vivarium-public-health 2.3.3__py3-none-any.whl → 3.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vivarium_public_health/_version.py +1 -1
 - vivarium_public_health/disease/model.py +23 -21
 - vivarium_public_health/disease/models.py +1 -0
 - vivarium_public_health/disease/special_disease.py +40 -41
 - vivarium_public_health/disease/state.py +42 -125
 - vivarium_public_health/disease/transition.py +70 -27
 - vivarium_public_health/mslt/delay.py +1 -0
 - vivarium_public_health/mslt/disease.py +1 -0
 - vivarium_public_health/mslt/intervention.py +1 -0
 - vivarium_public_health/mslt/magic_wand_components.py +1 -0
 - vivarium_public_health/mslt/observer.py +1 -0
 - vivarium_public_health/mslt/population.py +1 -0
 - vivarium_public_health/plugins/parser.py +61 -31
 - vivarium_public_health/population/add_new_birth_cohorts.py +2 -3
 - vivarium_public_health/population/base_population.py +2 -1
 - vivarium_public_health/population/mortality.py +83 -80
 - vivarium_public_health/{metrics → results}/__init__.py +2 -0
 - vivarium_public_health/results/columns.py +22 -0
 - vivarium_public_health/results/disability.py +187 -0
 - vivarium_public_health/results/disease.py +222 -0
 - vivarium_public_health/results/mortality.py +186 -0
 - vivarium_public_health/results/observer.py +78 -0
 - vivarium_public_health/results/risk.py +138 -0
 - vivarium_public_health/results/simple_cause.py +18 -0
 - vivarium_public_health/{metrics → results}/stratification.py +10 -8
 - vivarium_public_health/risks/__init__.py +1 -2
 - vivarium_public_health/risks/base_risk.py +134 -29
 - vivarium_public_health/risks/data_transformations.py +65 -326
 - vivarium_public_health/risks/distributions.py +315 -145
 - vivarium_public_health/risks/effect.py +376 -75
 - vivarium_public_health/risks/implementations/low_birth_weight_and_short_gestation.py +61 -89
 - vivarium_public_health/treatment/magic_wand.py +1 -0
 - vivarium_public_health/treatment/scale_up.py +1 -0
 - vivarium_public_health/treatment/therapeutic_inertia.py +1 -0
 - vivarium_public_health/utilities.py +17 -2
 - {vivarium_public_health-2.3.3.dist-info → vivarium_public_health-3.0.1.dist-info}/METADATA +12 -2
 - vivarium_public_health-3.0.1.dist-info/RECORD +49 -0
 - {vivarium_public_health-2.3.3.dist-info → vivarium_public_health-3.0.1.dist-info}/WHEEL +1 -1
 - vivarium_public_health/metrics/disability.py +0 -118
 - vivarium_public_health/metrics/disease.py +0 -136
 - vivarium_public_health/metrics/mortality.py +0 -144
 - vivarium_public_health/metrics/risk.py +0 -110
 - vivarium_public_health/testing/__init__.py +0 -0
 - vivarium_public_health/testing/mock_artifact.py +0 -145
 - vivarium_public_health/testing/utils.py +0 -71
 - vivarium_public_health-2.3.3.dist-info/RECORD +0 -49
 - {vivarium_public_health-2.3.3.dist-info → vivarium_public_health-3.0.1.dist-info}/LICENSE.txt +0 -0
 - {vivarium_public_health-2.3.3.dist-info → vivarium_public_health-3.0.1.dist-info}/top_level.txt +0 -0
 
| 
         @@ -7,52 +7,86 @@ This module contains tools for modeling several different risk 
     | 
|
| 
       7 
7 
     | 
    
         
             
            exposure distributions.
         
     | 
| 
       8 
8 
     | 
    
         | 
| 
       9 
9 
     | 
    
         
             
            """
         
     | 
| 
       10 
     | 
    
         
            -
             
     | 
| 
      
 10 
     | 
    
         
            +
             
     | 
| 
      
 11 
     | 
    
         
            +
            from abc import ABC, abstractmethod
         
     | 
| 
      
 12 
     | 
    
         
            +
            from typing import Callable, Dict, List, Optional, Union
         
     | 
| 
       11 
13 
     | 
    
         | 
| 
       12 
14 
     | 
    
         
             
            import numpy as np
         
     | 
| 
       13 
15 
     | 
    
         
             
            import pandas as pd
         
     | 
| 
       14 
     | 
    
         
            -
             
     | 
| 
      
 16 
     | 
    
         
            +
            import risk_distributions as rd
         
     | 
| 
      
 17 
     | 
    
         
            +
            from layered_config_tree import LayeredConfigTree
         
     | 
| 
       15 
18 
     | 
    
         
             
            from vivarium import Component
         
     | 
| 
       16 
19 
     | 
    
         
             
            from vivarium.framework.engine import Builder
         
     | 
| 
       17 
20 
     | 
    
         
             
            from vivarium.framework.population import SimulantData
         
     | 
| 
       18 
21 
     | 
    
         
             
            from vivarium.framework.values import Pipeline, list_combiner, union_post_processor
         
     | 
| 
       19 
22 
     | 
    
         | 
| 
       20 
     | 
    
         
            -
            from vivarium_public_health.risks.data_transformations import  
     | 
| 
       21 
     | 
    
         
            -
            from vivarium_public_health.utilities import EntityString
         
     | 
| 
      
 23 
     | 
    
         
            +
            from vivarium_public_health.risks.data_transformations import pivot_categorical
         
     | 
| 
      
 24 
     | 
    
         
            +
            from vivarium_public_health.utilities import EntityString, get_lookup_columns
         
     | 
| 
       22 
25 
     | 
    
         | 
| 
       23 
26 
     | 
    
         | 
| 
       24 
27 
     | 
    
         
             
            class MissingDataError(Exception):
         
     | 
| 
       25 
28 
     | 
    
         
             
                pass
         
     | 
| 
       26 
29 
     | 
    
         | 
| 
       27 
30 
     | 
    
         | 
| 
       28 
     | 
    
         
            -
             
     | 
| 
       29 
     | 
    
         
            -
            # adaptor pattern, which is gross, but would require some more difficult
         
     | 
| 
       30 
     | 
    
         
            -
            # refactoring which is thoroughly out of scope right now. -J.C. 8/25/19
         
     | 
| 
       31 
     | 
    
         
            -
            class SimulationDistribution(Component):
         
     | 
| 
       32 
     | 
    
         
            -
                """Wrapper around a variety of distribution implementations."""
         
     | 
| 
      
 31 
     | 
    
         
            +
            class RiskExposureDistribution(Component, ABC):
         
     | 
| 
       33 
32 
     | 
    
         | 
| 
       34 
33 
     | 
    
         
             
                #####################
         
     | 
| 
       35 
34 
     | 
    
         
             
                # Lifecycle methods #
         
     | 
| 
       36 
35 
     | 
    
         
             
                #####################
         
     | 
| 
       37 
36 
     | 
    
         | 
| 
       38 
     | 
    
         
            -
                def __init__( 
     | 
| 
      
 37 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 38 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 39 
     | 
    
