vision-agent 0.2.197__py3-none-any.whl → 0.2.199__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -80,24 +80,6 @@ desc,doc,name
80
80
  {'label': 'hello world', 'bbox': [0.1, 0.11, 0.35, 0.4], 'score': 0.99},
81
81
  ]
82
82
  ",ocr
83
- 'clip' is a tool that can classify an image or a cropped detection given a list of input classes or tags. It returns the same list of the input classes along with their probability scores based on image content.,"clip(image: numpy.ndarray, classes: List[str]) -> Dict[str, Any]:
84
- 'clip' is a tool that can classify an image or a cropped detection given a list
85
- of input classes or tags. It returns the same list of the input classes along with
86
- their probability scores based on image content.
87
-
88
- Parameters:
89
- image (np.ndarray): The image to classify or tag
90
- classes (List[str]): The list of classes or tags that is associated with the image
91
-
92
- Returns:
93
- Dict[str, Any]: A dictionary containing the labels and scores. One dictionary
94
- contains a list of given labels and other a list of scores.
95
-
96
- Example
97
- -------
98
- >>> clip(image, ['dog', 'cat', 'bird'])
99
- {""labels"": [""dog"", ""cat"", ""bird""], ""scores"": [0.68, 0.30, 0.02]},
100
- ",clip
101
83
  'vit_image_classification' is a tool that can classify an image. It returns a list of classes and their probability scores based on image content.,"vit_image_classification(image: numpy.ndarray) -> Dict[str, Any]:
102
84
  'vit_image_classification' is a tool that can classify an image. It returns a
103
85
  list of classes and their probability scores based on image content.
@@ -488,6 +470,24 @@ desc,doc,name
488
470
  ... )
489
471
  >>> save_image(result, ""inpainted_room.png"")
490
472
  ",flux_image_inpainting
473
+ 'siglip_classification' is a tool that can classify an image or a cropped detection given a list of input labels or tags. It returns the same list of the input labels along with their probability scores based on image content.,"siglip_classification(image: numpy.ndarray, labels: List[str]) -> Dict[str, Any]:
474
+ 'siglip_classification' is a tool that can classify an image or a cropped detection given a list
475
+ of input labels or tags. It returns the same list of the input labels along with
476
+ their probability scores based on image content.
477
+
478
+ Parameters:
479
+ image (np.ndarray): The image to classify or tag
480
+ labels (List[str]): The list of labels or tags that is associated with the image
481
+
482
+ Returns:
483
+ Dict[str, Any]: A dictionary containing the labels and scores. One dictionary
484
+ contains a list of given labels and other a list of scores.
485
+
486
+ Example
487
+ -------
488
+ >>> siglip_classification(image, ['dog', 'cat', 'bird'])
489
+ {""labels"": [""dog"", ""cat"", ""bird""], ""scores"": [0.68, 0.30, 0.02]},
490
+ ",siglip_classification
491
491
  "'extract_frames_and_timestamps' extracts frames and timestamps from a video which can be a file path, url or youtube link, returns a list of dictionaries with keys ""frame"" and ""timestamp"" where ""frame"" is a numpy array and ""timestamp"" is the relative time in seconds where the frame was captured. The frame is a numpy array.","extract_frames_and_timestamps(video_uri: Union[str, pathlib.Path], fps: float = 1) -> List[Dict[str, Union[numpy.ndarray, float]]]:
492
492
