis2_5.py +642 -0
- vllm/model_executor/models/paligemma.py +411 -0
- vllm/model_executor/models/persimmon.py +343 -0
- vllm/model_executor/models/phi.py +356 -0
- vllm/model_executor/models/phi3.py +19 -0
- vllm/model_executor/models/phi3v.py +698 -0
- vllm/model_executor/models/phi4_multimodal.py +1475 -0
- vllm/model_executor/models/phi4mm.py +1279 -0
- vllm/model_executor/models/phi4mm_audio.py +1254 -0
- vllm/model_executor/models/phi4mm_utils.py +1875 -0
- vllm/model_executor/models/phimoe.py +679 -0
- vllm/model_executor/models/pixtral.py +1345 -0
- vllm/model_executor/models/plamo2.py +978 -0
- vllm/model_executor/models/qwen.py +361 -0
- vllm/model_executor/models/qwen2.py +523 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +984 -0
- vllm/model_executor/models/qwen2_5_vl.py +1481 -0
- vllm/model_executor/models/qwen2_audio.py +489 -0
- vllm/model_executor/models/qwen2_moe.py +558 -0
- vllm/model_executor/models/qwen2_rm.py +122 -0
- vllm/model_executor/models/qwen2_vl.py +1670 -0
- vllm/model_executor/models/qwen3.py +341 -0
- vllm/model_executor/models/qwen3_moe.py +692 -0
- vllm/model_executor/models/qwen3_next.py +1266 -0
- vllm/model_executor/models/qwen3_next_mtp.py +281 -0
- vllm/model_executor/models/qwen3_vl.py +1613 -0
- vllm/model_executor/models/qwen3_vl_moe.py +358 -0
- vllm/model_executor/models/qwen_vl.py +795 -0
- vllm/model_executor/models/radio.py +576 -0
- vllm/model_executor/models/registry.py +990 -0
- vllm/model_executor/models/roberta.py +252 -0
- vllm/model_executor/models/rvl.py +103 -0
- vllm/model_executor/models/seed_oss.py +485 -0
- vllm/model_executor/models/siglip.py +540 -0
- vllm/model_executor/models/siglip2navit.py +689 -0
- vllm/model_executor/models/skyworkr1v.py +911 -0
- vllm/model_executor/models/smolvlm.py +44 -0
- vllm/model_executor/models/solar.py +504 -0
- vllm/model_executor/models/stablelm.py +341 -0
- vllm/model_executor/models/starcoder2.py +354 -0
- vllm/model_executor/models/step3_text.py +510 -0
- vllm/model_executor/models/step3_vl.py +1072 -0
- vllm/model_executor/models/swin.py +475 -0
- vllm/model_executor/models/tarsier.py +639 -0
- vllm/model_executor/models/telechat2.py +151 -0
- vllm/model_executor/models/teleflm.py +79 -0
- vllm/model_executor/models/terratorch.py +294 -0
- vllm/model_executor/models/transformers.py +948 -0
- vllm/model_executor/models/ultravox.py +654 -0
- vllm/model_executor/models/utils.py +808 -0
- vllm/model_executor/models/vision.py +404 -0
- vllm/model_executor/models/voxtral.py +786 -0
- vllm/model_executor/models/whisper.py +963 -0
- vllm/model_executor/models/zamba2.py +960 -0
- vllm/model_executor/parameter.py +620 -0
- vllm/model_executor/utils.py +86 -0
- vllm/model_executor/warmup/__init__.py +0 -0
- vllm/model_executor/warmup/deep_gemm_warmup.py +230 -0
- vllm/model_executor/warmup/kernel_warmup.py +83 -0
- vllm/multimodal/__init__.py +33 -0
- vllm/multimodal/audio.py +116 -0
- vllm/multimodal/base.py +27 -0
- vllm/multimodal/cache.py +697 -0
- vllm/multimodal/evs.py +273 -0
- vllm/multimodal/hasher.py +102 -0
- vllm/multimodal/image.py +130 -0
- vllm/multimodal/inputs.py +987 -0
- vllm/multimodal/parse.py +511 -0
- vllm/multimodal/processing.py +2148 -0
- vllm/multimodal/profiling.py +284 -0
- vllm/multimodal/registry.py +345 -0
- vllm/multimodal/utils.py +503 -0
- vllm/multimodal/video.py +319 -0
- vllm/outputs.py +324 -0
- vllm/platforms/__init__.py +263 -0
- vllm/platforms/cpu.py +340 -0
- vllm/platforms/cuda.py +668 -0
- vllm/platforms/interface.py +620 -0
- vllm/platforms/rocm.py +497 -0
- vllm/platforms/tpu.py +233 -0
- vllm/platforms/xpu.py +243 -0
- vllm/plugins/__init__.py +72 -0
- vllm/plugins/io_processors/__init__.py +68 -0
- vllm/plugins/io_processors/interface.py +67 -0
- vllm/plugins/lora_resolvers/README.md +16 -0
- vllm/plugins/lora_resolvers/__init__.py +0 -0
- vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
- vllm/pooling_params.py +191 -0
- vllm/profiler/__init__.py +0 -0
- vllm/profiler/layerwise_profile.py +375 -0
- vllm/profiler/utils.py +148 -0
- vllm/py.typed +2 -0
- vllm/ray/__init__.py +0 -0
- vllm/ray/lazy_utils.py +22 -0
- vllm/ray/ray_env.py +72 -0
- vllm/reasoning/__init__.py +29 -0
- vllm/reasoning/abs_reasoning_parsers.py +202 -0
- vllm/reasoning/basic_parsers.py +156 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
- vllm/reasoning/glm4_moe_reasoning_parser.py +151 -0
- vllm/reasoning/gptoss_reasoning_parser.py +87 -0
- vllm/reasoning/granite_reasoning_parser.py +363 -0
- vllm/reasoning/hunyuan_a13b_reasoning_parser.py +245 -0
- vllm/reasoning/mistral_reasoning_parser.py +56 -0
- vllm/reasoning/qwen3_reasoning_parser.py +72 -0
- vllm/reasoning/seedoss_reasoning_parser.py +28 -0
- vllm/reasoning/step3_reasoning_parser.py +109 -0
- vllm/sampling_params.py +593 -0
- vllm/scalar_type.py +349 -0
- vllm/scripts.py +15 -0
- vllm/sequence.py +103 -0
- vllm/tasks.py +11 -0
- vllm/test_utils.py +129 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6140 -0
- vllm/tracing.py +136 -0
- vllm/transformers_utils/__init__.py +24 -0
- vllm/transformers_utils/chat_templates/__init__.py +5 -0
- vllm/transformers_utils/chat_templates/registry.py +70 -0
- vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
- vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
- vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
- vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
- vllm/transformers_utils/config.py +1102 -0
- vllm/transformers_utils/config_parser_base.py +20 -0
- vllm/transformers_utils/configs/__init__.py +63 -0
- vllm/transformers_utils/configs/arctic.py +207 -0
- vllm/transformers_utils/configs/chatglm.py +72 -0
- vllm/transformers_utils/configs/deepseek_v3.py +101 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
- vllm/transformers_utils/configs/dotsocr.py +69 -0
- vllm/transformers_utils/configs/eagle.py +84 -0
- vllm/transformers_utils/configs/falcon.py +90 -0
- vllm/transformers_utils/configs/jais.py +237 -0
- vllm/transformers_utils/configs/kimi_vl.py +37 -0
- vllm/transformers_utils/configs/medusa.py +63 -0
- vllm/transformers_utils/configs/midashenglm.py +101 -0
- vllm/transformers_utils/configs/mistral.py +165 -0
- vllm/transformers_utils/configs/mlp_speculator.py +68 -0
- vllm/transformers_utils/configs/moonvit.py +33 -0
- vllm/transformers_utils/configs/nemotron.py +205 -0
- vllm/transformers_utils/configs/nemotron_h.py +259 -0
- vllm/transformers_utils/configs/nemotron_vl.py +56 -0
- vllm/transformers_utils/configs/olmo3.py +80 -0
- vllm/transformers_utils/configs/ovis.py +176 -0
- vllm/transformers_utils/configs/qwen3_next.py +275 -0
- vllm/transformers_utils/configs/radio.py +91 -0
- vllm/transformers_utils/configs/speculators/__init__.py +2 -0
- vllm/transformers_utils/configs/speculators/algos.py +32 -0
- vllm/transformers_utils/configs/speculators/base.py +111 -0
- vllm/transformers_utils/configs/step3_vl.py +123 -0
- vllm/transformers_utils/configs/ultravox.py +116 -0
- vllm/transformers_utils/detokenizer_utils.py +199 -0
- vllm/transformers_utils/dynamic_module.py +60 -0
- vllm/transformers_utils/processor.py +299 -0
- vllm/transformers_utils/processors/__init__.py +16 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +362 -0
- vllm/transformers_utils/processors/ovis.py +420 -0
- vllm/transformers_utils/processors/ovis2_5.py +458 -0
- vllm/transformers_utils/runai_utils.py +104 -0
- vllm/transformers_utils/s3_utils.py +93 -0
- vllm/transformers_utils/tokenizer.py +292 -0
- vllm/transformers_utils/tokenizer_base.py +154 -0
- vllm/transformers_utils/tokenizers/__init__.py +10 -0
- vllm/transformers_utils/tokenizers/mistral.py +521 -0
- vllm/transformers_utils/utils.py +108 -0
- vllm/triton_utils/__init__.py +16 -0
- vllm/triton_utils/importing.py +96 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +259 -0
- vllm/utils/__init__.py +3566 -0
- vllm/utils/deep_gemm.py +319 -0
- vllm/utils/flashinfer.py +443 -0
- vllm/utils/jsontree.py +178 -0
- vllm/utils/tensor_schema.py +235 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/cpu_attn.py +919 -0
- vllm/v1/attention/backends/flash_attn.py +795 -0
- vllm/v1/attention/backends/flashinfer.py +1181 -0
- vllm/v1/attention/backends/flex_attention.py +861 -0
- vllm/v1/attention/backends/gdn_attn.py +332 -0
- vllm/v1/attention/backends/linear_attn.py +67 -0
- vllm/v1/attention/backends/mamba1_attn.py +81 -0
- vllm/v1/attention/backends/mamba2_attn.py +232 -0
- vllm/v1/attention/backends/mamba_attn.py +52 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/common.py +1783 -0
- vllm/v1/attention/backends/mla/cutlass_mla.py +248 -0
- vllm/v1/attention/backends/mla/flashattn_mla.py +271 -0
- vllm/v1/attention/backends/mla/flashinfer_mla.py +114 -0
- vllm/v1/attention/backends/mla/flashmla.py +203 -0
- vllm/v1/attention/backends/mla/flashmla_sparse.py +544 -0
- vllm/v1/attention/backends/mla/indexer.py +342 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla.py +255 -0
- vllm/v1/attention/backends/mla/triton_mla.py +177 -0
- vllm/v1/attention/backends/pallas.py +409 -0
- vllm/v1/attention/backends/rocm_aiter_fa.py +549 -0
- vllm/v1/attention/backends/rocm_attn.py +426 -0
- vllm/v1/attention/backends/short_conv_attn.py +94 -0
- vllm/v1/attention/backends/tree_attn.py +451 -0
- vllm/v1/attention/backends/triton_attn.py +361 -0
- vllm/v1/attention/backends/utils.py +990 -0
- vllm/v1/attention/backends/xformers.py +438 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +416 -0
- vllm/v1/core/encoder_cache_manager.py +333 -0
- vllm/v1/core/kv_cache_coordinator.py +440 -0
- vllm/v1/core/kv_cache_manager.py +399 -0
- vllm/v1/core/kv_cache_utils.py +1291 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/async_scheduler.py +47 -0
- vllm/v1/core/sched/interface.py +158 -0
- vllm/v1/core/sched/output.py +166 -0
- vllm/v1/core/sched/request_queue.py +224 -0
- vllm/v1/core/sched/scheduler.py +1296 -0
- vllm/v1/core/sched/utils.py +69 -0
- vllm/v1/core/single_type_kv_cache_manager.py +671 -0
- vllm/v1/cudagraph_dispatcher.py +125 -0
- vllm/v1/engine/__init__.py +203 -0
- vllm/v1/engine/async_llm.py +742 -0
- vllm/v1/engine/coordinator.py +357 -0
- vllm/v1/engine/core.py +1235 -0
- vllm/v1/engine/core_client.py +1334 -0
- vllm/v1/engine/detokenizer.py +349 -0
- vllm/v1/engine/exceptions.py +17 -0
- vllm/v1/engine/llm_engine.py +370 -0
- vllm/v1/engine/logprobs.py +201 -0
- vllm/v1/engine/output_processor.py +576 -0
- vllm/v1/engine/parallel_sampling.py +133 -0
- vllm/v1/engine/processor.py +545 -0
- vllm/v1/engine/utils.py +860 -0
- vllm/v1/executor/__init__.py +0 -0
- vllm/v1/executor/abstract.py +137 -0
- vllm/v1/executor/multiproc_executor.py +726 -0
- vllm/v1/executor/ray_distributed_executor.py +108 -0
- vllm/v1/executor/utils.py +23 -0
- vllm/v1/kv_cache_interface.py +375 -0
- vllm/v1/kv_offload/__init__.py +0 -0
- vllm/v1/kv_offload/abstract.py +165 -0
- vllm/v1/kv_offload/backend.py +96 -0
- vllm/v1/kv_offload/backends/__init__.py +0 -0
- vllm/v1/kv_offload/backends/cpu.py +61 -0
- vllm/v1/kv_offload/cpu.py +75 -0
- vllm/v1/kv_offload/factory.py +56 -0
- vllm/v1/kv_offload/lru_manager.py +132 -0
- vllm/v1/kv_offload/mediums.py +39 -0
- vllm/v1/kv_offload/spec.py +61 -0
- vllm/v1/kv_offload/worker/__init__.py +0 -0
- vllm/v1/kv_offload/worker/cpu_gpu.py +171 -0
- vllm/v1/kv_offload/worker/worker.py +142 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +741 -0
- vllm/v1/metrics/prometheus.py +82 -0
- vllm/v1/metrics/ray_wrappers.py +152 -0
- vllm/v1/metrics/reader.py +246 -0
- vllm/v1/metrics/stats.py +257 -0
- vllm/v1/outputs.py +161 -0
- vllm/v1/pool/__init__.py +0 -0
- vllm/v1/pool/metadata.py +77 -0
- vllm/v1/request.py +241 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/logits_processor/__init__.py +294 -0
- vllm/v1/sample/logits_processor/builtin.py +275 -0
- vllm/v1/sample/logits_processor/interface.py +97 -0
- vllm/v1/sample/logits_processor/state.py +161 -0
- vllm/v1/sample/metadata.py +43 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +39 -0
- vllm/v1/sample/ops/logprobs.py +26 -0
- vllm/v1/sample/ops/penalties.py +43 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +292 -0
- vllm/v1/sample/rejection_sampler.py +623 -0
- vllm/v1/sample/sampler.py +285 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +124 -0
- vllm/v1/sample/tpu/sampler.py +213 -0
- vllm/v1/serial_utils.py +423 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +1011 -0
- vllm/v1/spec_decode/medusa.py +66 -0
- vllm/v1/spec_decode/metadata.py +62 -0
- vllm/v1/spec_decode/metrics.py +211 -0
- vllm/v1/spec_decode/ngram_proposer.py +276 -0
- vllm/v1/spec_decode/utils.py +14 -0
- vllm/v1/structured_output/__init__.py +295 -0
- vllm/v1/structured_output/backend_guidance.py +245 -0
- vllm/v1/structured_output/backend_lm_format_enforcer.py +167 -0
- vllm/v1/structured_output/backend_outlines.py +320 -0
- vllm/v1/structured_output/backend_types.py +134 -0
- vllm/v1/structured_output/backend_xgrammar.py +327 -0
- vllm/v1/structured_output/request.py +86 -0
- vllm/v1/structured_output/utils.py +454 -0
- vllm/v1/utils.py +396 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +210 -0
- vllm/v1/worker/cpu_model_runner.py +175 -0
- vllm/v1/worker/cpu_worker.py +156 -0
- vllm/v1/worker/gpu_input_batch.py +863 -0
- vllm/v1/worker/gpu_model_runner.py +4160 -0
- vllm/v1/worker/gpu_ubatch_wrapper.py +399 -0
- vllm/v1/worker/gpu_worker.py +710 -0
- vllm/v1/worker/kv_connector_model_runner_mixin.py +132 -0
- vllm/v1/worker/lora_model_runner_mixin.py +183 -0
- vllm/v1/worker/tpu_input_batch.py +587 -0
- vllm/v1/worker/tpu_model_runner.py +1946 -0
- vllm/v1/worker/tpu_worker.py +346 -0
- vllm/v1/worker/ubatch_splitting.py +192 -0
- vllm/v1/worker/ubatch_utils.py +27 -0
- vllm/v1/worker/ubatching.py +224 -0
- vllm/v1/worker/utils.py +344 -0
- vllm/v1/worker/worker_base.py +65 -0
- vllm/v1/worker/xpu_model_runner.py +57 -0
- vllm/v1/worker/xpu_worker.py +179 -0
- vllm/version.py +41 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/worker_base.py +279 -0
- vllm_cpu_avx512vnni-0.11.0.post2.dist-info/METADATA +326 -0
- vllm_cpu_avx512vnni-0.11.0.post2.dist-info/RECORD +1398 -0
- vllm_cpu_avx512vnni-0.11.0.post2.dist-info/WHEEL +5 -0
- vllm_cpu_avx512vnni-0.11.0.post2.dist-info/entry_points.txt +5 -0
- vllm_cpu_avx512vnni-0.11.0.post2.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,2195 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
|
|
4
|
+
from abc import abstractmethod
|
|
5
|
+
from collections.abc import Iterable
|
|
6
|
+
from contextlib import nullcontext
|
|
7
|
+
from enum import Enum
