vitessce 3.7.7__py3-none-any.whl → 3.7.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -17,3 +17,14 @@ from .ome import (
17
17
  from .multivec import (
18
18
  adata_to_multivec_zarr,
19
19
  )
20
+ from .spatialdata_points_zorder import (
21
+ # Function for computing codes and sorting
22
+ sdata_morton_sort_points,
23
+ # Other helper functions
24
+ sdata_points_process_columns,
25
+ sdata_points_write_bounding_box_attrs,
26
+ sdata_points_modify_row_group_size,
27
+ # Functions for querying
28
+ sdata_morton_query_rect,
29
+ row_ranges_to_row_indices,
30
+ )
@@ -0,0 +1,514 @@
1
+ from typing import Tuple, List, Optional
2
+
3
+ import os
4
+ from os.path import join
5
+ from bisect import bisect_left, bisect_right
6
+ import pandas as pd
7
+ import numpy as np
8
+
9
+
10
+ from spatialdata import get_element_annotators
11
+ import dask.dataframe as dd
12
+ import zarr
13
+
14
+
15
+ MORTON_CODE_NUM_BITS = 32 # Resulting morton codes will be stored as uint32.
16
+ MORTON_CODE_VALUE_MIN = 0
17
+ MORTON_CODE_VALUE_MAX = 2**(MORTON_CODE_NUM_BITS / 2) - 1
18
+
19
+ # --------------------------
20
+ # Functions for computing Morton codes for SpatialData points (2D).
21
+ # --------------------------
22
+
23
+
24
+ def norm_series_to_uint(series, v_min, v_max):
25
+ """
26
+ Scale numeric Series (int or float) to integer grid [0, 2^bits-1], handling NaNs.
27
+ """
28
+ # Cast to float64
29
+ series_f64 = series.astype("float64")
30
+ # Normalize the array values to be between 0.0 and 1.0
31
+ norm_series_f64 = (series_f64 - v_min) / (v_max - v_min)
32
+ # Clip to ensure no values are outside 0/1 range
33
+ clipped_norm_series_f64 = np.clip(norm_series_f64, 0.0, 1.0)
34
+ # Multiply by the morton code max-value to scale from [0,1] to [0,65535]
35
+ out = (clipped_norm_series_f64 * MORTON_CODE_VALUE_MAX).astype(np.uint32)
36
+ # Set NaNs to 0.
37
+ out = out.fillna(0)
38
+ return out
39
+
40
+
41
+ def norm_ddf_to_uint(ddf):
42
+ [x_min, x_max, y_min, y_max] = [ddf["x"].min().compute(), ddf["x"].max().compute(), ddf["y"].min().compute(), ddf["y"].max().compute()]
43
+ ddf["x_uint"] = norm_series_to_uint(ddf["x"], x_min, x_max)
44
+ ddf["y_uint"] = norm_series_to_uint(ddf["y"], y_min, y_max)
45
+
46
+ # Insert the bounding box as metadata for the sdata.points[element] Points element dataframe.
47
+ # TODO: does anything special need to be done to ensure this is saved to disk?
48
+ ddf.attrs["bounding_box"] = {
49
+ "x_min": float(x_min),
50
+ "x_max": float(x_max),
51
+ "y_min": float(y_min),
52
+ "y_max": float(y_max),
53
+ }
54
+
55
+ return ddf
56
+
57
+
58
+ def _part1by1_16(x):
59
+ """
60
+ Spread each 16-bit value into 32 bits by inserting zeros between bits.
61
+ Input: uint32 array (values must fit in 16 bits)
62
+ Output: uint32 array (bit-spread)
63
+ """
64
+
65
+ assert x.dtype.name == 'uint32'
66
+
67
+ # Mask away any bits above 16 (just in case input wasn't clean).
68
+ x = x & np.uint32(0x0000FFFF)
69
+
70
+ # First spread: shift left by 8 bits, OR with original, then mask.
71
+ # After this, groups of 8 bits are separated by 8 zeros.
72
+ x = (x | np.left_shift(x, 8)) & np.uint32(0x00FF00FF)
73
+
74
+ # Spread further: now groups of 4 bits separated by 4 zeros.