  'extract_frames_and_timestamps' extracts frames and timestamps from a video
493
493
  which can be a file path, url or youtube link, returns a list of dictionaries
Binary file
@@ -2453,7 +2453,6 @@ FUNCTION_TOOLS = [
2453
2453
  owl_v2_image,
2454
2454
  owl_v2_video,
2455
2455
  ocr,
2456
- clip,
2457
2456
  vit_image_classification,
2458
2457
  vit_nsfw_classification,
2459
2458
  countgd_counting,
@@ -2471,6 +2470,7 @@ FUNCTION_TOOLS = [
2471
2470
  qwen2_vl_video_vqa,
2472
2471
  video_temporal_localization,
2473
2472
  flux_image_inpainting,
2473
+ siglip_classification,
2474
2474
  ]
2475
2475
 
2476
2476
  UTIL_TOOLS = [
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: vision-agent
3
- Version: 0.2.197
3
+ Version: 0.2.199
4
4
  Summary: Toolset for Vision Agent
5
5
  Author: Landing AI
6
6
  Author-email: dev@landing.ai
@@ -1,5 +1,5 @@
1
- vision_agent/.sim_tools/df.csv,sha256=IPYWrI8W8r7zs2-QRjGsAzlg1O3wqngGRSyz9F-BOpo,34008
2
- vision_agent/.sim_tools/embs.npy,sha256=ItJgcBpT0--0HeZjUV30INzFXNQh-12HoUVevNY38dc,356480
1
+ vision_agent/.sim_tools/df.csv,sha256=0fmLwTDjnRTiqYwamTOdCPjruE6wZz0AVrONIPTHxZY,34086
2
+ vision_agent/.sim_tools/embs.npy,sha256=xF8Cg7Xd09QCTySj831aL1O2_0kRNaaH8XRJIRjgWzQ,356480
3
3
  vision_agent/__init__.py,sha256=EAb4-f9iyuEYkBrX4ag1syM8Syx8118_t0R6_C34M9w,57
4
4
  vision_agent/agent/__init__.py,sha256=j4W3zHXKE96o93ZziY62ZBWgicLYEink1rIU3gPsfwM,548
5
5
  vision_agent/agent/agent.py,sha256=2cjIOxEuSJrqbfPXYoV0qER5ihXsPFCoEFJa4jpqan0,597
@@ -27,7 +27,7 @@ vision_agent/tools/meta_tools.py,sha256=by7TIbH7lsLIayX_Pe2mS1iw8aeLn2T8yqAo8SkB
27
27
  vision_agent/tools/planner_tools.py,sha256=FROahw_6Taqvytv6pOjCHUEypOfjsi_f8Vo1c5vz6Mw,8823
28
28
  vision_agent/tools/prompts.py,sha256=V1z4YJLXZuUl_iZ5rY0M5hHc_2tmMEUKr0WocXKGt4E,1430
29
29
  vision_agent/tools/tool_utils.py,sha256=GDGOmBCo4UfYz-DJ-olREJHPsqs5mzHu0YXiAnpNE8E,10179
30
- vision_agent/tools/tools.py,sha256=Q8QSuOUk0df_XueU856vi21GOolp2TB3_f0WvMayjIA,87835
30
+ vision_agent/tools/tools.py,sha256=wXDs0m_Yb601FQVp5fPYYVtt4lHUeMnuqIbfDZhsE4Q,87852
31
31
  vision_agent/tools/tools_types.py,sha256=8hYf2OZhI58gvf65KGaeGkt4EQ56nwLFqIQDPHioOBc,2339
32
32
  vision_agent/utils/__init__.py,sha256=7fMgbZiEwbNS0fBOS_hJI5PuEYBblw36zLi_UjUzvj4,244
33
33
  vision_agent/utils/exceptions.py,sha256=booSPSuoULF7OXRr_YbC4dtKt6gM_HyiFQHBuaW86C4,2052
@@ -36,7 +36,7 @@ vision_agent/utils/image_utils.py,sha256=rRWcxKggPXIRXIY_XT9rZt30ECDRq8zq7FDeXRD
36
36
  vision_agent/utils/sim.py,sha256=NZc9QGD6BTY5O29NVbHH7oxDePL_QMnylT1lYcDUn1Y,7437
37
37
  vision_agent/utils/type_defs.py,sha256=BE12s3JNQy36QvauXHjwyeffVh5enfcvd4vTzSwvEZI,1384
38
38
  vision_agent/utils/video.py,sha256=tRcGp4vEnaDycigL1hBO9k0FBPtDH35fCQciVr9GqYI,6013
39
- vision_agent-0.2.197.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
40
- vision_agent-0.2.197.dist-info/METADATA,sha256=b_qATdG-j1o9ksVxISHe_-NcUdd0HMgZAVF9r6Y10ek,19026
41
- vision_agent-0.2.197.dist-info/WHEEL,sha256=7Z8_27uaHI_UZAc4Uox4PpBhQ9Y5_modZXWMxtUi4NU,88
42
- vision_agent-0.2.197.dist-info/RECORD,,
39
+ vision_agent-0.2.199.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
40
+ vision_agent-0.2.199.dist-info/METADATA,sha256=NbaPI49uOha3uZXbfOokpji32pilLujBz7DcmhaXW1M,19026
41
+ vision_agent-0.2.199.dist-info/WHEEL,sha256=7Z8_27uaHI_UZAc4Uox4PpBhQ9Y5_modZXWMxtUi4NU,88
42
+ vision_agent-0.2.199.dist-info/RECORD,,