vision-agent 0.2.55__py3-none-any.whl → 0.2.56__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: vision-agent
3
- Version: 0.2.55
3
+ Version: 0.2.56
4
4
  Summary: Toolset for Vision Agent
5
5
  Author: Landing AI
6
6
  Author-email: dev@landing.ai
@@ -38,7 +38,6 @@ Description-Content-Type: text/markdown
38
38
  <img alt="vision_agent" height="200px" src="https://github.com/landing-ai/vision-agent/blob/main/assets/logo.jpg?raw=true">
39
39
 
40
40
  # 🔍🤖 Vision Agent
41
-
42
41
  [![](https://dcbadge.vercel.app/api/server/wPdN8RCYew?compact=true&style=flat)](https://discord.gg/wPdN8RCYew)
43
42
  ![ci_status](https://github.com/landing-ai/vision-agent/actions/workflows/ci_cd.yml/badge.svg)
44
43
  [![PyPI version](https://badge.fury.io/py/vision-agent.svg)](https://badge.fury.io/py/vision-agent)
@@ -52,9 +51,14 @@ accomplish the task you want. Vision Agent aims to provide an in-seconds experie
52
51
  allowing users to describe their problem in text and have the agent framework generate
53
52
  code to solve the task for them. Check out our discord for updates and roadmaps!
54
53
 
54
+
55
+ ## Web Application
56
+
57
+ Try Vision Agent live on [va.landing.ai](https://va.landing.ai/)
58
+
55
59
  ## Documentation
56
60
 
57
- - [Vision Agent Library Docs](https://landing-ai.github.io/vision-agent/)
61
+ [Vision Agent Library Docs](https://landing-ai.github.io/vision-agent/)
58
62
 
59
63
 
60
64
  ## Getting Started
@@ -88,28 +92,28 @@ from vision_agent.tools import load_image, grounding_sam
88
92
  def calculate_filled_percentage(image_path: str) -> float:
89
93
  # Step 1: Load the image
90
94
  image = load_image(image_path)
91
-
95
+
92
96
  # Step 2: Segment the jar
93
97
  jar_segments = grounding_sam(prompt="jar", image=image)
94
-
98
+
95
99
  # Step 3: Segment the coffee beans
96
100
  coffee_beans_segments = grounding_sam(prompt="coffee beans", image=image)
97
-
101
+
98
102
  # Step 4: Calculate the area of the segmented jar
99
103
  jar_area = 0
100
104
  for segment in jar_segments:
101
105
  jar_area += segment['mask'].sum()
102
-
106
+
103
107
  # Step 5: Calculate the area of the segmented coffee beans
104
108
  coffee_beans_area = 0
105
109
  for segment in coffee_beans_segments:
106
110
  coffee_beans_area += segment['mask'].sum()
107
-
111
+
108
112
  # Step 6: Compute the percentage of the jar area that is filled with coffee beans
109
113
  if jar_area == 0:
110
114
  return 0.0 # To avoid division by zero
111
115
  filled_percentage = (coffee_beans_area / jar_area) * 100
112
-
116
+
113
117
  # Step 7: Return the computed percentage
114
118
  return filled_percentage
115
119
  ```
@@ -30,7 +30,7 @@ vision_agent/utils/image_utils.py,sha256=_cdiS5YrLzqkq_ZgFUO897m5M4_SCIThwUy4lOk
30
30
  vision_agent/utils/sim.py,sha256=rGRGnjsy91IOn8qzt7k04PIRj5jyiaQyYAQl7ossPt8,4195
31
31
  vision_agent/utils/type_defs.py,sha256=BlI8ywWHAplC7kYWLvt4AOdnKpEW3qWEFm-GEOSkrFQ,1792
32
32
  vision_agent/utils/video.py,sha256=rNmU9KEIkZB5-EztZNlUiKYN0mm_55A_2VGUM0QpqLA,8779
33
- vision_agent-0.2.55.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
34
- vision_agent-0.2.55.dist-info/METADATA,sha256=p5yZXgthGKhq9l8qMEiYxPu1mYjPkKuTkuJbjBm6tp8,6677
35
- vision_agent-0.2.55.dist-info/WHEEL,sha256=7Z8_27uaHI_UZAc4Uox4PpBhQ9Y5_modZXWMxtUi4NU,88
36
- vision_agent-0.2.55.dist-info/RECORD,,
33
+ vision_agent-0.2.56.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
34
+ vision_agent-0.2.56.dist-info/METADATA,sha256=5U-ScwukTYixyLsP6Cvhysq54ulCs4txG1pmxHzIjdA,6737
35
+ vision_agent-0.2.56.dist-info/WHEEL,sha256=7Z8_27uaHI_UZAc4Uox4PpBhQ9Y5_modZXWMxtUi4NU,88
36
+ vision_agent-0.2.56.dist-info/RECORD,,