vizro-mcp 0.0.1.dev0__py3-none-any.whl → 0.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
vizro_mcp/__init__.py CHANGED
@@ -3,7 +3,7 @@ import sys
3
3
 
4
4
  from .server import mcp
5
5
 
6
- __version__ = "0.0.1.dev0"
6
+ __version__ = "0.1.0"
7
7
 
8
8
 
9
9
  def main():
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: vizro-mcp
3
- Version: 0.0.1.dev0
3
+ Version: 0.1.0
4
4
  Summary: MCP server to help create Vizro dashboards and charts
5
5
  Author: Vizro Team
6
6
  License-File: LICENSE.txt
@@ -25,13 +25,25 @@ Vizro-MCP is a [Model Context Protocol (MCP)](https://modelcontextprotocol.io/)
25
25
 
26
26
  Vizro-MCP provides tools and templates to create a functioning Vizro chart or dashboard step by step. Benefits include:
27
27
 
28
- ✅ One consistent framework for charts and dashboards with one common design language. ✅ Validated config output that is readable and easy to alter or maintain. ✅ Live preview of the dashboard to iterate the design until the dashboard is perfect. ✅ Use of local or remote datasets simply by providing a path or URL.
28
+ ✅ One consistent framework for charts and dashboards with one common design language.
29
+
30
+ ✅ Validated config output that is readable and easy to alter or maintain.
31
+
32
+ ✅ Live preview of the dashboard to iterate the design until the dashboard is perfect.
33
+
34
+ ✅ Use of local or remote datasets simply by providing a path or URL.
29
35
 
30
36
  ### Without Vizro-MCP
31
37
 
32
38
  Without Vizro-MCP, if you try to make a dashboard using an LLM, it could choose any framework, and use it without specific guidance, design principles, or consistency. The results are:
33
39
 
34
- ❌ A random choice of frontend framework or charting library. ❌ A vibe-coded mess that may or may not run, but certainly is not very maintainable. ❌ No way to easily preview the dashboard. ❌ No easy way to connect to real data.
40
+ ❌ A random choice of frontend framework or charting library.
41
+
42
+ ❌ A vibe-coded mess that may or may not run, but certainly is not very maintainable.
43
+
44
+ ❌ No way to easily preview the dashboard.
45
+
46
+ ❌ No easy way to connect to real data.
35
47
 
36
48
  ## 🛠️ Get started
37
49
 
@@ -68,7 +80,7 @@ Add the following to your `claude_desktop_config.json` [found via Developer Sett
68
80
  }
69
81
  ```
70
82
 
71
- > ⚠️ **Warning:** In some cases you may need to provide the full path to your `uv` executable, so instead of `uv` would use something like `/Users/<your-username>/.local/bin/uv`. To discover the path of `uv` on your machine, in your terminal app, type `which uv`.
83
+ > ⚠️ **Warning:** In some cases you may need to provide the full path to your `uvx` executable, so instead of `uvx` would use something like `/Users/<your-username>/.local/bin/uvx`. To discover the path of `uvx` on your machine, in your terminal app, type `which uvx`.
72
84
 
73
85
  If you are using Claude Desktop, restart it, and after a few moments, you should see the vizro-mcp menu when opening the settings/context menu:
74
86
 
@@ -94,7 +106,7 @@ Add the following to `mcp.json` [found via the Cursor Settings](https://docs.cur
94
106
  }
95
107
  ```
96
108
 
97
- > ⚠️ **Warning:** In some cases you may need to provide the full path to your `uv` executable, so instead of `uv` would use something like `/Users/<your-username>/.local/bin/uv`. To discover the path of `uv` on your machine, in your terminal app, type `which uv`.
109
+ > ⚠️ **Warning:** In some cases you may need to provide the full path to your `uvx` executable, so instead of `uvx` would use something like `/Users/<your-username>/.local/bin/uvx`. To discover the path of `uvx` on your machine, in your terminal app, type `which uvx`.
98
110
 
99
111
  Similarly, when using Cursor, after a short pause, you should see a green light in the MCP menu:
100
112
 
@@ -122,6 +134,8 @@ You can also ask the LLM to create specific dashboards based on local or remote
122
134
 
123
135
  > _Create a simple two page Vizro dashboard, with first page being a correlation analysis of `<insert absolute file path or public URL>` data, and the second page being a map plot of `<insert absolute file path or public URL>` data_
124
136
 
137
+ You can find a set of sample CSVs to try out in the [Plotly repository](https://github.com/plotly/datasets/tree/master).
138
+
125
139
  You can even ask for a dashboard without providing data:
126
140
 
127
141
  > _Create a Vizro dashboard with one page, a scatter chart, and a filter._
@@ -138,9 +152,11 @@ You can also ask the model to give you the link, but it will attempt to regenera
138
152
 
139
153
  ### Create Vizro charts
140
154
 
141
- The **easiest** way to get started with Vizro charts is to choose the template `create_vizro_chart` and just send the prompt. This will create a simple chart that you can alter. Take it from there!
155
+ If you don't want to create an entire Vizro dashboard, you can still use Vizro-MCP to create the code for a single chart. If you're not sure what kind of chart you want, check out the [Vizro Visual Vocabulary](https://huggingface.co/spaces/vizro/demo-visual-vocabulary) for ideas.
142
156
 