         
            +
                    risk: EntityString,
         
     | 
| 
      
 40 
     | 
    
         
            +
                    distribution_type: str,
         
     | 
| 
      
 41 
     | 
    
         
            +
                    exposure_data: Optional[Union[int, float, pd.DataFrame]] = None,
         
     | 
| 
      
 42 
     | 
    
         
            +
                ) -> None:
         
     | 
| 
       39 
43 
     | 
    
         
             
                    super().__init__()
         
     | 
| 
       40 
     | 
    
         
            -
                    self.risk =  
     | 
| 
      
 44 
     | 
    
         
            +
                    self.risk = risk
         
     | 
| 
      
 45 
     | 
    
         
            +
                    self.distribution_type = distribution_type
         
     | 
| 
      
 46 
     | 
    
         
            +
                    self._exposure_data = exposure_data
         
     | 
| 
      
 47 
     | 
    
         
            +
             
     | 
| 
      
 48 
     | 
    
         
            +
                    self.parameters_pipeline_name = f"{self.risk}.exposure_parameters"
         
     | 
| 
       41 
49 
     | 
    
         | 
| 
      
 50 
     | 
    
         
            +
                #################
         
     | 
| 
      
 51 
     | 
    
         
            +
                # Setup methods #
         
     | 
| 
      
 52 
     | 
    
         
            +
                #################
         
     | 
| 
      
 53 
     | 
    
         
            +
             
     | 
| 
      
 54 
     | 
    
         
            +
                def get_configuration(self, builder: "Builder") -> Optional[LayeredConfigTree]:
         
     | 
| 
      
 55 
     | 
    
         
            +
                    return builder.configuration[self.risk]
         
     | 
| 
      
 56 
     | 
    
         
            +
             
     | 
| 
      
 57 
     | 
    
         
            +
                @abstractmethod
         
     | 
| 
      
 58 
     | 
    
         
            +
                def build_all_lookup_tables(self, builder: "Builder") -> None:
         
     | 
| 
      
 59 
     | 
    
         
            +
                    raise NotImplementedError
         
     | 
| 
      
 60 
     | 
    
         
            +
             
     | 
| 
      
 61 
     | 
    
         
            +
                def get_exposure_data(self, builder: Builder) -> Union[int, float, pd.DataFrame]:
         
     | 
| 
      
 62 
     | 
    
         
            +
                    if self._exposure_data is not None:
         
     | 
| 
      
 63 
     | 
    
         
            +
                        return self._exposure_data
         
     | 
| 
      
 64 
     | 
    
         
            +
                    return self.get_data(builder, self.configuration["data_sources"]["exposure"])
         
     | 
| 
      
 65 
     | 
    
         
            +
             
     | 
| 
      
 66 
     | 
    
         
            +
                # noinspection PyAttributeOutsideInit
         
     | 
| 
       42 
67 
     | 
    
         
             
                def setup(self, builder: Builder) -> None:
         
     | 
| 
       43 
     | 
    
         
            -
                     
     | 
| 
       44 
     | 
    
         
            -
                    self. 
     | 
| 
       45 
     | 
    
         
            -
             
     | 
| 
      
 68 
     | 
    
         
            +
                    self.exposure_parameters = self.get_exposure_parameter_pipeline(builder)
         
     | 
| 
      
 69 
     | 
    
         
            +
                    if self.exposure_parameters.name != self.parameters_pipeline_name:
         
     | 
| 
      
 70 
     | 
    
         
            +
                        raise ValueError(
         
     | 
| 
      
 71 
     | 
    
         
            +
                            "Expected exposure parameters pipeline to be named "
         
     | 
| 
      
 72 
     | 
    
         
            +
                            f"{self.parameters_pipeline_name}, "
         
     | 
| 
      
 73 
     | 
    
         
            +
                            f"but found {self.exposure_parameters.name}."
         
     | 
| 
      
 74 
     | 
    
         
            +
                        )
         
     | 
| 
      
 75 
     | 
    
         
            +
             
     | 
| 
      
 76 
     | 
    
         
            +
                @abstractmethod
         
     | 
| 
      
 77 
     | 
    
         
            +
                def get_exposure_parameter_pipeline(self, builder: Builder) -> Pipeline:
         
     | 
| 
      
 78 
     | 
    
         
            +
                    raise NotImplementedError
         
     | 
| 
       46 
79 
     | 
    
         | 
| 
       47 
80 
     | 
    
         
             
                ##################
         
     | 
| 
       48 
81 
     | 
    
         
             
                # Public methods #
         
     | 
| 
       49 
82 
     | 
    
         
             
                ##################
         
     | 
| 
       50 
83 
     | 
    
         | 
| 
       51 
     | 
    
         
            -
                 
     | 
| 
       52 
     | 
    
         
            -
             
     | 
| 
      
 84 
     | 
    
         
            +
                @abstractmethod
         
     | 
| 
      
 85 
     | 
    
         
            +
                def ppf(self, quantiles: pd.Series) -> pd.Series:
         
     | 
| 
      
 86 
     | 
    
         
            +
                    raise NotImplementedError
         
     | 
| 
       53 
87 
     | 
    
         | 
| 
       54 
88 
     | 
    
         | 
| 
       55 
     | 
    
         
            -
            class  
     | 
| 
      
 89 
     | 
    
         
            +
            class EnsembleDistribution(RiskExposureDistribution):
         
     | 
| 
       56 
90 
     | 
    
         
             
                ##############
         
     | 
| 
       57 
91 
     | 
    
         
             
                # Properties #
         
     | 
| 
       58 
92 
     | 
    
         
             
                ##############
         
     | 
| 
         @@ -73,38 +107,71 @@ class EnsembleSimulation(Component): 
     | 
|
| 
       73 
107 
     | 
    
         
             
                # Lifecycle methods #
         
     | 
| 
       74 
108 
     | 
    
         
             
                #####################
         
     | 
| 
       75 
109 
     | 
    
         | 
| 
       76 
     | 
    
         
            -
                def __init__(self, risk 
     | 
| 
       77 
     | 
    
         
            -
                    super().__init__()
         
     | 
| 
       78 
     | 
    
         
            -
                    self.risk = EntityString(risk)
         
     | 
| 
       79 
     | 
    
         
            -
                    self._weights, self._parameters = self.get_parameters(weights, mean, sd)
         
     | 
| 
      
 110 
     | 
    
         
            +
                def __init__(self, risk: EntityString, distribution_type: str = "ensemble") -> None:
         
     | 
| 
      
 111 
     | 
    
         
            +
                    super().__init__(risk, distribution_type)
         
     | 
| 
       80 
112 
     | 
    
         
             
                    self._propensity = f"ensemble_propensity_{self.risk}"
         
     | 
| 
       81 
113 
     | 
    
         | 
| 
       82 
     | 
    
         
            -
                 
     | 
| 
       83 
     | 
    
         
            -
             
     | 
| 
       84 
     | 
    
         
            -
             
     | 
| 
      
 114 
     | 
    
         
            +
                #################
         
     | 
| 
      
 115 
     | 
    
         
            +
                # Setup methods #
         
     | 
| 
      
 116 
     | 
    
         
            +
                #################
         
     | 
| 
      
 117 
     | 
    
         
            +
             
     | 
| 
      
 118 
     | 
    
         
            +
                def build_all_lookup_tables(self, builder: Builder) -> None:
         
     | 
| 
      
 119 
     | 
    
         
            +
                    exposure_data = self.get_exposure_data(builder)
         
     | 
| 
      
 120 
     | 
    
         
            +
                    standard_deviation = self.get_data(
         
     | 
| 
      
 121 
     | 
    
         
            +
                        builder,
         
     | 
| 
      
 122 
     | 
    
         
            +
                        self.configuration["data_sources"]["exposure_standard_deviation"],
         
     | 
| 
      
 123 
     | 
    
         
            +
                    )
         
