vision-agent 0.2.221__py3-none-any.whl → 0.2.223__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -1,9 +1,9 @@
1
1
  desc,doc,name
2
- "'owl_v2_image' is a tool that can detect and count multiple objects given a text prompt such as category names or referring expressions on images. The categories in text prompt are separated by commas. It returns a list of bounding boxes with normalized coordinates, label names and associated probability scores.","owl_v2_image(prompt: str, image: numpy.ndarray, box_threshold: float = 0.1, fine_tune_id: Optional[str] = None) -> List[Dict[str, Any]]:
3
- 'owl_v2_image' is a tool that can detect and count multiple objects given a text
4
- prompt such as category names or referring expressions on images. The categories in
5
- text prompt are separated by commas. It returns a list of bounding boxes with
6
- normalized coordinates, label names and associated probability scores.
2
+ "'owlv2_object_detection' is a tool that can detect and count multiple objects given a text prompt such as category names or referring expressions on images. The categories in text prompt are separated by commas. It returns a list of bounding boxes with normalized coordinates, label names and associated probability scores.","owlv2_object_detection(prompt: str, image: numpy.ndarray, box_threshold: float = 0.1, fine_tune_id: Optional[str] = None) -> List[Dict[str, Any]]:
3
+ 'owlv2_object_detection' is a tool that can detect and count multiple objects
4
+ given a text prompt such as category names or referring expressions on images. The
5
+ categories in text prompt are separated by commas. It returns a list of bounding
6
+ boxes with normalized coordinates, label names and associated probability scores.
7
7
 
8
8
  Parameters:
9
9
  prompt (str): The prompt to ground to the image.
@@ -22,96 +22,87 @@ desc,doc,name
22
22
 
23
23
  Example
24
24
  -------
25
- >>> owl_v2_image(""car, dinosaur"", image)
25
+ >>> owlv2_object_detection(""car, dinosaur"", image)
26
26
  [
27
27
  {'score': 0.99, 'label': 'dinosaur', 'bbox': [0.1, 0.11, 0.35, 0.4]},
28
28
  {'score': 0.98, 'label': 'car', 'bbox': [0.2, 0.21, 0.45, 0.5},
29
29
  ]
30
- ",owl_v2_image
31
- "'owl_v2_video' will run owl_v2 on each frame of a video. It can detect multiple objects independently per frame given a text prompt such as a category name or referring expression but does not track objects across frames. The categories in text prompt are separated by commas. It returns a list of lists where each inner list contains the score, label, and bounding box of the detections for that frame.","owl_v2_video(prompt: str, frames: List[numpy.ndarray], box_threshold: float = 0.1, fine_tune_id: Optional[str] = None) -> List[List[Dict[str, Any]]]:
32
- 'owl_v2_video' will run owl_v2 on each frame of a video. It can detect multiple
33
- objects independently per frame given a text prompt such as a category name or
34
- referring expression but does not track objects across frames. The categories in
35
- text prompt are separated by commas. It returns a list of lists where each inner
36
- list contains the score, label, and bounding box of the detections for that frame.
30
+ ",owlv2_object_detection
31
+ "'owlv2_sam2_instance_segmentation' is a tool that can detect and count multiple instances of objects given a text prompt such as category names or referring expressions on images. The categories in text prompt are separated by commas. It returns a list of bounding boxes with normalized coordinates, label names, masks and associated probability scores.","owlv2_sam2_instance_segmentation(prompt: str, image: numpy.ndarray, box_threshold: float = 0.1) -> List[Dict[str, Any]]:
32
+ 'owlv2_sam2_instance_segmentation' is a tool that can detect and count multiple
33
+ instances of objects given a text prompt such as category names or referring
34
+ expressions on images. The categories in text prompt are separated by commas. It
35
+ returns a list of bounding boxes with normalized coordinates, label names, masks
36
+ and associated probability scores.
37
37
 
38
38
  Parameters:
39
- prompt (str): The prompt to ground to the video.
40
- frames (List[np.ndarray]): The list of frames to ground the prompt to.
41
- box_threshold (float, optional): The threshold for the box detection. Defaults
42
- to 0.30.
43
- fine_tune_id (Optional[str]): If you have a fine-tuned model, you can pass the
44
- fine-tuned model ID here to use it.
39
+ prompt (str): The object that needs to be counted.
40
+ image (np.ndarray): The image that contains multiple instances of the object.
41
+ box_threshold (float, optional): The threshold for detection. Defaults
42
+ to 0.10.
45
43
 
46
44
  Returns:
47
- List[List[Dict[str, Any]]]: A list of lists of dictionaries containing the
48
- score, label, and bounding box of the detected objects with normalized
49
- coordinates between 0 and 1 (xmin, ymin, xmax, ymax). xmin and ymin are the
50
- coordinates of the top-left and xmax and ymax are the coordinates of the
51
- bottom-right of the bounding box.
45
+ List[Dict[str, Any]]: A list of dictionaries containing the score, label,
46
+ bounding box, and mask of the detected objects with normalized coordinates
47
+ (xmin, ymin, xmax, ymax). xmin and ymin are the coordinates of the top-left
48
+ and xmax and ymax are the coordinates of the bottom-right of the bounding box.
49
+ The mask is binary 2D numpy array where 1 indicates the object and 0 indicates
50
+ the background.
52
51
 