143
- Alternatively, you can just ask in the chat things like:
157
+ The **easiest** way to create a Vizro chart is to choose the template `create_vizro_chart` and just send the prompt. This will create a simple chart that you can alter. Take it from there!
158
+
159
+ Alternatively, you can just ask in the chat, for example:
144
160
 
145
161
  > _Create a scatter based on the iris dataset._
146
162
 
@@ -168,12 +184,8 @@ The Vizro MCP server provides the following tools. In general you should not nee
168
184
  ## Available Prompts (if client allows)
169
185
 
170
186
  - `create_starter_dashboard` - Use this prompt template to get started with Vizro dashboards.
171
- - `create_EDA_dashboard` - Use this prompt template to create an Exploratory Data Analysis (EDA) dashboard based on a local or remote CSV dataset
172
- - `create_vizro_chart` - Use this prompt template to create a Vizro styled plotly chart based on a local or remote CSV dataset
173
-
174
- ## Sample data
175
-
176
- You can find a set of sample CSVs to try out in the [Plotly repository](https://github.com/plotly/datasets/tree/master).
187
+ - `create_EDA_dashboard` - Use this prompt template to create an Exploratory Data Analysis (EDA) dashboard based on a local or remote CSV dataset.
188
+ - `create_vizro_chart` - Use this prompt template to create a Vizro styled plotly chart based on a local or remote CSV dataset.
177
189
 
178
190
  ## Development or running from source
179
191
 
@@ -201,12 +213,67 @@ If you are a developer, or if you are running Vizro-MCP from source, you need to
201
213
 
202
214
  Replace `<PATH TO VIZRO>` with the actual path to your Vizro repository. You may also need to provide the full path to your `uv` executable, so instead of `"uv"` you would use something like `"/Users/<your-username>/.local/bin/uv"`. To discover the path of `uv` on your machine, in your terminal app, type `which uv`.
203
215
 
204
- ## Other cool MCP Servers
216
+ ## Disclaimers
217
+
218
+ <details>
219
+ <summary><strong>Third party API</strong></summary>
220
+
221
+ Users are responsible for anything done via their host LLM application.
222
+
223
+ Users are responsible for procuring any and all rights necessary to access any third-party generative AI tools and for complying with any applicable terms or conditions thereof.
224
+
225
+ Users are wholly responsible for the use and security of the third-party generative AI tools and of Vizro.
226
+
227
+ </details>
228
+
229
+ <details>
230
+ <summary><strong>User acknowledgments</strong></summary>
231
+
232
+ Users acknowledge and agree that:
233
+
234
+ Any results, options, data, recommendations, analyses, code, or other information (“Outputs”) generated by any third-party generative AI tools (“GenAI Tools”) may contain some inaccuracies, biases, illegitimate, potentially infringing, or otherwise inappropriate content that may be mistaken, discriminatory, or misleading.
235
+
236
+ McKinsey & Company:
237
+
238
+ (i) expressly disclaims the accuracy, adequacy, timeliness, reliability, merchantability, fitness for a particular purpose, non-infringement, safety or completeness of any Outputs,
239
+
240
+ (ii) shall not be liable for any errors, omissions, or other defects in, delays or interruptions in such Outputs, or for any actions taken in reliance thereon, and
241
+
242
+ (iii) shall not be liable for any alleged violation or infringement of any right of any third party resulting from the users’ use of the GenAI Tools and the Outputs.
243
+
244
+ The Outputs shall be verified and validated by the users and shall not be used without human oversight and as a sole basis for making decisions impacting individuals.
245
+
246
+ Users remain solely responsible for the use of the Output, in particular, the users will need to determine the level of human oversight needed to be given the context and use case, as well as for informing the users’ personnel and other affected users about the nature of the GenAI Output. Users are also fully responsible for their decisions, actions, use of Vizro and Vizro-MCP and compliance with applicable laws, rules, and regulations, including but not limited to confirming that the Outputs do not infringe any third-party rights.
247
+
248
+ </details>
249
+
250
+ <details>
251
+ <summary><strong>Warning and safety usage for generative AI models</strong></summary>
252
+
253
+ Vizro-MCP is used by generative AI models because large language models (LLMs) represent significant advancements in the AI field. However, as with any powerful tool, there are potential risks associated with connecting to a generative AI model.
254
+
255
+ We recommend users research and understand the selected model before using Vizro-MCP.
205
256
 
206
- Here are some other awesome MCP servers you might want to check out:
257
+ Users are encouraged to treat AI-generated content as supplementary, always apply human judgment, approach with caution, review the relevant disclaimer page, and consider the following:
207
258
 
208
- - [Context7](https://github.com/upstash/context7) - Provides up-to-date code documentation for any library directly in your prompts. Great for getting the latest API references and examples without relying on outdated training data.
259
+ <ol>
260
+ <li>Hallucination and misrepresentation</li>
261
+ Generative models can potentially generate information while appearing factual, being entirely fictitious or misleading.
209
262
 