75
+ x = (x | np.left_shift(x, 4)) & np.uint32(0x0F0F0F0F)
76
+
77
+ # Spread further: groups of 2 bits separated by 2 zeros.
78
+ x = (x | np.left_shift(x, 2)) & np.uint32(0x33333333)
79
+
80
+ # Final spread: single bits separated by a zero bit.
81
+ # Now each original bit is in every other position (positions 0,2,4,...).
82
+ x = (x | np.left_shift(x, 1)) & np.uint32(0x55555555)
83
+
84
+ return x
85
+
86
+
87
+ def _part1by1_32(x):
88
+ """
89
+ Spread each 32-bit value into 64 bits by inserting zeros between bits.
90
+ Input: uint64 array (values must fit in 32 bits)
91
+ Output: uint64 array (bit-spread)
92
+ """
93
+
94
+ assert x.dtype.name == 'uint64'
95
+
96
+ # Mask away any bits above 32 (safety).
97
+ x = x.astype(np.uint64) & np.uint64(0x00000000FFFFFFFF)
98
+
99
+ # First spread: separate into 16-bit chunks spaced out.
100
+ x = (x | np.left_shift(x, 16)) & np.uint64(0x0000FFFF0000FFFF)
101
+
102
+ # Spread further: each 8-bit chunk separated.
103
+ x = (x | np.left_shift(x, 8)) & np.uint64(0x00FF00FF00FF00FF)
104
+
105
+ # Spread further: each 4-bit nibble separated.
106
+ x = (x | np.left_shift(x, 4)) & np.uint64(0x0F0F0F0F0F0F0F0F)
107
+
108
+ # Spread further: 2-bit groups separated.
109
+ x = (x | np.left_shift(x, 2)) & np.uint64(0x3333333333333333)
110
+
111
+ # Final spread: single bits separated by zeros.
112
+ # Now each original bit occupies every other position (0,2,4,...).
113
+ x = (x | np.left_shift(x, 1)) & np.uint64(0x5555555555555555)
114
+
115
+ return x
116
+
117
+
118
+ def morton_interleave(ddf):
119
+ """
120
+ Vectorized Morton interleave for integer arrays xi, yi
121
+ already scaled to [0, 2^bits - 1].
122
+ Returns Morton codes as uint32 (if bits<=16) or uint64 (if bits<=32).
123
+ """
124
+
125
+ xi = ddf["x_uint"]
126
+ yi = ddf["y_uint"]
127
+
128
+ # Spread x and y bits into even (x) and odd (y) positions.
129
+ xs = _part1by1_16(xi)
130
+ ys = _part1by1_16(yi)
131
+
132
+ # Interleave: shift y bits left by 1 so they go into odd positions,
133
+ # then OR with x bits in even positions.
134
+ code = np.left_shift(ys.astype(np.uint64), 1) | xs.astype(np.uint64)
135
+
136
+ # Fits in 32 bits since we only had 16+16 input bits.
137
+ return code.astype(np.uint32)
138
+
139
+
140
+ def sdata_morton_sort_points(sdata, element):
141
+ ddf = sdata.points[element]
142
+
143
+ # Compute morton codes
144
+ ddf = norm_ddf_to_uint(ddf)
145
+ ddf["morton_code_2d"] = morton_interleave(ddf)
146
+
147
+ if "z" in ddf.columns:
148
+ num_unique_z = ddf["z"].unique().shape[0].compute()
149
+ if num_unique_z < 100:
150
+ # Heuristic for interpreting the 3D data as 2.5D
151
+ # Reference: https://github.com/scverse/spatialdata/issues/961
152
+ sorted_ddf = ddf.sort_values(by=["z", "morton_code_2d"], ascending=True)
153
+ else:
154
+ # TODO: include z as a dimension in the morton code in the 3D case?
155
+
156
+ # For now, just return the data sorted by 2D code.
157
+ sorted_ddf = ddf.sort_values(by="morton_code_2d", ascending=True)
158
+ else:
159
+ sorted_ddf = ddf.sort_values(by="morton_code_2d", ascending=True)
160
+ sdata.points[element] = sorted_ddf
161
+
162
+ # annotating_tables = get_element_annotators(sdata, element)
163
+
164
+ # TODO: Sort any annotating table(s) as well.