53
52
  Example
54
53
  -------
55
- >>> owl_v2_video(""car, dinosaur"", frames)
54
+ >>> owlv2_sam2_instance_segmentation(""flower"", image)
56
55
  [
57
- [
58
- {'score': 0.99, 'label': 'dinosaur', 'bbox': [0.1, 0.11, 0.35, 0.4]},
59
- {'score': 0.98, 'label': 'car', 'bbox': [0.2, 0.21, 0.45, 0.5},
60
- ],
61
- ...
56
+ {
57
+ 'score': 0.49,
58
+ 'label': 'flower',
59
+ 'bbox': [0.1, 0.11, 0.35, 0.4],
60
+ 'mask': array([[0, 0, 0, ..., 0, 0, 0],
61
+ [0, 0, 0, ..., 0, 0, 0],
62
+ ...,
63
+ [0, 0, 0, ..., 0, 0, 0],
64
+ [0, 0, 0, ..., 0, 0, 0]], dtype=uint8),
65
+ },
62
66
  ]
63
- ",owl_v2_video
64
- "'ocr' extracts text from an image. It returns a list of detected text, bounding boxes with normalized coordinates, and confidence scores. The results are sorted from top-left to bottom right.","ocr(image: numpy.ndarray) -> List[Dict[str, Any]]:
65
- 'ocr' extracts text from an image. It returns a list of detected text, bounding
66
- boxes with normalized coordinates, and confidence scores. The results are sorted
67
- from top-left to bottom right.
67
+ ",owlv2_sam2_instance_segmentation
68
+ "'owlv2_sam2_video_tracking' is a tool that can segment multiple objects given a text prompt such as category names or referring expressions. The categories in the text prompt are separated by commas. It returns a list of bounding boxes, label names, mask file names and associated probability scores.","owlv2_sam2_video_tracking(prompt: str, frames: List[numpy.ndarray], chunk_length: Optional[int] = 10, fine_tune_id: Optional[str] = None) -> List[List[Dict[str, Any]]]:
69
+ 'owlv2_sam2_video_tracking' is a tool that can segment multiple objects given a text
70
+ prompt such as category names or referring expressions. The categories in the text
71
+ prompt are separated by commas. It returns a list of bounding boxes, label names,
72
+ mask file names and associated probability scores.
68
73
 
69
74
  Parameters:
70
- image (np.ndarray): The image to extract text from.
75
+ prompt (str): The prompt to ground to the image.
76
+ image (np.ndarray): The image to ground the prompt to.
77
+ fine_tune_id (Optional[str]): If you have a fine-tuned model, you can pass the
78
+ fine-tuned model ID here to use it.
71
79
 
72
80
  Returns:
73
- List[Dict[str, Any]]: A list of dictionaries containing the detected text, bbox
74
- with normalized coordinates, and confidence score.
81
+ List[Dict[str, Any]]: A list of dictionaries containing the score, label,
82
+ bounding box, and mask of the detected objects with normalized coordinates
83
+ (xmin, ymin, xmax, ymax). xmin and ymin are the coordinates of the top-left
84
+ and xmax and ymax are the coordinates of the bottom-right of the bounding box.
85
+ The mask is binary 2D numpy array where 1 indicates the object and 0 indicates
86
+ the background.
75
87
 
