vision-agent 0.2.9__py3-none-any.whl → 0.2.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vision_agent/agent/vision_agent.py +1 -1
- vision_agent/tools/__init__.py +2 -0
- vision_agent/tools/tools.py +95 -19
- {vision_agent-0.2.9.dist-info → vision_agent-0.2.11.dist-info}/METADATA +48 -20
- {vision_agent-0.2.9.dist-info → vision_agent-0.2.11.dist-info}/RECORD +7 -7
- {vision_agent-0.2.9.dist-info → vision_agent-0.2.11.dist-info}/LICENSE +0 -0
- {vision_agent-0.2.9.dist-info → vision_agent-0.2.11.dist-info}/WHEEL +0 -0
@@ -585,7 +585,7 @@ class VisionAgent(Agent):
|
|
585
585
|
self.task_model, question, self.tools, reflections
|
586
586
|
)
|
587
587
|
|
588
|
-
task_depend = {"Original
|
588
|
+
task_depend = {"Original Question": question}
|
589
589
|
previous_log = ""
|
590
590
|
answers = []
|
591
591
|
for task in task_list:
|
vision_agent/tools/__init__.py
CHANGED
vision_agent/tools/tools.py
CHANGED
@@ -9,6 +9,7 @@ import numpy as np
|
|
9
9
|
import requests
|
10
10
|
from PIL import Image
|
11
11
|
from PIL.Image import Image as ImageType
|
12
|
+
from scipy.spatial import distance # type: ignore
|
12
13
|
|
13
14
|
from vision_agent.image_utils import (
|
14
15
|
b64_to_pil,
|
@@ -544,7 +545,7 @@ class VisualPromptCounting(Tool):
|
|
544
545
|
-------
|
545
546
|
>>> import vision_agent as va
|
546
547
|
>>> prompt_count = va.tools.VisualPromptCounting()
|
547
|
-
>>> prompt_count(image="image1.jpg", prompt="0.1, 0.1, 0.4, 0.42
|
548
|
+
>>> prompt_count(image="image1.jpg", prompt={"bbox": [0.1, 0.1, 0.4, 0.42]})
|
548
549
|
{'count': 23}
|
549
550
|
"""
|
550
551
|
|
@@ -554,52 +555,60 @@ class VisualPromptCounting(Tool):
|
|
554
555
|
usage = {
|
555
556
|
"required_parameters": [
|
556
557
|
{"name": "image", "type": "str"},
|
557
|
-
{"name": "prompt", "type": "str"},
|
558
|
+
{"name": "prompt", "type": "Dict[str, List[float]"},
|
558
559
|
],
|
559
560
|
"examples": [
|
560
561
|
{
|
561
562
|
"scenario": "Here is an example of a lid '0.1, 0.1, 0.14, 0.2', Can you count the items in the image ? Image name: lids.jpg",
|
562
|
-
"parameters": {
|
563
|
+
"parameters": {
|
564
|
+
"image": "lids.jpg",
|
565
|
+
"prompt": {"bbox": [0.1, 0.1, 0.14, 0.2]},
|
566
|
+
},
|
563
567
|
},
|
564
568
|
{
|
565
|
-
"scenario": "Can you count the total number of objects in this image ? Image name: tray.jpg",
|
566
|
-
"parameters": {
|
569
|
+
"scenario": "Can you count the total number of objects in this image ? Image name: tray.jpg, reference_data: {'bbox': [0.1, 0.1, 0.2, 0.25]}",
|
570
|
+
"parameters": {
|
571
|
+
"image": "tray.jpg",
|
572
|
+
"prompt": {"bbox": [0.1, 0.1, 0.2, 0.25]},
|
573
|
+
},
|
567
574
|
},
|
568
575
|
{
|
569
|
-
"scenario": "Can you count this item based on an example, reference_data: '
|
576
|
+
"scenario": "Can you count this item based on an example, reference_data: {'bbox': [100, 115, 200, 200]} ? Image name: shirts.jpg",
|
570
577
|
"parameters": {
|
571
578
|
"image": "shirts.jpg",
|
572
|
-
"prompt": "
|
579
|
+
"prompt": {"bbox": [100, 115, 200, 200]},
|
573
580
|
},
|
574
581
|
},
|
575
582
|
{
|
576
|
-
"scenario": "Can you build me a counting tool based on an example prompt ? Image name: shoes.jpg",
|
583
|
+
"scenario": "Can you build me a counting tool based on an example prompt ? Image name: shoes.jpg, reference_data: {'bbox': [0.1, 0.1, 0.6, 0.65]}",
|
577
584
|
"parameters": {
|
578
585
|
"image": "shoes.jpg",
|
579
|
-
"prompt": "0.1, 0.1, 0.6, 0.65
|
586
|
+
"prompt": {"bbox": [0.1, 0.1, 0.6, 0.65]},
|
580
587
|
},
|
581
588
|
},
|
582
589
|
],
|
583
590
|
}
|
584
591
|
|
585
|
-
|
586
|
-
|
592
|
+
def __call__(
|
593
|
+
self, image: Union[str, ImageType], prompt: Dict[str, List[float]]
|
594
|
+
) -> Dict:
|
587
595
|
"""Invoke the few shot counting model.