165
+
166
+ return sdata
167
+
168
+
169
+ def sdata_morton_query_rect_aux(sdata, element, orig_rect):
170
+ # orig_rect = [[50, 50], [100, 150]] # [[x0, y0], [x1, y1]]
171
+ # norm_rect = [
172
+ # orig_coord_to_norm_coord(orig_rect[0], orig_x_min=0, orig_x_max=100, orig_y_min=0, orig_y_max=200),
173
+ # orig_coord_to_norm_coord(orig_rect[1], orig_x_min=0, orig_x_max=100, orig_y_min=0, orig_y_max=200)
174
+ # ]
175
+
176
+ sorted_ddf = sdata.points[element]
177
+
178
+ # TODO: fail if no morton_code_2d column
179
+ # TODO: fail if not sorted as expected
180
+ # TODO: fail if no bounding box metadata
181
+
182
+ bounding_box = sorted_ddf.attrs["bounding_box"]
183
+ x_min = bounding_box["x_min"]
184
+ x_max = bounding_box["x_max"]
185
+ y_min = bounding_box["y_min"]
186
+ y_max = bounding_box["y_max"]
187
+
188
+ norm_rect = [
189
+ orig_coord_to_norm_coord(orig_rect[0], orig_x_min=x_min, orig_x_max=x_max, orig_y_min=y_min, orig_y_max=y_max),
190
+ orig_coord_to_norm_coord(orig_rect[1], orig_x_min=x_min, orig_x_max=x_max, orig_y_min=y_min, orig_y_max=y_max)
191
+ ]
192
+
193
+ # Get a list of morton code intervals that cover this rectangle region
194
+ # [ (morton_start, morton_end), ... ]
195
+ morton_intervals = zcover_rectangle(
196
+ rx0=norm_rect[0][0], ry0=norm_rect[0][1],
197
+ rx1=norm_rect[1][0], ry1=norm_rect[1][1],
198
+ bits=16,
199
+ stop_level=None,
200
+ merge=True,
201
+ )
202
+
203
+ return morton_intervals
204
+
205
+
206
+ def sdata_morton_query_rect(sdata, element, orig_rect):
207
+ sorted_ddf = sdata.points[element]
208
+
209
+ # TODO: generalize to 3D morton codes
210
+
211
+ morton_intervals = sdata_morton_query_rect_aux(sdata, element, orig_rect)
212
+
213
+ # Get morton code column as a list of integers
214
+ morton_sorted = sorted_ddf["morton_code_2d"].compute().values.tolist()
215
+
216
+ # Get a list of row ranges that match the morton intervals.
217
+ # (This uses binary searches internally to find the matching row indices).
218
+ # [ (row_start, row_end), ... ]
219
+ matching_row_ranges = zquery_rows(morton_sorted, morton_intervals, merge=True)
220
+
221
+ return matching_row_ranges
222
+
223
+
224
+ def sdata_morton_query_rect_debug(sdata, element, orig_rect):
225
+ # This is the same as the above sdata_morton_query_rect function,
226
+ # but it also returns the list of row indices that were checked
227
+ # during the binary searches.
228
+ sorted_ddf = sdata.points[element]
229
+ morton_intervals = sdata_morton_query_rect_aux(sdata, element, orig_rect)
230
+ morton_sorted = sorted_ddf["morton_code_2d"].compute().values.tolist()
231
+ matching_row_ranges, rows_checked = zquery_rows_aux(morton_sorted, morton_intervals, merge=True)
232
+ return matching_row_ranges, rows_checked
233
+
234
+ # --------------------------
235
+ # Functions for rectangle queries.
236
+ # --------------------------
237
+
238
+ # Convert a coordinate from the normalized [0, 65535] space to the original space.
239
+
240
+
241
+ def norm_coord_to_orig_coord(norm_coord, orig_x_min, orig_x_max, orig_y_min, orig_y_max):
242
+ [norm_x, norm_y] = norm_coord
243
+ orig_x_range = orig_x_max - orig_x_min
244
+ orig_y_range = orig_y_max - orig_y_min
245
+ return [
246
+ (orig_x_min + (norm_x / MORTON_CODE_VALUE_MAX) * orig_x_range),
247
+ (orig_y_min + (norm_y / MORTON_CODE_VALUE_MAX) * orig_y_range),
248
+ ]
249
+
250
+ # Convert a coordinate from the original space to the [0, 65535] normalized space.