76
88
  Example
77
89
  -------
78
- >>> ocr(image)
90
+ >>> owlv2_sam2_video_tracking(""car, dinosaur"", frames)
79
91
  [
80
- {'label': 'hello world', 'bbox': [0.1, 0.11, 0.35, 0.4], 'score': 0.99},
92
+ [
93
+ {
94
+ 'label': '0: dinosaur',
95
+ 'bbox': [0.1, 0.11, 0.35, 0.4],
96
+ 'mask': array([[0, 0, 0, ..., 0, 0, 0],
97
+ [0, 0, 0, ..., 0, 0, 0],
98
+ ...,
99
+ [0, 0, 0, ..., 0, 0, 0],
100
+ [0, 0, 0, ..., 0, 0, 0]], dtype=uint8),
101
+ },
102
+ ],
103
+ ...
81
104
  ]
82
- ",ocr
83
- 'vit_image_classification' is a tool that can classify an image. It returns a list of classes and their probability scores based on image content.,"vit_image_classification(image: numpy.ndarray) -> Dict[str, Any]:
84
- 'vit_image_classification' is a tool that can classify an image. It returns a
85
- list of classes and their probability scores based on image content.
86
-
87
- Parameters:
88
- image (np.ndarray): The image to classify or tag
89
-
90
- Returns:
91
- Dict[str, Any]: A dictionary containing the labels and scores. One dictionary
92
- contains a list of labels and other a list of scores.
93
-
94
- Example
95
- -------
96
- >>> vit_image_classification(image)
97
- {""labels"": [""leopard"", ""lemur, otter"", ""bird""], ""scores"": [0.68, 0.30, 0.02]},
98
- ",vit_image_classification
99
- 'vit_nsfw_classification' is a tool that can classify an image as 'nsfw' or 'normal'. It returns the predicted label and their probability scores based on image content.,"vit_nsfw_classification(image: numpy.ndarray) -> Dict[str, Any]:
100
- 'vit_nsfw_classification' is a tool that can classify an image as 'nsfw' or 'normal'.
101
- It returns the predicted label and their probability scores based on image content.
102
-
103
- Parameters:
104
- image (np.ndarray): The image to classify or tag
105
-
106
- Returns:
107
- Dict[str, Any]: A dictionary containing the labels and scores. One dictionary
108
- contains a list of labels and other a list of scores.
109
-
110
- Example
111
- -------
112
- >>> vit_nsfw_classification(image)
113
- {""label"": ""normal"", ""scores"": 0.68},
114
- ",vit_nsfw_classification
105
+ ",owlv2_sam2_video_tracking
115
106
  "'countgd_object_detection' is a tool that can detect multiple instances of an object given a text prompt. It is particularly useful when trying to detect and count a large number of objects. You can optionally separate object names in the prompt with commas. It returns a list of bounding boxes with normalized coordinates, label names and associated confidence scores.","countgd_object_detection(prompt: str, image: numpy.ndarray, box_threshold: float = 0.23) -> List[Dict[str, Any]]:
116
107
  'countgd_object_detection' is a tool that can detect multiple instances of an
117
108
  object given a text prompt. It is particularly useful when trying to detect and
@@ -142,12 +133,12 @@ desc,doc,name
142
133
  {'score': 0.98, 'label': 'flower', 'bbox': [0.44, 0.24, 0.49, 0.58},
143
134
  ]
144
135
  ",countgd_object_detection
145
- "'countgd_sam2_object_detection' is a tool that can detect multiple instances of an object given a text prompt. It is particularly useful when trying to detect and count a large number of objects. You can optionally separate object names in the prompt with commas. It returns a list of bounding boxes with normalized coordinates, label names, masks associated confidence scores.","countgd_sam2_object_detection(prompt: str, image: numpy.ndarray, box_threshold: float = 0.23) -> List[Dict[str, Any]]:
146
- 'countgd_sam2_object_detection' is a tool that can detect multiple instances of
147
- an object given a text prompt. It is particularly useful when trying to detect and
148
- count a large number of objects. You can optionally separate object names in the
149
- prompt with commas. It returns a list of bounding boxes with normalized coordinates,
150
- label names, masks associated confidence scores.
136
+ "'countgd_sam2_instance_segmentation' is a tool that can detect multiple instances of an object given a text prompt. It is particularly useful when trying to detect and count a large number of objects. You can optionally separate object names in the prompt with commas. It returns a list of bounding boxes with normalized coordinates, label names, masks associated confidence scores.","countgd_sam2_instance_segmentation(prompt: str, image: numpy.ndarray, box_threshold: float = 0.23) -> List[Dict[str, Any]]:
137
+ 'countgd_sam2_instance_segmentation' is a tool that can detect multiple
138
+ instances of an object given a text prompt. It is particularly useful when trying
139
+ to detect and count a large number of objects. You can optionally separate object
140
+ names in the prompt with commas. It returns a list of bounding boxes with
141
+ normalized coordinates, label names, masks associated confidence scores.
151
142
 
152
143
  Parameters:
153
144
  prompt (str): The object that needs to be counted.
@@ -165,7 +156,7 @@ desc,doc,name
165
156
 