|
|
8
|
+
from typing import Callable, Literal, Optional, Union, get_args, overload
|
|
9
|
+
|
|
10
|
+
import torch
|
|
11
|
+
import torch.nn.functional as F
|
|
12
|
+
from torch.nn.parameter import UninitializedParameter
|
|
13
|
+
|
|
14
|
+
import vllm.envs as envs
|
|
15
|
+
from vllm.config import get_current_vllm_config
|
|
16
|
+
from vllm.config.parallel import ExpertPlacementStrategy
|
|
17
|
+
from vllm.distributed import (get_dp_group, get_ep_group,
|
|
18
|
+
get_tensor_model_parallel_world_size,
|
|
19
|
+
tensor_model_parallel_all_reduce)
|
|
20
|
+
from vllm.distributed.eplb.eplb_state import EplbState
|
|
21
|
+
from vllm.forward_context import ForwardContext, get_forward_context
|
|
22
|
+
from vllm.logger import init_logger
|
|
23
|
+
from vllm.model_executor.custom_op import CustomOp
|
|
24
|
+
# yapf: disable
|
|
25
|
+
from vllm.model_executor.layers.fused_moe.config import (
|
|
26
|
+
FUSED_MOE_UNQUANTIZED_CONFIG, FusedMoEConfig, FusedMoEParallelConfig,
|
|
27
|
+
FusedMoEQuantConfig, biased_moe_quant_config)
|
|
28
|
+
from vllm.model_executor.layers.fused_moe.fused_moe import (
|
|
29
|
+
zero_experts_compute_triton)
|
|
30
|
+
# yapf: enable
|
|
31
|
+
from vllm.model_executor.layers.fused_moe.modular_kernel import (
|
|
32
|
+
FusedMoEActivationFormat, FusedMoEModularKernel,
|
|
33
|
+
FusedMoEPermuteExpertsUnpermute, FusedMoEPrepareAndFinalize)
|
|
34
|
+
from vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe import (
|
|
35
|
+
is_rocm_aiter_moe_enabled)
|
|
36
|
+
from vllm.model_executor.layers.fused_moe.routing_simulator import (
|
|
37
|
+
RoutingSimulator)
|
|
38
|
+
from vllm.model_executor.layers.quantization.base_config import (
|
|
39
|
+
QuantizationConfig, QuantizeMethodBase)
|
|
40
|
+
from vllm.model_executor.utils import set_weight_attrs
|
|
41
|
+
from vllm.platforms import current_platform
|
|
42
|
+
from vllm.platforms.interface import CpuArchEnum
|
|
43
|
+
from vllm.utils import (cdiv, direct_register_custom_op, has_deep_ep, has_pplx,
|
|
44
|
+
round_up)
|
|
45
|
+
from vllm.utils.flashinfer import has_flashinfer_cutlass_fused_moe
|
|
46
|
+
from vllm.v1.worker.ubatching import dbo_current_ubatch_id
|
|
47
|
+
|
|
48
|
+
if current_platform.is_cuda_alike():
|
|
49
|
+
from .fused_batched_moe import BatchedTritonExperts
|
|
50
|
+
from .fused_moe import (TritonExperts, eplb_map_to_physical_and_record,
|
|
51
|
+
fused_experts)
|
|
52
|
+
if has_pplx():
|
|
53
|
+
from .pplx_prepare_finalize import (PplxPrepareAndFinalize,
|
|
54
|
+
pplx_hidden_dim_scale_bytes)
|
|
55
|
+
if has_deep_ep():
|
|
56
|
+
from .deepep_ht_prepare_finalize import DeepEPHTPrepareAndFinalize
|
|
57
|
+
from .deepep_ll_prepare_finalize import (DEEPEP_QUANT_BLOCK_SHAPE,
|
|
58
|
+
DeepEPLLPrepareAndFinalize)
|
|
59
|
+
else:
|
|
60
|
+
fused_experts = None # type: ignore
|
|
61
|
+
FusedMoEPermuteExpertsUnpermute = None # type: ignore
|
|
62
|
+
FusedMoEPrepareAndFinalize = None # type: ignore
|
|
63
|
+
|
|
64
|
+
def _eplb_map_to_physical_and_record(
|
|
65
|
+
topk_ids: torch.Tensor, expert_load_view: torch.Tensor,
|
|
66
|
+
logical_to_physical_map: torch.Tensor,
|
|
67
|
+
logical_replica_count: torch.Tensor,
|
|
68
|
+
indices_type: Optional[torch.dtype]) -> torch.Tensor:
|
|
69
|
+
# CPU fallback: no EPLB so just return as is
|
|
70
|
+
return topk_ids
|
|
71
|
+
|
|
72
|
+
eplb_map_to_physical_and_record = _eplb_map_to_physical_and_record
|
|
73
|
+
|
|
74
|
+
if is_rocm_aiter_moe_enabled():
|
|
75
|
+
from vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe import ( # noqa: E501
|
|
76
|
+
rocm_aiter_grouped_topk as grouped_topk)
|
|
77
|
+
else:
|
|
78
|
+
from vllm.model_executor.layers.fused_moe.fused_moe import grouped_topk
|
|
79
|
+
if current_platform.is_tpu():
|
|
80
|
+
from .moe_pallas import fused_moe as fused_moe_pallas
|
|
81
|
+
else:
|
|
82
|
+
fused_moe_pallas = None # type: ignore
|
|
83
|
+
|
|
84
|
+
logger = init_logger(__name__)
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
class FusedMoeWeightScaleSupported(Enum):
|
|
88
|
+
TENSOR = "tensor"
|
|
89
|
+
CHANNEL = "channel"
|
|
90
|
+
GROUP = "group"
|
|
91
|
+
BLOCK = "block"
|
|
92
|
+
|
|
93
|
+
|
|
94
|
+
class FusedMoEMethodBase(QuantizeMethodBase):
|
|
95
|
+
|
|
96
|
+
def __init__(self, moe: FusedMoEConfig):
|
|
97
|
+
super().__init__()
|
|
98
|
+
self.moe = moe
|
|
99
|
+
self.moe_quant_config: Optional[FusedMoEQuantConfig] = None
|
|
100
|
+
self.fused_experts: Optional[FusedMoEModularKernel] = None
|
|
101
|
+
self.topk_indices_dtype = None
|
|
102
|
+
|
|
103
|
+
@abstractmethod
|
|
104
|
+
def create_weights(self, layer: torch.nn.Module, num_experts: int,
|
|
105
|
+
hidden_size: int, intermediate_size_per_partition: int,
|
|
106
|
+
params_dtype: torch.dtype, **extra_weight_attrs):
|
|
107
|
+
raise NotImplementedError
|
|
108
|
+
|
|
109
|
+
def uses_weight_scale_2_pattern(self) -> bool:
|
|
110
|
+
"""
|
|
111
|
+
Returns True if this quantization method uses 'weight_scale_2' pattern
|
|
112
|
+
for per-tensor weight scales (e.g., FP4 variants), False otherwise.
|
|
113
|
+
|
|
114
|
+
This method should be overridden by subclasses that use the
|
|
115
|
+
'weight_scale_2' pattern instead of the standard 'weight_scale' pattern.
|
|
116
|
+
"""
|
|
117
|
+
return False
|
|
118
|
+
|
|
119
|
+
@staticmethod
|
|
120
|
+
def _maybe_make_prepare_finalize(
|
|
121
|
+
moe: FusedMoEConfig,
|
|
122
|
+
quant_config: Optional[FusedMoEQuantConfig],
|
|
123
|
+
) -> Optional[FusedMoEPrepareAndFinalize]:
|
|
124
|
+
all2all_manager = get_ep_group().device_communicator.all2all_manager
|
|
125
|
+
assert all2all_manager is not None
|
|
126
|
+
|
|
127
|
+
prepare_finalize: Optional[FusedMoEPrepareAndFinalize] = None
|
|
128
|
+
|
|
129
|
+
# TODO: could allow this now
|
|
130
|
+
assert not moe.use_flashinfer_cutlass_kernels, \
|
|
131
|
+
"Must be created in modelopt.py"
|
|
132
|
+
|
|
133
|
+
if moe.use_pplx_kernels:
|
|
134
|
+
assert quant_config is not None
|
|
135
|
+
|
|
136
|
+
hidden_dim_bytes, hidden_scale_bytes = pplx_hidden_dim_scale_bytes(
|
|
137
|
+
moe.max_num_tokens,
|
|
138
|
+
moe.hidden_dim,
|
|
139
|
+
moe.in_dtype,
|
|
140
|
+
quant_config.quant_dtype,
|
|
141
|
+
per_act_token_quant=quant_config.per_act_token_quant,
|
|
142
|
+
block_shape=quant_config.block_shape,
|
|
143
|
+
)
|
|
144
|
+
|
|
145
|
+
all_to_all_args = dict(
|
|
146
|
+
max_num_tokens=moe.max_num_tokens,
|
|
147
|
+
num_experts=moe.num_experts,
|
|
148
|
+
experts_per_token=moe.experts_per_token, # topk
|
|
149
|
+
rank=all2all_manager.rank,
|
|
150
|
+
world_size=all2all_manager.world_size,
|
|
151
|
+
# dp_size actually means tp_size, bug in pplx kernels
|
|
152
|
+
dp_size=all2all_manager.tp_group.world_size,
|
|
153
|
+
hidden_dim=moe.hidden_dim,
|
|
154
|
+
hidden_dim_bytes=hidden_dim_bytes,
|
|
155
|
+
hidden_dim_scale_bytes=hidden_scale_bytes,
|
|
156
|
+
)
|
|
157
|
+
|
|
158
|
+
num_dispatchers = (all2all_manager.world_size //
|
|
159
|
+
all2all_manager.tp_group.world_size)
|
|
160
|
+
|
|
161
|
+
# Intranode pplx a2a takes a group name while internode does not.
|
|
162
|
+
if not all2all_manager.internode:
|
|
163
|
+
all_to_all_args[
|
|
164
|
+
"group_name"] = all2all_manager.cpu_group.group_name
|
|
165
|
+
|
|
166
|
+
handle = all2all_manager.get_handle(all_to_all_args)
|
|
167
|
+
|
|
168
|
+
prepare_finalize = PplxPrepareAndFinalize(
|
|
169
|
+
handle,
|
|
170
|
+
max_num_tokens=moe.max_num_tokens,
|
|
171
|
+
num_local_experts=moe.num_local_experts,
|
|
172
|
+
num_dispatchers=num_dispatchers,
|
|
173
|
+
)
|
|
174
|
+
elif moe.use_deepep_ht_kernels:
|
|
175
|
+
assert moe.dp_size == all2all_manager.dp_world_size
|
|
176
|
+
|
|
177
|
+
all_to_all_args = dict()
|
|
178
|
+
handle = all2all_manager.get_handle(all_to_all_args)
|
|
179
|
+
prepare_finalize = DeepEPHTPrepareAndFinalize(
|
|
180
|
+
handle,
|
|
181
|
+
num_dispatchers=all2all_manager.world_size,
|
|
182
|
+
dp_size=all2all_manager.dp_world_size,
|
|
183
|
+
rank_expert_offset=all2all_manager.rank *
|
|
184
|
+
moe.num_local_experts,
|
|
185
|
+
)
|
|
186
|
+
|
|
187
|
+
elif moe.use_deepep_ll_kernels:
|
|
188
|
+
assert quant_config is not None
|
|
189
|
+
all_to_all_args = dict(
|
|
190
|
+
max_num_tokens_per_dp_rank=moe.max_num_tokens,
|
|
191
|
+
token_hidden_size=moe.hidden_dim,
|
|
192
|
+
num_ep_ranks=all2all_manager.world_size,
|
|
193
|
+
num_global_experts=moe.num_experts,
|
|
194
|
+
num_local_experts=moe.num_experts //
|
|
195
|
+
all2all_manager.world_size)
|
|
196
|
+
handle = all2all_manager.get_handle(all_to_all_args)
|
|
197
|
+
|
|
198
|
+
# Note: We may want to use FP8 dispatch just to reduce
|
|
199
|
+
# data movement.
|
|
200
|
+
use_fp8_dispatch = (
|
|
201
|
+
quant_config.quant_dtype == current_platform.fp8_dtype()
|
|
202
|
+
and quant_config.block_shape == DEEPEP_QUANT_BLOCK_SHAPE)
|
|
203
|
+
|
|
204
|
+
prepare_finalize = DeepEPLLPrepareAndFinalize(
|
|
205
|
+
handle,
|
|
206
|
+
max_tokens_per_rank=moe.max_num_tokens,
|
|
207
|
+
num_dispatchers=all2all_manager.world_size,
|
|
208
|
+
use_fp8_dispatch=use_fp8_dispatch,
|
|
209
|
+
)
|
|
210
|
+
|
|
211
|
+
return prepare_finalize
|
|
212
|
+
|
|
213
|
+
def maybe_make_prepare_finalize(
|
|
214
|
+
self) -> Optional[FusedMoEPrepareAndFinalize]:
|
|
215
|
+
if self.moe.moe_parallel_config.use_all2all_kernels:
|
|
216
|
+
return FusedMoEMethodBase._maybe_make_prepare_finalize(
|
|
217
|
+
self.moe, self.moe_quant_config)
|
|
218
|
+
else:
|
|
219
|
+
return None
|
|
220
|
+
|
|
221
|
+
# Note: init_prepare_finalize should only be called by
|
|
222
|
+
# prepare_communication_buffer_for_model.
|
|
223
|
+
def init_prepare_finalize(self, layer: torch.nn.Module):
|
|
224
|
+
assert self.moe is not None
|
|
225
|
+
|
|
226
|
+
# We must get the quant config here so that the layer is
|
|
227
|
+
# completely initialized, i.e. all weights loaded and post
|
|
228
|
+
# processed.
|
|
229
|
+
self.moe_quant_config = self.get_fused_moe_quant_config(layer)
|
|
230
|
+
|
|
231
|
+
prepare_finalize = self.maybe_make_prepare_finalize()
|
|
232
|
+
|
|
233
|
+
if prepare_finalize is not None:
|
|
234
|
+
logger.debug("%s for %s(%s)", prepare_finalize.__class__.__name__,
|
|
235
|
+
self, id(self))
|
|
236
|
+
assert self.topk_indices_dtype is None
|
|
237
|
+
assert self.fused_experts is None, \
|
|
238
|
+
f"Attempt to override experts for {id(self)}!"
|
|
239
|
+
self.topk_indices_dtype = prepare_finalize.topk_indices_dtype()
|
|
240
|
+
experts = self.select_gemm_impl(prepare_finalize, layer)
|
|
241
|
+
self.fused_experts = FusedMoEModularKernel(
|
|
242
|
+
prepare_finalize,
|
|
243
|
+
experts,
|
|
244
|
+
layer.shared_experts,
|
|
245
|
+
)
|
|
246
|
+
|
|
247
|
+
def select_gemm_impl(
|
|
248
|
+
self,
|
|
249
|
+
prepare_finalize: FusedMoEPrepareAndFinalize,
|
|
250
|
+
layer: torch.nn.Module,
|
|
251
|
+
) -> FusedMoEPermuteExpertsUnpermute:
|
|
252
|
+
# based on the all2all implementation, select the appropriate
|
|
253
|
+
# gemm implementation
|
|
254
|
+
raise NotImplementedError(
|
|
255
|
+
f"{self.__class__.__name__} must select appropriate gemm "
|
|
256
|
+
"implementation based on the prepare_finalize")
|
|
257
|
+
|
|
258
|
+
@abstractmethod
|
|
259
|
+
def get_fused_moe_quant_config(
|
|
260
|
+
self, layer: torch.nn.Module) -> Optional[FusedMoEQuantConfig]:
|
|
261
|
+
raise NotImplementedError
|
|
262
|
+
|
|
263
|
+
@abstractmethod
|
|
264
|
+
def apply(
|
|
265
|
+
self,
|
|
266
|
+
layer: torch.nn.Module,
|
|
267
|
+
x: torch.Tensor,
|
|
268
|
+
router_logits: torch.Tensor,
|
|
269
|
+
top_k: int,
|
|
270
|
+
renormalize: bool,
|
|
271
|
+
use_grouped_topk: bool = False,
|
|
272
|
+
topk_group: Optional[int] = None,
|
|
273
|
+
num_expert_group: Optional[int] = None,
|
|
274
|
+
global_num_experts: int = -1,
|
|
275
|
+
expert_map: Optional[torch.Tensor] = None,
|
|
276
|
+
custom_routing_function: Optional[Callable] = None,
|
|
277
|
+
scoring_func: str = "softmax",
|
|
278
|
+
routed_scaling_factor: float = 1.0,
|
|
279
|
+
e_score_correction_bias: Optional[torch.Tensor] = None,
|
|
280
|
+
apply_router_weight_on_input: bool = False,
|
|
281
|
+
activation: str = "silu",
|
|
282
|
+
enable_eplb: bool = False,
|
|
283
|
+
expert_load_view: Optional[torch.Tensor] = None,
|
|
284
|
+
logical_to_physical_map: Optional[torch.Tensor] = None,
|
|
285
|
+
logical_replica_count: Optional[torch.Tensor] = None,
|
|
286
|
+
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
|
|
287
|
+
raise NotImplementedError
|
|
288
|
+
|
|
289
|
+
|
|
290
|
+
@CustomOp.register("unquantized_fused_moe")
|
|
291
|
+
class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
|
|
292
|
+
"""MoE method without quantization."""
|
|
293
|
+
|
|
294
|
+
def __init__(self, moe: FusedMoEConfig):
|
|
295
|
+
super().__init__(moe)
|
|
296
|
+
self.rocm_aiter_moe_enabled = is_rocm_aiter_moe_enabled()
|
|
297
|
+
if self.rocm_aiter_moe_enabled:
|
|
298
|
+
from .rocm_aiter_fused_moe import rocm_aiter_fused_experts
|
|
299
|
+
self.rocm_aiter_fused_experts = rocm_aiter_fused_experts
|
|
300
|
+
else:
|
|
301
|
+
self.rocm_aiter_fused_experts = None # type: ignore
|
|
302
|
+
|
|
303
|
+
# FlashInfer CUTLASS MoE is only supported on Hopper and later GPUS
|
|
304
|
+
self.flashinfer_cutlass_moe_enabled = (
|
|
305
|
+
has_flashinfer_cutlass_fused_moe()
|
|
306
|
+
and envs.VLLM_USE_FLASHINFER_MOE_FP16
|
|
307
|
+
and self.moe.moe_parallel_config.use_ep
|
|
308
|
+
and self.moe.moe_parallel_config.dp_size == 1
|
|
309
|
+
and current_platform.get_device_capability()[0] >= 9)
|
|
310
|
+
if self.flashinfer_cutlass_moe_enabled:
|
|
311
|
+
logger.info_once(
|
|
312
|
+
"Enabling FlashInfer CUTLASS MoE for UnquantizedFusedMoEMethod"
|
|
313
|
+
)
|
|
314
|
+
from functools import partial
|
|
315
|
+
|
|
316
|
+
from .flashinfer_cutlass_moe import flashinfer_cutlass_moe
|
|
317
|
+
self.flashinfer_cutlass_moe = partial(
|
|
318
|
+
flashinfer_cutlass_moe,
|
|
319
|
+
quant_config=FUSED_MOE_UNQUANTIZED_CONFIG,
|
|
320
|
+
tp_rank=self.moe.moe_parallel_config.tp_rank,
|
|
321
|
+
tp_size=self.moe.moe_parallel_config.tp_size,
|
|
322
|
+
ep_rank=self.moe.moe_parallel_config.ep_rank,
|
|
323
|
+
ep_size=self.moe.moe_parallel_config.ep_size)
|
|
324
|
+
else:
|
|
325
|
+
if (self.moe.moe_parallel_config.use_ep
|
|
326
|
+
and self.moe.moe_parallel_config.dp_size == 1):
|
|
327
|
+
logger.info_once(
|
|
328
|
+
"FlashInfer CUTLASS MoE is available for EP"
|
|
329
|
+
" but not enabled, consider setting"
|
|
330
|
+
" VLLM_USE_FLASHINFER_MOE_FP16=1 to enable it.")
