vivarium-public-health 3.0.5__py3-none-any.whl → 3.0.7__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -1 +1 @@
1
- __version__ = "3.0.5"
1
+ __version__ = "3.0.7"
@@ -7,7 +7,7 @@ This module contains tools to model transitions between disease states.
7
7
 
8
8
  """
9
9
 
10
- from typing import TYPE_CHECKING, Any, Callable, Dict, Union
10
+ from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Union
11
11
 
12
12
  import pandas as pd
13
13
  from vivarium.framework.engine import Builder
@@ -48,6 +48,10 @@ class RateTransition(Transition):
48
48
  },
49
49
  }
50
50
 
51
+ @property
52
+ def columns_required(self) -> Optional[List[str]]:
53
+ return ["alive"]
54
+
51
55
  @property
52
56
  def transition_rate_pipeline_name(self) -> str:
53
57
  if "incidence_rate" in self._get_data_functions:
@@ -100,8 +104,6 @@ class RateTransition(Transition):
100
104
  preferred_post_processor=union_post_processor,
101
105
  )
102
106
 
103
- self.population_view = builder.population.get_view(["alive"])
104
-
105
107
  #################
106
108
  # Setup methods #
107
109
  #################
@@ -123,7 +123,10 @@ class Risk(Component):
123
123
 
124
124
  @property
125
125
  def columns_created(self) -> List[str]:
126
- return [self.propensity_column_name, self.exposure_column_name]
126
+ columns_to_create = [self.propensity_column_name]
127
+ if self.create_exposure_column:
128
+ columns_to_create.append(self.exposure_column_name)
129
+ return columns_to_create
127
130
 
128
131
  @property
129
132
  def initialization_requirements(self) -> Dict[str, List[str]]:
@@ -172,6 +175,16 @@ class Risk(Component):
172
175
  self.propensity = self.get_propensity_pipeline(builder)
173
176
  self.exposure = self.get_exposure_pipeline(builder)
174
177
 
178
+ # We want to set this to True iff there is a non-loglinear risk effect
179
+ # on this risk instance
180
+ self.create_exposure_column = bool(
181
+ [
182
+ component
183
+ for component in builder.components.list_components()
184
+ if component.startswith(f"non_log_linear_risk_effect.{self.risk.name}_on_")
185
+ ]
186
+ )
187
+
175
188
  def get_distribution_type(self, builder: Builder) -> str:
176
189
  """Get the distribution type for the risk from the configuration.
177
190
 
@@ -270,19 +283,19 @@ class Risk(Component):
270
283
  ########################
271
284
 
272
285
  def on_initialize_simulants(self, pop_data: SimulantData) -> None:
273
- propensity_values = self.randomness.get_draw(pop_data.index)
274
- df = pd.DataFrame(
275
- {
276
- self.propensity_column_name: self.randomness.get_draw(pop_data.index),
277
- self.exposure_column_name: self.exposure_distribution.ppf(propensity_values),
278
- }
286
+ propensity = pd.Series(
287
+ self.randomness.get_draw(pop_data.index), name=self.propensity_column_name
279
288
  )
280
- self.population_view.update(df)
289
+ self.population_view.update(propensity)
290
+ self.update_exposure_column(pop_data.index)
281
291
 
282
292
  def on_time_step_prepare(self, event: Event) -> None:
283
- exposure_values = self.exposure(event.index)
284
- exposure_col = pd.Series(exposure_values, name=self.exposure_column_name)
285
- self.population_view.update(exposure_col)
293
+ self.update_exposure_column(event.index)
294
+
295
+ def update_exposure_column(self, index: pd.Index) -> None:
296
+ if self.create_exposure_column:
297
+ exposure = pd.Series(self.exposure(index), name=self.exposure_column_name)
298
+ self.population_view.update(exposure)
286
299
 
287
300
  ##################################
288
301
  # Pipeline sources and modifiers #
@@ -157,16 +157,19 @@ class RiskEffect(Component):
157
157
  rr_source = configuration.data_sources.relative_risk
158
158
  rr_dist_parameters = configuration.data_source_parameters.relative_risk.to_dict()
159
159
 
