vision-agent 0.2.161__py3-none-any.whl → 0.2.163__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- vision_agent/agent/__init__.py +8 -0
- vision_agent/agent/agent_utils.py +98 -2
- vision_agent/agent/vision_agent.py +54 -22
- vision_agent/agent/vision_agent_coder.py +222 -512
- vision_agent/agent/vision_agent_coder_prompts.py +12 -221
- vision_agent/agent/vision_agent_planner.py +583 -0
- vision_agent/agent/vision_agent_planner_prompts.py +199 -0
- vision_agent/tools/__init__.py +0 -1
- vision_agent/tools/meta_tools.py +107 -35
- vision_agent/tools/tools.py +2 -2
- {vision_agent-0.2.161.dist-info → vision_agent-0.2.163.dist-info}/METADATA +8 -7
- {vision_agent-0.2.161.dist-info → vision_agent-0.2.163.dist-info}/RECORD +14 -12
- {vision_agent-0.2.161.dist-info → vision_agent-0.2.163.dist-info}/LICENSE +0 -0
- {vision_agent-0.2.161.dist-info → vision_agent-0.2.163.dist-info}/WHEEL +0 -0
@@ -0,0 +1,583 @@
|
|
1
|
+
import copy
|
2
|
+
import logging
|
3
|
+
from json import JSONDecodeError
|
4
|
+
from pathlib import Path
|
5
|
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union, cast
|
6
|
+
|
7
|
+
from pydantic import BaseModel
|
8
|
+
from tabulate import tabulate
|
9
|
+
|
10
|
+
import vision_agent.tools as T
|
11
|
+
from vision_agent.agent import Agent
|
12
|
+
from vision_agent.agent.agent_utils import (
|
13
|
+
_MAX_TABULATE_COL_WIDTH,
|
14
|
+
DefaultImports,
|
15
|
+
extract_code,
|
16
|
+
extract_json,
|
17
|
+
format_memory,
|
18
|
+
format_plans,
|
19
|
+
print_code,
|
20
|
+
)
|
21
|
+
from vision_agent.agent.vision_agent_planner_prompts import (
|
22
|
+
PICK_PLAN,
|
23
|
+
PLAN,
|
24
|
+
PREVIOUS_FAILED,
|
25
|
+
TEST_PLANS,
|
26
|
+
USER_REQ,
|
27
|
+
)
|
28
|
+
from vision_agent.lmm import (
|
29
|
+
LMM,
|
30
|
+
AnthropicLMM,
|
31
|
+
AzureOpenAILMM,
|
32
|
+
Message,
|
33
|
+
OllamaLMM,
|
34
|
+
OpenAILMM,
|
35
|
+
)
|
36
|
+
from vision_agent.utils.execute import (
|
37
|
+
CodeInterpreter,
|
38
|
+
CodeInterpreterFactory,
|
39
|
+
Execution,
|
40
|
+
)
|
41
|
+
from vision_agent.utils.sim import AzureSim, OllamaSim, Sim
|
42
|
+
|
43
|
+
_LOGGER = logging.getLogger(__name__)
|
44
|
+
|
45
|
+
|
46
|
+
class PlanContext(BaseModel):
|
47
|
+
plans: Dict[str, Dict[str, Union[str, List[str]]]]
|
48
|
+
best_plan: str
|
49
|
+
plan_thoughts: str
|
50
|
+
tool_output: str
|
51
|
+
tool_doc: str
|
52
|
+
test_results: Optional[Execution]
|
53
|
+
|
54
|
+
|
55
|
+
def retrieve_tools(
|
56
|
+
plans: Dict[str, Dict[str, Any]],
|
57
|
+
tool_recommender: Sim,
|
58
|
+
log_progress: Callable[[Dict[str, Any]], None],
|