|
|
331
|
+
elif self.moe.moe_parallel_config.dp_size > 1:
|
|
332
|
+
logger.info_once(
|
|
333
|
+
"FlashInfer CUTLASS MoE is currently not available for DP."
|
|
334
|
+
)
|
|
335
|
+
self.flashinfer_cutlass_moe = None # type: ignore
|
|
336
|
+
|
|
337
|
+
def maybe_make_prepare_finalize(
|
|
338
|
+
self) -> Optional[FusedMoEPrepareAndFinalize]:
|
|
339
|
+
if self.rocm_aiter_moe_enabled:
|
|
340
|
+
return None
|
|
341
|
+
else:
|
|
342
|
+
return super().maybe_make_prepare_finalize()
|
|
343
|
+
|
|
344
|
+
def select_gemm_impl(
|
|
345
|
+
self,
|
|
346
|
+
prepare_finalize: FusedMoEPrepareAndFinalize,
|
|
347
|
+
layer: torch.nn.Module,
|
|
348
|
+
) -> FusedMoEPermuteExpertsUnpermute:
|
|
349
|
+
assert self.moe_quant_config is not None
|
|
350
|
+
if (prepare_finalize.activation_format ==
|
|
351
|
+
FusedMoEActivationFormat.BatchedExperts):
|
|
352
|
+
logger.debug("BatchedTritonExperts %s", self.moe)
|
|
353
|
+
return BatchedTritonExperts(
|
|
354
|
+
max_num_tokens=self.moe.max_num_tokens,
|
|
355
|
+
num_dispatchers=prepare_finalize.num_dispatchers(),
|
|
356
|
+
quant_config=self.moe_quant_config,
|
|
357
|
+
)
|
|
358
|
+
else:
|
|
359
|
+
logger.debug("TritonExperts %s", self.moe)
|
|
360
|
+
return TritonExperts(self.moe_quant_config)
|
|
361
|
+
|
|
362
|
+
def create_weights(self, layer: torch.nn.Module, num_experts: int,
|
|
363
|
+
hidden_size: int, intermediate_size_per_partition: int,
|
|
364
|
+
params_dtype: torch.dtype, **extra_weight_attrs):
|
|
365
|
+
# Fused gate_up_proj (column parallel)
|
|
366
|
+
w13_weight = torch.nn.Parameter(torch.empty(
|
|
367
|
+
num_experts,
|
|
368
|
+
2 * intermediate_size_per_partition,
|
|
369
|
+
hidden_size,
|
|
370
|
+
dtype=params_dtype),
|
|
371
|
+
requires_grad=False)
|
|
372
|
+
layer.register_parameter("w13_weight", w13_weight)
|
|
373
|
+
set_weight_attrs(w13_weight, extra_weight_attrs)
|
|
374
|
+
if self.moe.has_bias:
|
|
375
|
+
w13_bias = torch.nn.Parameter(torch.zeros(
|
|
376
|
+
num_experts,
|
|
377
|
+
2 * intermediate_size_per_partition,
|
|
378
|
+
dtype=params_dtype),
|
|
379
|
+
requires_grad=False)
|
|
380
|
+
layer.register_parameter("w13_bias", w13_bias)
|
|
381
|
+
set_weight_attrs(w13_bias, extra_weight_attrs)
|
|
382
|
+
# down_proj (row parallel)
|
|
383
|
+
w2_weight = torch.nn.Parameter(torch.empty(
|
|
384
|
+
num_experts,
|
|
385
|
+
hidden_size,
|
|
386
|
+
intermediate_size_per_partition,
|
|
387
|
+
dtype=params_dtype),
|
|
388
|
+
requires_grad=False)
|
|
389
|
+
layer.register_parameter("w2_weight", w2_weight)
|
|
390
|
+
set_weight_attrs(w2_weight, extra_weight_attrs)
|
|
391
|
+
if self.moe.has_bias:
|
|
392
|
+
w2_bias = torch.nn.Parameter(torch.zeros(num_experts,
|
|
393
|
+
hidden_size,
|
|
394
|
+
dtype=params_dtype),
|
|
395
|
+
requires_grad=False)
|
|
396
|
+
layer.register_parameter("w2_bias", w2_bias)
|
|
397
|
+
set_weight_attrs(w2_bias, extra_weight_attrs)
|
|
398
|
+
|
|
399
|
+
def _maybe_pad_weight(self, weight: torch.Tensor) -> torch.Tensor:
|
|
400
|
+
# Pad the weight tensor. This is an optimization on ROCm platform, which
|
|
401
|
+
# can benefit from tensors located far enough from one another in memory
|
|
402
|
+
if (envs.VLLM_ROCM_MOE_PADDING and current_platform.is_rocm()
|
|
403
|
+
and weight.stride(-1) == 1
|
|
404
|
+
and (weight.stride(-2) * weight.element_size()) % 512 == 0):
|
|
405
|
+
num_pad = 256 // weight.element_size()
|
|
406
|
+
weight = F.pad(weight, (0, num_pad), "constant", 0)[..., :-num_pad]
|
|
407
|
+
torch.cuda.empty_cache()
|
|
408
|
+
|
|
409
|
+
return weight
|
|
410
|
+
|
|
411
|
+
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
|
|
412
|
+
super().process_weights_after_loading(layer)
|
|
413
|
+
|
|
414
|
+
# Padding the weight for better performance on ROCm
|
|
415
|
+
layer.w13_weight.data = self._maybe_pad_weight(layer.w13_weight.data)
|
|
416
|
+
layer.w2_weight.data = self._maybe_pad_weight(layer.w2_weight.data)
|
|
417
|
+
# Lazy import to avoid importing triton.
|
|
418
|
+
from vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe import (
|
|
419
|
+
shuffle_weights)
|
|
420
|
+
|
|
421
|
+
if self.rocm_aiter_moe_enabled:
|
|
422
|
+
shuffled_w13, shuffled_w2 = shuffle_weights(
|
|
423
|
+
layer.w13_weight.data, layer.w2_weight.data)
|
|
424
|
+
|
|
425
|
+
layer.w13_weight.data = shuffled_w13
|
|
426
|
+
layer.w2_weight.data = shuffled_w2
|
|
427
|
+
|
|
428
|
+
if self.flashinfer_cutlass_moe_enabled:
|
|
429
|
+
# Swap halves to arrange as [w3; w1] (kernel expectation)
|
|
430
|
+
w1_w, w3_w = torch.chunk(layer.w13_weight.data, 2, dim=1)
|
|
431
|
+
w13_weight_swapped = torch.cat([w3_w, w1_w], dim=1)
|
|
432
|
+
layer.w13_weight.data = w13_weight_swapped.contiguous()
|
|
433
|
+
|
|
434
|
+
if current_platform.is_xpu():
|
|
435
|
+
import intel_extension_for_pytorch as ipex
|
|
436
|
+
layer.ipex_fusion = ipex.llm.modules.GatedMLPMOE(
|
|
437
|
+
layer.w13_weight,
|
|
438
|
+
layer.w2_weight,
|
|
439
|
+
use_prepack=True,
|
|
440
|
+
)
|
|
441
|
+
elif current_platform.is_cpu():
|
|
442
|
+
from vllm.model_executor.layers.fused_moe import cpu_fused_moe
|
|
443
|
+
if current_platform.get_cpu_architecture() == CpuArchEnum.X86:
|
|
444
|
+
from vllm.model_executor.layers.utils import (
|
|
445
|
+
check_cpu_sgl_kernel)
|
|
446
|
+
dtype_w13 = layer.w13_weight.dtype
|
|
447
|
+
_, n_w13, k_w13 = layer.w13_weight.size()
|
|
448
|
+
dtype_w2 = layer.w2_weight.dtype
|
|
449
|
+
_, n_w2, k_w2 = layer.w2_weight.size()
|
|
450
|
+
if (envs.VLLM_CPU_SGL_KERNEL
|
|
451
|
+
and check_cpu_sgl_kernel(n_w13, k_w13, dtype_w13)
|
|
452
|
+
and check_cpu_sgl_kernel(n_w2, k_w2, dtype_w2)):
|
|
453
|
+
packed_w13_weight = torch.ops._C.convert_weight_packed(
|
|
454
|
+
layer.w13_weight)
|
|
455
|
+
assert packed_w13_weight.size() == layer.w13_weight.size()
|
|
456
|
+
layer.w13_weight.copy_(packed_w13_weight)
|
|
457
|
+
del packed_w13_weight
|
|
458
|
+
packed_w2_weight = torch.ops._C.convert_weight_packed(
|
|
459
|
+
layer.w2_weight)
|
|
460
|
+
assert packed_w2_weight.size() == layer.w2_weight.size()
|
|
461
|
+
layer.w2_weight.copy_(packed_w2_weight)
|
|
462
|
+
layer.cpu_fused_moe = cpu_fused_moe.SGLFusedMOE(layer)
|
|
463
|
+
else:
|
|
464
|
+
layer.cpu_fused_moe = cpu_fused_moe.IPEXFusedMOE(layer)
|
|
465
|
+
else:
|
|
466
|
+
layer.cpu_fused_moe = cpu_fused_moe.CPUFusedMOE(layer)
|
|
467
|
+
|
|
468
|
+
def apply(
|
|
469
|
+
self,
|
|
470
|
+
layer: torch.nn.Module,
|
|
471
|
+
x: torch.Tensor,
|
|
472
|
+
router_logits: torch.Tensor,
|
|
473
|
+
top_k: int,
|
|
474
|
+
renormalize: bool,
|
|
475
|
+
use_grouped_topk: bool = False,
|
|
476
|
+
topk_group: Optional[int] = None,
|
|
477
|
+
num_expert_group: Optional[int] = None,
|
|
478
|
+
global_num_experts: int = -1,
|
|
479
|
+
expert_map: Optional[torch.Tensor] = None,
|
|
480
|
+
custom_routing_function: Optional[Callable] = None,
|
|
481
|
+
scoring_func: str = "softmax",
|
|
482
|
+
routed_scaling_factor: float = 1.0,
|
|
483
|
+
e_score_correction_bias: Optional[torch.Tensor] = None,
|
|
484
|
+
apply_router_weight_on_input: bool = False,
|
|
485
|
+
activation: str = "silu",
|
|
486
|
+
enable_eplb: bool = False,
|
|
487
|
+
expert_load_view: Optional[torch.Tensor] = None,
|
|
488
|
+
logical_to_physical_map: Optional[torch.Tensor] = None,
|
|
489
|
+
logical_replica_count: Optional[torch.Tensor] = None,
|
|
490
|
+
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
|
|
491
|
+
if enable_eplb:
|
|
492
|
+
assert expert_load_view is not None
|
|
493
|
+
assert logical_to_physical_map is not None
|
|
494
|
+
assert logical_replica_count is not None
|
|
495
|
+
assert isinstance(layer, FusedMoE)
|
|
496
|
+
|
|
497
|
+
return self.forward(
|
|
498
|
+
x=x,
|
|
499
|
+
layer=layer,
|
|
500
|
+
router_logits=router_logits,
|
|
501
|
+
top_k=top_k,
|
|
502
|
+
renormalize=renormalize,
|
|
503
|
+
use_grouped_topk=use_grouped_topk,
|
|
504
|
+
topk_group=topk_group,
|
|
505
|
+
num_expert_group=num_expert_group,
|
|
506
|
+
global_num_experts=global_num_experts,
|
|
507
|
+
expert_map=expert_map,
|
|
508
|
+
custom_routing_function=custom_routing_function,
|
|
509
|
+
scoring_func=scoring_func,
|
|
510
|
+
routed_scaling_factor=routed_scaling_factor,
|
|
511
|
+
e_score_correction_bias=e_score_correction_bias,
|
|
512
|
+
activation=activation,
|
|
513
|
+
apply_router_weight_on_input=apply_router_weight_on_input,
|
|
514
|
+
enable_eplb=enable_eplb,
|
|
515
|
+
expert_load_view=expert_load_view,
|
|
516
|
+
logical_to_physical_map=logical_to_physical_map,
|
|
517
|
+
logical_replica_count=logical_replica_count,
|
|
518
|
+
)
|
|
519
|
+
|
|
520
|
+
def get_fused_moe_quant_config(
|
|
521
|
+
self, layer: torch.nn.Module) -> Optional[FusedMoEQuantConfig]:
|
|
522
|
+
if self.moe.has_bias:
|
|
523
|
+
return biased_moe_quant_config(
|
|
524
|
+
layer.w13_bias,
|
|
525
|
+
layer.w2_bias,
|
|
526
|
+
)
|
|
527
|
+
else:
|
|
528
|
+
return FUSED_MOE_UNQUANTIZED_CONFIG
|
|
529
|
+
|
|
530
|
+
def forward_cuda(
|
|
531
|
+
self,
|
|
532
|
+
layer: torch.nn.Module,
|
|
533
|
+
x: torch.Tensor,
|
|
534
|
+
use_grouped_topk: bool,
|
|
535
|
+
top_k: int,
|
|
536
|
+
router_logits: torch.Tensor,
|
|
537
|
+
renormalize: bool,
|
|
538
|
+
topk_group: Optional[int] = None,
|
|
539
|
+
num_expert_group: Optional[int] = None,
|
|
540
|
+
global_num_experts: int = -1,
|
|
541
|
+
expert_map: Optional[torch.Tensor] = None,
|
|
542
|
+
custom_routing_function: Optional[Callable] = None,
|
|
543
|
+
scoring_func: str = "softmax",
|
|
544
|
+
routed_scaling_factor: float = 1.0,
|
|
545
|
+
e_score_correction_bias: Optional[torch.Tensor] = None,
|
|
546
|
+
apply_router_weight_on_input: bool = False,
|
|
547
|
+
activation: str = "silu",
|
|
548
|
+
enable_eplb: bool = False,
|
|
549
|
+
expert_load_view: Optional[torch.Tensor] = None,
|
|
550
|
+
logical_to_physical_map: Optional[torch.Tensor] = None,
|
|
551
|
+
logical_replica_count: Optional[torch.Tensor] = None,
|
|
552
|
+
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
|
|
553
|
+
|
|
554
|
+
zero_expert_num = getattr(layer, 'zero_expert_num', 0)
|
|
555
|
+
zero_expert_type = getattr(layer, 'zero_expert_type', None)
|
|
556
|
+
|
|
557
|
+
topk_weights, topk_ids, zero_expert_result = FusedMoE.select_experts(
|
|
558
|
+
hidden_states=x,
|
|
559
|
+
router_logits=router_logits,
|
|
560
|
+
use_grouped_topk=use_grouped_topk,
|
|
561
|
+
top_k=top_k,
|
|
562
|
+
renormalize=renormalize,
|
|
563
|
+
topk_group=topk_group,
|
|
564
|
+
num_expert_group=num_expert_group,
|
|
565
|
+
custom_routing_function=custom_routing_function,
|
|
566
|
+
scoring_func=scoring_func,
|
|
567
|
+
routed_scaling_factor=routed_scaling_factor,
|
|
568
|
+
e_score_correction_bias=e_score_correction_bias,
|
|
569
|
+
indices_type=self.topk_indices_dtype,
|
|
570
|
+
enable_eplb=enable_eplb,
|
|
571
|
+
expert_map=expert_map,
|
|
572
|
+
expert_load_view=expert_load_view,
|
|
573
|
+
logical_to_physical_map=logical_to_physical_map,
|
|
574
|
+
logical_replica_count=logical_replica_count,
|
|
575
|
+
global_num_experts=global_num_experts,
|
|
576
|
+
zero_expert_num=zero_expert_num,
|
|
577
|
+
zero_expert_type=zero_expert_type)
|
|
578
|
+
|
|
579
|
+
if self.rocm_aiter_moe_enabled:
|
|
580
|
+
assert self.fused_experts is None
|
|
581
|
+
result = self.rocm_aiter_fused_experts(
|
|
582
|
+
hidden_states=x,
|
|
583
|
+
w1=layer.w13_weight,
|
|
584
|
+
w2=layer.w2_weight,
|
|
585
|
+
topk_weights=topk_weights,
|
|
586
|
+
topk_ids=topk_ids,
|
|
587
|
+
expert_map=expert_map,
|
|
588
|
+
activation=activation,
|
|
589
|
+
apply_router_weight_on_input=apply_router_weight_on_input)
|
|
590
|
+
elif self.flashinfer_cutlass_moe_enabled:
|
|
591
|
+
return self.flashinfer_cutlass_moe(
|
|
592
|
+
hidden_states=x,
|
|
593
|
+
w1=layer.w13_weight,
|
|
594
|
+
w2=layer.w2_weight,
|
|
595
|
+
topk_weights=topk_weights,
|
|
596
|
+
topk_ids=topk_ids,
|
|
597
|
+
activation=activation,
|
|
598
|
+
apply_router_weight_on_input=apply_router_weight_on_input)
|
|
599
|
+
elif self.fused_experts is not None:
|
|
600
|
+
if self.moe.has_bias:
|
|
601
|
+
raise ValueError(
|
|
602
|
+
"FusedMoEModularKernel does not support bias.")