|
588
596
|
|
589
597
|
Parameters:
|
590
598
|
image: the input image.
|
599
|
+
prompt: the visual prompt which is a bounding box describing the object.
|
591
600
|
|
592
601
|
Returns:
|
593
602
|
A dictionary containing the key 'count' and the count as value. E.g. {count: 12}
|
594
603
|
"""
|
595
604
|
image_size = get_image_size(image)
|
596
|
-
bbox = [
|
597
|
-
|
605
|
+
bbox = prompt["bbox"]
|
606
|
+
bbox_str = ", ".join(map(str, denormalize_bbox(bbox, image_size)))
|
598
607
|
image_b64 = convert_to_b64(image)
|
599
608
|
|
600
609
|
data = {
|
601
610
|
"image": image_b64,
|
602
|
-
"prompt":
|
611
|
+
"prompt": bbox_str,
|
603
612
|
"tool": "few_shot_counting",
|
604
613
|
}
|
605
614
|
resp_data = _send_inference_request(data, "tools")
|
@@ -878,7 +887,7 @@ class SegIoU(Tool):
|
|
878
887
|
],
|
879
888
|
"examples": [
|
880
889
|
{
|
881
|
-
"scenario": "
|
890
|
+
"scenario": "Calculate the intersection over union of the segmentation masks for mask_file1.jpg and mask_file2.jpg",
|
882
891
|
"parameters": {"mask1": "mask_file1.png", "mask2": "mask_file2.png"},
|
883
892
|
}
|
884
893
|
],
|
@@ -947,6 +956,46 @@ class BboxContains(Tool):
|
|
947
956
|
}
|
948
957
|
|
949
958
|
|
959
|
+
class ObjectDistance(Tool):
|
960
|
+
name = "object_distance_"
|
961
|
+
description = "'object_distance_' calculates the distance between two objects in an image. It returns the minimum distance between the two objects."
|
962
|
+
usage = {
|
963
|
+
"required_parameters": [
|
964
|
+
{"name": "object1", "type": "Dict[str, Any]"},
|
965
|
+
{"name": "object2", "type": "Dict[str, Any]"},
|
966
|
+
],
|
967
|
+
"examples": [
|
968
|
+
{
|
969
|
+
"scenario": "Calculate the distance between these two objects {bboxes: [0.2, 0.21, 0.34, 0.42], masks: 'mask_file1.png'}, {bboxes: [0.3, 0.31, 0.44, 0.52], masks: 'mask_file2.png'}",
|
970
|
+
"parameters": {
|
971
|
+
"object1": {
|
972
|
+
"bboxes": [0.2, 0.21, 0.34, 0.42],
|
973
|
+
"scores": 0.54,
|
974
|
+
"masks": "mask_file1.png",
|
975
|
+
},
|
976
|
+
"object2": {
|
977
|
+
"bboxes": [0.3, 0.31, 0.44, 0.52],
|
978
|
+
"scores": 0.66,
|
979
|
+
"masks": "mask_file2.png",
|
980
|
+
},
|
981
|
+
},
|
982
|
+
}
|
983
|
+
],
|
984
|
+
}
|
985
|
+
|
986
|
+
def __call__(self, object1: Dict[str, Any], object2: Dict[str, Any]) -> float:
|
987
|
+
if "masks" in object1 and "masks" in object2:
|
988
|
+
mask1 = object1["masks"]
|
989
|
+
mask2 = object2["masks"]
|
990
|
+
return MaskDistance()(mask1, mask2)
|
991
|
+
elif "bboxes" in object1 and "bboxes" in object2:
|
992
|
+
bbox1 = object1["bboxes"]
|
993
|
+
bbox2 = object2["bboxes"]
|
994
|
+
return BoxDistance()(bbox1, bbox2)
|
995
|
+
else:
|
996