166
157
  Example
167
158
  -------
168
- >>> countgd_object_detection(""flower"", image)
159
+ >>> countgd_sam2_instance_segmentation(""flower"", image)
169
160
  [
170
161
  {
171
162
  'score': 0.49,
@@ -178,7 +169,45 @@ desc,doc,name
178
169
  [0, 0, 0, ..., 0, 0, 0]], dtype=uint8),
179
170
  },
180
171
  ]
181
- ",countgd_sam2_object_detection
172
+ ",countgd_sam2_instance_segmentation
173
+ "'countgd_sam2_video_tracking' is a tool that can segment multiple objects given a text prompt such as category names or referring expressions. The categories in the text prompt are separated by commas. It returns a list of bounding boxes, label names, mask file names and associated probability scores.","countgd_sam2_video_tracking(prompt: str, frames: List[numpy.ndarray], chunk_length: Optional[int] = 10) -> List[List[Dict[str, Any]]]:
174
+ 'countgd_sam2_video_tracking' is a tool that can segment multiple objects given a text
175
+ prompt such as category names or referring expressions. The categories in the text
176
+ prompt are separated by commas. It returns a list of bounding boxes, label names,
177
+ mask file names and associated probability scores.
178
+
179
+ Parameters:
180
+ prompt (str): The prompt to ground to the image.
181
+ image (np.ndarray): The image to ground the prompt to.
182
+ chunk_length (Optional[int]): The number of frames to re-run florence2 to find
183
+ new objects.
184
+
185
+ Returns:
186
+ List[Dict[str, Any]]: A list of dictionaries containing the score, label,
187
+ bounding box, and mask of the detected objects with normalized coordinates
188
+ (xmin, ymin, xmax, ymax). xmin and ymin are the coordinates of the top-left
189
+ and xmax and ymax are the coordinates of the bottom-right of the bounding box.
190
+ The mask is binary 2D numpy array where 1 indicates the object and 0 indicates
191
+ the background.
192
+
193
+ Example
194
+ -------
195
+ >>> countgd_sam2_video_tracking(""car, dinosaur"", frames)
196
+ [
197
+ [
198
+ {
199
+ 'label': '0: dinosaur',
200
+ 'bbox': [0.1, 0.11, 0.35, 0.4],
201
+ 'mask': array([[0, 0, 0, ..., 0, 0, 0],
202
+ [0, 0, 0, ..., 0, 0, 0],
203
+ ...,
204
+ [0, 0, 0, ..., 0, 0, 0],
205
+ [0, 0, 0, ..., 0, 0, 0]], dtype=uint8),
206
+ },
207
+ ],
208
+ ...
209
+ ]
210
+ ",countgd_sam2_video_tracking
182
211
  "'florence2_ocr' is a tool that can detect text and text regions in an image. Each text region contains one line of text. It returns a list of detected text, the text region as a bounding box with normalized coordinates, and confidence scores. The results are sorted from top-left to bottom right.","florence2_ocr(image: numpy.ndarray) -> List[Dict[str, Any]]:
183
212
  'florence2_ocr' is a tool that can detect text and text regions in an image.
184
213
  Each text region contains one line of text. It returns a list of detected text,
@@ -199,11 +228,12 @@ desc,doc,name
199
228
  {'label': 'hello world', 'bbox': [0.1, 0.11, 0.35, 0.4], 'score': 0.99},
200
229
  ]
201
230
  ",florence2_ocr
202
- "'florence2_sam2_image' is a tool that can segment multiple objects given a text prompt such as category names or referring expressions. The categories in the text prompt are separated by commas. It returns a list of bounding boxes, label names, mask file names and associated probability scores of 1.0.","florence2_sam2_image(prompt: str, image: numpy.ndarray, fine_tune_id: Optional[str] = None) -> List[Dict[str, Any]]:
203
- 'florence2_sam2_image' is a tool that can segment multiple objects given a text
204
- prompt such as category names or referring expressions. The categories in the text
205
- prompt are separated by commas. It returns a list of bounding boxes, label names,
206
- mask file names and associated probability scores of 1.0.
231
+ "'florence2_sam2_instance_segmentation' is a tool that can segment multiple objects given a text prompt such as category names or referring expressions. The categories in the text prompt are separated by commas. It returns a list of bounding boxes, label names, mask file names and associated probability scores of 1.0.","florence2_sam2_instance_segmentation(prompt: str, image: numpy.ndarray, fine_tune_id: Optional[str] = None) -> List[Dict[str, Any]]:
232
+ 'florence2_sam2_instance_segmentation' is a tool that can segment multiple
233
+ objects given a text prompt such as category names or referring expressions. The
234
+ categories in the text prompt are separated by commas. It returns a list of
235
+ bounding boxes, label names, mask file names and associated probability scores of
236
+ 1.0.
207
237
 
208
238
  Parameters:
209
239
  prompt (str): The prompt to ground to the image.
@@ -221,7 +251,7 @@ desc,doc,name
221
251
 
222
252
  Example
223
253
  -------
224
- >>> florence2_sam2_image(""car, dinosaur"", image)
254
+ >>> florence2_sam2_instance_segmentation(""car, dinosaur"", image)
225
255
  [
226
256
  {
227
257
  'score': 1.0,
@@ -234,7 +264,7 @@ desc,doc,name
234
264
  [0, 0, 0, ..., 0, 0, 0]], dtype=uint8),
235
265
  },
236
266
  ]
237
- ",florence2_sam2_image
267
+ ",florence2_sam2_instance_segmentation
238
268
  'florence2_sam2_video_tracking' is a tool that can segment and track multiple entities in a video given a text prompt such as category names or referring expressions. You can optionally separate the categories in the text with commas. It can find new objects every 'chunk_length' frames and is useful for tracking and counting without duplicating counts and always outputs scores of 1.0.,"florence2_sam2_video_tracking(prompt: str, frames: List[numpy.ndarray], chunk_length: Optional[int] = 10, fine_tune_id: Optional[str] = None) -> List[List[Dict[str, Any]]]:
239
269
  'florence2_sam2_video_tracking' is a tool that can segment and track multiple
240
270
  entities in a video given a text prompt such as category names or referring
@@ -259,7 +289,7 @@ desc,doc,name
259
289
 
260
290
  Example
261
291
  -------
262
- >>> florence2_sam2_video(""car, dinosaur"", frames)
292
+ >>> florence2_sam2_video_tracking(""car, dinosaur"", frames)
263
293
  [
264
294
  [
265
295
  {
@@ -275,8 +305,8 @@ desc,doc,name
275
305
  ...
276
306
  ]
277
307
  ",florence2_sam2_video_tracking
278
- "'florence2_phrase_grounding' is a tool that can detect multiple objects given a text prompt which can be object names or caption. You can optionally separate the object names in the text with commas. It returns a list of bounding boxes with normalized coordinates, label names and associated confidence scores of 1.0.","florence2_phrase_grounding(prompt: str, image: numpy.ndarray, fine_tune_id: Optional[str] = None) -> List[Dict[str, Any]]:
279
- 'florence2_phrase_grounding' is a tool that can detect multiple
308
+ "'florence2_object_detection' is a tool that can detect multiple objects given a text prompt which can be object names or caption. You can optionally separate the object names in the text with commas. It returns a list of bounding boxes with normalized coordinates, label names and associated confidence scores of 1.0.","florence2_object_detection(prompt: str, image: numpy.ndarray, fine_tune_id: Optional[str] = None) -> List[Dict[str, Any]]:
309
+ 'florence2_object_detection' is a tool that can detect multiple
280
310
  objects given a text prompt which can be object names or caption. You
281
311
  can optionally separate the object names in the text with commas. It returns a list
282
312
  of bounding boxes with normalized coordinates, label names and associated
@@ -297,12 +327,12 @@ desc,doc,name
297
327
 