|
|
603
|
+
result = self.fused_experts(
|
|
604
|
+
hidden_states=x,
|
|
605
|
+
w1=layer.w13_weight,
|
|
606
|
+
w2=layer.w2_weight,
|
|
607
|
+
topk_weights=topk_weights,
|
|
608
|
+
topk_ids=topk_ids,
|
|
609
|
+
inplace=True,
|
|
610
|
+
activation=activation,
|
|
611
|
+
apply_router_weight_on_input=apply_router_weight_on_input,
|
|
612
|
+
global_num_experts=global_num_experts,
|
|
613
|
+
expert_map=expert_map,
|
|
614
|
+
)
|
|
615
|
+
else:
|
|
616
|
+
assert fused_experts is not None
|
|
617
|
+
result = fused_experts(
|
|
618
|
+
hidden_states=x,
|
|
619
|
+
w1=layer.w13_weight,
|
|
620
|
+
w2=layer.w2_weight,
|
|
621
|
+
topk_weights=topk_weights,
|
|
622
|
+
topk_ids=topk_ids,
|
|
623
|
+
inplace=True,
|
|
624
|
+
activation=activation,
|
|
625
|
+
quant_config=self.moe_quant_config,
|
|
626
|
+
apply_router_weight_on_input=apply_router_weight_on_input,
|
|
627
|
+
global_num_experts=global_num_experts,
|
|
628
|
+
expert_map=expert_map,
|
|
629
|
+
)
|
|
630
|
+
|
|
631
|
+
if zero_expert_num != 0 and zero_expert_type is not None:
|
|
632
|
+
assert not isinstance(result, tuple), \
|
|
633
|
+
"Shared + zero experts are mutually exclusive not yet supported"
|
|
634
|
+
return result, zero_expert_result
|
|
635
|
+
else:
|
|
636
|
+
return result
|
|
637
|
+
|
|
638
|
+
def forward_cpu(
|
|
639
|
+
self,
|
|
640
|
+
layer: torch.nn.Module,
|
|
641
|
+
x: torch.Tensor,
|
|
642
|
+
use_grouped_topk: bool,
|
|
643
|
+
top_k: int,
|
|
644
|
+
router_logits: torch.Tensor,
|
|
645
|
+
renormalize: bool,
|
|
646
|
+
topk_group: Optional[int] = None,
|
|
647
|
+
num_expert_group: Optional[int] = None,
|
|
648
|
+
global_num_experts: int = -1,
|
|
649
|
+
expert_map: Optional[torch.Tensor] = None,
|
|
650
|
+
custom_routing_function: Optional[Callable] = None,
|
|
651
|
+
scoring_func: str = "softmax",
|
|
652
|
+
routed_scaling_factor: float = 1.0,
|
|
653
|
+
e_score_correction_bias: Optional[torch.Tensor] = None,
|
|
654
|
+
apply_router_weight_on_input: bool = False,
|
|
655
|
+
activation: str = "silu",
|
|
656
|
+
enable_eplb: bool = False,
|
|
657
|
+
expert_load_view: Optional[torch.Tensor] = None,
|
|
658
|
+
logical_to_physical_map: Optional[torch.Tensor] = None,
|
|
659
|
+
logical_replica_count: Optional[torch.Tensor] = None,
|
|
660
|
+
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
|
|
661
|
+
if enable_eplb is not False or expert_load_view is not None or \
|
|
662
|
+
logical_to_physical_map is not None or \
|
|
663
|
+
logical_replica_count is not None:
|
|
664
|
+
raise NotImplementedError("Expert load balancing is not supported "
|
|
665
|
+
"for CPU.")
|
|
666
|
+
return layer.cpu_fused_moe(
|
|
667
|
+
layer,
|
|
668
|
+
x,
|
|
669
|
+
use_grouped_topk,
|
|
670
|
+
top_k,
|
|
671
|
+
router_logits,
|
|
672
|
+
renormalize,
|
|
673
|
+
topk_group,
|
|
674
|
+
num_expert_group,
|
|
675
|
+
global_num_experts,
|
|
676
|
+
expert_map,
|
|
677
|
+
custom_routing_function,
|
|
678
|
+
scoring_func,
|
|
679
|
+
routed_scaling_factor,
|
|
680
|
+
e_score_correction_bias,
|
|
681
|
+
apply_router_weight_on_input,
|
|
682
|
+
activation,
|
|
683
|
+
)
|
|
684
|
+
|
|
685
|
+
def forward_xpu(
|
|
686
|
+
self,
|
|
687
|
+
layer: torch.nn.Module,
|
|
688
|
+
x: torch.Tensor,
|
|
689
|
+
use_grouped_topk: bool,
|
|
690
|
+
top_k: int,
|
|
691
|
+
router_logits: torch.Tensor,
|
|
692
|
+
renormalize: bool,
|
|
693
|
+
topk_group: Optional[int] = None,
|
|
694
|
+
num_expert_group: Optional[int] = None,
|
|
695
|
+
global_num_experts: int = -1,
|
|
696
|
+
expert_map: Optional[torch.Tensor] = None,
|
|
697
|
+
custom_routing_function: Optional[Callable] = None,
|
|
698
|
+
scoring_func: str = "softmax",
|
|
699
|
+
routed_scaling_factor: float = 1.0,
|
|
700
|
+
e_score_correction_bias: Optional[torch.Tensor] = None,
|
|
701
|
+
apply_router_weight_on_input: bool = False,
|
|
702
|
+
activation: str = "silu",
|
|
703
|
+
enable_eplb: bool = False,
|
|
704
|
+
expert_load_view: Optional[torch.Tensor] = None,
|
|
705
|
+
logical_to_physical_map: Optional[torch.Tensor] = None,
|
|
706
|
+
logical_replica_count: Optional[torch.Tensor] = None,
|
|
707
|
+
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
|
|
708
|
+
if enable_eplb is not False or expert_load_view is not None or \
|
|
709
|
+
logical_to_physical_map is not None or \
|
|
710
|
+
logical_replica_count is not None:
|
|
711
|
+
raise NotImplementedError("Expert load balancing is not supported "
|
|
712
|
+
"for XPU.")
|
|
713
|
+
assert custom_routing_function is None
|
|
714
|
+
return layer.ipex_fusion(
|
|
715
|
+
x,
|
|
716
|
+
use_grouped_topk,
|
|
717
|
+
top_k,
|
|
718
|
+
router_logits,
|
|
719
|
+
renormalize,
|
|
720
|
+
topk_group,
|
|
721
|
+
num_expert_group,
|
|
722
|
+
)
|
|
723
|
+
|
|
724
|
+
def forward_tpu(
|
|
725
|
+
self,
|
|
726
|
+
layer: torch.nn.Module,
|
|
727
|
+
x: torch.Tensor,
|
|
728
|
+
use_grouped_topk: bool,
|
|
729
|
+
top_k: int,
|
|
730
|
+
router_logits: torch.Tensor,
|
|
731
|
+
renormalize: bool,
|
|
732
|
+
topk_group: Optional[int] = None,
|
|
733
|
+
num_expert_group: Optional[int] = None,
|
|
734
|
+
global_num_experts: int = -1,
|
|
735
|
+
expert_map: Optional[torch.Tensor] = None,
|
|
736
|
+
custom_routing_function: Optional[Callable] = None,
|
|
737
|
+
scoring_func: str = "softmax",
|
|
738
|
+
routed_scaling_factor: float = 1.0,
|
|
739
|
+
e_score_correction_bias: Optional[torch.Tensor] = None,
|
|
740
|
+
apply_router_weight_on_input: bool = False,
|
|
741
|
+
activation: str = "silu",
|
|
742
|
+
enable_eplb: bool = False,
|
|
743
|
+
expert_load_view: Optional[torch.Tensor] = None,
|
|
744
|
+
logical_to_physical_map: Optional[torch.Tensor] = None,
|
|
745
|
+
logical_replica_count: Optional[torch.Tensor] = None,
|
|
746
|
+
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
|
|
747
|
+
assert not use_grouped_topk
|
|
748
|
+
assert num_expert_group is None
|
|
749
|
+
assert topk_group is None
|
|
750
|
+
assert custom_routing_function is None
|
|
751
|
+
assert apply_router_weight_on_input is False
|
|
752
|
+
if scoring_func != "softmax":
|
|
753
|
+
raise NotImplementedError(
|
|
754
|
+
"Only softmax scoring function is supported for TPU.")
|
|
755
|
+
if e_score_correction_bias is not None:
|
|
756
|
+
raise NotImplementedError(
|
|
757
|
+
"Expert score correction bias is not supported for TPU.")
|
|
758
|
+
assert activation == "silu", f"{activation} is not supported for TPU."
|
|
759
|
+
assert routed_scaling_factor == 1.0, \
|
|
760
|
+
f"routed_scaling_factor {routed_scaling_factor} is not supported " \
|
|
761
|
+
f"for TPU."
|
|
762
|
+
if enable_eplb is not False or expert_load_view is not None or \
|
|
763
|
+
logical_to_physical_map is not None or \
|
|
764
|
+
logical_replica_count is not None:
|
|
765
|
+
raise NotImplementedError("Expert load balancing is not supported "
|
|
766
|
+
"for TPU.")
|
|
767
|
+
return fused_moe_pallas(hidden_states=x,
|
|
768
|
+
w1=layer.w13_weight,
|
|
769
|
+
w2=layer.w2_weight,
|
|
770
|
+
topk=top_k,
|
|
771
|
+
gating_output=router_logits,
|
|
772
|
+
global_num_experts=global_num_experts,
|
|
773
|
+
expert_map=expert_map,
|
|
774
|
+
renormalize=renormalize)
|
|
775
|
+
|
|
776
|
+
if current_platform.is_tpu():
|
|
777
|
+
forward_native = forward_tpu
|
|
778
|
+
elif current_platform.is_cpu():
|
|
779
|
+
forward_native = forward_cpu
|
|
780
|
+
elif current_platform.is_xpu():
|
|
781
|
+
forward_native = forward_xpu
|
|
782
|
+
else:
|
|
783
|
+
forward_native = forward_cuda
|
|
784
|
+
|
|
785
|
+
|
|
786
|
+
def determine_expert_map(
|
|
787
|
+
ep_size: int,
|
|
788
|
+
ep_rank: int,
|
|
789
|
+
global_num_experts: int,
|
|
790
|
+
expert_placement_strategy: ExpertPlacementStrategy = "linear",
|
|
791
|
+
) -> tuple[int, Optional[torch.Tensor]]:
|
|
792
|
+
"""
|
|
793
|
+
Calculates how many experts should be assigned to each rank for EP and
|
|
794
|
+
creates a mapping from global to local expert index. Experts are
|
|
795
|
+
distributed evenly across ranks. Any remaining are assigned to the
|
|
796
|
+
last rank.
|
|
797
|
+
|
|
798
|
+
Args:
|
|
799
|
+
ep_size: The size of the expert parallel group
|
|
800
|
+
ep_rank: The rank of the current process in the expert parallel
|
|
801
|
+
group
|
|
802
|
+
global_num_experts: The total number of experts in the model.
|
|
803
|
+
expert_placement_strategy: The expert placement strategy.
|
|
804
|
+
|
|
805
|
+
Returns:
|
|
806
|
+
tuple[int, Optional[torch.Tensor]]: A tuple containing:
|
|
807
|
+
- local_num_experts (int): The number of experts assigned
|
|
808
|
+
to the current rank.
|
|
809
|
+
- expert_map (Optional[torch.Tensor]): A tensor of shape
|
|
810
|
+
(global_num_experts,) mapping from global to local index.
|
|
811
|
+
Contains -1 for experts not assigned to the current rank.
|
|
812
|
+
Returns None if ep_size is 1.
|
|
813
|
+
"""
|
|
814
|
+
assert ep_size > 0
|
|
815
|
+
if ep_size == 1:
|
|
816
|
+
return (global_num_experts, None)
|
|
817
|
+
|
|
818
|
+
# Distribute experts as evenly as possible to each rank.
|
|
819
|
+
base_experts = global_num_experts // ep_size
|
|
820
|
+
remainder = global_num_experts % ep_size
|
|
821
|
+
if ep_rank < remainder:
|
|
822
|
+
local_num_experts = base_experts + 1
|
|
823
|
+
else:
|
|
824
|
+
local_num_experts = base_experts
|
|
825
|
+
|
|
826
|
+
# Create a tensor of size num_experts filled with -1
|
|
827
|
+
expert_map = torch.full((global_num_experts, ), -1, dtype=torch.int32)
|
|
828
|
+
# Create an expert map for the local experts
|
|
829
|
+
if expert_placement_strategy == "linear":
|
|
830
|
+
start_idx = ep_rank * base_experts + min(ep_rank, remainder)
|
|
831
|
+
expert_map[start_idx:start_idx + local_num_experts] = torch.arange(
|
|
832
|
+
0, local_num_experts, dtype=torch.int32)
|
|
833
|
+
elif expert_placement_strategy == "round_robin":
|
|
834
|
+
local_log_experts = torch.arange(ep_rank,
|
|
835
|
+
global_num_experts,
|
|
836
|
+
ep_size,
|
|
837
|
+
dtype=torch.int32)
|
|
838
|
+
|
|
839
|
+
expert_map[local_log_experts] = torch.arange(0,
|
|
840
|
+
local_num_experts,
|
|
841
|
+
dtype=torch.int32)
|
|
842
|
+
else:
|
|
843
|
+
raise ValueError("Unsupported expert placement strategy "
|
|
844
|
+
f"'{expert_placement_strategy}', expected one of "
|
|
845
|
+
f"{get_args(ExpertPlacementStrategy)}")
|
|
846
|
+
return (local_num_experts, expert_map)
|
|
847
|
+
|
|
848
|
+
|
|
849
|
+
def get_compressed_expert_map(expert_map: torch.Tensor) -> str:
|
|
850
|
+
"""
|
|
851
|
+
Compresses the expert map by removing any -1 entries.
|
|
852
|
+
|
|
853
|
+
Args:
|
|
854
|
+
expert_map (torch.Tensor): A tensor of shape (global_num_experts,)
|
|
855
|
+
mapping from global to local index. Contains -1 for experts not
|
|
856
|
+
assigned to the current rank.
|
|
857
|
+
|
|
858
|
+
Returns:
|
|
859
|
+
str: A string mapping from local to global index.
|
|
860
|
+
Using str to support hashing for logging once only.
|
|
861
|
+
"""
|
|
862
|
+
global_indices = torch.where(expert_map != -1)[0]
|
|
863
|
+
local_indices = expert_map[global_indices]
|
|
864
|
+
return ", ".join(
|
|
865
|
+
f"{local_index.item()}->{global_index.item()}"
|
|
866
|
+
for local_index, global_index in zip(local_indices, global_indices))
|
|
867
|
+
|
|
868
|
+
|
|
869
|
+
def maybe_roundup_hidden_size(
|
|
870
|
+
hidden_size: int, act_dtype: torch.dtype,
|
|
871
|
+
quant_config: Optional[QuantizationConfig],
|
|
872
|
+
moe_parallel_config: FusedMoEParallelConfig) -> int:
|
|
873
|
+
"""
|
|
874
|
+
Given layer hidden size and MoE configurations, round up hidden_size
|
|
875
|
+
if necessary.
|
|
876
|
+
|
|
877
|
+
Args:
|
|
878
|
+
hidden_size: Layer hidden-size
|
|
879
|
+
act_dtype: Data type of the layer activations.
|
|
880
|
+
quant_config: Fused MoE quantization configuration.
|
|
881
|
+
moe_parallel_config: Fused MoE parallelization strategy configuration.
|
|
882
|
+
|
|
883
|
+
Return:
|
|
884
|
+
Rounded up hidden_size if rounding up is required based on the configs.
|
|
885
|
+
Original hidden size otherwise.
|
|
886
|
+
"""
|
|
887
|
+
|
|
888
|
+
if (moe_parallel_config.use_deepep_ht_kernels):
|
|
889
|
+
hidden_size = (
|
|
890
|
+
DeepEPHTPrepareAndFinalize.maybe_roundup_layer_hidden_size(
|
|
891
|
+
hidden_size, act_dtype))
|
|
892
|
+
|
|
893
|
+
# we are padding globally so EP buffer allocation works
|
|
894
|
+
if quant_config and quant_config.get_name() == "mxfp4":
|
|
895
|
+
|
|
896
|
+
from vllm.model_executor.layers.quantization.mxfp4 import (
|
|
897
|
+
Mxfp4Backend, get_mxfp4_backend)
|
|
898
|
+
current_mxfp4_backend = get_mxfp4_backend()
|
|
899
|
+
if (current_mxfp4_backend == Mxfp4Backend.SM90_FI_MXFP4_BF16
|
|
900
|
+
or current_mxfp4_backend
|
|
901
|
+
== Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS):
|
|
902
|
+
hidden_size = round_up(hidden_size, 128)
|
|
903
|
+
elif (current_platform.is_rocm() or current_mxfp4_backend
|
|
904
|
+
== Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM
|
|
905
|
+
or current_mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_BF16):
|
|
906
|
+
hidden_size = round_up(hidden_size, 256)
|
|
907
|
+
|
|
908
|
+
return hidden_size
|
|
909
|
+
|
|
910
|
+
|
|
911
|
+
@CustomOp.register("fused_moe")
|
|
912
|
+
class FusedMoE(CustomOp):
|
|
913
|
+
"""FusedMoE layer for MoE models.
|
|
914
|
+
|
|
915
|
+
This layer contains both MergedColumnParallel weights (gate_up_proj /
|
|
916
|
+
w13) and RowParallelLinear weights (down_proj/ w2).
|
|
917
|
+
|
|
918
|
+
Note: Mixtral uses w1, w2, and w3 for gate, up, and down_proj. We
|
|
919
|
+
copy that naming convention here and handle any remapping in the
|
|
920
|
+
load_weights function in each model implementation.
|
|
921
|
+
|
|
922
|
+
Args:
|
|
923
|
+
num_experts: Number of experts in the model
|
|
924
|
+
top_k: Number of experts selected for each token
|
|
925
|
+
hidden_size: Input hidden state size of the transformer
|
|
926
|
+
intermediate_size: Intermediate size of the experts
|
|
927
|
+
params_dtype: Data type for the parameters.
|
|
928
|
+
reduce_results: Whether to all all_reduce on the output of the layer
|
|
929
|
+
renormalize: Whether to renormalize the logits in the fused_moe kernel
|
|
930
|
+
quant_config: Quantization configure.
|
|
931
|
+
enable_eplb: Whether to enable expert parallelism load balancer.