     | 
| 
      
 124 
     | 
    
         
            +
                    weights_source = self.configuration["data_sources"]["ensemble_distribution_weights"]
         
     | 
| 
      
 125 
     | 
    
         
            +
                    raw_weights = self.get_data(builder, weights_source)
         
     | 
| 
      
 126 
     | 
    
         
            +
             
     | 
| 
      
 127 
     | 
    
         
            +
                    glnorm_mask = raw_weights["parameter"] == "glnorm"
         
     | 
| 
      
 128 
     | 
    
         
            +
                    if np.any(raw_weights.loc[glnorm_mask, self.get_value_columns(weights_source)]):
         
     | 
| 
      
 129 
     | 
    
         
            +
                        raise NotImplementedError("glnorm distribution is not supported")
         
     | 
| 
      
 130 
     | 
    
         
            +
                    raw_weights = raw_weights[~glnorm_mask]
         
     | 
| 
      
 131 
     | 
    
         
            +
             
     | 
| 
      
 132 
     | 
    
         
            +
                    distributions = list(raw_weights["parameter"].unique())
         
     | 
| 
      
 133 
     | 
    
         
            +
             
     | 
| 
      
 134 
     | 
    
         
            +
                    raw_weights = pivot_categorical(
         
     | 
| 
      
 135 
     | 
    
         
            +
                        builder, self.risk, raw_weights, pivot_column="parameter", reset_index=False
         
     | 
| 
       85 
136 
     | 
    
         
             
                    )
         
     | 
| 
      
 137 
     | 
    
         
            +
             
     | 
| 
      
 138 
     | 
    
         
            +
                    weights, parameters = rd.EnsembleDistribution.get_parameters(
         
     | 
| 
      
 139 
     | 
    
         
            +
                        raw_weights,
         
     | 
| 
      
 140 
     | 
    
         
            +
                        mean=get_risk_distribution_parameter(self.get_value_columns, exposure_data),
         
     | 
| 
      
 141 
     | 
    
         
            +
                        sd=get_risk_distribution_parameter(self.get_value_columns, standard_deviation),
         
     | 
| 
      
 142 
     | 
    
         
            +
                    )
         
     | 
| 
      
 143 
     | 
    
         
            +
             
     | 
| 
      
 144 
     | 
    
         
            +
                    distribution_weights_table = self.build_lookup_table(
         
     | 
| 
      
 145 
     | 
    
         
            +
                        builder, weights.reset_index(), distributions
         
     | 
| 
      
 146 
     | 
    
         
            +
                    )
         
     | 
| 
      
 147 
     | 
    
         
            +
                    self.lookup_tables["ensemble_distribution_weights"] = distribution_weights_table
         
     | 
| 
      
 148 
     | 
    
         
            +
                    key_columns = distribution_weights_table.key_columns
         
     | 
| 
      
 149 
     | 
    
         
            +
                    parameter_columns = distribution_weights_table.parameter_columns
         
     | 
| 
      
 150 
     | 
    
         
            +
             
     | 
| 
       86 
151 
     | 
    
         
             
                    self.parameters = {
         
     | 
| 
       87 
     | 
    
         
            -
                         
     | 
| 
       88 
     | 
    
         
            -
                             
     | 
| 
      
 152 
     | 
    
         
            +
                        parameter: builder.lookup.build_table(
         
     | 
| 
      
 153 
     | 
    
         
            +
                            data.reset_index(),
         
     | 
| 
      
 154 
     | 
    
         
            +
                            key_columns=key_columns,
         
     | 
| 
      
 155 
     | 
    
         
            +
                            parameter_columns=parameter_columns,
         
     | 
| 
       89 
156 
     | 
    
         
             
                        )
         
     | 
| 
       90 
     | 
    
         
            -
                        for  
     | 
| 
      
 157 
     | 
    
         
            +
                        for parameter, data in parameters.items()
         
     | 
| 
       91 
158 
     | 
    
         
             
                    }
         
     | 
| 
       92 
159 
     | 
    
         | 
| 
      
 160 
     | 
    
         
            +
                def setup(self, builder: Builder) -> None:
         
     | 
| 
      
 161 
     | 
    
         
            +
                    super().setup(builder)
         
     | 
| 
       93 
162 
     | 
    
         
             
                    self.randomness = builder.randomness.get_stream(self._propensity)
         
     | 
| 
       94 
163 
     | 
    
         | 
| 
       95 
     | 
    
         
            -
                 
     | 
| 
       96 
     | 
    
         
            -
             
     | 
| 
       97 
     | 
    
         
            -
             
     | 
| 
       98 
     | 
    
         
            -
             
     | 
| 
       99 
     | 
    
         
            -
             
     | 
| 
       100 
     | 
    
         
            -
             
     | 
| 
       101 
     | 
    
         
            -
             
     | 
| 
       102 
     | 
    
         
            -
             
     | 
| 
       103 
     | 
    
         
            -
                     
     | 
| 
       104 
     | 
    
         
            -
             
     | 
| 
       105 
     | 
    
         
            -
                     
     | 
| 
       106 
     | 
    
         
            -
                        name: p.reset_index() for name, p in parameters.items()
         
     | 
| 
       107 
     | 
    
         
            -
                    }
         
     | 
| 
      
 164 
     | 
    
         
            +
                def get_exposure_parameter_pipeline(self, builder: Builder) -> Pipeline:
         
     | 
| 
      
 165 
     | 
    
         
            +
                    # This pipeline is not needed for ensemble distributions, so just
         
     | 
| 
      
 166 
     | 
    
         
            +
                    # register a dummy pipeline
         
     | 
| 
      
 167 
     | 
    
         
            +
                    def raise_not_implemented():
         
     | 
| 
      
 168 
     | 
    
         
            +
                        raise NotImplementedError(
         
     | 
| 
      
 169 
     | 
    
         
            +
                            "EnsembleDistribution does not use exposure parameters."
         
     | 
| 
      
 170 
     | 
    
         
            +
                        )
         
     | 
| 
      
 171 
     | 
    
         
            +
             
     | 
| 
      
 172 
     | 
    
         
            +
                    return builder.value.register_value_producer(
         
     | 
| 
      
 173 
     | 
    
         
            +
                        self.parameters_pipeline_name, lambda *_: raise_not_implemented()
         
     | 
| 
      
 174 
     | 
    
         
            +
                    )
         
     | 
| 
       108 
175 
     | 
    
         | 
| 
       109 
176 
     | 
    
         
             
                ########################
         
     | 
| 
       110 
177 
     | 
    
         
             
                # Event-driven methods #
         
     | 
| 
         @@ -120,149 +187,256 @@ class EnsembleSimulation(Component): 
     | 
|
| 
       120 
187 
     | 
    
         
             
                # Public methods #
         
     | 
| 
       121 
188 
     | 
    
         
             
                ##################
         
     | 
| 
       122 
189 
     | 
    
         | 
| 
       123 
     | 
    
         
            -
                def ppf(self,  
     | 
| 
       124 
     | 
    
         
            -
                    if not  
     | 
| 
       125 
     | 
    
         
            -
                         
     | 
| 
       126 
     | 
    
         
            -
                        weights = self. 
     | 
| 
      
 190 
     | 
    
         
            +
                def ppf(self, quantiles: pd.Series) -> pd.Series:
         
     | 
| 
      
 191 
     | 
    
         
            +
                    if not quantiles.empty:
         
     | 
| 
      
 192 
     | 
    
         
            +
                        quantiles = clip(quantiles)
         
     | 
| 
      
 193 
     | 
    
         
            +
                        weights = self.lookup_tables["ensemble_distribution_weights"](quantiles.index)
         
     | 
| 
       127 
194 
     | 
    
         
             