298
328
  Example
299
329
  -------
300
- >>> florence2_phrase_grounding('person looking at a coyote', image)
330
+ >>> florence2_object_detection('person looking at a coyote', image)
301
331
  [
302
332
  {'score': 1.0, 'label': 'person', 'bbox': [0.1, 0.11, 0.35, 0.4]},
303
333
  {'score': 1.0, 'label': 'coyote', 'bbox': [0.34, 0.21, 0.85, 0.5},
304
334
  ]
305
- ",florence2_phrase_grounding
335
+ ",florence2_object_detection
306
336
  'claude35_text_extraction' is a tool that can extract text from an image. It returns the extracted text as a string and can be used as an alternative to OCR if you do not need to know the exact bounding box of the text.,"claude35_text_extraction(image: numpy.ndarray) -> str:
307
337
  'claude35_text_extraction' is a tool that can extract text from an image. It
308
338
  returns the extracted text as a string and can be used as an alternative to OCR if
@@ -314,6 +344,107 @@ desc,doc,name
314
344
  Returns:
315
345
  str: The extracted text from the image.
316
346
  ",claude35_text_extraction
347
+ "'document_extraction' is a tool that can extract structured information out of documents with different layouts. It returns the extracted data in a structured hierarchical format containing text, tables, pictures, charts, and other information.","document_extraction(image: numpy.ndarray) -> Dict[str, Any]:
348
+ 'document_extraction' is a tool that can extract structured information out of
349
+ documents with different layouts. It returns the extracted data in a structured
350
+ hierarchical format containing text, tables, pictures, charts, and other
351
+ information.
352
+
353
+ Parameters:
354
+ image (np.ndarray): The document image to analyze
355
+
356
+ Returns:
357
+ Dict[str, Any]: A dictionary containing the extracted information.
358
+
359
+ Example
360
+ -------
361
+ >>> document_analysis(image)
362
+ {'pages':
363
+ [{'bbox': [0, 0, 1.0, 1.0],
364
+ 'chunks': [{'bbox': [0.8, 0.1, 1.0, 0.2],
365
+ 'label': 'page_header',
366
+ 'order': 75
367
+ 'caption': 'Annual Report 2024',
368
+ 'summary': 'This annual report summarizes ...' },
369
+ {'bbox': [0.2, 0.9, 0.9, 1.0],
370
+ 'label': 'table',
371
+ 'order': 1119,
372
+ 'caption': [{'Column 1': 'Value 1', 'Column 2': 'Value 2'},
373
+ 'summary': 'This table illustrates a trend of ...'},
374
+ ],
375
+ ",document_extraction
376
+ "'document_qa' is a tool that can answer any questions about arbitrary documents, presentations, or tables. It's very useful for document QA tasks, you can ask it a specific question or ask it to return a JSON object answering multiple questions about the document.","document_qa(prompt: str, image: numpy.ndarray) -> str:
377
+ 'document_qa' is a tool that can answer any questions about arbitrary documents,
378
+ presentations, or tables. It's very useful for document QA tasks, you can ask it a
379
+ specific question or ask it to return a JSON object answering multiple questions
380
+ about the document.
381
+
382
+ Parameters:
383
+ prompt (str): The question to be answered about the document image.
384
+ image (np.ndarray): The document image to analyze.
385
+
386
+ Returns:
387
+ str: The answer to the question based on the document's context.
388
+
389
+ Example
390
+ -------
391
+ >>> document_qa(image, question)
392
+ 'The answer to the question ...'
393
+ ",document_qa
394
+ "'ocr' extracts text from an image. It returns a list of detected text, bounding boxes with normalized coordinates, and confidence scores. The results are sorted from top-left to bottom right.","ocr(image: numpy.ndarray) -> List[Dict[str, Any]]:
395
+ 'ocr' extracts text from an image. It returns a list of detected text, bounding
396
+ boxes with normalized coordinates, and confidence scores. The results are sorted
397
+ from top-left to bottom right.
398
+
399
+ Parameters:
400
+ image (np.ndarray): The image to extract text from.
401
+
402
+ Returns:
403
+ List[Dict[str, Any]]: A list of dictionaries containing the detected text, bbox
404
+ with normalized coordinates, and confidence score.
405
+
406
+ Example
407
+ -------
408
+ >>> ocr(image)
409
+ [
410
+ {'label': 'hello world', 'bbox': [0.1, 0.11, 0.35, 0.4], 'score': 0.99},
411
+ ]
412
+ ",ocr
413
+ 'qwen2_vl_images_vqa' is a tool that can answer any questions about arbitrary images including regular images or images of documents or presentations. It can be very useful for document QA or OCR text extraction. It returns text as an answer to the question.,"qwen2_vl_images_vqa(prompt: str, images: List[numpy.ndarray]) -> str:
414
+ 'qwen2_vl_images_vqa' is a tool that can answer any questions about arbitrary
415
+ images including regular images or images of documents or presentations. It can be
416
+ very useful for document QA or OCR text extraction. It returns text as an answer to
417
+ the question.
418
+
419
+ Parameters:
420
+ prompt (str): The question about the document image
421
+ images (List[np.ndarray]): The reference images used for the question
422
+
423
+ Returns:
424
+ str: A string which is the answer to the given prompt.
425
+
426
+ Example
427
+ -------
428
+ >>> qwen2_vl_images_vqa('Give a summary of the document', images)
429
+ 'The document talks about the history of the United States of America and its...'
430
+ ",qwen2_vl_images_vqa
431