|
|
932
|
+
"""
|
|
933
|
+
|
|
934
|
+
def __init__(
|
|
935
|
+
self,
|
|
936
|
+
num_experts: int, # Global number of experts
|
|
937
|
+
top_k: int,
|
|
938
|
+
hidden_size: int,
|
|
939
|
+
intermediate_size: int,
|
|
940
|
+
params_dtype: Optional[torch.dtype] = None,
|
|
941
|
+
reduce_results: bool = False,
|
|
942
|
+
renormalize: bool = True,
|
|
943
|
+
use_grouped_topk: bool = False,
|
|
944
|
+
num_expert_group: Optional[int] = None,
|
|
945
|
+
topk_group: Optional[int] = None,
|
|
946
|
+
quant_config: Optional[QuantizationConfig] = None,
|
|
947
|
+
tp_size: Optional[int] = None,
|
|
948
|
+
ep_size: Optional[int] = None,
|
|
949
|
+
dp_size: Optional[int] = None,
|
|
950
|
+
prefix: str = "",
|
|
951
|
+
custom_routing_function: Optional[Callable] = None,
|
|
952
|
+
scoring_func: str = "softmax",
|
|
953
|
+
routed_scaling_factor: float = 1.0,
|
|
954
|
+
e_score_correction_bias: Optional[torch.Tensor] = None,
|
|
955
|
+
apply_router_weight_on_input: bool = False,
|
|
956
|
+
activation: str = "silu",
|
|
957
|
+
enable_eplb: bool = False,
|
|
958
|
+
num_redundant_experts: int = 0,
|
|
959
|
+
has_bias: bool = False,
|
|
960
|
+
is_sequence_parallel=False,
|
|
961
|
+
zero_expert_num: Optional[int] = 0,
|
|
962
|
+
zero_expert_type: Optional[str] = None,
|
|
963
|
+
):
|
|
964
|
+
super().__init__()
|
|
965
|
+
if params_dtype is None:
|
|
966
|
+
params_dtype = torch.get_default_dtype()
|
|
967
|
+
self.params_dtype = params_dtype
|
|
968
|
+
|
|
969
|
+
vllm_config = get_current_vllm_config()
|
|
970
|
+
|
|
971
|
+
# FIXME (varun): We should have a better way of inferring the activation
|
|
972
|
+
# datatype. This works for now as the tensor datatype entering the MoE
|
|
973
|
+
# operation is typically unquantized (i.e. float16/bfloat16).
|
|
974
|
+
if vllm_config.model_config is not None:
|
|
975
|
+
moe_in_dtype = vllm_config.model_config.dtype
|
|
976
|
+
else:
|
|
977
|
+
# TODO (bnell): This is a hack to get test_mixtral_moe to work
|
|
978
|
+
# since model_config is not set in the pytest test.
|
|
979
|
+
moe_in_dtype = params_dtype
|
|
980
|
+
|
|
981
|
+
tp_size_ = (tp_size if tp_size is not None else
|
|
982
|
+
get_tensor_model_parallel_world_size())
|
|
983
|
+
dp_size_ = (dp_size
|
|
984
|
+
if dp_size is not None else get_dp_group().world_size)
|
|
985
|
+
|
|
986
|
+
self.is_sequence_parallel = is_sequence_parallel
|
|
987
|
+
self.sp_size = tp_size_ if is_sequence_parallel else 1
|
|
988
|
+
|
|
989
|
+
self.moe_parallel_config: FusedMoEParallelConfig = (
|
|
990
|
+
FusedMoEParallelConfig.make(
|
|
991
|
+
tp_size_=tp_size_,
|
|
992
|
+
dp_size_=dp_size_,
|
|
993
|
+
vllm_parallel_config=vllm_config.parallel_config))
|
|
994
|
+
|
|
995
|
+
self.global_num_experts = num_experts + num_redundant_experts
|
|
996
|
+
self.zero_expert_num = zero_expert_num
|
|
997
|
+
self.zero_expert_type = zero_expert_type
|
|
998
|
+
|
|
999
|
+
# Round up hidden size if needed.
|
|
1000
|
+
hidden_size = maybe_roundup_hidden_size(hidden_size, moe_in_dtype,
|
|
1001
|
+
quant_config,
|
|
1002
|
+
self.moe_parallel_config)
|
|
1003
|
+
|
|
1004
|
+
# For smuggling this layer into the fused moe custom op
|
|
1005
|
+
compilation_config = vllm_config.compilation_config
|
|
1006
|
+
if prefix in compilation_config.static_forward_context:
|
|
1007
|
+
raise ValueError("Duplicate layer name: {}".format(prefix))
|
|
1008
|
+
compilation_config.static_forward_context[prefix] = self
|
|
1009
|
+
self.layer_name = prefix
|
|
1010
|
+
|
|
1011
|
+
self.enable_eplb = enable_eplb
|
|
1012
|
+
self.expert_load_view: Optional[torch.Tensor] = None
|
|
1013
|
+
self.logical_to_physical_map: Optional[torch.Tensor] = None
|
|
1014
|
+
self.logical_replica_count: Optional[torch.Tensor] = None
|
|
1015
|
+
|
|
1016
|
+
# Determine expert maps
|
|
1017
|
+
if self.use_ep:
|
|
1018
|
+
if self.enable_eplb:
|
|
1019
|
+
assert self.global_num_experts % self.ep_size == 0, \
|
|
1020
|
+
"EPLB currently only supports even distribution of " \
|
|
1021
|
+
"experts across ranks."
|
|
1022
|
+
else:
|
|
1023
|
+
assert num_redundant_experts == 0, \
|
|
1024
|
+
"Redundant experts are only supported with EPLB."
|
|
1025
|
+
|
|
1026
|
+
expert_placement_strategy = (
|
|
1027
|
+
vllm_config.parallel_config.expert_placement_strategy)
|
|
1028
|
+
if expert_placement_strategy == "round_robin":
|
|
1029
|
+
# TODO(Bruce): will support round robin expert placement with
|
|
1030
|
+
# EPLB enabled in the future.
|
|
1031
|
+
round_robin_supported = ((num_expert_group is not None
|
|
1032
|
+
and num_expert_group > 1)
|
|
1033
|
+
and num_redundant_experts == 0
|
|
1034
|
+
and not self.enable_eplb)
|
|
1035
|
+
|
|
1036
|
+
if not round_robin_supported:
|
|
1037
|
+
logger.warning(
|
|
1038
|
+
"Round-robin expert placement is only supported for "
|
|
1039
|
+
"models with multiple expert groups and no redundant "
|
|
1040
|
+
"experts. Falling back to linear expert placement.")
|
|
1041
|
+
expert_placement_strategy = "linear"
|
|
1042
|
+
|
|
1043
|
+
self.expert_map: Optional[torch.Tensor]
|
|
1044
|
+
local_num_experts, expert_map = determine_expert_map(
|
|
1045
|
+
ep_size=self.ep_size,
|
|
1046
|
+
ep_rank=self.ep_rank,
|
|
1047
|
+
global_num_experts=self.global_num_experts,
|
|
1048
|
+
expert_placement_strategy=expert_placement_strategy,
|
|
1049
|
+
)
|
|
1050
|
+
self.local_num_experts = local_num_experts
|
|
1051
|
+
self.register_buffer("expert_map", expert_map)
|
|
1052
|
+
logger.info_once(
|
|
1053
|
+
"[EP Rank %s/%s] Expert parallelism is enabled. Expert "
|
|
1054
|
+
"placement strategy: %s. Local/global"
|
|
1055
|
+
" number of experts: %s/%s. Experts local to global index map:"
|
|
1056
|
+
" %s.", self.ep_rank, self.ep_size, expert_placement_strategy,
|
|
1057
|
+
self.local_num_experts, self.global_num_experts,
|
|
1058
|
+
get_compressed_expert_map(self.expert_map))
|
|
1059
|
+
else:
|
|
1060
|
+
self.local_num_experts, self.expert_map = (self.global_num_experts,
|
|
1061
|
+
None)
|
|
1062
|
+
|
|
1063
|
+
self.top_k = top_k
|
|
1064
|
+
|
|
1065
|
+
assert intermediate_size % self.tp_size == 0
|
|
1066
|
+
self.hidden_size = hidden_size
|
|
1067
|
+
self.intermediate_size_per_partition = intermediate_size // self.tp_size
|
|
1068
|
+
self.reduce_results = reduce_results
|
|
1069
|
+
self.renormalize = renormalize
|
|
1070
|
+
self.use_grouped_topk = use_grouped_topk
|
|
1071
|
+
if self.use_grouped_topk:
|
|
1072
|
+
assert num_expert_group is not None and topk_group is not None
|
|
1073
|
+
self.num_expert_group = num_expert_group
|
|
1074
|
+
self.topk_group = topk_group
|
|
1075
|
+
self.custom_routing_function = custom_routing_function
|
|
1076
|
+
self.scoring_func = scoring_func
|
|
1077
|
+
self.routed_scaling_factor = routed_scaling_factor
|
|
1078
|
+
self.e_score_correction_bias = e_score_correction_bias
|
|
1079
|
+
self.apply_router_weight_on_input = apply_router_weight_on_input
|
|
1080
|
+
self.activation = activation
|
|
1081
|
+
|
|
1082
|
+
if self.scoring_func != "softmax" and not self.use_grouped_topk:
|
|
1083
|
+
raise ValueError("Only softmax scoring function is supported for "
|
|
1084
|
+
"non-grouped topk.")
|
|
1085
|
+
|
|
1086
|
+
moe = FusedMoEConfig(
|
|
1087
|
+
num_experts=self.global_num_experts,
|
|
1088
|
+
experts_per_token=top_k,
|
|
1089
|
+
hidden_dim=hidden_size,
|
|
1090
|
+
num_local_experts=self.local_num_experts,
|
|
1091
|
+
moe_parallel_config=self.moe_parallel_config,
|
|
1092
|
+
in_dtype=moe_in_dtype,
|
|
1093
|
+
max_num_tokens=envs.VLLM_MOE_DP_CHUNK_SIZE,
|
|
1094
|
+
has_bias=has_bias,
|
|
1095
|
+
)
|
|
1096
|
+
self.moe_config = moe
|
|
1097
|
+
self.moe_quant_config: Optional[FusedMoEQuantConfig] = None
|
|
1098
|
+
self.quant_config = quant_config
|
|
1099
|
+
|
|
1100
|
+
# Note: get_quant_method will look at the layer's local_num_experts
|
|
1101
|
+
# for heuristic purposes, so it must be initialized first.
|
|
1102
|
+
quant_method: Optional[QuantizeMethodBase] = None
|
|
1103
|
+
quant_method = (UnquantizedFusedMoEMethod(moe) if quant_config is None
|
|
1104
|
+
else quant_config.get_quant_method(self, prefix))
|
|
1105
|
+
|
|
1106
|
+
assert quant_method is not None
|
|
1107
|
+
assert isinstance(quant_method, FusedMoEMethodBase)
|
|
1108
|
+
self.quant_method = quant_method
|
|
1109
|
+
|
|
1110
|
+
if self.enable_eplb:
|
|
1111
|
+
from vllm.model_executor.layers.quantization.fp8 import (
|
|
1112
|
+
Fp8MoEMethod)
|
|
1113
|
+
if not isinstance(quant_method,
|
|
1114
|
+
(Fp8MoEMethod, UnquantizedFusedMoEMethod)):
|
|
1115
|
+
# TODO: Add support for additional quantization methods.
|
|
1116
|
+
# The implementation for other quantization methods does not
|
|
1117
|
+
# contain essential differences, but the current quant API
|
|
1118
|
+
# design causes duplicated work when extending to new
|
|
1119
|
+
# quantization methods, so I'm leaving it for now.
|
|
1120
|
+
# If you plan to add support for more quantization methods,
|
|
1121
|
+
# please refer to the implementation in `Fp8MoEMethod`.
|
|
1122
|
+
raise NotImplementedError("EPLB is only supported for FP8 "
|
|
1123
|
+
"quantization for now.")
|
|
1124
|
+
|
|
1125
|
+
moe_quant_params = {
|
|
1126
|
+
"num_experts": self.local_num_experts,
|
|
1127
|
+
"hidden_size": hidden_size,
|
|
1128
|
+
"intermediate_size_per_partition":
|
|
1129
|
+
self.intermediate_size_per_partition,
|
|
1130
|
+
"params_dtype": params_dtype,
|
|
1131
|
+
"weight_loader": self.weight_loader,
|
|
1132
|
+
}
|
|
1133
|
+
# need full intermediate size pre-sharding for WNA16 act order
|
|
1134
|
+
if (self.quant_method.__class__.__name__
|
|
1135
|
+
in ("GPTQMarlinMoEMethod",
|
|
1136
|
+
"CompressedTensorsWNA16MarlinMoEMethod",
|
|
1137
|
+
"CompressedTensorsWNA16MoEMethod")):
|
|
1138
|
+
moe_quant_params["intermediate_size_full"] = intermediate_size
|
|
1139
|
+
|
|
1140
|
+
self.quant_method.create_weights(layer=self, **moe_quant_params)
|
|
1141
|
+
|
|
1142
|
+
# Chunked all2all staging tensor
|
|
1143
|
+
self.batched_hidden_states: Optional[torch.Tensor] = None
|
|
1144
|
+
self.batched_router_logits: Optional[torch.Tensor] = None
|
|
1145
|
+
|
|
1146
|
+
# TODO(bnell): flashinfer uses non-batched format.
|
|
1147
|
+
# Does it really need a batched buffer?
|
|
1148
|
+
if (self.moe_parallel_config.use_pplx_kernels
|
|
1149
|
+
or self.moe_parallel_config.use_deepep_ll_kernels
|
|
1150
|
+
or self.moe_config.use_flashinfer_cutlass_kernels):
|
|
1151
|
+
if vllm_config.parallel_config.enable_dbo:
|
|
1152
|
+
self.batched_hidden_states = torch.zeros(
|
|
1153
|
+
(2, moe.max_num_tokens, self.hidden_size),
|
|
1154
|
+
dtype=moe.in_dtype,
|
|
1155
|
+
device=torch.cuda.current_device())
|
|
1156
|
+
|
|
1157
|
+
# Note here we use `num_experts` which is logical expert count
|
|
1158
|
+
self.batched_router_logits = torch.zeros(
|
|
1159
|
+
(2, moe.max_num_tokens, num_experts),
|
|
1160
|
+
dtype=moe.in_dtype,
|
|
1161
|
+
device=torch.cuda.current_device())
|
|
1162
|
+
else:
|
|
1163
|
+
self.batched_hidden_states = torch.zeros(
|
|
1164
|
+
(moe.max_num_tokens, self.hidden_size),
|
|
1165
|
+
dtype=moe.in_dtype,
|
|
1166
|
+
device=torch.cuda.current_device())
|
|
1167
|
+
|
|
1168
|
+
# Note here we use `num_experts` which is logical expert count
|
|
1169
|
+
self.batched_router_logits = torch.zeros(
|
|
1170
|
+
(moe.max_num_tokens, num_experts),
|
|
1171
|
+
dtype=moe.in_dtype,
|
|
1172
|
+
device=torch.cuda.current_device())
|
|
1173
|
+
|
|
1174
|
+
@property
|
|
1175
|
+
def shared_experts(self) -> Optional[torch.nn.Module]:
|
|
1176
|
+
return None
|
|
1177
|
+
|
|
1178
|
+
@property
|
|
1179
|
+
def tp_size(self):
|
|
1180
|
+
return self.moe_parallel_config.tp_size
|
|
1181
|
+
|
|
1182
|
+
@property
|
|
1183
|
+
def dp_size(self):
|
|
1184
|
+
return self.moe_parallel_config.dp_size
|
|
1185
|
+
|
|
1186
|
+
@property
|
|
1187
|
+
def ep_size(self):
|
|
1188
|
+
return self.moe_parallel_config.ep_size
|
|
1189
|
+
|
|
1190
|
+
@property
|
|
1191
|
+
def tp_rank(self):
|
|
1192
|
+
return self.moe_parallel_config.tp_rank
|
|
1193
|
+
|
|
1194
|
+
@property
|
|
1195
|
+
def dp_rank(self):
|
|
1196
|
+
return self.moe_parallel_config.dp_rank
|
|
1197
|
+
|
|
1198
|
+
@property
|
|
1199
|
+
def ep_rank(self):
|
|
1200
|
+
return self.moe_parallel_config.ep_rank
|
|
1201
|
+
|
|
1202
|
+
@property
|
|
1203
|
+
def use_ep(self):
|
|
1204
|
+
return self.moe_parallel_config.use_ep
|
|
1205
|
+
|
|
1206
|
+
@property
|
|
1207
|
+
def use_pplx_kernels(self):
|
|
1208
|
+
return self.moe_parallel_config.use_pplx_kernels
|
|
1209
|
+
|
|
1210
|
+
@property
|
|
1211
|
+
def use_deepep_ht_kernels(self):
|
|
1212
|
+
return self.moe_parallel_config.use_deepep_ht_kernels
|
|
1213
|
+
|
|
1214
|
+
@property
|
|
1215
|
+
def use_deepep_ll_kernels(self):
|
|
1216
|
+
return self.moe_parallel_config.use_deepep_ll_kernels
|
|
1217
|
+
|
|
1218
|
+
@property
|
|
1219
|
+
def use_flashinfer_cutlass_kernels(self):
|
|
1220
|
+
return (self.moe_quant_config is not None
|
|
1221
|
+
and self.moe_quant_config.quant_dtype == "nvfp4"
|
|
1222
|
+
and self.moe_config.use_flashinfer_cutlass_kernels)
|
|
1223
|
+
|
|
1224
|
+
def update_expert_map(self):
|
|
1225
|
+
# ep_size and ep_rank should already be updated
|
|
1226
|
+
assert self.expert_map is not None
|
|
1227
|
+
with self.expert_map.device:
|
|
1228
|
+
local_num_experts, expert_map = determine_expert_map(
|
|
1229
|
+
ep_size=self.ep_size,
|
|
1230
|
+
ep_rank=self.ep_rank,
|
|
1231
|
+
global_num_experts=self.global_num_experts)
|
|
1232
|
+
self.local_num_experts = local_num_experts
|
|
1233
|
+
self.register_buffer("expert_map", expert_map)
|
|
1234
|
+
|
|
1235
|
+
def _load_per_tensor_weight_scale(self, shard_id: str,
|
|
1236
|
+
param: torch.nn.Parameter,
|
|
1237
|
+
loaded_weight: torch.Tensor,
|
|
1238
|
+
expert_id: int):
|
|
1239
|
+
param_data = param.data
|
|
1240
|
+
# for per tensor weight quantization
|
|
1241
|
+
if shard_id in ("w1", "w3"):
|
|
1242
|
+
# We have to keep the weight scales of w1 and w3 because
|
|
1243
|
+
# we need to re-quantize w1/w3 weights after weight loading.
|
|
1244
|
+
idx = 0 if shard_id == "w1" else 1
|
|
1245
|
+
param_data[expert_id][idx] = loaded_weight
|
|
1246
|
+
# If we are in the row parallel case (down_proj)
|
|
1247
|
+
elif shard_id == "w2":
|
|
1248
|
+
param_data[expert_id] = loaded_weight
|
|
1249
|
+
|
|
1250
|
+
def _load_combined_w13_weight_scale(self, shard_dim: int,
|
|
1251
|
+
loaded_weight: torch.Tensor,
|
|
1252
|
+
param: torch.Tensor, tp_rank: int):
|
|
1253
|
+
"""
|
|
1254
|
+
Load w13 weight scales assuming that w1 weight scales and w3 weight
|
|
1255
|
+
scales are stored in the same loaded_weight tensor.
|
|
1256
|
+
"""
|
|
1257
|
+
shard_size = param.shape[shard_dim]
|
|
1258
|
+
loaded_weight = loaded_weight.narrow(shard_dim, shard_size * tp_rank,
|
|
1259
|
+
shard_size)
|
|
1260
|
+
param.copy_(loaded_weight)
|
|
1261
|
+
|
|
1262
|
+
def _load_model_weight_or_group_weight_scale(self,
|
|
1263
|
+
shard_dim: int,
|
|
1264
|
+
expert_data: torch.Tensor,
|
|
1265
|
+
shard_id: str,
|
|
1266
|
+
loaded_weight: torch.Tensor,
|
|
1267
|
+
tp_rank: int,
|
|
1268
|
+
load_full_w2: bool = False):
|
|
1269
|
+
"""
|
|
1270
|
+
Load grouped weight scales for group quantization or model weights
|
|
1271
|
+
:param shard_dim: dimension to shard
|
|
1272
|
+
:param expert_data: parameter for a particular expert
|
|
1273
|
+
:param shard_id: either w1, w2, or w3
|
|
1274
|
+
:param loaded_weight: checkpoint weight to load into the param
|
|
1275
|
+
:param tp_rank: tensor parallel rank
|
|
1276
|
+
:param load_full_w2: whether or not the w2 loaded should be sharded.