160
- try:
161
- distribution = getattr(import_module("scipy.stats"), rr_source)
162
- rng = np.random.default_rng(builder.randomness.get_seed(self.name))
163
- rr_data = distribution(**rr_dist_parameters).ppf(rng.random())
164
- except AttributeError:
160
+ if isinstance(rr_source, str):
161
+ try:
162
+ distribution = getattr(import_module("scipy.stats"), rr_source)
163
+ rng = np.random.default_rng(builder.randomness.get_seed(self.name))
164
+ rr_data = distribution(**rr_dist_parameters).ppf(rng.random())
165
+ except AttributeError:
166
+ rr_data = self.get_filtered_data(builder, rr_source)
167
+ except TypeError:
168
+ raise ConfigurationError(
169
+ f"Parameters {rr_dist_parameters} are not valid for distribution {rr_source}."
170
+ )
171
+ else:
165
172
  rr_data = self.get_filtered_data(builder, rr_source)
166
- except TypeError:
167
- raise ConfigurationError(
168
- f"Parameters {rr_dist_parameters} are not valid for distribution {rr_source}."
169
- )
170
173
  return rr_data
171
174
 
172
175
  def get_filtered_data(
@@ -198,6 +201,8 @@ class RiskEffect(Component):
198
201
  cat2["parameter"] = "cat2"
199
202
  cat2["value"] = 1
200
203
  rr_data = pd.concat([cat1, cat2], ignore_index=True)
204
+ if "parameter" in rr_data.index.names:
205
+ rr_data = rr_data.reset_index("parameter")
201
206
 
202
207
  rr_value_cols = list(rr_data["parameter"].unique())
203
208
  rr_data = pivot_categorical(builder, self.risk, rr_data, "parameter")
@@ -361,6 +366,10 @@ class NonLogLinearRiskEffect(RiskEffect):
361
366
  # Setup methods #
362
367
  #################
363
368
 
369
+ @staticmethod
370
+ def get_name(risk: EntityString, target: TargetString) -> str:
371
+ return f"non_log_linear_risk_effect.{risk.name}_on_{target}"
372
+
364
373
  def build_all_lookup_tables(self, builder: Builder) -> None:
365
374
  rr_data = self.get_relative_risk_data(builder)
366
375
  self.validate_rr_data(rr_data)
@@ -191,7 +191,7 @@ class LBWSGRisk(Risk):
191
191
  return f"{axis}.birth_exposure"
192
192
 
193
193
  @staticmethod
194
- def exposure_column_name(axis: str) -> str:
194
+ def get_exposure_column_name(axis: str) -> str:
195
195
  return f"{axis}_exposure"
196
196
 
197
197
  ##############
@@ -206,7 +206,7 @@ class LBWSGRisk(Risk):
206
206
 
207
207
  @property
208
208
  def columns_created(self) -> List[str]:
209
- return [self.exposure_column_name(axis) for axis in self.AXES]
209
+ return [self.get_exposure_column_name(axis) for axis in self.AXES]
210
210
 
211
211
  #####################
212
212
  # Lifecycle methods #
@@ -256,7 +256,7 @@ class LBWSGRisk(Risk):
256
256
 
257
257
  def on_initialize_simulants(self, pop_data: SimulantData) -> None:
258
258
  birth_exposures = {
259
- self.exposure_column_name(axis): self.birth_exposures[
259
+ self.get_exposure_column_name(axis): self.birth_exposures[
260
260
  self.birth_exposure_pipeline_name(axis)
261
261
  ](pop_data.index)
262
262
  for axis in self.AXES
@@ -318,7 +318,7 @@ class LBWSGRiskEffect(RiskEffect):
318
318
  super().__init__("risk_factor.low_birth_weight_and_short_gestation", target)
319
319
 