59
|
+
verbosity: int = 0,
|
60
|
+
) -> Dict[str, str]:
|
61
|
+
log_progress(
|
62
|
+
{
|
63
|
+
"type": "log",
|
64
|
+
"log_content": ("Retrieving tools for each plan"),
|
65
|
+
"status": "started",
|
66
|
+
}
|
67
|
+
)
|
68
|
+
tool_info = []
|
69
|
+
tool_desc = []
|
70
|
+
tool_lists: Dict[str, List[Dict[str, str]]] = {}
|
71
|
+
for k, plan in plans.items():
|
72
|
+
tool_lists[k] = []
|
73
|
+
for task in plan["instructions"]:
|
74
|
+
tools = tool_recommender.top_k(task, k=2, thresh=0.3)
|
75
|
+
tool_info.extend([e["doc"] for e in tools])
|
76
|
+
tool_desc.extend([e["desc"] for e in tools])
|
77
|
+
tool_lists[k].extend(
|
78
|
+
{"description": e["desc"], "documentation": e["doc"]} for e in tools
|
79
|
+
)
|
80
|
+
|
81
|
+
if verbosity == 2:
|
82
|
+
tool_desc_str = "\n".join(set(tool_desc))
|
83
|
+
_LOGGER.info(f"Tools Description:\n{tool_desc_str}")
|
84
|
+
|
85
|
+
tool_lists_unique = {}
|
86
|
+
for k in tool_lists:
|
87
|
+
tool_lists_unique[k] = "\n\n".join(
|
88
|
+
set(e["documentation"] for e in tool_lists[k])
|
89
|
+
)
|
90
|
+
all_tools = "\n\n".join(set(tool_info))
|
91
|
+
tool_lists_unique["all"] = all_tools
|
92
|
+
return tool_lists_unique
|
93
|
+
|
94
|
+
|
95
|
+
def _check_plan_format(plan: Dict[str, Any]) -> bool:
|
96
|
+
if not isinstance(plan, dict):
|
97
|
+
return False
|
98
|
+
|
99
|
+
for k in plan:
|
100
|
+
if "thoughts" not in plan[k] or "instructions" not in plan[k]:
|
101
|
+
return False
|
102
|
+
if not isinstance(plan[k]["instructions"], list):
|
103
|
+
return False
|
104
|
+
return True
|
105
|
+
|
106
|
+
|
107
|
+
def write_plans(
|
108
|
+
chat: List[Message], tool_desc: str, working_memory: str, model: LMM
|
109
|
+
) -> Dict[str, Any]:
|
110
|
+
chat = copy.deepcopy(chat)
|
111
|
+
if chat[-1]["role"] != "user":
|
112
|
+
raise ValueError("Last message in chat must be from user")
|
113
|
+
|
114
|
+
user_request = chat[-1]["content"]
|
115
|
+
context = USER_REQ.format(user_request=user_request)
|
116
|
+
prompt = PLAN.format(
|
117
|
+
context=context,
|
118
|
+
tool_desc=tool_desc,
|
119
|
+
feedback=working_memory,
|
120
|
+
)
|
121
|
+
chat[-1]["content"] = prompt
|
122
|
+
plans = extract_json(model(chat, stream=False)) # type: ignore
|
123
|
+
|
124
|
+
count = 0
|
125
|
+
while not _check_plan_format(plans) and count < 3:
|
126
|
+
_LOGGER.info("Invalid plan format. Retrying.")
|
127
|
+
plans = extract_json(model(chat, stream=False)) # type: ignore
|
128
|
+
count += 1
|
129
|
+
if count == 3:
|
130
|
+
raise ValueError("Failed to generate valid plans after 3 attempts.")