|
|
1277
|
+
"""
|
|
1278
|
+
if shard_id == "w2":
|
|
1279
|
+
# In the case where we have actorder/g_idx, we do not partition the
|
|
1280
|
+
# w2 scales, as indicated by `load_full` argument, for all tp cases
|
|
1281
|
+
self._load_w2(shard_dim=shard_dim,
|
|
1282
|
+
loaded_weight=loaded_weight,
|
|
1283
|
+
expert_data=expert_data,
|
|
1284
|
+
tp_rank=tp_rank,
|
|
1285
|
+
load_full=load_full_w2)
|
|
1286
|
+
elif shard_id in ("w1", "w3"):
|
|
1287
|
+
self._load_w13(shard_id=shard_id,
|
|
1288
|
+
shard_dim=shard_dim,
|
|
1289
|
+
loaded_weight=loaded_weight,
|
|
1290
|
+
expert_data=expert_data,
|
|
1291
|
+
tp_rank=tp_rank)
|
|
1292
|
+
|
|
1293
|
+
def _load_per_channel_weight_scale(self, expert_data: torch.Tensor,
|
|
1294
|
+
shard_dim: int, shard_id: str,
|
|
1295
|
+
loaded_weight: torch.Tensor,
|
|
1296
|
+
tp_rank: int):
|
|
1297
|
+
# for per channel weight quantization
|
|
1298
|
+
if shard_id == "w2":
|
|
1299
|
+
expert_data.copy_(loaded_weight)
|
|
1300
|
+
elif shard_id in ("w1", "w3"):
|
|
1301
|
+
self._load_w13(shard_id=shard_id,
|
|
1302
|
+
shard_dim=shard_dim,
|
|
1303
|
+
loaded_weight=loaded_weight,
|
|
1304
|
+
expert_data=expert_data,
|
|
1305
|
+
tp_rank=tp_rank)
|
|
1306
|
+
|
|
1307
|
+
def _load_w13(self,
|
|
1308
|
+
expert_data: torch.Tensor,
|
|
1309
|
+
shard_dim: int,
|
|
1310
|
+
shard_id: str,
|
|
1311
|
+
loaded_weight: torch.Tensor,
|
|
1312
|
+
tp_rank: int,
|
|
1313
|
+
load_full: bool = False):
|
|
1314
|
+
|
|
1315
|
+
# Index the loaded weight for tp sharding.
|
|
1316
|
+
# gate_up_proj: "MergedColumnParallel", so tp sharding on output_dim
|
|
1317
|
+
shard_size = expert_data.shape[shard_dim] // 2
|
|
1318
|
+
if not load_full:
|
|
1319
|
+
loaded_weight = loaded_weight.narrow(shard_dim,
|
|
1320
|
+
shard_size * tp_rank,
|
|
1321
|
+
shard_size)
|
|
1322
|
+
# Narrow parameter and load.
|
|
1323
|
+
# w1, gate_proj: Load into first logical weight of w13.
|
|
1324
|
+
if shard_id == "w1":
|
|
1325
|
+
expert_data = expert_data.narrow(shard_dim, 0, shard_size)
|
|
1326
|
+
# w3, up_proj: Load into second logical weight of w13.
|
|
1327
|
+
else:
|
|
1328
|
+
assert shard_id == "w3"
|
|
1329
|
+
expert_data = expert_data.narrow(shard_dim, shard_size, shard_size)
|
|
1330
|
+
expert_data.copy_(loaded_weight)
|
|
1331
|
+
|
|
1332
|
+
def _load_w2(self,
|
|
1333
|
+
expert_data: torch.Tensor,
|
|
1334
|
+
shard_dim: int,
|
|
1335
|
+
loaded_weight: torch.Tensor,
|
|
1336
|
+
tp_rank: int,
|
|
1337
|
+
load_full: bool = False):
|
|
1338
|
+
|
|
1339
|
+
# Index the loaded weight for tp sharding.
|
|
1340
|
+
# down_proj: "RowParallel" so tp sharding on input_dim
|
|
1341
|
+
# Narrow parameter and load.
|
|
1342
|
+
shard_size = expert_data.shape[shard_dim]
|
|
1343
|
+
if not load_full:
|
|
1344
|
+
loaded_weight = loaded_weight.narrow(shard_dim,
|
|
1345
|
+
shard_size * tp_rank,
|
|
1346
|
+
shard_size)
|
|
1347
|
+
# w2, down_proj: Load into only logical weight of w2.
|
|
1348
|
+
expert_data.copy_(loaded_weight)
|
|
1349
|
+
|
|
1350
|
+
def _load_single_value(self, param: torch.nn.Parameter,
|
|
1351
|
+
loaded_weight: torch.Tensor, expert_id: int):
|
|
1352
|
+
param_data = param.data
|
|
1353
|
+
|
|
1354
|
+
# Input scales can be loaded directly and should be equal.
|
|
1355
|
+
param_data[expert_id] = loaded_weight
|
|
1356
|
+
|
|
1357
|
+
def _load_g_idx(self, shard_id: str, expert_data: torch.Tensor,
|
|
1358
|
+
shard_dim: int, loaded_weight: torch.Tensor, tp_rank: int):
|
|
1359
|
+
|
|
1360
|
+
if shard_id == "w2":
|
|
1361
|
+
self._load_w2(shard_dim=shard_dim,
|
|
1362
|
+
loaded_weight=loaded_weight,
|
|
1363
|
+
expert_data=expert_data,
|
|
1364
|
+
tp_rank=tp_rank)
|
|
1365
|
+
else:
|
|
1366
|
+
assert shard_id in ("w1", "w3")
|
|
1367
|
+
expert_data.copy_(loaded_weight)
|
|
1368
|
+
|
|
1369
|
+
def _map_global_expert_id_to_local_expert_id(self, expert_id: int) -> int:
|
|
1370
|
+
if self.expert_map is None:
|
|
1371
|
+
return expert_id
|
|
1372
|
+
return self.expert_map[expert_id].item()
|
|
1373
|
+
|
|
1374
|
+
@overload
|
|
1375
|
+
def weight_loader(self, param: torch.nn.Parameter,
|
|
1376
|
+
loaded_weight: torch.Tensor, weight_name: str,
|
|
1377
|
+
shard_id: str, expert_id: int,
|
|
1378
|
+
return_success: Literal[False]) -> None:
|
|
1379
|
+
...
|
|
1380
|
+
|
|
1381
|
+
@overload
|
|
1382
|
+
def weight_loader(self, param: torch.nn.Parameter,
|
|
1383
|
+
loaded_weight: torch.Tensor, weight_name: str,
|
|
1384
|
+
shard_id: str, expert_id: int,
|
|
1385
|
+
return_success: Literal[True]) -> bool:
|
|
1386
|
+
...
|
|
1387
|
+
|
|
1388
|
+
def weight_loader(self,
|
|
1389
|
+
param: torch.nn.Parameter,
|
|
1390
|
+
loaded_weight: torch.Tensor,
|
|
1391
|
+
weight_name: str,
|
|
1392
|
+
shard_id: str,
|
|
1393
|
+
expert_id: int,
|
|
1394
|
+
return_success: bool = False) -> Optional[bool]:
|
|
1395
|
+
|
|
1396
|
+
if self.quant_config and self.quant_config.get_name() == "mxfp4":
|
|
1397
|
+
# (FIXME) for gpt-oss all experts are combined
|
|
1398
|
+
if "bias" in weight_name:
|
|
1399
|
+
dim1 = loaded_weight.shape[1]
|
|
1400
|
+
param.data[:, :dim1].copy_(loaded_weight)
|
|
1401
|
+
else:
|
|
1402
|
+
dim1 = loaded_weight.shape[1]
|
|
1403
|
+
dim2 = loaded_weight.shape[2]
|
|
1404
|
+
param.data[:, :dim1, :dim2].copy_(loaded_weight)
|
|
1405
|
+
return True if return_success else None
|
|
1406
|
+
|
|
1407
|
+
expert_id = self._map_global_expert_id_to_local_expert_id(expert_id)
|
|
1408
|
+
if expert_id == -1:
|
|
1409
|
+
# Failed to load this param since it's not local to this rank
|
|
1410
|
+
return False if return_success else None
|
|
1411
|
+
# Hereafter, `expert_id` is local physical id
|
|
1412
|
+
|
|
1413
|
+
quant_method_name = self.quant_method.__class__.__name__
|
|
1414
|
+
# compressed-tensors checkpoints with packed weights are stored flipped
|
|
1415
|
+
# TODO (mgoin): check self.quant_method.quant_config.quant_format
|
|
1416
|
+
# against known CompressionFormat enum values that have this quality
|
|
1417
|
+
if self.quant_method.__class__.__name__ in (
|
|
1418
|
+
"CompressedTensorsWNA16MarlinMoEMethod",
|
|
1419
|
+
"CompressedTensorsWNA16MoEMethod"):
|
|
1420
|
+
loaded_weight = loaded_weight.t().contiguous()
|
|
1421
|
+
|
|
1422
|
+
if shard_id not in ("w1", "w2", "w3"):
|
|
1423
|
+
raise ValueError(f"shard_id must be ['w1','w2','w3'] but "
|
|
1424
|
+
f"got {shard_id}.")
|
|
1425
|
+
|
|
1426
|
+
# Fetch the dim to shard the parameter/loaded weight
|
|
1427
|
+
# based on the shard id. This will be whatever
|
|
1428
|
+
# dimension intermediate_size_per_partition is used.
|
|
1429
|
+
SHARD_ID_TO_SHARDED_DIM = {"w1": 0, "w2": 1, "w3": 0}
|
|
1430
|
+
|
|
1431
|
+
is_gguf_weight = getattr(param, "is_gguf_weight", False)
|
|
1432
|
+
is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False)
|
|
1433
|
+
if is_gguf_weight_type:
|
|
1434
|
+
param.weight_type = loaded_weight.item()
|
|
1435
|
+
param.data.copy_(loaded_weight)
|
|
1436
|
+
return True if return_success else None
|
|
1437
|
+
|
|
1438
|
+
# Case for BitsAndBytes
|
|
1439
|
+
use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit", False)
|
|
1440
|
+
if use_bitsandbytes_4bit:
|
|
1441
|
+
shard_dim = 0
|
|
1442
|
+
|
|
1443
|
+
expert_data = param.data[expert_id]
|
|
1444
|
+
if shard_id == "w2":
|
|
1445
|
+
expert_data.copy_(loaded_weight)
|
|
1446
|
+
elif shard_id in ("w1", "w3"):
|
|
1447
|
+
# BNB inflight quantization has already sharded the weights
|
|
1448
|
+
full_load = True
|
|
1449
|
+
self._load_w13(
|
|
1450
|
+
shard_id=shard_id,
|
|
1451
|
+
shard_dim=shard_dim,
|
|
1452
|
+
loaded_weight=loaded_weight,
|
|
1453
|
+
expert_data=expert_data,
|
|
1454
|
+
tp_rank=self.tp_rank,
|
|
1455
|
+
load_full=full_load,
|
|
1456
|
+
)
|
|
1457
|
+
return True if return_success else None
|
|
1458
|
+
|
|
1459
|
+
# is_transposed: if the dim to shard the weight
|
|
1460
|
+
# should be flipped. Required by GPTQ, compressed-tensors
|
|
1461
|
+
# should be whatever dimension intermediate_size_per_partition is
|
|
1462
|
+
is_transposed = getattr(param, "is_transposed", False)
|
|
1463
|
+
shard_dim = SHARD_ID_TO_SHARDED_DIM[shard_id]
|
|
1464
|
+
if is_transposed:
|
|
1465
|
+
shard_dim = int(not shard_dim)
|
|
1466
|
+
|
|
1467
|
+
full_load = len(loaded_weight.shape) == 3
|
|
1468
|
+
if full_load:
|
|
1469
|
+
shard_dim += 1
|
|
1470
|
+
|
|
1471
|
+
# Materialize GGUF UninitializedParameter
|
|
1472
|
+
if is_gguf_weight and isinstance(param, UninitializedParameter):
|
|
1473
|
+
final_shape = list(loaded_weight.shape)
|
|
1474
|
+
if shard_id in ["w1", "w3"]:
|
|
1475
|
+
final_shape[1] *= 2
|
|
1476
|
+
final_shape[shard_dim] = final_shape[shard_dim] // self.tp_size
|
|
1477
|
+
param.materialize(final_shape, dtype=loaded_weight.dtype)
|
|
1478
|
+
|
|
1479
|
+
expert_data = param.data if full_load else param.data[expert_id]
|
|
1480
|
+
|
|
1481
|
+
# Case input scale: input_scale loading is only supported for fp8
|
|
1482
|
+
if "input_scale" in weight_name:
|
|
1483
|
+
# this is needed for compressed-tensors only
|
|
1484
|
+
loaded_weight = loaded_weight.to(param.data.device)
|
|
1485
|
+
|
|
1486
|
+
if ("compressed" in quant_method_name.lower()
|
|
1487
|
+
and param.data[expert_id] != 1
|
|
1488
|
+
and (param.data[expert_id] - loaded_weight).abs() > 1e-5):
|
|
1489
|
+
raise ValueError(
|
|
1490
|
+
"input_scales of w1 and w3 of a layer "
|
|
1491
|
+
f"must be equal. But got {param.data[expert_id]} "
|
|
1492
|
+
f"vs. {loaded_weight}")
|
|
1493
|
+
|
|
1494
|
+
self._load_single_value(param=param,
|
|
1495
|
+
loaded_weight=loaded_weight,
|
|
1496
|
+
expert_id=expert_id)
|
|
1497
|
+
return True if return_success else None
|
|
1498
|
+
|
|
1499
|
+
# Case g_idx
|
|
1500
|
+
if "g_idx" in weight_name:
|
|
1501
|
+
self._load_g_idx(shard_dim=0,
|
|
1502
|
+
shard_id=shard_id,
|
|
1503
|
+
loaded_weight=loaded_weight,
|
|
1504
|
+
expert_data=expert_data,
|
|
1505
|
+
tp_rank=self.tp_rank)
|
|
1506
|
+
return True if return_success else None
|
|
1507
|
+
|
|
1508
|
+
# TODO @dsikka: ModelOpt should follow the proper MoE loading pattern
|
|
1509
|
+
if "ModelOpt" in quant_method_name:
|
|
1510
|
+
# Determine per-tensor weight scale patterns based on variant
|
|
1511
|
+
# Use the dedicated method instead of brittle string matching
|
|
1512
|
+
uses_weight_scale_2 = self.quant_method.uses_weight_scale_2_pattern(
|
|
1513
|
+
)
|
|
1514
|
+
|
|
1515
|
+
# Call _load_per_tensor_weight_scale() to load per-tensor (scalar)
|
|
1516
|
+
# weights scales.
|
|
1517
|
+
# Input scales are always per-tensor.
|
|
1518
|
+
# Weight scales: FP4 uses "weight_scale_2" and FP8 uses
|
|
1519
|
+
# "weight_scale" for per-tensor scales.
|
|
1520
|
+
is_per_tensor = ("weight_scale_2" in weight_name
|
|
1521
|
+
if uses_weight_scale_2 else "weight_scale"
|
|
1522
|
+
in weight_name) or "input_scale" in weight_name
|
|
1523
|
+
if is_per_tensor:
|
|
1524
|
+
self._load_per_tensor_weight_scale(
|
|
1525
|
+
shard_id=shard_id,
|
|
1526
|
+
param=param,
|
|
1527
|
+
loaded_weight=loaded_weight,
|
|
1528
|
+
expert_id=expert_id,
|
|
1529
|
+
)
|
|
1530
|
+
return True if return_success else None
|
|
1531
|
+
|
|
1532
|
+
# If the weight is w13_weight_scale and w13_weight_scales are
|
|
1533
|
+
# combined into single loaded_weight, call
|
|
1534
|
+
# _load_combined_w13_weight_scale() to load it.
|
|
1535
|
+
# This is checked by comparing the hidden_out dims of the
|
|
1536
|
+
# loaded_weight and the param.
|
|
1537
|
+
if "w13_weight_scale" in weight_name:
|
|
1538
|
+
loaded_weight_hidden_out = loaded_weight.shape[-2]
|
|
1539
|
+
param_hidden_out = param.data.shape[-2] * self.tp_size
|
|
1540
|
+
if loaded_weight_hidden_out == param_hidden_out:
|
|
1541
|
+
self._load_combined_w13_weight_scale(
|
|
1542
|
+
shard_dim=shard_dim,
|
|
1543
|
+
loaded_weight=loaded_weight,
|
|
1544
|
+
param=param,
|
|
1545
|
+
tp_rank=self.tp_rank,
|
|
1546
|
+
)