320
320
  self.lbwsg_exposure_column_names = [
321
- LBWSGRisk.exposure_column_name(axis) for axis in LBWSGRisk.AXES
321
+ LBWSGRisk.get_exposure_column_name(axis) for axis in LBWSGRisk.AXES
322
322
  ]
323
323
  self.relative_risk_pipeline_name = (
324
324
  f"effect_of_{self.risk.name}_on_{self.target.name}.relative_risk"
@@ -433,8 +433,8 @@ class LBWSGRiskEffect(RiskEffect):
433
433
  pop = self.population_view.subview(["sex"] + self.lbwsg_exposure_column_names).get(
434
434
  pop_data.index
435
435
  )
436
- birth_weight = pop[LBWSGRisk.exposure_column_name(BIRTH_WEIGHT)]
437
- gestational_age = pop[LBWSGRisk.exposure_column_name(GESTATIONAL_AGE)]
436
+ birth_weight = pop[LBWSGRisk.get_exposure_column_name(BIRTH_WEIGHT)]
437
+ gestational_age = pop[LBWSGRisk.get_exposure_column_name(GESTATIONAL_AGE)]
438
438
 
439
439
  is_male = pop["sex"] == "Male"
440
440
  is_tmrel = (self.TMREL_GESTATIONAL_AGE_INTERVAL.left <= gestational_age) & (
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: vivarium_public_health
3
- Version: 3.0.5
3
+ Version: 3.0.7
4
4
  Summary: Components for modelling diseases, risks, and interventions with ``vivarium``
5
5
  Home-page: https://github.com/ihmeuw/vivarium_public_health
6
6
  Author: The vivarium developers
@@ -1,13 +1,13 @@
1
1
  vivarium_public_health/__about__.py,sha256=RgWycPypKZS80TpSX7o41cREnG8PfguNHDHLuLyl820,487
2
2
  vivarium_public_health/__init__.py,sha256=tomMOl3PI7O8GdxDWGBiBjT0Bwd31GpyQTYTzwIv108,361
3
- vivarium_public_health/_version.py,sha256=3kxZhPRWwAKER8BleEtUBQTUGwcBGPmrbjLu-HEi-hI,22
3
+ vivarium_public_health/_version.py,sha256=tP42eveLWP9Mgm4I435dKZC463zDP4G3Rq_XJ9XMJAg,22
4
4
  vivarium_public_health/utilities.py,sha256=5cl9jjVkOQ1UeXT4DjDMAhaBNNjAsDo-SVJwpv6FDw0,3071
5
5
  vivarium_public_health/disease/__init__.py,sha256=RuuiRcvAJfX9WQGt_WZZjxN7Cu3E5rMTmuaRS-UaFPM,419
6
6
  vivarium_public_health/disease/model.py,sha256=0WIYDEx-hwlUJp6Zl8m8bUMoWxuVkOWsJvh_YlZiOPs,8234
7
7
  vivarium_public_health/disease/models.py,sha256=01UK7yB2zGPFzmlIpvhd-XnGe6vSCMDza3QTidgY7Nc,3479
8
8
  vivarium_public_health/disease/special_disease.py,sha256=3vS1WsO__IwOK0Oe_CUmh3aaKrXIf2CANtmiqlS3pjc,14614
9
9
  vivarium_public_health/disease/state.py,sha256=PUSDE1UlvoCPT6jPEyCTQO1bXjjYxqzdIa6-Bxpd-7I,22370
10
- vivarium_public_health/disease/transition.py,sha256=ZxYXZBo2EEXzuQCbaj2pHTyj61hYkdqBH1ce2Htdnb4,6412
10
+ vivarium_public_health/disease/transition.py,sha256=fgeVMy86GLrNpZ3J9E4AC0iA5z3aVdP0ZQ0AWa_odTY,6452
11
11
  vivarium_public_health/mslt/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
12
12
  vivarium_public_health/mslt/delay.py,sha256=aOYjMpMSHEVlJs0FuC2gdq3uj6_vKmkhDjoBtC4i9G0,22812
13
13
  vivarium_public_health/mslt/disease.py,sha256=TBqa7yj6k1oUbgkAe0rIgLpbdMLMFs4DiZ1Igi2BQBg,16663
@@ -32,18 +32,18 @@ vivarium_public_health/results/risk.py,sha256=GS4qJVjW3MqsDeRDDac2etFQlqIluxOxIZ
32
32