251
+
252
+
253
+ def orig_coord_to_norm_coord(orig_coord, orig_x_min, orig_x_max, orig_y_min, orig_y_max):
254
+ [orig_x, orig_y] = orig_coord
255
+ orig_x_range = orig_x_max - orig_x_min
256
+ orig_y_range = orig_y_max - orig_y_min
257
+ return [
258
+ np.float64(((orig_x - orig_x_min) / orig_x_range) * MORTON_CODE_VALUE_MAX).astype(np.uint32),
259
+ np.float64(((orig_y - orig_y_min) / orig_y_range) * MORTON_CODE_VALUE_MAX).astype(np.uint32),
260
+ ]
261
+
262
+ # --------------------------
263
+ # Quadtree / Z-interval helpers
264
+ # --------------------------
265
+
266
+
267
+ def intersects(ax0: int, ay0: int, ax1: int, ay1: int,
268
+ bx0: int, by0: int, bx1: int, by1: int) -> bool:
269
+ """Axis-aligned box intersection (inclusive integer bounds)."""
270
+ return not (ax1 < bx0 or bx1 < ax0 or ay1 < by0 or by1 < ay0)
271
+
272
+
273
+ def contained(ix0: int, iy0: int, ix1: int, iy1: int,
274
+ ox0: int, oy0: int, ox1: int, oy1: int) -> bool:
275
+ """Is inner box entirely inside outer box? (inclusive integer bounds)"""
276
+ return (ox0 <= ix0 <= ix1 <= ox1) and (oy0 <= iy0 <= iy1 <= oy1)
277
+
278
+
279
+ def point_inside(x: int, y: int, rx0: int, ry0: int, rx1: int, ry1: int) -> bool:
280
+ return (rx0 <= x <= rx1) and (ry0 <= y <= ry1)
281
+
282
+
283
+ def cell_range(prefix: int, level: int, bits: int) -> Tuple[int, int]:
284
+ """
285
+ All Morton codes in a quadtree cell share the same prefix (2*level bits).
286
+ Fill the remaining lower bits with 0s (lo) or 1s (hi).
287
+ """
288
+ shift = 2 * (bits - level)
289
+ lo = prefix << shift
290
+ hi = ((prefix + 1) << shift) - 1
291
+ return lo, hi
292
+
293
+
294
+ def merge_adjacent(intervals: List[Tuple[int, int]]) -> List[Tuple[int, int]]:
295
+ """Merge overlapping or directly adjacent intervals."""
296
+ if not intervals:
297
+ return []
298
+ intervals.sort(key=lambda t: t[0])
299
+ merged = [intervals[0]]
300
+ for lo, hi in intervals[1:]:
301
+ mlo, mhi = merged[-1]
302
+ if lo <= mhi + 1:
303
+ merged[-1] = (mlo, max(mhi, hi))
304
+ else:
305
+ merged.append((lo, hi))
306
+ return merged
307
+
308
+ # --------------------------
309
+ # Rectangle -> list of Morton intervals
310
+ # --------------------------
311
+
312
+
313
+ def zcover_rectangle(rx0: int, ry0: int, rx1: int, ry1: int, bits: int, stop_level: Optional[int] = None, merge: bool = True) -> List[Tuple[int, int]]:
314
+ """
315
+ Compute a (near-)minimal set of Morton code ranges covering the rectangle
316
+ [rx0..rx1] x [ry0..ry1] on an integer grid [0..2^bits-1]^2.
317
+
318
+ - If stop_level is None: exact cover (descend to exact containment).
319
+ - If stop_level is set (0..bits): stop descending at that level, adding
320
+ partially-overlapping cells as whole ranges (superset cover).
321
+ """
322
+ if not (0 <= rx0 <= rx1 <= (1 << bits) - 1 and 0 <= ry0 <= ry1 <= (1 << bits) - 1):
323
+ raise ValueError("Rectangle out of bounds for given bits.")