+ 'qwen2_vl_video_vqa' is a tool that can answer any questions about arbitrary videos including regular videos or videos of documents or presentations. It returns text as an answer to the question.,"qwen2_vl_video_vqa(prompt: str, frames: List[numpy.ndarray]) -> str:
432
+ 'qwen2_vl_video_vqa' is a tool that can answer any questions about arbitrary videos
433
+ including regular videos or videos of documents or presentations. It returns text
434
+ as an answer to the question.
435
+
436
+ Parameters:
437
+ prompt (str): The question about the video
438
+ frames (List[np.ndarray]): The reference frames used for the question
439
+
440
+ Returns:
441
+ str: A string which is the answer to the given prompt.
442
+
443
+ Example
444
+ -------
445
+ >>> qwen2_vl_video_vqa('Which football player made the goal?', frames)
446
+ 'Lionel Messi'
447
+ ",qwen2_vl_video_vqa
317
448
  "'detr_segmentation' is a tool that can segment common objects in an image without any text prompt. It returns a list of detected objects as labels, their regions as masks and their scores.","detr_segmentation(image: numpy.ndarray) -> List[Dict[str, Any]]:
318
449
  'detr_segmentation' is a tool that can segment common objects in an
319
450
  image without any text prompt. It returns a list of detected objects
@@ -391,106 +522,38 @@ desc,doc,name
391
522
  [10, 11, 15, ..., 202, 202, 205],
392
523
  [10, 10, 10, ..., 200, 200, 200]], dtype=uint8),
393
524
  ",generate_pose_image
394
- "'minimum_distance' calculates the minimum distance between two detections which can include bounding boxes and or masks. This will return the closest distance between the objects, not the distance between the centers of the objects.","minimum_distance(det1: Dict[str, Any], det2: Dict[str, Any], image_size: Tuple[int, int]) -> float:
395
- 'minimum_distance' calculates the minimum distance between two detections which
396
- can include bounding boxes and or masks. This will return the closest distance
397
- between the objects, not the distance between the centers of the objects.
398
-
399
- Parameters:
400
- det1 (Dict[str, Any]): The first detection of boxes or masks.
401
- det2 (Dict[str, Any]): The second detection of boxes or masks.
402
- image_size (Tuple[int, int]): The size of the image given as (height, width).
403
-
404
- Returns:
405
- float: The closest distance between the two detections.
406
-
407
- Example
408
- -------
409
- >>> closest_distance(det1, det2, image_size)
410
- 141.42
411
- ",minimum_distance
412
- 'qwen2_vl_images_vqa' is a tool that can answer any questions about arbitrary images including regular images or images of documents or presentations. It can be very useful for document QA or OCR text extraction. It returns text as an answer to the question.,"qwen2_vl_images_vqa(prompt: str, images: List[numpy.ndarray]) -> str:
413
- 'qwen2_vl_images_vqa' is a tool that can answer any questions about arbitrary
414
- images including regular images or images of documents or presentations. It can be
415
- very useful for document QA or OCR text extraction. It returns text as an answer to
416
- the question.
417
-
418
- Parameters:
419
- prompt (str): The question about the document image
420
- images (List[np.ndarray]): The reference images used for the question
421
-
422
- Returns:
423
- str: A string which is the answer to the given prompt.
424
-
425
- Example
426
- -------
427
- >>> qwen2_vl_images_vqa('Give a summary of the document', images)
428
- 'The document talks about the history of the United States of America and its...'
429
- ",qwen2_vl_images_vqa
430
- 'qwen2_vl_video_vqa' is a tool that can answer any questions about arbitrary videos including regular videos or videos of documents or presentations. It returns text as an answer to the question.,"qwen2_vl_video_vqa(prompt: str, frames: List[numpy.ndarray]) -> str:
431
- 'qwen2_vl_video_vqa' is a tool that can answer any questions about arbitrary videos
432
- including regular videos or videos of documents or presentations. It returns text
433
- as an answer to the question.
434
-
435
- Parameters:
436
- prompt (str): The question about the video
437
- frames (List[np.ndarray]): The reference frames used for the question
438
-
439
- Returns:
440
- str: A string which is the answer to the given prompt.
441
-
442
- Example
443
- -------
444
- >>> qwen2_vl_video_vqa('Which football player made the goal?', frames)
445
- 'Lionel Messi'
446
- ",qwen2_vl_video_vqa
447
- "'document_extraction' is a tool that can extract structured information out of documents with different layouts. It returns the extracted data in a structured hierarchical format containing text, tables, pictures, charts, and other information.","document_extraction(image: numpy.ndarray) -> Dict[str, Any]:
448
- 'document_extraction' is a tool that can extract structured information out of
449
- documents with different layouts. It returns the extracted data in a structured
450
- hierarchical format containing text, tables, pictures, charts, and other
451
- information.
525
+ 'vit_image_classification' is a tool that can classify an image. It returns a list of classes and their probability scores based on image content.,"vit_image_classification(image: numpy.ndarray) -> Dict[str, Any]:
526
+ 'vit_image_classification' is a tool that can classify an image. It returns a
527
+ list of classes and their probability scores based on image content.
452
528
 