|
131
|
+
return plans
|
132
|
+
|
133
|
+
|
134
|
+
def write_and_exec_plan_tests(
|
135
|
+
plans: Dict[str, Any],
|
136
|
+
tool_info: str,
|
137
|
+
media: List[str],
|
138
|
+
model: LMM,
|
139
|
+
log_progress: Callable[[Dict[str, Any]], None],
|
140
|
+
code_interpreter: CodeInterpreter,
|
141
|
+
verbosity: int = 0,
|
142
|
+
max_retries: int = 3,
|
143
|
+
) -> Tuple[str, Execution]:
|
144
|
+
|
145
|
+
plan_str = format_plans(plans)
|
146
|
+
prompt = TEST_PLANS.format(
|
147
|
+
docstring=tool_info, plans=plan_str, previous_attempts="", media=media
|
148
|
+
)
|
149
|
+
|
150
|
+
code = extract_code(model(prompt, stream=False)) # type: ignore
|
151
|
+
log_progress(
|
152
|
+
{
|
153
|
+
"type": "log",
|
154
|
+
"log_content": "Executing code to test plans",
|
155
|
+
"code": DefaultImports.prepend_imports(code),
|
156
|
+
"status": "running",
|
157
|
+
}
|
158
|
+
)
|
159
|
+
tool_output = code_interpreter.exec_isolation(DefaultImports.prepend_imports(code))
|
160
|
+
# Because of the way we trace function calls the trace information ends up in the
|
161
|
+
# results. We don't want to show this info to the LLM so we don't include it in the
|
162
|
+
# tool_output_str.
|
163
|
+
tool_output_str = tool_output.text(include_results=False).strip()
|
164
|
+
|
165
|
+
if verbosity == 2:
|
166
|
+
print_code("Initial code and tests:", code)
|
167
|
+
_LOGGER.info(f"Initial code execution result:\n{tool_output_str}")
|
168
|
+
|
169
|
+
log_progress(
|
170
|
+
{
|
171
|
+
"type": "log",
|
172
|
+
"log_content": (
|
173
|
+
"Code execution succeeded"
|
174
|
+
if tool_output.success
|
175
|
+
else "Code execution failed"
|
176
|
+
),
|
177
|
+
"code": DefaultImports.prepend_imports(code),
|
178
|
+
# "payload": tool_output.to_json(),
|
179
|
+
"status": "completed" if tool_output.success else "failed",
|
180
|
+
}
|
181
|
+
)
|
182
|
+
|
183
|
+
# retry if the tool output is empty or code fails
|
184
|
+
count = 0
|
185
|
+
tool_output_str = tool_output.text(include_results=False).strip()
|
186
|
+
while (
|
187
|
+
not tool_output.success
|
188
|
+
or (len(tool_output.logs.stdout) == 0 and len(tool_output.logs.stderr) == 0)
|
189
|
+
) and count < max_retries:
|
190
|
+
prompt = TEST_PLANS.format(
|
191
|
+
docstring=tool_info,
|
192
|
+
plans=plan_str,
|
193
|
+
previous_attempts=PREVIOUS_FAILED.format(
|
194
|
+
code=code, error="\n".join(tool_output_str.splitlines()[-50:])
|
195
|
+
),
|
196
|
+
media=media,
|
197
|
+
)
|
198
|
+
log_progress(
|
199
|
+
{
|
200
|
+
"type": "log",
|
201
|
+
"log_content": "Retrying code to test plans",
|
202
|
+
"status": "running",
|
203
|
+
"code": DefaultImports.prepend_imports(code),
|
204
|
+
}
|
205
|
+
)
|
206
|
+
code = extract_code(model(prompt, stream=False)) # type: ignore
|
207
|
+
tool_output = code_interpreter.exec_isolation(
|
208
|
+
DefaultImports.prepend_imports(code)
|
209
|
+
)
|
210
|
+
log_progress(
|
211
|
+
{
|
212
|
+
"type": "log",
|
213
|
+
"log_content": (
|
214
|
+
"Code execution succeeded"
|