210
- - [Everything MCP](https://github.com/modelcontextprotocol/servers/tree/main/src/everything) - A development-focused MCP server that combines multiple capabilities including web search, code search, and more. Useful for testing and prototyping MCP features. Part of the official MCP servers collection.
263
+ The vendor models might lack real-time knowledge or events beyond its last updates. Vizro-MCP output may vary and you should always verify critical information. It is the user's responsibility to discern the accuracy, consistent, and reliability of the generated content.
211
264
 
212
- You can find more MCP servers in the [official MCP servers repository](https://github.com/modelcontextprotocol/servers/tree/main).
265
+ <li>Unintended and sensitive output</li>
266
+ The outputs from these models can be unexpected, inappropriate, or even harmful. Users as human in the loop is an essential part. Users must check and interpret the final output. It is necessary to approach the generated content with caution, especially when shared or applied in various contexts.
267
+
268
+ <li>Data privacy</li>
269
+ Your data is sent to model vendors if you connect to LLMs via their APIs. For example, if you connect to the model from OpenAI, your data will be sent to OpenAI via their API. Users should be cautious about sharing or inputting any personal or sensitive information.
270
+
271
+ <li>Bias and fairness</li>
272
+ Generative AI can exhibit biases present in their training data. Users need to be aware of and navigate potential biases in generated outputs and be cautious when interpreting the generated content.
273
+
274
+ <li>Malicious use</li>
275
+ These models can be exploited for various malicious activities. Users should be cautious about how and where they deploy and access such models.
276
+ </ol>
277
+ It's crucial for users to remain informed, cautious, and ethical in their applications.
278
+
279
+ </details>
@@ -0,0 +1,12 @@
1
+ vizro_mcp/__init__.py,sha256=mWzCq5I_M0tVM84u9mqQodTK6fEBxngAYGTEHvnmaUU,379
2
+ vizro_mcp/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
+ vizro_mcp/server.py,sha256=cINRBPr0hkN5S5tD_Gf6dYu8vC7QviYCOrCtiAxYYwU,14813
4
+ vizro_mcp/_schemas/__init__.py,sha256=przXt7ukurnDlj3SLRW-K0VO1ksnDDFuS8Njf80xepo,610
5
+ vizro_mcp/_schemas/schemas.py,sha256=r_0i9fRtyMh7W3q3KgnpCbRUDlBaFjG6XQjCtahgEXc,11625
6
+ vizro_mcp/_utils/__init__.py,sha256=q-xdwiyRCaOWWTeG5NC_1CzHWXBH4sUKpIBXbUaKg_Y,670
7
+ vizro_mcp/_utils/utils.py,sha256=gIuKXONR2SvOgA3Vo3ONnkh8Qcc-RLfrexJAjan12zk,9217
8
+ vizro_mcp-0.1.0.dist-info/METADATA,sha256=QaRxZjEcQy0n3_WKPfd6t3Eon_VR1QIVwrR__HGpl8M,15591
9
+ vizro_mcp-0.1.0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
10
+ vizro_mcp-0.1.0.dist-info/entry_points.txt,sha256=iSUzPHvx4Ogsn91tK2C0OHxI44SNCHT1F1zUqbTj5O0,45
11
+ vizro_mcp-0.1.0.dist-info/licenses/LICENSE.txt,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
12
+ vizro_mcp-0.1.0.dist-info/RECORD,,
@@ -1,12 +0,0 @@
1
- vizro_mcp/__init__.py,sha256=rARL6i447w01mUjVtn3WBb3noEgTzbrNqBinR5SUyrs,384
2
- vizro_mcp/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
- vizro_mcp/server.py,sha256=cINRBPr0hkN5S5tD_Gf6dYu8vC7QviYCOrCtiAxYYwU,14813
4
- vizro_mcp/_schemas/__init__.py,sha256=przXt7ukurnDlj3SLRW-K0VO1ksnDDFuS8Njf80xepo,610
5
- vizro_mcp/_schemas/schemas.py,sha256=r_0i9fRtyMh7W3q3KgnpCbRUDlBaFjG6XQjCtahgEXc,11625
6
- vizro_mcp/_utils/__init__.py,sha256=q-xdwiyRCaOWWTeG5NC_1CzHWXBH4sUKpIBXbUaKg_Y,670
7
- vizro_mcp/_utils/utils.py,sha256=gIuKXONR2SvOgA3Vo3ONnkh8Qcc-RLfrexJAjan12zk,9217
8
- vizro_mcp-0.0.1.dev0.dist-info/METADATA,sha256=nCTKmpfHmHJ6h5TjlZ5zKVqk-CMhal9Ca1QhakaJITo,11747
9
- vizro_mcp-0.0.1.dev0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
10
- vizro_mcp-0.0.1.dev0.dist-info/entry_points.txt,sha256=iSUzPHvx4Ogsn91tK2C0OHxI44SNCHT1F1zUqbTj5O0,45
11
- vizro_mcp-0.0.1.dev0.dist-info/licenses/LICENSE.txt,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
12
- vizro_mcp-0.0.1.dev0.dist-info/RECORD,,