324
+
325
+ intervals: List[Tuple[int, int]] = []
326
+
327
+ # stack entries: (prefix, level, xmin, ymin, xmax, ymax)
328
+ stack = [(0, 0, 0, 0, (1 << bits) - 1, (1 << bits) - 1)]
329
+
330
+ while stack:
331
+ prefix, level, xmin, ymin, xmax, ymax = stack.pop()
332
+
333
+ if not intersects(xmin, ymin, xmax, ymax, rx0, ry0, rx1, ry1):
334
+ continue
335
+
336
+ # If we stop at this level for a loose cover, add full cell range.
337
+ if stop_level is not None and level == stop_level:
338
+ intervals.append(cell_range(prefix, level, bits))
339
+ continue
340
+
341
+ # Fully contained: add full cell range.
342
+ if contained(xmin, ymin, xmax, ymax, rx0, ry0, rx1, ry1):
343
+ intervals.append(cell_range(prefix, level, bits))
344
+ continue
345
+
346
+ # Leaf cell: single lattice point (only happens when level==bits)
347
+ if level == bits:
348
+ if point_inside(xmin, ymin, rx0, ry0, rx1, ry1):
349
+ intervals.append(cell_range(prefix, level, bits))
350
+ continue
351
+
352
+ # Otherwise, split into 4 children (Morton order: 00,01,10,11)
353
+ midx = (xmin + xmax) // 2
354
+ midy = (ymin + ymax) // 2
355
+
356
+ # q0: (x<=midx, y<=midy) -> child code 0b00
357
+ stack.append(((prefix << 2) | 0,
358
+ level + 1,
359
+ xmin, ymin, midx, midy))
360
+ # q1: (x>midx, y<=midy) -> child code 0b01
361
+ stack.append(((prefix << 2) | 1,
362
+ level + 1,
363
+ midx + 1, ymin, xmax, midy))
364
+ # q2: (x<=midx, y>midy) -> child code 0b10
365
+ stack.append(((prefix << 2) | 2,
366
+ level + 1,
367
+ xmin, midy + 1, midx, ymax))
368
+ # q3: (x>midx, y>midy) -> child code 0b11
369
+ stack.append(((prefix << 2) | 3,
370
+ level + 1,
371
+ midx + 1, midy + 1, xmax, ymax))
372
+
373
+ return merge_adjacent(intervals) if merge else intervals
374
+
375
+
376
+ # --------------------------
377
+ # Morton intervals -> row ranges in a Morton-sorted column
378
+ # --------------------------
379
+
380
+ def zquery_rows_aux(morton_sorted: List[int], intervals: List[Tuple[int, int]], merge: bool = True) -> Tuple[List[Tuple[int, int]], List[int]]:
381
+ """
382
+ For each Z-interval [zlo, zhi], binary-search in the sorted Morton column
383
+ and return row index half-open ranges [i, j) to scan.
384
+ """
385
+
386
+ # Keep track of which keys were looked at during the binary searches.
387
+ # This is used for analysis / debugging, for instance, to enable
388
+ # evaluating how many HTTP requests would be needed in network-based case
389
+ # (which will also depend on Arrow row group size).
390
+ recorded_keys = []
391
+
392
+ def record_key_check(k: int) -> int:
393
+ # TODO: Does recorded_keys need to be marked as a global here?
394
+ recorded_keys.append(k)
395
+ return k
396
+
397
+ ranges: List[Tuple[int, int]] = []
398
+ # TODO: can these multiple binary searches be optimized?
399
+ # Since we are doing many searches in the same array, and in each search we learn where more elements are located.
400
+ for zlo, zhi in intervals:
401
+ i = bisect_left(morton_sorted, zlo, key=record_key_check)
402
+ # TODO: use lo=i in bisect_right to limit the search range?
403
+ # TODO: can the second binary search be further optimized since we just did a binary search via bisect_left?
404
+ j = bisect_right(morton_sorted, zhi, key=record_key_check)
405
+ if i < j:
406
+ ranges.append((i, j))
407
+
408
+ result = merge_adjacent(ranges) if merge else ranges
409
+ return result, recorded_keys
410
+
411
+
412
+ def zquery_rows(morton_sorted: List[int], intervals: List[Tuple[int, int]], merge: bool = True) -> List[Tuple[int, int]]:
413
+ """
414
+ For each Z-interval [zlo, zhi], binary-search in the sorted Morton column
415
+ and return row index half-open ranges [i, j) to scan.