                        parameters = {
         
     | 
| 
       128 
     | 
    
         
            -
                            name:  
     | 
| 
      
 195 
     | 
    
         
            +
                            name: param(quantiles.index) for name, param in self.parameters.items()
         
     | 
| 
       129 
196 
     | 
    
         
             
                        }
         
     | 
| 
       130 
     | 
    
         
            -
                        ensemble_propensity = self.population_view.get( 
     | 
| 
       131 
     | 
    
         
            -
                        x = EnsembleDistribution(weights, parameters).ppf( 
     | 
| 
      
 197 
     | 
    
         
            +
                        ensemble_propensity = self.population_view.get(quantiles.index).iloc[:, 0]
         
     | 
| 
      
 198 
     | 
    
         
            +
                        x = rd.EnsembleDistribution(weights, parameters).ppf(
         
     | 
| 
      
 199 
     | 
    
         
            +
                            quantiles, ensemble_propensity
         
     | 
| 
      
 200 
     | 
    
         
            +
                        )
         
     | 
| 
       132 
201 
     | 
    
         
             
                        x[x.isnull()] = 0
         
     | 
| 
       133 
202 
     | 
    
         
             
                    else:
         
     | 
| 
       134 
203 
     | 
    
         
             
                        x = pd.Series([])
         
     | 
| 
       135 
204 
     | 
    
         
             
                    return x
         
     | 
| 
       136 
205 
     | 
    
         | 
| 
       137 
206 
     | 
    
         | 
| 
       138 
     | 
    
         
            -
            class ContinuousDistribution( 
     | 
| 
      
 207 
     | 
    
         
            +
            class ContinuousDistribution(RiskExposureDistribution):
         
     | 
| 
       139 
208 
     | 
    
         
             
                #####################
         
     | 
| 
       140 
209 
     | 
    
         
             
                # Lifecycle methods #
         
     | 
| 
       141 
210 
     | 
    
         
             
                #####################
         
     | 
| 
       142 
211 
     | 
    
         | 
| 
       143 
     | 
    
         
            -
                def __init__(self, risk 
     | 
| 
       144 
     | 
    
         
            -
                    super().__init__()
         
     | 
| 
       145 
     | 
    
         
            -
                    self. 
     | 
| 
       146 
     | 
    
         
            -
                     
     | 
| 
       147 
     | 
    
         
            -
             
     | 
| 
      
 212 
     | 
    
         
            +
                def __init__(self, risk: EntityString, distribution_type: str) -> None:
         
     | 
| 
      
 213 
     | 
    
         
            +
                    super().__init__(risk, distribution_type)
         
     | 
| 
      
 214 
     | 
    
         
            +
                    self.standard_deviation = None
         
     | 
| 
      
 215 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 216 
     | 
    
         
            +
                        self._distribution = {
         
     | 
| 
      
 217 
     | 
    
         
            +
                            "normal": rd.Normal,
         
     | 
| 
      
 218 
     | 
    
         
            +
                            "lognormal": rd.LogNormal,
         
     | 
| 
      
 219 
     | 
    
         
            +
                        }[distribution_type]
         
     | 
| 
      
 220 
     | 
    
         
            +
                    except KeyError:
         
     | 
| 
      
 221 
     | 
    
         
            +
                        raise NotImplementedError(
         
     | 
| 
      
 222 
     | 
    
         
            +
                            f"Distribution type {distribution_type} is not supported for "
         
     | 
| 
      
 223 
     | 
    
         
            +
                            f"risk {risk.name}."
         
     | 
| 
      
 224 
     | 
    
         
            +
                        )
         
     | 
| 
       148 
225 
     | 
    
         | 
| 
       149 
     | 
    
         
            -
                 
     | 
| 
       150 
     | 
    
         
            -
             
     | 
| 
       151 
     | 
    
         
            -
             
     | 
| 
      
 226 
     | 
    
         
            +
                #################
         
     | 
| 
      
 227 
     | 
    
         
            +
                # Setup methods #
         
     | 
| 
      
 228 
     | 
    
         
            +
                #################
         
     | 
| 
      
 229 
     | 
    
         
            +
             
     | 
| 
      
 230 
     | 
    
         
            +
                def build_all_lookup_tables(self, builder: "Builder") -> None:
         
     | 
| 
      
 231 
     | 
    
         
            +
                    exposure_data = self.get_exposure_data(builder)
         
     | 
| 
      
 232 
     | 
    
         
            +
                    standard_deviation = self.get_data(
         
     | 
| 
      
 233 
     | 
    
         
            +
                        builder, self.configuration["data_sources"]["exposure_standard_deviation"]
         
     | 
| 
      
 234 
     | 
    
         
            +
                    )
         
     | 
| 
      
 235 
     | 
    
         
            +
                    parameters = self._distribution.get_parameters(
         
     | 
| 
      
 236 
     | 
    
         
            +
                        mean=get_risk_distribution_parameter(self.get_value_columns, exposure_data),
         
     | 
| 
      
 237 
     | 
    
         
            +
                        sd=get_risk_distribution_parameter(self.get_value_columns, standard_deviation),
         
     | 
| 
       152 
238 
     | 
    
         
             
                    )
         
     | 
| 
       153 
239 
     | 
    
         | 
| 
       154 
     | 
    
         
            -
             
     | 
| 
       155 
     | 
    
         
            -
             
     | 
| 
       156 
     | 
    
         
            -
             
     | 
| 
      
 240 
     | 
    
         
            +
                    self.lookup_tables["parameters"] = self.build_lookup_table(
         
     | 
| 
      
 241 
     | 
    
         
            +
                        builder, parameters.reset_index(), list(parameters.columns)
         
     | 
| 
      
 242 
     | 
    
         
            +
                    )
         
     | 
| 
       157 
243 
     | 
    
         | 
| 
       158 
     | 
    
         
            -
                def  
     | 
| 
       159 
     | 
    
         
            -
                     
     | 
| 
       160 
     | 
    
         
            -
             
     | 
| 
       161 
     | 
    
         
            -
             
     | 
| 
       162 
     | 
    
         
            -
             
     | 
| 
      
 244 
     | 
    
         
            +
                def get_exposure_parameter_pipeline(self, builder: Builder) -> Pipeline:
         
     | 
| 
      
 245 
     | 
    
         
            +
                    return builder.value.register_value_producer(
         
     | 
| 
      
 246 
     | 
    
         
            +
                        self.parameters_pipeline_name,
         
     | 
| 
      
 247 
     | 
    
         
            +
                        source=self.lookup_tables["parameters"],
         
     | 
| 
      
 248 
     | 
    
         
            +
                        requires_columns=get_lookup_columns([self.lookup_tables["parameters"]]),
         
     | 
| 
      
 249 
     | 
    
         
            +
                    )
         
     | 
| 
       163 
250 
     | 
    
         | 
| 
       164 
251 
     | 
    
         
             
                ##################
         
     | 
| 
       165 
252 
     | 
    
         
             
                # Public methods #
         
     | 
| 
       166 
253 
     | 
    
         
             