215
|
+
if tool_output.success
|
216
|
+
else "Code execution failed"
|
217
|
+
),
|
218
|
+
"code": DefaultImports.prepend_imports(code),
|
219
|
+
# "payload": tool_output.to_json(),
|
220
|
+
"status": "completed" if tool_output.success else "failed",
|
221
|
+
}
|
222
|
+
)
|
223
|
+
tool_output_str = tool_output.text(include_results=False).strip()
|
224
|
+
|
225
|
+
if verbosity == 2:
|
226
|
+
print_code("Code and test after attempted fix:", code)
|
227
|
+
_LOGGER.info(f"Code execution result after attempt {count + 1}")
|
228
|
+
_LOGGER.info(f"{tool_output_str}")
|
229
|
+
|
230
|
+
count += 1
|
231
|
+
|
232
|
+
return code, tool_output
|
233
|
+
|
234
|
+
|
235
|
+
def write_plan_thoughts(
|
236
|
+
chat: List[Message],
|
237
|
+
plans: Dict[str, Any],
|
238
|
+
tool_output_str: str,
|
239
|
+
model: LMM,
|
240
|
+
max_retries: int = 3,
|
241
|
+
) -> Dict[str, str]:
|
242
|
+
user_req = chat[-1]["content"]
|
243
|
+
context = USER_REQ.format(user_request=user_req)
|
244
|
+
# because the tool picker model gets the image as well, we have to be careful with
|
245
|
+
# how much text we send it, so we truncate the tool output to 20,000 characters
|
246
|
+
prompt = PICK_PLAN.format(
|
247
|
+
context=context,
|
248
|
+
plans=format_plans(plans),
|
249
|
+
tool_output=tool_output_str[:20_000],
|
250
|
+
)
|
251
|
+
chat[-1]["content"] = prompt
|
252
|
+
count = 0
|
253
|
+
|
254
|
+
plan_thoughts = None
|
255
|
+
while plan_thoughts is None and count < max_retries:
|
256
|
+
try:
|
257
|
+
plan_thoughts = extract_json(model(chat, stream=False)) # type: ignore
|
258
|
+
except JSONDecodeError as e:
|
259
|
+
_LOGGER.exception(
|
260
|
+
f"Error while extracting JSON during picking best plan {str(e)}"
|
261
|
+
)
|
262
|
+
pass
|
263
|
+
count += 1
|
264
|
+
|
265
|
+
if (
|
266
|
+
plan_thoughts is None
|
267
|
+
or "best_plan" not in plan_thoughts
|
268
|
+
or ("best_plan" in plan_thoughts and plan_thoughts["best_plan"] not in plans)
|
269
|
+
):
|
270
|
+
_LOGGER.info(f"Failed to pick best plan. Using the first plan. {plan_thoughts}")
|
271
|
+
plan_thoughts = {"best_plan": list(plans.keys())[0]}
|
272
|
+
|
273
|
+
if "thoughts" not in plan_thoughts:
|
274
|
+
plan_thoughts["thoughts"] = ""
|
275
|
+
return plan_thoughts
|
276
|
+
|
277
|
+
|
278
|
+
def pick_plan(
|
279
|
+
chat: List[Message],
|
280
|
+
plans: Dict[str, Any],
|
281
|
+
tool_info: str,
|
282
|
+
model: LMM,
|
283
|
+
code_interpreter: CodeInterpreter,
|
284
|
+
media: List[str],
|
285
|
+
log_progress: Callable[[Dict[str, Any]], None],
|
286
|
+
verbosity: int = 0,
|
287
|
+
max_retries: int = 3,
|
288
|
+
) -> Tuple[Dict[str, str], str, Execution]:
|
289
|
+
log_progress(
|
290
|
+
{
|
291
|
+
"type": "log",
|
292
|
+
"log_content": "Generating code to pick the best plan",
|
293
|
+
"status": "started",
|
294
|
+
}
|
295
|
+
)
|
296
|
+
|
297
|
+
chat = copy.deepcopy(chat)
|
298
|
+
if chat[-1]["role"] != "user":
|
299
|
+
raise ValueError("Last chat message must be from the user.")