|
+
raise ValueError("Either of the objects should have masks or bboxes")
|
997
|
+
|
998
|
+
|
950
999
|
class BoxDistance(Tool):
|
951
1000
|
name = "box_distance_"
|
952
1001
|
description = "'box_distance_' calculates distance between two bounding boxes. It returns the minumum distance between the given bounding boxes"
|
@@ -957,7 +1006,7 @@ class BoxDistance(Tool):
|
|
957
1006
|
],
|
958
1007
|
"examples": [
|
959
1008
|
{
|
960
|
-
"scenario": "Calculate the distance between
|
1009
|
+
"scenario": "Calculate the distance between these two bounding boxes [0.2, 0.21, 0.34, 0.42] and [0.3, 0.31, 0.44, 0.52]",
|
961
1010
|
"parameters": {
|
962
1011
|
"bbox1": [0.2, 0.21, 0.34, 0.42],
|
963
1012
|
"bbox2": [0.3, 0.31, 0.44, 0.52],
|
@@ -976,6 +1025,34 @@ class BoxDistance(Tool):
|
|
976
1025
|
return cast(float, round(np.sqrt(horizontal_dist**2 + vertical_dist**2), 2))
|
977
1026
|
|
978
1027
|
|
1028
|
+
class MaskDistance(Tool):
|
1029
|
+
name = "mask_distance_"
|
1030
|
+
description = "'mask_distance_' calculates distance between two masks. It is helpful in checking proximity of two objects. It returns the minumum distance between the given masks"
|
1031
|
+
usage = {
|
1032
|
+
"required_parameters": [
|
1033
|
+
{"name": "mask1", "type": "str"},
|
1034
|
+
{"name": "mask2", "type": "str"},
|
1035
|
+
],
|
1036
|
+
"examples": [
|
1037
|
+
{
|
1038
|
+
"scenario": "Calculate the distance between the segmentation masks for mask_file1.jpg and mask_file2.jpg",
|
1039
|
+
"parameters": {"mask1": "mask_file1.png", "mask2": "mask_file2.png"},
|
1040
|
+
}
|
1041
|
+
],
|
1042
|
+
}
|
1043
|
+
|
1044
|
+
def __call__(self, mask1: Union[str, Path], mask2: Union[str, Path]) -> float:
|
1045
|
+
pil_mask1 = Image.open(str(mask1))
|
1046
|
+
pil_mask2 = Image.open(str(mask2))
|
1047
|
+
np_mask1 = np.clip(np.array(pil_mask1), 0, 1)
|
1048
|
+
np_mask2 = np.clip(np.array(pil_mask2), 0, 1)
|
1049
|
+
|
1050
|
+
mask1_points = np.transpose(np.nonzero(np_mask1))
|
1051
|
+
mask2_points = np.transpose(np.nonzero(np_mask2))
|
1052
|
+
dist_matrix = distance.cdist(mask1_points, mask2_points, "euclidean")
|
1053
|
+
return cast(float, np.round(np.min(dist_matrix), 2))
|
1054
|
+
|
1055
|
+
|
979
1056
|
class ExtractFrames(Tool):
|
980
1057
|
r"""Extract frames from a video."""
|
981
1058
|
|
@@ -1110,10 +1187,9 @@ TOOLS = {
|
|
1110
1187
|
Crop,
|
1111
1188
|
BboxArea,
|
1112
1189
|
SegArea,
|
1113
|
-
|
1114
|
-
SegIoU,
|
1190
|
+
ObjectDistance,
|
1115
1191
|
BboxContains,
|
1116
|
-
|
1192
|
+
SegIoU,
|
1117
1193
|
OCR,
|
1118
1194
|
Calculator,
|
1119
1195
|
]
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: vision-agent
|
3
|
-
Version: 0.2.