                ##################
         
     | 
| 
       167 
254 
     | 
    
         | 
| 
       168 
     | 
    
         
            -
                def ppf(self,  
     | 
| 
       169 
     | 
    
         
            -
                    if not  
     | 
| 
       170 
     | 
    
         
            -
                         
     | 
| 
       171 
     | 
    
         
            -
                         
     | 
| 
      
 255 
     | 
    
         
            +
                def ppf(self, quantiles: pd.Series) -> pd.Series:
         
     | 
| 
      
 256 
     | 
    
         
            +
                    if not quantiles.empty:
         
     | 
| 
      
 257 
     | 
    
         
            +
                        quantiles = clip(quantiles)
         
     | 
| 
      
 258 
     | 
    
         
            +
                        parameters = self.exposure_parameters(quantiles.index)
         
     | 
| 
      
 259 
     | 
    
         
            +
                        x = self._distribution(parameters=parameters).ppf(quantiles)
         
     | 
| 
       172 
260 
     | 
    
         
             
                        x[x.isnull()] = 0
         
     | 
| 
       173 
261 
     | 
    
         
             
                    else:
         
     | 
| 
       174 
262 
     | 
    
         
             
                        x = pd.Series([])
         
     | 
| 
       175 
263 
     | 
    
         
             
                    return x
         
     | 
| 
       176 
264 
     | 
    
         | 
| 
       177 
265 
     | 
    
         | 
| 
       178 
     | 
    
         
            -
            class PolytomousDistribution( 
     | 
| 
       179 
     | 
    
         
            -
                 
     | 
| 
       180 
     | 
    
         
            -
                 
     | 
| 
       181 
     | 
    
         
            -
             
     | 
| 
       182 
     | 
    
         
            -
             
     | 
| 
       183 
     | 
    
         
            -
             
     | 
| 
       184 
     | 
    
         
            -
                    super().__init__()
         
     | 
| 
       185 
     | 
    
         
            -
                    self.risk = EntityString(risk)
         
     | 
| 
       186 
     | 
    
         
            -
                    self._exposure_data = exposure_data
         
     | 
| 
       187 
     | 
    
         
            -
                    self.exposure_parameters_pipeline_name = f"{self.risk}.exposure_parameters"
         
     | 
| 
       188 
     | 
    
         
            -
             
     | 
| 
       189 
     | 
    
         
            -
                # noinspection PyAttributeOutsideInit
         
     | 
| 
       190 
     | 
    
         
            -
                def setup(self, builder: Builder) -> None:
         
     | 
| 
       191 
     | 
    
         
            -
                    self.categories = self.get_categories()
         
     | 
| 
       192 
     | 
    
         
            -
                    self.exposure = self.get_exposure_parameters(builder)
         
     | 
| 
      
 266 
     | 
    
         
            +
            class PolytomousDistribution(RiskExposureDistribution):
         
     | 
| 
      
 267 
     | 
    
         
            +
                @property
         
     | 
| 
      
 268 
     | 
    
         
            +
                def categories(self) -> List[str]:
         
     | 
| 
      
 269 
     | 
    
         
            +
                    # These need to be sorted so the cumulative sum is in the ocrrect order of categories
         
     | 
| 
      
 270 
     | 
    
         
            +
                    # and results are therefore reproducible and correct
         
     | 
| 
      
 271 
     | 
    
         
            +
                    return sorted(self.lookup_tables["exposure"].value_columns)
         
     | 
| 
       193 
272 
     | 
    
         | 
| 
       194 
273 
     | 
    
         
             
                #################
         
     | 
| 
       195 
274 
     | 
    
         
             
                # Setup methods #
         
     | 
| 
       196 
275 
     | 
    
         
             
                #################
         
     | 
| 
       197 
276 
     | 
    
         | 
| 
       198 
     | 
    
         
            -
                def  
     | 
| 
       199 
     | 
    
         
            -
                     
     | 
| 
       200 
     | 
    
         
            -
             
     | 
| 
       201 
     | 
    
         
            -
             
     | 
| 
      
 277 
     | 
    
         
            +
                def build_all_lookup_tables(self, builder: "Builder") -> None:
         
     | 
| 
      
 278 
     | 
    
         
            +
                    exposure_data = self.get_exposure_data(builder)
         
     | 
| 
      
 279 
     | 
    
         
            +
                    exposure_value_columns = self.get_exposure_value_columns(exposure_data)
         
     | 
| 
      
 280 
     | 
    
         
            +
             
     | 
| 
      
 281 
     | 
    
         
            +
                    if isinstance(exposure_data, pd.DataFrame):
         
     | 
| 
      
 282 
     | 
    
         
            +
                        exposure_data = pivot_categorical(builder, self.risk, exposure_data, "parameter")
         
     | 
| 
      
 283 
     | 
    
         
            +
             
     | 
| 
      
 284 
     | 
    
         
            +
                    self.lookup_tables["exposure"] = self.build_lookup_table(
         
     | 
| 
      
 285 
     | 
    
         
            +
                        builder, exposure_data, exposure_value_columns
         
     | 
| 
       202 
286 
     | 
    
         
             
                    )
         
     | 
| 
       203 
287 
     | 
    
         | 
| 
       204 
     | 
    
         
            -
                def  
     | 
| 
      
 288 
     | 
    
         
            +
                def get_exposure_value_columns(
         
     | 
| 
      
 289 
     | 
    
         
            +
                    self, exposure_data: Union[int, float, pd.DataFrame]
         
     | 
| 
      
 290 
     | 
    
         
            +
                ) -> Optional[List[str]]:
         
     | 
| 
      
 291 
     | 
    
         
            +
                    if isinstance(exposure_data, pd.DataFrame):
         
     | 
| 
      
 292 
     | 
    
         
            +
                        return list(exposure_data["parameter"].unique())
         
     | 
| 
      
 293 
     | 
    
         
            +
                    return None
         
     | 
| 
      
 294 
     | 
    
         
            +
             
     | 
| 
      
 295 
     | 
    
         
            +
                def get_exposure_parameter_pipeline(self, builder: Builder) -> Pipeline:
         
     | 
| 
       205 
296 
     | 
    
         
             
                    return builder.value.register_value_producer(
         
     | 
| 
       206 
     | 
    
         
            -
                        self. 
     | 
| 
       207 
     | 
    
         
            -
                        source= 
     | 
| 
       208 
     | 
    
         
            -
             
     | 
| 
       209 
     | 
    
         
            -
                            key_columns=["sex"],
         
     | 
| 
       210 
     | 
    
         
            -
                            parameter_columns=["age", "year"],
         
     | 
| 
       211 
     | 
    
         
            -
                        ),
         
     | 
| 
      
 297 
     | 
    
         
            +
                        self.parameters_pipeline_name,
         
     | 
| 
      
 298 
     | 
    
         
            +
                        source=self.lookup_tables["exposure"],
         
     | 
| 
      
 299 
     | 
    
         
            +
                        requires_columns=get_lookup_columns([self.lookup_tables["exposure"]]),
         
     | 
| 
       212 
300 
     | 
    
         
             
                    )
         
     | 
| 
       213 
301 
     | 
    
         | 
| 
       214 
302 
     | 
    
         
             
                ##################
         
     | 
| 
       215 
303 
     | 
    
         
             
                # Public methods #
         
     | 
| 
       216 
304 
     | 
    
         
             