|
|
1547
|
+
return True if return_success else None
|
|
1548
|
+
|
|
1549
|
+
# For other weights, call _load_model_weight_or_group_weight_scale()
|
|
1550
|
+
# to load it.
|
|
1551
|
+
if "weight" in weight_name:
|
|
1552
|
+
self._load_model_weight_or_group_weight_scale(
|
|
1553
|
+
shard_id=shard_id,
|
|
1554
|
+
shard_dim=shard_dim,
|
|
1555
|
+
loaded_weight=loaded_weight,
|
|
1556
|
+
expert_data=expert_data,
|
|
1557
|
+
tp_rank=self.tp_rank)
|
|
1558
|
+
return True if return_success else None
|
|
1559
|
+
|
|
1560
|
+
# Case weight scales, zero_points and offset, weight/input global scales
|
|
1561
|
+
if ("scale" in weight_name or "zero" in weight_name
|
|
1562
|
+
or "offset" in weight_name):
|
|
1563
|
+
# load the weight scales and zp based on the quantization scheme
|
|
1564
|
+
# supported weight scales/zp can be found in
|
|
1565
|
+
# FusedMoeWeightScaleSupported
|
|
1566
|
+
# TODO @dsikka: once hardened, refactor to use vLLM Parameters
|
|
1567
|
+
# specific to each case
|
|
1568
|
+
quant_method = getattr(param, "quant_method", None)
|
|
1569
|
+
if quant_method == FusedMoeWeightScaleSupported.CHANNEL.value:
|
|
1570
|
+
self._load_per_channel_weight_scale(
|
|
1571
|
+
shard_id=shard_id,
|
|
1572
|
+
shard_dim=shard_dim,
|
|
1573
|
+
loaded_weight=loaded_weight,
|
|
1574
|
+
expert_data=expert_data,
|
|
1575
|
+
tp_rank=self.tp_rank)
|
|
1576
|
+
elif quant_method in [
|
|
1577
|
+
FusedMoeWeightScaleSupported.GROUP.value,
|
|
1578
|
+
FusedMoeWeightScaleSupported.BLOCK.value,
|
|
1579
|
+
]:
|
|
1580
|
+
self._load_model_weight_or_group_weight_scale(
|
|
1581
|
+
shard_id=shard_id,
|
|
1582
|
+
shard_dim=shard_dim,
|
|
1583
|
+
loaded_weight=loaded_weight,
|
|
1584
|
+
expert_data=expert_data,
|
|
1585
|
+
tp_rank=self.tp_rank,
|
|
1586
|
+
load_full_w2=getattr(param, "load_full_w2", False))
|
|
1587
|
+
elif quant_method == FusedMoeWeightScaleSupported.TENSOR.value:
|
|
1588
|
+
self._load_per_tensor_weight_scale(shard_id=shard_id,
|
|
1589
|
+
param=param,
|
|
1590
|
+
loaded_weight=loaded_weight,
|
|
1591
|
+
expert_id=expert_id)
|
|
1592
|
+
else:
|
|
1593
|
+
WEIGHT_SCALE_SUPPORTED = [
|
|
1594
|
+
e.value for e in FusedMoeWeightScaleSupported
|
|
1595
|
+
]
|
|
1596
|
+
raise ValueError(
|
|
1597
|
+
f"quant method must be one of {WEIGHT_SCALE_SUPPORTED}")
|
|
1598
|
+
return True if return_success else None
|
|
1599
|
+
|
|
1600
|
+
# Case weight_shape
|
|
1601
|
+
if "weight_shape" in weight_name:
|
|
1602
|
+
# only required by compressed-tensors
|
|
1603
|
+
self._load_single_value(param=param,
|
|
1604
|
+
loaded_weight=loaded_weight,
|
|
1605
|
+
expert_id=expert_id)
|
|
1606
|
+
return True if return_success else None
|
|
1607
|
+
|
|
1608
|
+
# Case model weights
|
|
1609
|
+
if "weight" in weight_name:
|
|
1610
|
+
self._load_model_weight_or_group_weight_scale(
|
|
1611
|
+
shard_id=shard_id,
|
|
1612
|
+
shard_dim=shard_dim,
|
|
1613
|
+
loaded_weight=loaded_weight,
|
|
1614
|
+
expert_data=expert_data,
|
|
1615
|
+
tp_rank=self.tp_rank)
|
|
1616
|
+
return True if return_success else None
|
|
1617
|
+
|
|
1618
|
+
return False if return_success else None
|
|
1619
|
+
|
|
1620
|
+
def get_expert_weights(self) -> Iterable[torch.Tensor]:
|
|
1621
|
+
weights = list(self.named_parameters())
|
|
1622
|
+
assert all(weight.is_contiguous() for _, weight in weights)
|
|
1623
|
+
|
|
1624
|
+
# Filter out the non-expert weights.
|
|
1625
|
+
# `e_score_correction_bias` is a bias for each logical expert,
|
|
1626
|
+
# with shape (num_logical_experts,), not an expert weight.
|
|
1627
|
+
NON_EXPERT_WEIGHTS = {
|
|
1628
|
+
"e_score_correction_bias",
|
|
1629
|
+
}
|
|
1630
|
+
|
|
1631
|
+
return [
|
|
1632
|
+
weight.view(self.local_num_experts, -1) for name, weight in weights
|
|
1633
|
+
if name not in NON_EXPERT_WEIGHTS and weight.shape != torch.Size(
|
|
1634
|
+
[]) and not name.startswith("_shared_experts.")
|
|
1635
|
+
]
|
|
1636
|
+
|
|
1637
|
+
def set_eplb_state(
|
|
1638
|
+
self,
|
|
1639
|
+
moe_layer_idx: int,
|
|
1640
|
+
expert_load_view: torch.Tensor,
|
|
1641
|
+
logical_to_physical_map: torch.Tensor,
|
|
1642
|
+
logical_replica_count: torch.Tensor,
|
|
1643
|
+
) -> None:
|
|
1644
|
+
"""
|
|
1645
|
+
Register the EPLB state in this layer.
|
|
1646
|
+
|
|
1647
|
+
This is used later in forward pass, where we get the expert mapping
|
|
1648
|
+
and record the load metrics in `expert_load_view`.
|
|
1649
|
+
"""
|
|
1650
|
+
self.expert_load_view = expert_load_view[moe_layer_idx]
|
|
1651
|
+
self.logical_to_physical_map = logical_to_physical_map[moe_layer_idx]
|
|
1652
|
+
self.logical_replica_count = logical_replica_count[moe_layer_idx]
|
|
1653
|
+
|
|
1654
|
+
def ensure_moe_quant_config(self):
|
|
1655
|
+
if self.quant_method.moe_quant_config is None:
|
|
1656
|
+
self.quant_method.moe_quant_config = (
|
|
1657
|
+
self.quant_method.get_fused_moe_quant_config(self))
|
|
1658
|
+
|
|
1659
|
+
@staticmethod
|
|
1660
|
+
def select_experts(
|
|
1661
|
+
hidden_states: torch.Tensor,
|
|
1662
|
+
router_logits: torch.Tensor,
|
|
1663
|
+
top_k: int,
|
|
1664
|
+
use_grouped_topk: bool,
|
|
1665
|
+
renormalize: bool,
|
|
1666
|
+
topk_group: Optional[int] = None,
|
|
1667
|
+
num_expert_group: Optional[int] = None,
|
|
1668
|
+
custom_routing_function: Optional[Callable] = None,
|
|
1669
|
+
scoring_func: str = "softmax",
|
|
1670
|
+
routed_scaling_factor: float = 1.0,
|
|
1671
|
+
e_score_correction_bias: Optional[torch.Tensor] = None,
|
|
1672
|
+
indices_type: Optional[torch.dtype] = None,
|
|
1673
|
+
enable_eplb: bool = False,
|
|
1674
|
+
expert_map: Optional[torch.Tensor] = None,
|
|
1675
|
+
expert_load_view: Optional[torch.Tensor] = None,
|
|
1676
|
+
logical_to_physical_map: Optional[torch.Tensor] = None,
|
|
1677
|
+
logical_replica_count: Optional[torch.Tensor] = None,
|
|
1678
|
+
global_num_experts: Optional[int] = None,
|
|
1679
|
+
zero_expert_num: Optional[int] = None,
|
|
1680
|
+
zero_expert_type: Optional[str] = None,
|
|
1681
|
+
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
1682
|
+
"""
|
|
1683
|
+
Route the input hidden states to the top-k experts based on the
|
|
1684
|
+
router logits.
|
|
1685
|
+
|
|
1686
|
+
Returns:
|
|
1687
|
+
(topk_weights, topk_ids, zero_expert_result)
|
|
1688
|
+
(tuple[torch.Tensor, torch.Tensor, torch.Tensor]):
|
|
1689
|
+
The weights, expert ids, and zero expert computation result.
|
|
1690
|
+
|
|
1691
|
+
**Compatibility**: When EPLB is not enabled, the returned ids are
|
|
1692
|
+
equivalent to global logical ids, so should be compatible with
|
|
1693
|
+
plain MoE implementations without redundant experts.
|
|
1694
|
+
"""
|
|
1695
|
+
from vllm.model_executor.layers.fused_moe.fused_moe import (
|
|
1696
|
+
fused_topk, fused_topk_bias)
|
|
1697
|
+
|
|
1698
|
+
# Check if we should use a routing simulation strategy
|
|
1699
|
+
routing_strategy = envs.VLLM_MOE_ROUTING_SIMULATION_STRATEGY
|
|
1700
|
+
if routing_strategy != "":
|
|
1701
|
+
topk_weights, topk_ids = RoutingSimulator.simulate_routing(
|
|
1702
|
+
hidden_states=hidden_states,
|
|
1703
|
+
router_logits=router_logits,
|
|
1704
|
+
strategy_name=routing_strategy,
|
|
1705
|
+
top_k=top_k,
|
|
1706
|
+
indices_type=indices_type)
|
|
1707
|
+
|
|
1708
|
+
# DeepSeekv2 uses grouped_top_k
|
|
1709
|
+
if use_grouped_topk:
|
|
1710
|
+
assert topk_group is not None
|
|
1711
|
+
assert num_expert_group is not None
|
|
1712
|
+
topk_weights, topk_ids = grouped_topk(
|
|
1713
|
+
hidden_states=hidden_states,
|
|
1714
|
+
gating_output=router_logits,
|
|
1715
|
+
topk=top_k,
|
|
1716
|
+
renormalize=renormalize,
|
|
1717
|
+
num_expert_group=num_expert_group,
|
|
1718
|
+
topk_group=topk_group,
|
|
1719
|
+
scoring_func=scoring_func,
|
|
1720
|
+
routed_scaling_factor=routed_scaling_factor,
|
|
1721
|
+
e_score_correction_bias=e_score_correction_bias)
|
|
1722
|
+
if indices_type is not None:
|
|
1723
|
+
topk_ids = topk_ids.to(dtype=indices_type)
|
|
1724
|
+
elif e_score_correction_bias is not None:
|
|
1725
|
+
topk_weights, topk_ids = fused_topk_bias(
|
|
1726
|
+
hidden_states=hidden_states,
|
|
1727
|
+
gating_output=router_logits,
|
|
1728
|
+
e_score_correction_bias=e_score_correction_bias.data,
|
|
1729
|
+
topk=top_k,
|
|
1730
|
+
renormalize=renormalize,
|
|
1731
|
+
)
|
|
1732
|
+
if routed_scaling_factor is not None:
|
|
1733
|
+
topk_weights *= routed_scaling_factor
|
|
1734
|
+
elif custom_routing_function is None:
|
|
1735
|
+
topk_weights, topk_ids, token_expert_indices = fused_topk(
|
|
1736
|
+
hidden_states=hidden_states,
|
|
1737
|
+
gating_output=router_logits,
|
|
1738
|
+
topk=top_k,
|
|
1739
|
+
renormalize=renormalize,
|
|
1740
|
+
indices_type=indices_type,
|
|
1741
|
+
)
|
|
1742
|
+
else:
|
|
1743
|
+
topk_weights, topk_ids = custom_routing_function(
|
|
1744
|
+
hidden_states=hidden_states,
|
|
1745
|
+
gating_output=router_logits,
|
|
1746
|
+
topk=top_k,
|
|
1747
|
+
renormalize=renormalize)
|
|
1748
|
+
if indices_type is not None:
|
|
1749
|
+
topk_ids = topk_ids.to(dtype=indices_type)
|
|
1750
|
+
|
|
1751
|
+
if enable_eplb:
|
|
1752
|
+
assert expert_load_view is not None
|
|
1753
|
+
assert logical_to_physical_map is not None
|
|
1754
|
+
assert logical_replica_count is not None
|
|
1755
|
+
|
|
1756
|
+
topk_ids = eplb_map_to_physical_and_record(
|
|
1757
|
+
topk_ids=topk_ids,
|
|
1758
|
+
expert_load_view=expert_load_view,
|
|
1759
|
+
logical_to_physical_map=logical_to_physical_map,
|
|
1760
|
+
logical_replica_count=logical_replica_count,
|
|
1761
|
+
indices_type=indices_type,
|
|
1762
|
+
)
|
|
1763
|
+
|
|
1764
|
+
assert topk_ids.dtype == indices_type or indices_type is None
|
|
1765
|
+
|
|
1766
|
+
# Compute zero expert result if needed
|
|
1767
|
+
if (zero_expert_num is not None and zero_expert_num > 0
|
|
1768
|
+
and zero_expert_type is not None
|
|
1769
|
+
and global_num_experts is not None):
|
|
1770
|
+
zero_expert_result = zero_experts_compute_triton(
|
|
1771
|
+
expert_indices=topk_ids,
|
|
1772
|
+
expert_scales=topk_weights,
|
|
1773
|
+
num_experts=global_num_experts,
|
|
1774
|
+
zero_expert_type=zero_expert_type,
|
|
1775
|
+
hidden_states=hidden_states,
|
|
1776
|
+
)
|
|
1777
|
+
else:
|
|
1778
|
+
zero_expert_result = None
|
|
1779
|
+
return topk_weights, topk_ids, zero_expert_result
|
|
1780
|
+
|
|
1781
|
+
def must_reduce_shared_expert_outputs(self) -> bool:
|
|
1782
|
+
"""
|
|
1783
|
+
The shared_experts are typically computed using the RowParallelLinear
|
|
1784
|
+
layer. The result of this function is typically used as
|
|
1785
|
+
the reduce_results argument to the module.
|
|
1786
|
+
When just tensor-parallel is used, it is not required to reduce
|
|
1787
|
+
the shared_experts results immediately. Instead we reduce at the
|
|
1788
|
+
once at the end of the MoE op. (Refer to DeepSeekV2MoE module)
|
|
1789
|
+
With EP and all2all kernels - this is no longer viable as all
|
|
1790
|
+
GPU ranks in DP, produce the complete set of hidden_states.
|
|
1791
|
+
Therefore it is required that we reduce the shared_experts output
|
|
1792
|
+
early.
|
|
1793
|
+
"""
|
|
1794
|
+
return (self.use_pplx_kernels or self.use_deepep_ht_kernels
|
|
1795
|
+
or self.use_deepep_ll_kernels)
|
|
1796
|
+
|
|
1797
|
+
def maybe_all_reduce_tensor_model_parallel(
|
|
1798
|
+
self, final_hidden_states: torch.Tensor):
|
|
1799
|
+
"""
|
|
1800
|
+
The pplx combine kernel reduces across GPU ranks by default.
|
|
1801
|
+
"""
|
|
1802
|
+
if (self.use_pplx_kernels or self.use_deepep_ht_kernels
|
|
1803
|
+
or self.use_deepep_ll_kernels):
|
|
1804
|
+
return final_hidden_states
|
|
1805
|
+
else:
|
|
1806
|
+
return tensor_model_parallel_all_reduce(final_hidden_states)
|
|
1807
|
+
|
|
1808
|
+
def forward_native(
|
|
1809
|
+
self,
|
|
1810
|
+
hidden_states: torch.Tensor,
|
|
1811
|
+
router_logits: torch.Tensor,
|
|
1812
|
+
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
|
|
1813
|
+
og_hidden_states = hidden_states.shape[-1]
|
|
1814
|
+
if self.hidden_size != og_hidden_states:
|
|
1815
|
+
hidden_states = F.pad(hidden_states,
|
|
1816
|
+
(0, self.hidden_size - og_hidden_states),
|
|
1817
|
+
mode='constant',
|
|
1818
|
+
value=0.0)
|
|
1819
|
+
|
|
1820
|
+
if self.shared_experts is None:
|
|
1821
|
+
if current_platform.is_tpu():
|
|
1822
|
+
# TODO: Once the OOM issue for the TPU backend is resolved, we
|
|
1823
|
+
# will switch to using the moe_forward custom op.
|
|
1824
|
+
fused_output = self.forward_impl(hidden_states, router_logits)
|
|
1825
|
+
assert not isinstance(fused_output, tuple)
|
|
1826
|
+
else:
|
|
1827
|
+
fused_output = torch.ops.vllm.moe_forward(
|
|
1828
|
+
hidden_states, router_logits, self.layer_name)
|
|
1829
|
+
return fused_output[..., :og_hidden_states]
|
|
1830
|
+
else:
|
|
1831
|
+
if current_platform.is_tpu():
|
|
1832
|
+
# TODO: Once the OOM issue for the TPU backend is resolved, we
|
|
1833
|
+
# will switch to using the moe_forward custom op.
|
|
1834
|
+
shared_output, fused_output = self.forward_impl(
|
|
1835
|
+
hidden_states, router_logits)
|
|
1836
|
+
else:
|
|
1837
|
+
shared_output, fused_output = torch.ops.vllm.moe_forward_shared(
|
|
1838
|
+
hidden_states, router_logits, self.layer_name)
|
|
1839
|
+
return (shared_output[..., :og_hidden_states],
|
|
1840
|
+
fused_output[..., :og_hidden_states])
|
|
1841
|
+
|
|
1842
|
+
def forward_cuda(
|
|
1843
|
+
self,
|
|
1844
|
+
hidden_states: torch.Tensor,
|
|
1845
|
+
router_logits: torch.Tensor,
|
|
1846
|
+
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
|
|
1847
|
+
return self.forward_native(hidden_states, router_logits)
|
|
1848
|
+
|
|
1849
|
+
def forward_impl_chunked(
|
|
1850
|
+
self,
|
|
1851
|
+
full_hidden_states: torch.Tensor,
|
|
1852
|
+
full_router_logits: torch.Tensor,
|
|
1853
|
+
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
|
|
1854
|
+
assert self.batched_hidden_states is not None
|
|
1855
|
+
assert self.batched_router_logits is not None
|
|
1856
|
+
assert self.batched_hidden_states.dtype == full_hidden_states.dtype
|
|
1857
|
+
assert self.batched_router_logits.dtype == full_router_logits.dtype
|
|
1858
|
+
# Check size compatibility.
|
|
1859
|
+
assert (
|
|
1860
|
+
self.batched_hidden_states.size(-1) == full_hidden_states.size(-1))
|
|
1861
|
+
assert (
|
|
1862
|
+
self.batched_router_logits.size(-1) == full_router_logits.size(-1))
|
|
1863
|
+
|
|
1864
|
+
self.ensure_moe_quant_config()
|
|
1865
|
+
|
|
1866
|
+
full_fused_final_hidden_states = torch.empty_like(full_hidden_states)
|
|
1867
|
+
if self.shared_experts is not None:
|
|
1868
|
+
full_shared_final_hidden_states = torch.empty_like(
|
|
1869
|
+
full_hidden_states)
|
|
1870
|
+
|
|
1871
|
+
def process_chunk(chunk_start, chunk_end, skip_result_store=False):
|
|
1872
|
+
chunk_size = chunk_end - chunk_start
|
|
1873
|
+
hidden_states = full_hidden_states[chunk_start:chunk_end, :]
|
|
1874
|
+
router_logits = full_router_logits[chunk_start:chunk_end, :]