  vivarium_public_health/results/simple_cause.py,sha256=ibdE6KwhDfQWntCVkOEooBcmUydEoupmd3_poHSHyu8,1007
33
33
  vivarium_public_health/results/stratification.py,sha256=4I3YGHVabNAZENE7YboOtWsWU4X-8LUBJ9iwYMbpl6E,5387
34
34
  vivarium_public_health/risks/__init__.py,sha256=z8DcnZGxqNVAyFZm2WAV-IVNGvrSS4izju_0DNe2Ghw,212
35
- vivarium_public_health/risks/base_risk.py,sha256=WhvB0RRYIsGsPQvJEWckcBlOVSh4Rx-B-VGZDSWWb7s,10416
35
+ vivarium_public_health/risks/base_risk.py,sha256=fNQZIgGHYnWFWdLA9qmtTA66ujCGq2jgA5S1-MadWT8,10900
36
36
  vivarium_public_health/risks/data_transformations.py,sha256=SgdPKc95BBqgMNUdlAQM8k6iaXcpxnjk5B2ySTES1Yg,9269
37
37
  vivarium_public_health/risks/distributions.py,sha256=7xCI2zSpnKUEWow4ywRirVbvbpeJaxo6g9us0-Lh0kE,18197
38
- vivarium_public_health/risks/effect.py,sha256=Oc_3A0fbMDUBAJAMJ9aeDRDqdgW_aF75B3SbGv9QELw,20351
38
+ vivarium_public_health/risks/effect.py,sha256=fc_MrhmJLQcpaiZk12klric2c5-BY1gZaWMbsEjBUlY,20766
39
39
  vivarium_public_health/risks/implementations/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
40
- vivarium_public_health/risks/implementations/low_birth_weight_and_short_gestation.py,sha256=o3Uo6_AQoUHJeGo4HpB0PlouNqKst9NFmm3PRiTr5bg,17924
40
+ vivarium_public_health/risks/implementations/low_birth_weight_and_short_gestation.py,sha256=kxuJwkpJzGF8CqwNEemEA7CrohcxKQJtvUXLJtD1xm0,17948
41
41
  vivarium_public_health/treatment/__init__.py,sha256=wONElu9aJbBYwpYIovYPYaN_GYfVhPXtTeFWSdQMgA0,222
42
42
  vivarium_public_health/treatment/magic_wand.py,sha256=i9N57-MEuQv5B6dQ5iVMTAdOPghYcgiRRz-dTzigf1s,1980
43
43
  vivarium_public_health/treatment/scale_up.py,sha256=aKJmZ2G6N80n7oPkJM8IpqZOhftUBkAMBn4hR4EZzhE,7015
44
44
  vivarium_public_health/treatment/therapeutic_inertia.py,sha256=8Z97s7GfcpfLu1U1ESJSqeEk4L__a3M0GbBV21MFg2s,2346
45
- vivarium_public_health-3.0.5.dist-info/LICENSE.txt,sha256=mN4bNLUQNcN9njYRc_3jCZkfPySVpmM6MRps104FxA4,1548
46
- vivarium_public_health-3.0.5.dist-info/METADATA,sha256=FX6CeaoApBMGJFO3USOMhAIsMpl7srL1gQIkUV8Ay54,4061
47
- vivarium_public_health-3.0.5.dist-info/WHEEL,sha256=UvcQYKBHoFqaQd6LKyqHw9fxEolWLQnlzP0h_LgJAfI,91
48
- vivarium_public_health-3.0.5.dist-info/top_level.txt,sha256=VVInlpzCFD0UNNhjOq_j-a29odzjwUwYFTGfvqbi4dY,23
49
- vivarium_public_health-3.0.5.dist-info/RECORD,,
45
+ vivarium_public_health-3.0.7.dist-info/LICENSE.txt,sha256=mN4bNLUQNcN9njYRc_3jCZkfPySVpmM6MRps104FxA4,1548
46
+ vivarium_public_health-3.0.7.dist-info/METADATA,sha256=yrIrajFSQQDZMMSZMwVgi8dW3iHFLhEDnmKnyspCDiY,4061
47
+ vivarium_public_health-3.0.7.dist-info/WHEEL,sha256=cVxcB9AmuTcXqmwrtPhNK88dr7IR_b6qagTj0UvIEbY,91
48
+ vivarium_public_health-3.0.7.dist-info/top_level.txt,sha256=VVInlpzCFD0UNNhjOq_j-a29odzjwUwYFTGfvqbi4dY,23
49
+ vivarium_public_health-3.0.7.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (74.0.0)
2
+ Generator: setuptools (74.1.2)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5