                ##################
         
     | 
| 
       217 
305 
     | 
    
         | 
| 
       218 
     | 
    
         
            -
                def ppf(self,  
     | 
| 
       219 
     | 
    
         
            -
                    exposure = self. 
     | 
| 
      
 306 
     | 
    
         
            +
                def ppf(self, quantiles: pd.Series) -> pd.Series:
         
     | 
| 
      
 307 
     | 
    
         
            +
                    exposure = self.exposure_parameters(quantiles.index)
         
     | 
| 
       220 
308 
     | 
    
         
             
                    sorted_exposures = exposure[self.categories]
         
     | 
| 
       221 
309 
     | 
    
         
             
                    if not np.allclose(1, np.sum(sorted_exposures, axis=1)):
         
     | 
| 
       222 
310 
     | 
    
         
             
                        raise MissingDataError("All exposure data returned as 0.")
         
     | 
| 
       223 
311 
     | 
    
         
             
                    exposure_sum = sorted_exposures.cumsum(axis="columns")
         
     | 
| 
       224 
312 
     | 
    
         
             
                    category_index = pd.concat(
         
     | 
| 
       225 
     | 
    
         
            -
                        [exposure_sum[c] <  
     | 
| 
      
 313 
     | 
    
         
            +
                        [exposure_sum[c] < quantiles for c in exposure_sum.columns], axis=1
         
     | 
| 
       226 
314 
     | 
    
         
             
                    ).sum(axis=1)
         
     | 
| 
       227 
315 
     | 
    
         
             
                    return pd.Series(
         
     | 
| 
       228 
316 
     | 
    
         
             
                        np.array(self.categories)[category_index],
         
     | 
| 
       229 
317 
     | 
    
         
             
                        name=self.risk + ".exposure",
         
     | 
| 
       230 
     | 
    
         
            -
                        index= 
     | 
| 
      
 318 
     | 
    
         
            +
                        index=quantiles.index,
         
     | 
| 
       231 
319 
     | 
    
         
             
                    )
         
     | 
| 
       232 
320 
     | 
    
         | 
| 
       233 
321 
     | 
    
         | 
| 
       234 
     | 
    
         
            -
            class DichotomousDistribution( 
     | 
| 
       235 
     | 
    
         
            -
                #####################
         
     | 
| 
       236 
     | 
    
         
            -
                # Lifecycle methods #
         
     | 
| 
       237 
     | 
    
         
            -
                #####################
         
     | 
| 
      
 322 
     | 
    
         
            +
            class DichotomousDistribution(RiskExposureDistribution):
         
     | 
| 
       238 
323 
     | 
    
         | 
| 
       239 
     | 
    
         
            -
                 
     | 
| 
       240 
     | 
    
         
            -
             
     | 
| 
       241 
     | 
    
         
            -
             
     | 
| 
       242 
     | 
    
         
            -
                    self._exposure_data = exposure_data.drop(columns="cat2")
         
     | 
| 
      
 324 
     | 
    
         
            +
                #################
         
     | 
| 
      
 325 
     | 
    
         
            +
                # Setup methods #
         
     | 
| 
      
 326 
     | 
    
         
            +
                #################
         
     | 
| 
       243 
327 
     | 
    
         | 
| 
       244 
     | 
    
         
            -
                 
     | 
| 
       245 
     | 
    
         
            -
             
     | 
| 
       246 
     | 
    
         
            -
                     
     | 
| 
       247 
     | 
    
         
            -
             
     | 
| 
      
 328 
     | 
    
         
            +
                def build_all_lookup_tables(self, builder: "Builder") -> None:
         
     | 
| 
      
 329 
     | 
    
         
            +
                    exposure_data = self.get_exposure_data(builder)
         
     | 
| 
      
 330 
     | 
    
         
            +
                    exposure_value_columns = self.get_exposure_value_columns(exposure_data)
         
     | 
| 
      
 331 
     | 
    
         
            +
             
     | 
| 
      
 332 
     | 
    
         
            +
                    if isinstance(exposure_data, pd.DataFrame):
         
     | 
| 
      
 333 
     | 
    
         
            +
                        any_negatives = (exposure_data[exposure_value_columns] < 0).any().any()
         
     | 
| 
      
 334 
     | 
    
         
            +
                        any_over_one = (exposure_data[exposure_value_columns] > 1).any().any()
         
     | 
| 
      
 335 
     | 
    
         
            +
                        if any_negatives or any_over_one:
         
     | 
| 
      
 336 
     | 
    
         
            +
                            raise ValueError(f"All exposures must be in the range [0, 1] for {self.risk}")
         
     | 
| 
      
 337 
     | 
    
         
            +
                    elif exposure_data < 0 or exposure_data > 1:
         
     | 
| 
      
 338 
     | 
    
         
            +
                        raise ValueError(f"Exposure must be in the range [0, 1] for {self.risk}")
         
     | 
| 
      
 339 
     | 
    
         
            +
             
     | 
| 
      
 340 
     | 
    
         
            +
                    self.lookup_tables["exposure"] = self.build_lookup_table(
         
     | 
| 
      
 341 
     | 
    
         
            +
                        builder, exposure_data, exposure_value_columns
         
     | 
| 
       248 
342 
     | 
    
         
             
                    )
         
     | 
| 
       249 
     | 
    
         
            -
                    self. 
     | 
| 
       250 
     | 
    
         
            -
             
     | 
| 
      
 343 
     | 
    
         
            +
                    self.lookup_tables["paf"] = self.build_lookup_table(builder, 0.0)
         
     | 
| 
      
 344 
     | 
    
         
            +
             
     | 
| 
      
 345 
     | 
    
         
            +
                def get_exposure_data(self, builder: Builder) -> Union[int, float, pd.DataFrame]:
         
     | 
| 
      
 346 
     | 
    
         
            +
                    exposure_data = super().get_exposure_data(builder)
         
     | 
| 
      
 347 
     | 
    
         
            +
             
     | 
| 
      
 348 
     | 
    
         
            +
                    if isinstance(exposure_data, (int, float)):
         
     | 
| 
      
 349 
     | 
    
         
            +
                        return exposure_data
         
     | 
| 
      
 350 
     | 
    
         
            +
             
     | 
| 
      
 351 
     | 
    
         
            +
                    # rebin exposure categories
         
     | 
| 
      
 352 
     | 
    
         
            +
                    self.validate_rebin_source(builder, exposure_data)
         
     | 
| 
      
 353 
     | 
    
         
            +
                    rebin_exposed_categories = set(self.configuration["rebinned_exposed"])
         
     | 
| 
      
 354 
     | 
    
         
            +
                    if rebin_exposed_categories:
         
     | 
| 
      
 355 
     | 
    
         
            +
                        exposure_data = self._rebin_exposure_data(exposure_data, rebin_exposed_categories)
         
     | 
| 
      
 356 
     | 
    
         
            +
             
     | 
| 
      
 357 
     | 
    
         
            +
                    exposure_data = exposure_data[exposure_data["parameter"] == "cat1"]
         
     | 
| 
      
 358 
     | 
    
         
            +
                    return exposure_data.drop(columns="parameter")
         
     | 
| 
      
 359 
     | 
    
         
            +
             
     | 
| 
      
 360 
     | 
    
         
            +
                @staticmethod
         
     | 
| 
      
 361 
     | 
    
         
            +
                def _rebin_exposure_data(
         
     | 
| 
      
 362 
     | 
    
         
            +
                    exposure_data: pd.DataFrame, rebin_exposed_categories: set
         
     | 
| 
      
 363 
     | 
    
         
            +
                ) -> pd.DataFrame:
         
     | 
| 
      
 364 
     | 
    
         
            +
                    exposure_data = exposure_data[
         
     | 
| 
      
 365 
     | 
    
         
            +
                        exposure_data["parameter"].isin(rebin_exposed_categories)
         
     | 
| 
      
 366 
     | 
    
         
            +
                    ]
         
     | 
| 
      
 367 
     | 
    
         
            +
                    exposure_data["parameter"] = "cat1"
         
     | 
| 
      
 368 
     | 
    
         
            +
                    exposure_data = (
         
     | 
| 
      
 369 
     | 
    
         
            +
                        exposure_data.groupby(list(exposure_data.columns.difference(["value"])))
         
     | 
| 
      
 370 
     | 
    
         
            +
                        .sum()
         
     | 
| 
      
 371 
     | 
    
         
            +
                        .reset_index()
         
     | 
| 
       251 
372 
     | 
    
         
             