|
|
1875
|
+
|
|
1876
|
+
assert self.batched_hidden_states is not None
|
|
1877
|
+
assert self.batched_router_logits is not None
|
|
1878
|
+
# This is only true when DBO has been enabled in the config.
|
|
1879
|
+
# Both tensors will have an outer dimension for the ubatch id
|
|
1880
|
+
if self.batched_hidden_states.dim() == 3:
|
|
1881
|
+
assert self.batched_router_logits.dim() == 3
|
|
1882
|
+
batch_buffer_idx = dbo_current_ubatch_id()
|
|
1883
|
+
batched_hidden_states = self.batched_hidden_states[
|
|
1884
|
+
batch_buffer_idx, :]
|
|
1885
|
+
batched_router_logits = self.batched_router_logits[
|
|
1886
|
+
batch_buffer_idx, :]
|
|
1887
|
+
else:
|
|
1888
|
+
batched_hidden_states = self.batched_hidden_states
|
|
1889
|
+
batched_router_logits = self.batched_router_logits
|
|
1890
|
+
|
|
1891
|
+
assert (batched_hidden_states.size(0) # type: ignore
|
|
1892
|
+
>= chunk_size)
|
|
1893
|
+
assert (batched_router_logits.size(0) # type: ignore
|
|
1894
|
+
>= chunk_size)
|
|
1895
|
+
staged_hidden_states = batched_hidden_states[:
|
|
1896
|
+
chunk_size, :] # type: ignore
|
|
1897
|
+
staged_router_logits = batched_router_logits[:
|
|
1898
|
+
chunk_size, :] # type: ignore
|
|
1899
|
+
staged_hidden_states.copy_(hidden_states, non_blocking=True)
|
|
1900
|
+
staged_router_logits.copy_(router_logits, non_blocking=True)
|
|
1901
|
+
|
|
1902
|
+
# Matrix multiply.
|
|
1903
|
+
final_hidden_states = self.quant_method.apply(
|
|
1904
|
+
layer=self,
|
|
1905
|
+
x=staged_hidden_states,
|
|
1906
|
+
router_logits=staged_router_logits,
|
|
1907
|
+
top_k=self.top_k,
|
|
1908
|
+
renormalize=self.renormalize,
|
|
1909
|
+
use_grouped_topk=self.use_grouped_topk,
|
|
1910
|
+
global_num_experts=self.global_num_experts,
|
|
1911
|
+
expert_map=self.expert_map,
|
|
1912
|
+
topk_group=self.topk_group,
|
|
1913
|
+
num_expert_group=self.num_expert_group,
|
|
1914
|
+
custom_routing_function=self.custom_routing_function,
|
|
1915
|
+
scoring_func=self.scoring_func,
|
|
1916
|
+
routed_scaling_factor=self.routed_scaling_factor,
|
|
1917
|
+
e_score_correction_bias=self.e_score_correction_bias,
|
|
1918
|
+
activation=self.activation,
|
|
1919
|
+
enable_eplb=self.enable_eplb,
|
|
1920
|
+
expert_load_view=self.expert_load_view,
|
|
1921
|
+
logical_to_physical_map=self.logical_to_physical_map,
|
|
1922
|
+
logical_replica_count=self.logical_replica_count,
|
|
1923
|
+
)
|
|
1924
|
+
|
|
1925
|
+
assert self.shared_experts is None or isinstance(
|
|
1926
|
+
final_hidden_states, tuple)
|
|
1927
|
+
|
|
1928
|
+
if self.zero_expert_num is not None and self.zero_expert_num > 0:
|
|
1929
|
+
assert isinstance(final_hidden_states, tuple)
|
|
1930
|
+
assert self.shared_experts is None
|
|
1931
|
+
final_hidden_states, zero_expert_result = final_hidden_states
|
|
1932
|
+
if zero_expert_result is not None:
|
|
1933
|
+
final_hidden_states += zero_expert_result
|
|
1934
|
+
|
|
1935
|
+
if not skip_result_store:
|
|
1936
|
+
if self.shared_experts is None:
|
|
1937
|
+
full_fused_final_hidden_states[
|
|
1938
|
+
chunk_start:chunk_end, :].copy_(final_hidden_states,
|
|
1939
|
+
non_blocking=True)
|
|
1940
|
+
else:
|
|
1941
|
+
full_shared_final_hidden_states[
|
|
1942
|
+
chunk_start:chunk_end, :].copy_(final_hidden_states[0],
|
|
1943
|
+
non_blocking=True)
|
|
1944
|
+
full_fused_final_hidden_states[
|
|
1945
|
+
chunk_start:chunk_end, :].copy_(final_hidden_states[1],
|
|
1946
|
+
non_blocking=True)
|
|
1947
|
+
|
|
1948
|
+
ctx = get_forward_context()
|
|
1949
|
+
# flashinfer_cutlass_kernels can handle: optional DP + TP/EP
|
|
1950
|
+
max_tokens_across_dispatchers = ctx.dp_metadata.max_tokens_across_dp_cpu
|
|
1951
|
+
moe_dp_chunk_size_per_rank = self.moe_config.max_num_tokens
|
|
1952
|
+
|
|
1953
|
+
# If the input to the MoE is sequence parallel then divide by sp_size
|
|
1954
|
+
# to find the maximum number of tokens for any individual dispatcher.
|
|
1955
|
+
if self.is_sequence_parallel:
|
|
1956
|
+
max_tokens_across_dispatchers = cdiv(max_tokens_across_dispatchers,
|
|
1957
|
+
self.sp_size)
|
|
1958
|
+
|
|
1959
|
+
num_tokens = full_hidden_states.size(0)
|
|
1960
|
+
for chunk_idx, chunk_start_ in enumerate(
|
|
1961
|
+
range(0, max_tokens_across_dispatchers,
|
|
1962
|
+
moe_dp_chunk_size_per_rank)):
|
|
1963
|
+
chunk_start = chunk_start_
|
|
1964
|
+
chunk_end = min(chunk_start + moe_dp_chunk_size_per_rank,
|
|
1965
|
+
max_tokens_across_dispatchers)
|
|
1966
|
+
# clamp start and end
|
|
1967
|
+
chunk_start = min(chunk_start, num_tokens - 1)
|
|
1968
|
+
chunk_end = min(chunk_end, num_tokens)
|
|
1969
|
+
with ctx.dp_metadata.chunked_sizes(self.sp_size,
|
|
1970
|
+
moe_dp_chunk_size_per_rank,
|
|
1971
|
+
chunk_idx):
|
|
1972
|
+
process_chunk(chunk_start,
|
|
1973
|
+
chunk_end,
|
|
1974
|
+
skip_result_store=chunk_start_ >= num_tokens)
|
|
1975
|
+
|
|
1976
|
+
if self.shared_experts is None:
|
|
1977
|
+
return full_fused_final_hidden_states
|
|
1978
|
+
else:
|
|
1979
|
+
return (full_shared_final_hidden_states,
|
|
1980
|
+
full_fused_final_hidden_states)
|
|
1981
|
+
|
|
1982
|
+
def forward_impl(
|
|
1983
|
+
self,
|
|
1984
|
+
hidden_states: torch.Tensor,
|
|
1985
|
+
router_logits: torch.Tensor,
|
|
1986
|
+
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
|
|
1987
|
+
assert self.quant_method is not None
|
|
1988
|
+
|
|
1989
|
+
self.ensure_moe_quant_config()
|
|
1990
|
+
|
|
1991
|
+
# Route to the chunked forward path using the FlashInfer Cutlass kernel
|
|
1992
|
+
# only when data parallelism (DP) is enabled.
|
|
1993
|
+
_use_flashinfer_cutlass_kernels = (self.dp_size > 1 and
|
|
1994
|
+
self.use_flashinfer_cutlass_kernels)
|
|
1995
|
+
|
|
1996
|
+
if (self.moe_parallel_config.use_pplx_kernels
|
|
1997
|
+
or self.moe_parallel_config.use_deepep_ll_kernels
|
|
1998
|
+
or _use_flashinfer_cutlass_kernels):
|
|
1999
|
+
return self.forward_impl_chunked(hidden_states, router_logits)
|
|
2000
|
+
|
|
2001
|
+
do_naive_dispatch_combine: bool = (
|
|
2002
|
+
self.dp_size > 1
|
|
2003
|
+
and not self.moe_parallel_config.use_deepep_ht_kernels
|
|
2004
|
+
and not self.moe_config.use_flashinfer_cutlass_kernels)
|
|
2005
|
+
|
|
2006
|
+
# If there are shared experts but we are not using a modular kernel, the
|
|
2007
|
+
# shared experts must be called here
|
|
2008
|
+
if (not isinstance(self.quant_method.fused_experts,
|
|
2009
|
+
FusedMoEModularKernel)
|
|
2010
|
+
and self.shared_experts is not None):
|
|
2011
|
+
shared_output = self.shared_experts(hidden_states)
|
|
2012
|
+
else:
|
|
2013
|
+
shared_output = None
|
|
2014
|
+
|
|
2015
|
+
ctx = get_forward_context()
|
|
2016
|
+
sp_ctx = ctx.dp_metadata.sp_local_sizes(
|
|
2017
|
+
self.sp_size) if ctx.dp_metadata else nullcontext()
|
|
2018
|
+
|
|
2019
|
+
with sp_ctx:
|
|
2020
|
+
if do_naive_dispatch_combine:
|
|
2021
|
+
hidden_states, router_logits = get_ep_group().dispatch(
|
|
2022
|
+
hidden_states, router_logits, self.is_sequence_parallel)
|
|
2023
|
+
|
|
2024
|
+
# Matrix multiply.
|
|
2025
|
+
final_hidden_states = self.quant_method.apply(
|
|
2026
|
+
layer=self,
|
|
2027
|
+
x=hidden_states,
|
|
2028
|
+
router_logits=router_logits,
|
|
2029
|
+
top_k=self.top_k,
|
|
2030
|
+
renormalize=self.renormalize,
|
|
2031
|
+
use_grouped_topk=self.use_grouped_topk,
|
|
2032
|
+
global_num_experts=self.global_num_experts,
|
|
2033
|
+
expert_map=self.expert_map,
|
|
2034
|
+
topk_group=self.topk_group,
|
|
2035
|
+
num_expert_group=self.num_expert_group,
|
|
2036
|
+
custom_routing_function=self.custom_routing_function,
|
|
2037
|
+
scoring_func=self.scoring_func,
|
|
2038
|
+
routed_scaling_factor=self.routed_scaling_factor,
|
|
2039
|
+
e_score_correction_bias=self.e_score_correction_bias,
|
|
2040
|
+
activation=self.activation,
|
|
2041
|
+
apply_router_weight_on_input=self.apply_router_weight_on_input,
|
|
2042
|
+
enable_eplb=self.enable_eplb,
|
|
2043
|
+
expert_load_view=self.expert_load_view,
|
|
2044
|
+
logical_to_physical_map=self.logical_to_physical_map,
|
|
2045
|
+
logical_replica_count=self.logical_replica_count,
|
|
2046
|
+
)
|
|
2047
|
+
|
|
2048
|
+
if shared_output is not None:
|
|
2049
|
+
assert not isinstance(final_hidden_states, tuple)
|
|
2050
|
+
assert self.shared_experts is not None
|
|
2051
|
+
final_hidden_states = (
|
|
2052
|
+
shared_output,
|
|
2053
|
+
final_hidden_states,
|
|
2054
|
+
)
|
|
2055
|
+
elif self.zero_expert_num is not None and self.zero_expert_num > 0:
|
|
2056
|
+
assert isinstance(final_hidden_states, tuple)
|
|
2057
|
+
final_hidden_states, zero_expert_result = final_hidden_states
|
|
2058
|
+
|
|
2059
|
+
def reduce_output(states: torch.Tensor,
|
|
2060
|
+
do_combine: bool = True) -> torch.Tensor:
|
|
2061
|
+
if do_naive_dispatch_combine and do_combine:
|
|
2062
|
+
states = get_ep_group().combine(states,
|
|
2063
|
+
self.is_sequence_parallel)
|
|
2064
|
+
|
|
2065
|
+
if (not self.is_sequence_parallel and self.reduce_results
|
|
2066
|
+
and (self.tp_size > 1 or self.ep_size > 1)):
|
|
2067
|
+
states = self.maybe_all_reduce_tensor_model_parallel(
|
|
2068
|
+
states)
|
|
2069
|
+
|
|
2070
|
+
return states
|
|
2071
|
+
|
|
2072
|
+
if self.shared_experts is not None:
|
|
2073
|
+
return (
|
|
2074
|
+
reduce_output(final_hidden_states[0], do_combine=False),
|
|
2075
|
+
reduce_output(final_hidden_states[1]),
|
|
2076
|
+
)
|
|
2077
|
+
elif self.zero_expert_num is not None and self.zero_expert_num > 0:
|
|
2078
|
+
assert isinstance(final_hidden_states, torch.Tensor)
|
|
2079
|
+
return reduce_output(final_hidden_states) + zero_expert_result
|
|
2080
|
+
else:
|
|
2081
|
+
return reduce_output(final_hidden_states)
|
|
2082
|
+
|
|
2083
|
+
@classmethod
|
|
2084
|
+
def make_expert_params_mapping(
|
|
2085
|
+
cls,
|
|
2086
|
+
ckpt_gate_proj_name: str,
|
|
2087
|
+
ckpt_down_proj_name: str,
|
|
2088
|
+
ckpt_up_proj_name: str,
|
|
2089
|
+
num_experts: int,
|
|
2090
|
+
num_redundant_experts: int = 0) -> list[tuple[str, str, int, str]]:
|
|
2091
|
+
|
|
2092
|
+
num_physical_experts = num_experts + num_redundant_experts
|
|
2093
|
+
|
|
2094
|
+
# In the returned mapping:
|
|
2095
|
+
# - `expert_id` is the physical expert id
|
|
2096
|
+
# - `weight_name` contains the weight name of the logical expert
|
|
2097
|
+
# So that we should map the expert id to logical in `weight_name`
|
|
2098
|
+
physical_to_logical_map = \
|
|
2099
|
+
EplbState.build_initial_global_physical_to_logical_map(
|
|
2100
|
+
num_experts, num_redundant_experts)
|
|
2101
|
+
|
|
2102
|
+
return [
|
|
2103
|
+
# (param_name, weight_name, expert_id, shard_id)
|
|
2104
|
+
("experts.w13_" if weight_name
|
|
2105
|
+
in [ckpt_gate_proj_name, ckpt_up_proj_name] else "experts.w2_",
|
|
2106
|
+
f"experts.{physical_to_logical_map[expert_id]}.{weight_name}.",
|
|
2107
|
+
expert_id, shard_id) for expert_id in range(num_physical_experts)
|
|
2108
|
+
for shard_id, weight_name in [
|
|
2109
|
+
("w1", ckpt_gate_proj_name),
|
|
2110
|
+
("w2", ckpt_down_proj_name),
|
|
2111
|
+
("w3", ckpt_up_proj_name),
|
|
2112
|
+
]
|
|
2113
|
+
]
|
|
2114
|
+
|
|
2115
|
+
def extra_repr(self) -> str:
|
|
2116
|
+
|
|
2117
|
+
s = (
|
|
2118
|
+
f"global_num_experts={self.global_num_experts}, "
|
|
2119
|
+
f"local_num_experts={self.local_num_experts}, "
|
|
2120
|
+
f"top_k={self.top_k}, "
|
|
2121
|
+
f"intermediate_size_per_partition={self.intermediate_size_per_partition}, " # noqa: E501
|
|
2122
|
+
f"tp_size={self.tp_size},\n"
|
|
2123
|
+
f"ep_size={self.ep_size}, "
|
|
2124
|
+
f"reduce_results={self.reduce_results}, "
|
|
2125
|
+
f"renormalize={self.renormalize}, "
|
|
2126
|
+
f"use_grouped_topk={self.use_grouped_topk}")
|
|
2127
|
+
|
|
2128
|
+
if self.use_grouped_topk:
|
|
2129
|
+
s += f", num_expert_group={self.num_expert_group}, topk_group={self.topk_group}" # noqa: E501
|
|
2130
|
+
|
|
2131
|
+
s += f", scoring_func='{self.scoring_func}', activation='{self.activation}'" # noqa: E501
|
|
2132
|
+
|
|
2133
|
+
return s
|
|
2134
|
+
|
|
2135
|
+
|
|
2136
|
+
def moe_forward(
|
|
2137
|
+
hidden_states: torch.Tensor,
|
|
2138
|
+
router_logits: torch.Tensor,
|
|
2139
|
+
layer_name: str,
|
|
2140
|
+
) -> torch.Tensor:
|
|
2141
|
+
forward_context: ForwardContext = get_forward_context()
|
|
2142
|
+
self = forward_context.no_compile_layers[layer_name]
|
|
2143
|
+
assert self.shared_experts is None
|
|
2144
|
+
return self.forward_impl(hidden_states, router_logits)
|
|
2145
|
+
|
|
2146
|
+
|
|
2147
|
+
def moe_forward_fake(
|
|
2148
|
+
hidden_states: torch.Tensor,
|
|
2149
|
+
router_logits: torch.Tensor,
|
|
2150
|
+
layer_name: str,
|
|
2151
|
+
) -> torch.Tensor:
|
|
2152
|
+
return torch.empty_like(hidden_states)
|
|
2153
|
+
|
|
2154
|
+
|
|
2155
|
+
direct_register_custom_op(
|
|
2156
|
+
op_name="moe_forward",
|
|
2157
|
+
op_func=moe_forward,
|
|
2158
|
+
mutates_args=["hidden_states"],
|
|
2159
|
+
fake_impl=moe_forward_fake,
|
|
2160
|
+
tags=(torch.Tag.needs_fixed_stride_order, ),
|
|
2161
|
+
)
|
|
2162
|
+
|
|
2163
|
+
|
|
2164
|
+
def moe_forward_shared(
|
|
2165
|
+
hidden_states: torch.Tensor,
|
|
2166
|
+
router_logits: torch.Tensor,
|
|
2167
|
+
layer_name: str,
|
|
2168
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
2169
|
+
forward_context: ForwardContext = get_forward_context()
|
|
2170
|
+
self = forward_context.no_compile_layers[layer_name]
|
|
2171
|
+
assert self.shared_experts is not None
|
|
2172
|
+
return self.forward_impl(hidden_states, router_logits)
|
|
2173
|
+
|
|
2174
|
+
|
|
2175
|
+
def moe_forward_shared_fake(
|
|
2176
|
+
hidden_states: torch.Tensor,
|
|
2177
|
+
router_logits: torch.Tensor,
|
|
2178
|
+
layer_name: str,
|
|
2179
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
2180
|
+
shared_out = torch.empty_like(hidden_states)
|
|
2181
|
+
fused_out = torch.empty_like(hidden_states)
|
|
2182
|
+
return shared_out, fused_out
|
|
2183
|
+
|
|
2184
|
+
|
|
2185
|
+
direct_register_custom_op(
|
|
2186
|
+
op_name="moe_forward_shared",
|
|
2187
|
+
op_func=moe_forward_shared,
|
|
2188
|
+
mutates_args=["hidden_states"],
|
|
2189
|
+
fake_impl=moe_forward_shared_fake,
|
|
2190
|
+
tags=(torch.Tag.needs_fixed_stride_order, ),
|
|
2191
|
+
)
|
|
2192
|
+
|
|
2193
|
+
# Mark the FusedMoE weight_loader as supporting MoE-specific parameters
|
|
2194
|
+
# to avoid expensive runtime reflection in model loading code
|
|
2195
|
+
FusedMoE.weight_loader.supports_moe_loading = True # type: ignore[attr-defined]
|