453
529
  Parameters:
454
- image (np.ndarray): The document image to analyze
530
+ image (np.ndarray): The image to classify or tag
455
531
 
456
532
  Returns:
457
- Dict[str, Any]: A dictionary containing the extracted information.
533
+ Dict[str, Any]: A dictionary containing the labels and scores. One dictionary
534
+ contains a list of labels and other a list of scores.
458
535
 
459
536
  Example
460
537
  -------
461
- >>> document_analysis(image)
462
- {'pages':
463
- [{'bbox': [0, 0, 1.0, 1.0],
464
- 'chunks': [{'bbox': [0.8, 0.1, 1.0, 0.2],
465
- 'label': 'page_header',
466
- 'order': 75
467
- 'caption': 'Annual Report 2024',
468
- 'summary': 'This annual report summarizes ...' },
469
- {'bbox': [0.2, 0.9, 0.9, 1.0],
470
- 'label': table',
471
- 'order': 1119,
472
- 'caption': [{'Column 1': 'Value 1', 'Column 2': 'Value 2'},
473
- 'summary': 'This table illustrates a trend of ...'},
474
- ],
475
- ",document_extraction
476
- "'document_qa' is a tool that can answer any questions about arbitrary documents, presentations, or tables. It's very useful for document QA tasks, you can ask it a specific question or ask it to return a JSON object answering multiple questions about the document.","document_qa(prompt: str, image: numpy.ndarray) -> str:
477
- 'document_qa' is a tool that can answer any questions about arbitrary documents,
478
- presentations, or tables. It's very useful for document QA tasks, you can ask it a
479
- specific question or ask it to return a JSON object answering multiple questions
480
- about the document.
538
+ >>> vit_image_classification(image)
539
+ {""labels"": [""leopard"", ""lemur, otter"", ""bird""], ""scores"": [0.68, 0.30, 0.02]},
540
+ ",vit_image_classification
541
+ 'vit_nsfw_classification' is a tool that can classify an image as 'nsfw' or 'normal'. It returns the predicted label and their probability scores based on image content.,"vit_nsfw_classification(image: numpy.ndarray) -> Dict[str, Any]:
542
+ 'vit_nsfw_classification' is a tool that can classify an image as 'nsfw' or 'normal'.
543
+ It returns the predicted label and their probability scores based on image content.
481
544
 
482
545
  Parameters:
483
- prompt (str): The question to be answered about the document image.
484
- image (np.ndarray): The document image to analyze.
546
+ image (np.ndarray): The image to classify or tag
485
547
 
486
548
  Returns:
487
- str: The answer to the question based on the document's context.
549
+ Dict[str, Any]: A dictionary containing the labels and scores. One dictionary
550
+ contains a list of labels and other a list of scores.
488
551
 