                    )
         
     | 
| 
       252 
     | 
    
         
            -
                     
     | 
| 
      
 373 
     | 
    
         
            +
                    return exposure_data
         
     | 
| 
      
 374 
     | 
    
         
            +
             
     | 
| 
      
 375 
     | 
    
         
            +
                def get_exposure_value_columns(
         
     | 
| 
      
 376 
     | 
    
         
            +
                    self, exposure_data: Union[int, float, pd.DataFrame]
         
     | 
| 
      
 377 
     | 
    
         
            +
                ) -> Optional[List[str]]:
         
     | 
| 
      
 378 
     | 
    
         
            +
                    if isinstance(exposure_data, pd.DataFrame):
         
     | 
| 
      
 379 
     | 
    
         
            +
                        return self.get_value_columns(exposure_data)
         
     | 
| 
      
 380 
     | 
    
         
            +
                    return None
         
     | 
| 
      
 381 
     | 
    
         
            +
             
     | 
| 
      
 382 
     | 
    
         
            +
                # noinspection PyAttributeOutsideInit
         
     | 
| 
      
 383 
     | 
    
         
            +
                def setup(self, builder: Builder) -> None:
         
     | 
| 
      
 384 
     | 
    
         
            +
                    super().setup(builder)
         
     | 
| 
       253 
385 
     | 
    
         
             
                    self.joint_paf = builder.value.register_value_producer(
         
     | 
| 
       254 
386 
     | 
    
         
             
                        f"{self.risk}.exposure_parameters.paf",
         
     | 
| 
       255 
     | 
    
         
            -
                        source=lambda index: [ 
     | 
| 
      
 387 
     | 
    
         
            +
                        source=lambda index: [self.lookup_tables["paf"](index)],
         
     | 
| 
       256 
388 
     | 
    
         
             
                        preferred_combiner=list_combiner,
         
     | 
| 
       257 
389 
     | 
    
         
             
                        preferred_post_processor=union_post_processor,
         
     | 
| 
       258 
390 
     | 
    
         
             
                    )
         
     | 
| 
       259 
391 
     | 
    
         | 
| 
      
 392 
     | 
    
         
            +
                def get_exposure_parameter_pipeline(self, builder: Builder) -> Pipeline:
         
     | 
| 
      
 393 
     | 
    
         
            +
                    return builder.value.register_value_producer(
         
     | 
| 
      
 394 
     | 
    
         
            +
                        f"{self.risk}.exposure_parameters",
         
     | 
| 
      
 395 
     | 
    
         
            +
                        source=self.exposure_parameter_source,
         
     | 
| 
      
 396 
     | 
    
         
            +
                        requires_columns=get_lookup_columns([self.lookup_tables["exposure"]]),
         
     | 
| 
      
 397 
     | 
    
         
            +
                    )
         
     | 
| 
      
 398 
     | 
    
         
            +
             
     | 
| 
      
 399 
     | 
    
         
            +
                ##############
         
     | 
| 
      
 400 
     | 
    
         
            +
                # Validators #
         
     | 
| 
      
 401 
     | 
    
         
            +
                ##############
         
     | 
| 
      
 402 
     | 
    
         
            +
             
     | 
| 
      
 403 
     | 
    
         
            +
                def validate_rebin_source(self, builder, data: pd.DataFrame) -> None:
         
     | 
| 
      
 404 
     | 
    
         
            +
                    if not isinstance(data, pd.DataFrame):
         
     | 
| 
      
 405 
     | 
    
         
            +
                        return
         
     | 
| 
      
 406 
     | 
    
         
            +
             
     | 
| 
      
 407 
     | 
    
         
            +
                    rebin_exposed_categories = set(builder.configuration[self.risk]["rebinned_exposed"])
         
     | 
| 
      
 408 
     | 
    
         
            +
             
     | 
| 
      
 409 
     | 
    
         
            +
                    if (
         
     | 
| 
      
 410 
     | 
    
         
            +
                        rebin_exposed_categories
         
     | 
| 
      
 411 
     | 
    
         
            +
                        and builder.configuration[self.risk]["category_thresholds"]
         
     | 
| 
      
 412 
     | 
    
         
            +
                    ):
         
     | 
| 
      
 413 
     | 
    
         
            +
                        raise ValueError(
         
     | 
| 
      
 414 
     | 
    
         
            +
                            f"Rebinning and category thresholds are mutually exclusive. "
         
     | 
| 
      
 415 
     | 
    
         
            +
                            f"You provided both for {self.risk.name}."
         
     | 
| 
      
 416 
     | 
    
         
            +
                        )
         
     | 
| 
      
 417 
     | 
    
         
            +
             
     | 
| 
      
 418 
     | 
    
         
            +
                    invalid_cats = rebin_exposed_categories.difference(set(data.parameter))
         
     | 
| 
      
 419 
     | 
    
         
            +
                    if invalid_cats:
         
     | 
| 
      
 420 
     | 
    
         
            +
                        raise ValueError(
         
     | 
| 
      
 421 
     | 
    
         
            +
                            f"The following provided categories for the rebinned exposed "
         
     | 
| 
      
 422 
     | 
    
         
            +
                            f"category of {self.risk.name} are not found in the exposure data: "
         
     | 
| 
      
 423 
     | 
    
         
            +
                            f"{invalid_cats}."
         
     | 
| 
      
 424 
     | 
    
         
            +
                        )
         
     | 
| 
      
 425 
     | 
    
         
            +
             
     | 
| 
      
 426 
     | 
    
         
            +
                    if rebin_exposed_categories == set(data.parameter):
         
     | 
| 
      
 427 
     | 
    
         
            +
                        raise ValueError(
         
     | 
| 
      
 428 
     | 
    
         
            +
                            f"The provided categories for the rebinned exposed category of "
         
     | 
| 
      
 429 
     | 
    
         
            +
                            f"{self.risk.name} comprise all categories for the exposure data. "
         
     | 
| 
      
 430 
     | 
    
         
            +
                            f"At least one category must be left out of the provided categories "
         
     | 
| 
      
 431 
     | 
    
         
            +
                            f"to be rebinned into the unexposed category."
         
     | 
| 
      
 432 
     | 
    
         
            +
                        )
         
     | 
| 
      
 433 
     | 
    
         
            +
             
     | 
| 
       260 
434 
     | 
    
         
             
                ##################################
         
     | 
| 
       261 
435 
     | 
    
         
             
                # Pipeline sources and modifiers #
         
     | 
| 
       262 
436 
     | 
    
         
             