|
300
|
+
|
301
|
+
code, tool_output = write_and_exec_plan_tests(
|
302
|
+
plans,
|
303
|
+
tool_info,
|
304
|
+
media,
|
305
|
+
model,
|
306
|
+
log_progress,
|
307
|
+
code_interpreter,
|
308
|
+
verbosity,
|
309
|
+
max_retries,
|
310
|
+
)
|
311
|
+
|
312
|
+
if verbosity >= 1:
|
313
|
+
print_code("Final code:", code)
|
314
|
+
|
315
|
+
plan_thoughts = write_plan_thoughts(
|
316
|
+
chat,
|
317
|
+
plans,
|
318
|
+
tool_output.text(include_results=False).strip(),
|
319
|
+
model,
|
320
|
+
max_retries,
|
321
|
+
)
|
322
|
+
|
323
|
+
if verbosity >= 1:
|
324
|
+
_LOGGER.info(f"Best plan:\n{plan_thoughts}")
|
325
|
+
log_progress(
|
326
|
+
{
|
327
|
+
"type": "log",
|
328
|
+
"log_content": "Picked best plan",
|
329
|
+
"status": "completed",
|
330
|
+
"payload": plans[plan_thoughts["best_plan"]],
|
331
|
+
}
|
332
|
+
)
|
333
|
+
return plan_thoughts, code, tool_output
|
334
|
+
|
335
|
+
|
336
|
+
class VisionAgentPlanner(Agent):
|
337
|
+
def __init__(
|
338
|
+
self,
|
339
|
+
planner: Optional[LMM] = None,
|
340
|
+
tool_recommender: Optional[Sim] = None,
|
341
|
+
verbosity: int = 0,
|
342
|
+
report_progress_callback: Optional[Callable[[Dict[str, Any]], None]] = None,
|
343
|
+
code_interpreter: Optional[Union[str, CodeInterpreter]] = None,
|
344
|
+
) -> None:
|
345
|
+
self.planner = AnthropicLMM(temperature=0.0) if planner is None else planner
|
346
|
+
self.verbosity = verbosity
|
347
|
+
if self.verbosity > 0:
|
348
|
+
_LOGGER.setLevel(logging.INFO)
|
349
|
+
|
350
|
+
self.tool_recommender = (
|
351
|
+
Sim(T.TOOLS_DF, sim_key="desc")
|
352
|
+
if tool_recommender is None
|
353
|
+
else tool_recommender
|
354
|
+
)
|
355
|
+
self.report_progress_callback = report_progress_callback
|
356
|
+
self.code_interpreter = code_interpreter
|
357
|
+
|
358
|
+
def __call__(
|
359
|
+
self, input: Union[str, List[Message]], media: Optional[Union[str, Path]] = None
|
360
|
+
) -> str:
|
361
|
+
if isinstance(input, str):
|
362
|
+
input = [{"role": "user", "content": input}]
|
363
|
+
if media is not None:
|
364
|
+
input[0]["media"] = [media]
|
365
|
+
planning_context = self.generate_plan(input)
|
366
|
+
return str(planning_context.plans[planning_context.best_plan])
|
367
|
+
|
368
|
+
def generate_plan(
|
369
|
+
self,
|
370
|
+
chat: List[Message],
|
371
|
+
test_multi_plan: bool = True,
|
372
|
+
custom_tool_names: Optional[List[str]] = None,
|
373
|
+
code_interpreter: Optional[CodeInterpreter] = None,
|
374
|
+
) -> PlanContext:
|
375
|
+
if not chat:
|
376
|
+
raise ValueError("Chat cannot be empty")
|
377
|
+
|
378
|
+
code_interpreter = (
|
379
|
+
code_interpreter
|
380
|
+
if code_interpreter is not None
|
381
|
+
else (
|
382
|
+
self.code_interpreter
|
383
|
+
if not isinstance(self.code_interpreter, str)
|
384
|
+
else CodeInterpreterFactory.new_instance(self.code_interpreter)
|
385
|
+
)
|
386
|
+
)
|
387
|
+