416
+ """
417
+ return zquery_rows_aux(morton_sorted, intervals, merge=merge)[0]
418
+
419
+
420
+ def row_ranges_to_row_indices(intervals: List[Tuple[int, int]]) -> List[int]:
421
+ """
422
+ Convert row ranges [i, j) to a list of row indices.
423
+ Then, can index into pandas DataFrame using df.iloc[indices, :]
424
+ """
425
+ indices: List[int] = []
426
+ for i, j in intervals:
427
+ indices.extend(list(range(i, j)))
428
+ return indices
429
+
430
+
431
+ # More helper functions.
432
+ def sdata_points_process_columns(sdata, element, var_name_col=None, table_name=None) -> dd.DataFrame:
433
+ ddf = sdata.points[element]
434
+
435
+ if var_name_col is None:
436
+ # We can try to get it from the spatialdata_attrs metadata.
437
+ var_name_col = sdata.points[element].attrs["spatialdata_attrs"].get("feature_key")
438
+
439
+ # Appending codes for dictionary-encoded feature_name column.
440
+ if table_name is None and var_name_col is not None:
441
+ annotating_tables = get_element_annotators(sdata, element)
442
+ if len(annotating_tables) == 1:
443
+ table_name = annotating_tables[0]
444
+ elif len(annotating_tables) == 0:
445
+ raise ValueError(f"No annotating table found for Points element {element}, please specify table_name explicitly.")
446
+ else:
447
+ raise ValueError(f"Multiple annotating tables found for Points element {element}, please specify table_name explicitly.")
448
+
449
+ if var_name_col is not None:
450
+ var_df = sdata.tables[table_name].var
451
+ var_index = var_df.index.values.tolist()
452
+
453
+ def try_index(gene_name):
454
+ try:
455
+ return var_index.index(gene_name)
456
+ except BaseException:
457
+ return -1
458
+ ddf[f"{var_name_col}_codes"] = ddf[var_name_col].apply(try_index).astype('int32')
459
+
460
+ # Identify dictionary-encoded columns (categorical/string)
461
+ orig_columns = ddf.columns.tolist()
462
+ dict_encoded_cols = [col for col in orig_columns if pd.api.types.is_categorical_dtype(ddf[col].dtype) or pd.api.types.is_string_dtype(ddf[col].dtype)]
463
+
464
+ # Dictionary-encoded columns (i.e., categorical and string) must be stored as the rightmost columns of the dataframe.
465
+ ordered_columns = sorted(orig_columns, key=lambda colname: orig_columns.index(colname) if colname not in dict_encoded_cols else len(orig_columns))
466
+
467
+ # Reorder the columns of the dataframe
468
+ ddf = ddf[ordered_columns]
469
+
470
+ return ddf
471
+
472
+
473
+ def sdata_points_write_bounding_box_attrs(sdata, element) -> dd.DataFrame:
474
+ ddf = sdata.points[element]
475
+
476
+ [x_min, x_max, y_min, y_max] = [ddf["x"].min().compute(), ddf["x"].max().compute(), ddf["y"].min().compute(), ddf["y"].max().compute()]
477
+ bounding_box = {
478
+ "x_min": float(x_min),
479
+ "x_max": float(x_max),
480
+ "y_min": float(y_min),
481
+ "y_max": float(y_max),
482
+ }
483
+
484
+ sdata_path = sdata.path
485
+ # TODO: error if no path
486
+
487
+ # Insert the bounding box as metadata for the sdata.points[element] Points element dataframe.
488
+ z = zarr.open(sdata_path, mode='a')
489
+ group = z[f'points/{element}']
490
+ group.attrs['bounding_box'] = bounding_box
491
+
492
+ # TODO: does anything special need to be done to ensure this is saved to disk?
493
+
494
+
495
+ def sdata_points_modify_row_group_size(sdata, element, row_group_size: int = 50_000):
496
+ import pyarrow.parquet as pq
497
+
498
+ sdata_path = sdata.path
499
+ # TODO: error if no path
500
+
501
+ # List the parts of the parquet file.
502
+ parquet_path = join(sdata_path, "points", element, "points.parquet")
503
+
504
+ # Read the number of "part.*.parquet" files on disk.