|
3
|
+
Version: 0.2.11
|
4
4
|
Summary: Toolset for Vision Agent
|
5
5
|
Author: Landing AI
|
6
6
|
Author-email: dev@landing.ai
|
@@ -17,6 +17,7 @@ Requires-Dist: pandas (>=2.0.0,<3.0.0)
|
|
17
17
|
Requires-Dist: pillow (>=10.0.0,<11.0.0)
|
18
18
|
Requires-Dist: pydantic-settings (>=2.2.1,<3.0.0)
|
19
19
|
Requires-Dist: requests (>=2.0.0,<3.0.0)
|
20
|
+
Requires-Dist: scipy (>=1.13.0,<1.14.0)
|
20
21
|
Requires-Dist: tabulate (>=0.9.0,<0.10.0)
|
21
22
|
Requires-Dist: tqdm (>=4.64.0,<5.0.0)
|
22
23
|
Requires-Dist: typing_extensions (>=4.0.0,<5.0.0)
|
@@ -105,6 +106,30 @@ the individual steps and tools to get the answer:
|
|
105
106
|
{"visualize_output": "final_output.png"}]
|
106
107
|
```
|
107
108
|
|
109
|
+
You can also provide reference data for the model to utilize. For example, if you want
|
110
|
+
to utilize VisualPromptCounting:
|
111
|
+
|
112
|
+
```python
|
113
|
+
agent(
|
114
|
+
"How many apples are in this image?",
|
115
|
+
image="apples.jpg",
|
116
|
+
reference_data={"bbox": [0.1, 0.11, 0.24, 0.25]},
|
117
|
+
)
|
118
|
+
```
|
119
|
+
Where `[0.1, 0.11, 0.24, 0.25]` is the normalized bounding box coordinates of an apple.
|
120
|
+
Similarly for DINOv you can provide a reference image and mask:
|
121
|
+
|
122
|
+
```python
|
123
|
+
agent(
|
124
|
+
"Can you detect all of the objects similar to the mask I've provided?",
|
125
|
+
image="image.jpg",
|
126
|
+
reference_data={"mask": "reference_mask.png", "image": "reference_image.png"},
|
127
|
+
)
|
128
|
+
```
|
129
|
+
Here, `reference_mask.png` and `reference_image.png` in `reference_data` could be any
|
130
|
+
image with it's corresponding mask that is the object you want to detect in `image.jpg`.
|
131
|
+
You can find a demo app to generate masks for DINOv [here](examples/mask_app/).
|
132
|
+
|
108
133
|
### Tools
|
109
134
|
There are a variety of tools for the model or the user to use. Some are executed locally
|
110
135
|
while others are hosted for you. You can also ask an LLM directly to build a tool for
|
@@ -127,25 +152,26 @@ you. For example:
|
|
127
152
|
You can also add your own custom tools for your vision agent to use:
|
128
153
|
|
129
154
|
```python
|
130
|
-
|
131
|
-
|
132
|
-
|
133
|
-
|
134
|
-
|
135
|
-
|
136
|
-
|
137
|
-
|
138
|
-
|
139
|
-
|
140
|
-
|
141
|
-
|
142
|
-
|
143
|
-
|
144
|
-
|
145
|
-
|
155
|
+
from vision_agent.tools import Tool, register_tool
|
156
|
+
@register_tool
|
157
|
+
class NumItems(Tool):
|
158
|
+
name = "num_items_"
|
159
|
+
description = "Returns the number of items in a list."
|
160
|
+
usage = {
|
161
|
+
"required_parameters": [{"name": "prompt", "type": "list"}],
|
162
|
+
"examples": [
|
163
|
+
{
|
164
|
+
"scenario": "How many items are in this list? ['a', 'b', 'c']",
|
165
|
+
"parameters": {"prompt": "['a', 'b', 'c']"},
|
166
|
+
}
|
167
|
+
],
|
168
|
+
}
|
169
|
+
def __call__(self, prompt: list[str]) -> int:
|
170
|
+
return len(prompt)
|
146
171
|
```
|
147
172
|
This will register it with the list of tools Vision Agent has access to. It will be able
|
148
|
-
to pick it based on the tool description and use it based on the usage provided.
|
173
|
+
to pick it based on the tool description and use it based on the usage provided. You can
|
174
|
+
find an example that creates a custom tool for template matching [here](examples/custom_tools/).
|
149
175
|
|
150
176
|
#### Tool List
|
151
177
|
| Tool | Description |
|
@@ -164,8 +190,10 @@ to pick it based on the tool description and use it based on the usage provided.