                ##################################
         
     | 
| 
       263 
437 
     | 
    
         | 
| 
       264 
     | 
    
         
            -
                def  
     | 
| 
       265 
     | 
    
         
            -
                    base_exposure = self. 
     | 
| 
      
 438 
     | 
    
         
            +
                def exposure_parameter_source(self, index: pd.Index) -> pd.Series:
         
     | 
| 
      
 439 
     | 
    
         
            +
                    base_exposure = self.lookup_tables["exposure"](index).values
         
     | 
| 
       266 
440 
     | 
    
         
             
                    joint_paf = self.joint_paf(index).values
         
     | 
| 
       267 
441 
     | 
    
         
             
                    return pd.Series(base_exposure * (1 - joint_paf), index=index, name="values")
         
     | 
| 
       268 
442 
     | 
    
         | 
| 
         @@ -270,42 +444,17 @@ class DichotomousDistribution(Component): 
     | 
|
| 
       270 
444 
     | 
    
         
             
                # Public methods #
         
     | 
| 
       271 
445 
     | 
    
         
             
                ##################
         
     | 
| 
       272 
446 
     | 
    
         | 
| 
       273 
     | 
    
         
            -
                def ppf(self,  
     | 
| 
       274 
     | 
    
         
            -
                    exposed =  
     | 
| 
      
 447 
     | 
    
         
            +
                def ppf(self, quantiles: pd.Series) -> pd.Series:
         
     | 
| 
      
 448 
     | 
    
         
            +
                    exposed = quantiles < self.exposure_parameters(quantiles.index)
         
     | 
| 
       275 
449 
     | 
    
         
             
                    return pd.Series(
         
     | 
| 
       276 
450 
     | 
    
         
             
                        exposed.replace({True: "cat1", False: "cat2"}),
         
     | 
| 
       277 
451 
     | 
    
         
             
                        name=self.risk + ".exposure",
         
     | 
| 
       278 
     | 
    
         
            -
                        index= 
     | 
| 
       279 
     | 
    
         
            -
                    )
         
     | 
| 
       280 
     | 
    
         
            -
             
     | 
| 
       281 
     | 
    
         
            -
             
     | 
| 
       282 
     | 
    
         
            -
            def get_distribution(risk, distribution_type, exposure, exposure_standard_deviation, weights):
         
     | 
| 
       283 
     | 
    
         
            -
                if distribution_type == "dichotomous":
         
     | 
| 
       284 
     | 
    
         
            -
                    distribution = DichotomousDistribution(risk, exposure)
         
     | 
| 
       285 
     | 
    
         
            -
                elif "polytomous" in distribution_type:
         
     | 
| 
       286 
     | 
    
         
            -
                    distribution = PolytomousDistribution(risk, exposure)
         
     | 
| 
       287 
     | 
    
         
            -
                elif distribution_type == "normal":
         
     | 
| 
       288 
     | 
    
         
            -
                    distribution = ContinuousDistribution(
         
     | 
| 
       289 
     | 
    
         
            -
                        risk, mean=exposure, sd=exposure_standard_deviation, distribution=Normal
         
     | 
| 
       290 
     | 
    
         
            -
                    )
         
     | 
| 
       291 
     | 
    
         
            -
                elif distribution_type == "lognormal":
         
     | 
| 
       292 
     | 
    
         
            -
                    distribution = ContinuousDistribution(
         
     | 
| 
       293 
     | 
    
         
            -
                        risk, mean=exposure, sd=exposure_standard_deviation, distribution=LogNormal
         
     | 
| 
       294 
     | 
    
         
            -
                    )
         
     | 
| 
       295 
     | 
    
         
            -
                elif distribution_type == "ensemble":
         
     | 
| 
       296 
     | 
    
         
            -
                    distribution = EnsembleSimulation(
         
     | 
| 
       297 
     | 
    
         
            -
                        risk,
         
     | 
| 
       298 
     | 
    
         
            -
                        weights,
         
     | 
| 
       299 
     | 
    
         
            -
                        mean=exposure,
         
     | 
| 
       300 
     | 
    
         
            -
                        sd=exposure_standard_deviation,
         
     | 
| 
      
 452 
     | 
    
         
            +
                        index=quantiles.index,
         
     | 
| 
       301 
453 
     | 
    
         
             
                    )
         
     | 
| 
       302 
     | 
    
         
            -
                else:
         
     | 
| 
       303 
     | 
    
         
            -
                    raise NotImplementedError(f"Unhandled distribution type {distribution_type}")
         
     | 
| 
       304 
     | 
    
         
            -
                return distribution
         
     | 
| 
       305 
454 
     | 
    
         | 
| 
       306 
455 
     | 
    
         | 
| 
       307 
456 
     | 
    
         
             
            def clip(q):
         
     | 
| 
       308 
     | 
    
         
            -
                """Adjust the percentile boundary  
     | 
| 
      
 457 
     | 
    
         
            +
                """Adjust the percentile boundary cases.
         
     | 
| 
       309 
458 
     | 
    
         | 
| 
       310 
459 
     | 
    
         
             
                The  risk distributions package uses the 99.9th and 0.001st percentiles
         
     | 
| 
       311 
460 
     | 
    
         
             
                of a log-normal distribution as the bounds of the distribution support.
         
     | 
| 
         @@ -319,3 +468,24 @@ def clip(q): 
     | 
|
| 
       319 
468 
     | 
    
         
             
                q[q > Q_UPPER_BOUND] = Q_UPPER_BOUND
         
     | 
| 
       320 
469 
     | 
    
         
             
                q[q < Q_LOWER_BOUND] = Q_LOWER_BOUND
         
     | 
| 
       321 
470 
     | 
    
         
             
                return q
         
     | 
| 
      
 471 
     | 
    
         
            +
             
     | 
| 
      
 472 
     | 
    
         
            +
             
     | 
| 
      
 473 
     | 
    
         
            +
            def get_risk_distribution_parameter(
         
     | 
| 
      
 474 
     | 
    
         
            +
                value_columns_getter: Callable[[Union[pd.DataFrame]], List[str]],
         
     | 
| 
      
 475 
     | 
    
         
            +
                data: Union[float, pd.DataFrame],
         
     | 
| 
      
 476 
     | 
    
         
            +
            ) -> Union[float, pd.Series]:
         
     | 
| 
      
 477 
     | 
    
         
            +
                if isinstance(data, pd.DataFrame):
         
     | 
| 
      
 478 
     | 
    
         
            +
                    value_columns = value_columns_getter(data)
         
     | 
| 
      
 479 
     | 
    
         
            +
                    if len(value_columns) > 1:
         
     | 
| 
      
 480 
     | 
    
         
            +
                        raise ValueError(
         
     | 
| 
      
 481 
     | 
    
         
            +
                            "Expected a single value column for risk data, but found "
         
     | 
| 
      
 482 
     | 
    
         
            +
                            f"{len(value_columns)}: {value_columns}."
         
     | 
| 
      
 483 
     | 
    
         
            +
                        )
         
     | 
| 
      
 484 
     | 
    
         
            +
                    # don't return parameter col in continuous and ensemble distribution
         
     | 
| 
      
 485 
     | 
    
         
            +
                    # means to match standard deviation index
         
     | 
| 
      
 486 
     | 
    
         
            +
                    if "parameter" in data.columns and set(data["parameter"]) == {"continuous"}:
         
     | 
| 
      
 487 
     | 
    
         
            +
                        data = data.drop("parameter", axis=1)
         
     | 
| 
      
 488 
     | 
    
         
            +
                    index = [col for col in data.columns if col not in value_columns]
         
     | 
| 
      
 489 
     | 
    
         
            +
                    data = data.set_index(index)[value_columns].squeeze(axis=1)
         
     | 
| 
      
 490 
     | 
    
         
            +
             
     | 
| 
      
 491 
     | 
    
         
            +
                return data
         
     |