505
+ part_files = [f for f in os.listdir(parquet_path) if f.startswith("part.") and f.endswith(".parquet")]
506
+ num_parts = len(part_files)
507
+
508
+ # Update the row group size in each .parquet file part.
509
+ for i in range(num_parts):
510
+ part_path = join(parquet_path, f"part.{i}.parquet")
511
+ table_read = pq.read_table(part_path)
512
+
513
+ # Write the table to a new Parquet file with the desired row group size.
514
+ pq.write_table(table_read, part_path, row_group_size=row_group_size)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: vitessce
3
- Version: 3.7.7
3
+ Version: 3.7.8
4
4
  Summary: Jupyter widget facilitating interactive visualization of spatial single-cell data with Vitessce
5
5
  Project-URL: repository, https://github.com/vitessce/vitessce-python
6
6
  Author-email: Mark Keller <mark_keller@hms.harvard.edu>
@@ -10,15 +10,16 @@ vitessce/routes.py,sha256=U8T-L-3QCD_tAbPF8LsUlSMhPWNbyzbLNUnxP9Z9s9o,2140
10
10
  vitessce/utils.py,sha256=obzjj65qsagu60_yuhGc-0jmHO-BW0Y-bDs0FgrBqLY,981
11
11
  vitessce/widget.py,sha256=ndgKqwNLrgYnXnA5pGCu2mgQe0_vF1ZMedWuHDYqPpo,39260
12
12
  vitessce/wrappers.py,sha256=WdOQ9w4ElGZH_nKrZAfyrtHxW3iVDzIQ1eqBPlrucj0,76993
13
- vitessce/data_utils/__init__.py,sha256=3mWi1lMjoj4_dNbhMOvyE-HEJu0qpMzcmkhfz_5T6n8,361
13
+ vitessce/data_utils/__init__.py,sha256=lZZ58HlbMiWYIBw3JckGorjmySR_8N4RCZS3U00jUsQ,716
14
14
  vitessce/data_utils/anndata.py,sha256=iLa5-bRezHgBzL_XCHO7w0pc0RQ4urzZbDsqJbBYeCk,10668
15
15
  vitessce/data_utils/entities.py,sha256=X8enC_TQbgwBzjgD1x53IPS6aVr9wyP0s-NLuYBeMeU,11705
16
16
  vitessce/data_utils/multivec.py,sha256=YVc68uKNdS-ga89GapQjY9lDjmje0dm-MExq1yT_6ZE,11571
17
17
  vitessce/data_utils/ome.py,sha256=te1X933QTRfCm8N5uVXZREShtxDdAEggZZKKEoJdlhU,5518
18
+ vitessce/data_utils/spatialdata_points_zorder.py,sha256=pAga1GGyiFgvJCxiqjpsqDpVpPfR5kmLWs3drMAm5Sc,19281
18
19
  vitessce/widget_plugins/__init__.py,sha256=lto2GXnc7KwjIoT-jvzyRYLj0XTJG3uxoX45Hc9EcWA,82
19
20
  vitessce/widget_plugins/demo_plugin.py,sha256=14S7nOxdlKSxIHw9DUcNCN83NE_U1EMPy2D4k0FDues,1797
20
21
  vitessce/widget_plugins/spatial_query.py,sha256=CYxvmMT1Je_jguikPROQxlegkPgIIzemKGbZSJfZMyI,12314
21
- vitessce-3.7.7.dist-info/METADATA,sha256=iXdHIIrXmQc6KTomDoFxfYRq20FRbN43WYOp46QZ1gY,9826
22
- vitessce-3.7.7.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
23
- vitessce-3.7.7.dist-info/licenses/LICENSE,sha256=sNNpI0PQ57AW8_XnTAjU5Yw8YBA_DRNkVHrHYpCIhRU,1067
24
- vitessce-3.7.7.dist-info/RECORD,,
22
+ vitessce-3.7.8.dist-info/METADATA,sha256=GhjWJVZ8ENw7o44GSQIAM9KiTzPq3dKV_ec_fxCHQYo,9826
23
+ vitessce-3.7.8.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
24
+ vitessce-3.7.8.dist-info/licenses/LICENSE,sha256=sNNpI0PQ57AW8_XnTAjU5Yw8YBA_DRNkVHrHYpCIhRU,1067
25
+ vitessce-3.7.8.dist-info/RECORD,,