|
|
164
190
|
| BoxDistance | BoxDistance returns the minimum distance between two bounding boxes normalized to 2 decimal places. |
|
165
191
|
| BboxContains | BboxContains returns the intersection of two boxes over the target box area. It is good for check if one box is contained within another box. |
|
166
192
|
| ExtractFrames | ExtractFrames extracts frames with motion from a video. |
|
167
|
-
| ZeroShotCounting | ZeroShotCounting returns the total number of objects belonging to a single class in a given image |
|
168
|
-
| VisualPromptCounting | VisualPromptCounting returns the total number of objects belonging to a single class given an image and visual prompt |
|
193
|
+
| ZeroShotCounting | ZeroShotCounting returns the total number of objects belonging to a single class in a given image. |
|
194
|
+
| VisualPromptCounting | VisualPromptCounting returns the total number of objects belonging to a single class given an image and visual prompt. |
|
195
|
+
| VisualQuestionAnswering | VisualQuestionAnswering is a tool that can explain the contents of an image and answer questions about the image. |
|
196
|
+
| ImageQuestionAnswering | ImageQuestionAnswering is similar to VisualQuestionAnswering but does not rely on OpenAI and instead uses a dedicated model for the task. |
|
169
197
|
| OCR | OCR returns the text detected in an image along with the location. |
|
170
198
|
|
171
199
|
|
@@ -5,7 +5,7 @@ vision_agent/agent/easytool.py,sha256=oMHnBg7YBtIPgqQUNcZgq7uMgpPThs99_UnO7ERkMV
|
|
5
5
|
vision_agent/agent/easytool_prompts.py,sha256=Bikw-PPLkm78dwywTlnv32Y1Tw6JMeC-R7oCnXWLcTk,4656
|
6
6
|
vision_agent/agent/reflexion.py,sha256=4gz30BuFMeGxSsTzoDV4p91yE0R8LISXp28IaOI6wdM,10506
|
7
7
|
vision_agent/agent/reflexion_prompts.py,sha256=G7UAeNz_g2qCb2yN6OaIC7bQVUkda4m3z42EG8wAyfE,9342
|
8
|
-
vision_agent/agent/vision_agent.py,sha256=
|
8
|
+
vision_agent/agent/vision_agent.py,sha256=DVcvT02GjY85mCjhHgJGrhI_dpUvjZhoYzYik9bkHQA,26243
|
9
9
|
vision_agent/agent/vision_agent_prompts.py,sha256=moihXFhEzFw8xnf2sUSgd_k9eoxQam3T6XUkB0fyp5o,8570
|
10
10
|
vision_agent/fonts/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
11
11
|
vision_agent/fonts/default_font_ch_en.ttf,sha256=1YM0Z3XqLDjSNbF7ihQFSAIUdjF9m1rtHiNC_6QosTE,1594400
|
@@ -14,12 +14,12 @@ vision_agent/llm/__init__.py,sha256=BoUm_zSAKnLlE8s-gKTSQugXDqVZKPqYlWwlTLdhcz4,
|
|
14
14
|
vision_agent/llm/llm.py,sha256=1BkrSVBWEClyqLc0Rmyw4heLhi_ZVm6JO7-i1wd1ziw,5383
|
15
15
|
vision_agent/lmm/__init__.py,sha256=nnNeKD1k7q_4vLb1x51O_EUTYaBgGfeiCx5F433gr3M,67
|
16
16
|
vision_agent/lmm/lmm.py,sha256=gK90vMxh0OcGSuIZQikBkDXm4pfkdFk1R2y7rtWDl84,10539
|
17
|
-
vision_agent/tools/__init__.py,sha256=
|
17
|
+
vision_agent/tools/__init__.py,sha256=uWySwcIeQMH57PVN6lVIknTx-SFmN_J0mvn_HbGlXcQ,451
|
18
18
|
vision_agent/tools/prompts.py,sha256=V1z4YJLXZuUl_iZ5rY0M5hHc_2tmMEUKr0WocXKGt4E,1430
|
19
|
-
vision_agent/tools/tools.py,sha256=
|
19
|
+
vision_agent/tools/tools.py,sha256=kqwmKPbuSAGOWjzv2LCjsvUAp2mfRk8X5a1DrP2B4i8,47007
|
20
20
|
vision_agent/tools/video.py,sha256=xTElFSFp1Jw4ulOMnk81Vxsh-9dTxcWUO6P9fzEi3AM,7653
|
21
21
|
vision_agent/type_defs.py,sha256=4LTnTL4HNsfYqCrDn9Ppjg9bSG2ZGcoKSSd9YeQf4Bw,1792
|
22
|
-
vision_agent-0.2.
|
23
|
-
vision_agent-0.2.
|
24
|
-
vision_agent-0.2.
|
25
|
-
vision_agent-0.2.
|
22
|
+
vision_agent-0.2.11.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
23
|
+
vision_agent-0.2.11.dist-info/METADATA,sha256=kg0CzT1ncFoXAg4ayP2ppStbFwHnzKAygH_t6XmKTxQ,8970
|
24
|
+
vision_agent-0.2.11.dist-info/WHEEL,sha256=7Z8_27uaHI_UZAc4Uox4PpBhQ9Y5_modZXWMxtUi4NU,88
|
25
|
+
vision_agent-0.2.11.dist-info/RECORD,,
|
File without changes
|
File without changes
|