489
552
  Example
490
553
  -------
491
- >>> document_qa(image, question)
492
- 'The answer to the question ...'
493
- ",document_qa
554
+ >>> vit_nsfw_classification(image)
555
+ {""label"": ""normal"", ""scores"": 0.68},
556
+ ",vit_nsfw_classification
494
557
  'video_temporal_localization' will run qwen2vl on each chunk_length_frames value selected for the video. It can detect multiple objects independently per chunk_length_frames given a text prompt such as a referring expression but does not track objects across frames. It returns a list of floats with a value of 1.0 if the objects are found in a given chunk_length_frames of the video.,"video_temporal_localization(prompt: str, frames: List[numpy.ndarray], model: str = 'qwen2vl', chunk_length_frames: Optional[int] = 2) -> List[float]:
495
558
  'video_temporal_localization' will run qwen2vl on each chunk_length_frames
496
559
  value selected for the video. It can detect multiple objects independently per
@@ -560,78 +623,24 @@ desc,doc,name
560
623
  >>> siglip_classification(image, ['dog', 'cat', 'bird'])
561
624
  {""labels"": [""dog"", ""cat"", ""bird""], ""scores"": [0.68, 0.30, 0.02]},
562
625
  ",siglip_classification
563
- "'owlv2_sam2_video_tracking' is a tool that can segment multiple objects given a text prompt such as category names or referring expressions. The categories in the text prompt are separated by commas. It returns a list of bounding boxes, label names, mask file names and associated probability scores.","owlv2_sam2_video_tracking(prompt: str, frames: List[numpy.ndarray], chunk_length: Optional[int] = 10, fine_tune_id: Optional[str] = None) -> List[List[Dict[str, Any]]]:
564
- 'owlv2_sam2_video_tracking' is a tool that can segment multiple objects given a text
565
- prompt such as category names or referring expressions. The categories in the text
566
- prompt are separated by commas. It returns a list of bounding boxes, label names,
567
- mask file names and associated probability scores.
568
-
569
- Parameters:
570
- prompt (str): The prompt to ground to the image.
571
- image (np.ndarray): The image to ground the prompt to.
572
-
573
- Returns:
574
- List[Dict[str, Any]]: A list of dictionaries containing the score, label,
575
- bounding box, and mask of the detected objects with normalized coordinates
576
- (xmin, ymin, xmax, ymax). xmin and ymin are the coordinates of the top-left
577
- and xmax and ymax are the coordinates of the bottom-right of the bounding box.
578
- The mask is binary 2D numpy array where 1 indicates the object and 0 indicates
579
- the background.
580
-
581
- Example
582
- -------
583
- >>> countgd_sam2_video_tracking(""car, dinosaur"", frames)
584
- [
585
- [
586
- {
587
- 'label': '0: dinosaur',
588
- 'bbox': [0.1, 0.11, 0.35, 0.4],
589
- 'mask': array([[0, 0, 0, ..., 0, 0, 0],
590
- [0, 0, 0, ..., 0, 0, 0],
591
- ...,
592
- [0, 0, 0, ..., 0, 0, 0],
593
- [0, 0, 0, ..., 0, 0, 0]], dtype=uint8),
594
- },
595
- ],
596
- ...
597
- ]
598
- ",owlv2_sam2_video_tracking
599
- "'countgd_sam2_video_tracking' is a tool that can segment multiple objects given a text prompt such as category names or referring expressions. The categories in the text prompt are separated by commas. It returns a list of bounding boxes, label names, mask file names and associated probability scores.","countgd_sam2_video_tracking(prompt: str, frames: List[numpy.ndarray], chunk_length: Optional[int] = 10) -> List[List[Dict[str, Any]]]:
600
- 'countgd_sam2_video_tracking' is a tool that can segment multiple objects given a text
601
- prompt such as category names or referring expressions. The categories in the text
602
- prompt are separated by commas. It returns a list of bounding boxes, label names,
603
- mask file names and associated probability scores.
626
+ "'minimum_distance' calculates the minimum distance between two detections which can include bounding boxes and or masks. This will return the closest distance between the objects, not the distance between the centers of the objects.","minimum_distance(det1: Dict[str, Any], det2: Dict[str, Any], image_size: Tuple[int, int]) -> float:
627
+ 'minimum_distance' calculates the minimum distance between two detections which
628
+ can include bounding boxes and or masks. This will return the closest distance
629
+ between the objects, not the distance between the centers of the objects.
604
630
 
605
631
  Parameters:
606
- prompt (str): The prompt to ground to the image.
607
- image (np.ndarray): The image to ground the prompt to.
632
+ det1 (Dict[str, Any]): The first detection of boxes or masks.
633
+ det2 (Dict[str, Any]): The second detection of boxes or masks.
634
+ image_size (Tuple[int, int]): The size of the image given as (height, width).
608
635
 
609
636
  Returns:
610
- List[Dict[str, Any]]: A list of dictionaries containing the score, label,
611
- bounding box, and mask of the detected objects with normalized coordinates
612
- (xmin, ymin, xmax, ymax). xmin and ymin are the coordinates of the top-left
613
- and xmax and ymax are the coordinates of the bottom-right of the bounding box.
614
- The mask is binary 2D numpy array where 1 indicates the object and 0 indicates
615
- the background.
637
+ float: The closest distance between the two detections.
616
638
 
617
639
  Example
618
640
  -------
619
- >>> countgd_sam2_video_tracking(""car, dinosaur"", frames)
620
- [
621
- [
622
- {
623
- 'label': '0: dinosaur',
624
- 'bbox': [0.1, 0.11, 0.35, 0.4],
625
- 'mask': array([[0, 0, 0, ..., 0, 0, 0],
626
- [0, 0, 0, ..., 0, 0, 0],
627
- ...,
628
- [0, 0, 0, ..., 0, 0, 0],
629
- [0, 0, 0, ..., 0, 0, 0]], dtype=uint8),
630
- },
631
- ],
632
- ...
633
- ]
634
- ",countgd_sam2_video_tracking
641
+ >>> closest_distance(det1, det2, image_size)
642
+ 141.42
643
+ ",minimum_distance
635
644
  "'extract_frames_and_timestamps' extracts frames and timestamps from a video which can be a file path, url or youtube link, returns a list of dictionaries with keys ""frame"" and ""timestamp"" where ""frame"" is a numpy array and ""timestamp"" is the relative time in seconds where the frame was captured. The frame is a numpy array.","extract_frames_and_timestamps(video_uri: Union[str, pathlib.Path], fps: float = 1) -> List[Dict[str, Union[numpy.ndarray, float]]]:
636
645
  'extract_frames_and_timestamps' extracts frames and timestamps from a video
637
646
  which can be a file path, url or youtube link, returns a list of dictionaries