code_interpreter = cast(CodeInterpreter, code_interpreter)
|
388
|
+
with code_interpreter:
|
389
|
+
chat = copy.deepcopy(chat)
|
390
|
+
media_list = []
|
391
|
+
for chat_i in chat:
|
392
|
+
if "media" in chat_i:
|
393
|
+
for media in chat_i["media"]:
|
394
|
+
media = (
|
395
|
+
media
|
396
|
+
if type(media) is str
|
397
|
+
and media.startswith(("http", "https"))
|
398
|
+
else code_interpreter.upload_file(cast(str, media))
|
399
|
+
)
|
400
|
+
chat_i["content"] += f" Media name {media}" # type: ignore
|
401
|
+
media_list.append(str(media))
|
402
|
+
|
403
|
+
int_chat = cast(
|
404
|
+
List[Message],
|
405
|
+
[
|
406
|
+
(
|
407
|
+
{
|
408
|
+
"role": c["role"],
|
409
|
+
"content": c["content"],
|
410
|
+
"media": c["media"],
|
411
|
+
}
|
412
|
+
if "media" in c
|
413
|
+
else {"role": c["role"], "content": c["content"]}
|
414
|
+
)
|
415
|
+
for c in chat
|
416
|
+
],
|
417
|
+
)
|
418
|
+
|
419
|
+
working_memory: List[Dict[str, str]] = []
|
420
|
+
|
421
|
+
plans = write_plans(
|
422
|
+
chat,
|
423
|
+
T.get_tool_descriptions_by_names(
|
424
|
+
custom_tool_names, T.FUNCTION_TOOLS, T.UTIL_TOOLS # type: ignore
|
425
|
+
),
|
426
|
+
format_memory(working_memory),
|
427
|
+
self.planner,
|
428
|
+
)
|
429
|
+
if self.verbosity >= 1:
|
430
|
+
for plan in plans:
|
431
|
+
plan_fixed = [
|
432
|
+
{"instructions": e} for e in plans[plan]["instructions"]
|
433
|
+
]
|
434
|
+
_LOGGER.info(
|
435
|
+
f"\n{tabulate(tabular_data=plan_fixed, headers='keys', tablefmt='mixed_grid', maxcolwidths=_MAX_TABULATE_COL_WIDTH)}"
|
436
|
+
)
|
437
|
+
|
438
|
+
tool_docs = retrieve_tools(
|
439
|
+
plans,
|
440
|
+
self.tool_recommender,
|
441
|
+
self.log_progress,
|
442
|
+
self.verbosity,
|
443
|
+
)
|
444
|
+
if test_multi_plan:
|
445
|
+
plan_thoughts, code, tool_output = pick_plan(
|
446
|
+
int_chat,
|
447
|
+
plans,
|
448
|
+
tool_docs["all"],
|
449
|
+
self.planner,
|
450
|
+
code_interpreter,
|
451
|
+
media_list,
|
452
|
+
self.log_progress,
|
453
|
+
self.verbosity,
|
454
|
+
)
|
455
|
+
best_plan = plan_thoughts["best_plan"]
|
456
|
+
plan_thoughts_str = plan_thoughts["thoughts"]
|
457
|
+
tool_output_str = (
|
458
|
+
"```python\n"
|
459
|
+
+ code
|
460
|
+
+ "\n```\n"
|
461
|
+
+ tool_output.text(include_results=False).strip()
|
462
|
+
)
|
463
|
+
else:
|
464
|
+
best_plan = list(plans.keys())[0]
|
465
|
+
tool_output_str = ""
|
466
|
+
plan_thoughts_str = ""
|
467
|
+
tool_output = None
|
468
|
+
|
469
|
+
if best_plan in plans and best_plan in tool_docs:
|
470
|
+
tool_doc = tool_docs[best_plan]
|
471
|
+
else:
|
472
|
+
if self.verbosity >= 1:
|
473
|
+
_LOGGER.warning(
|
474
|
+
f"Best plan {best_plan} not found in plans or tool_infos. Using the first plan and tool info."
|
475
|
+
)
|
476
|
+
k = list(plans.keys())[0]
|
477
|
+
best_plan = k
|
478
|
+
tool_doc = tool_docs[k]
|
479
|
+
|
480
|
+
return PlanContext(
|
481
|
+
plans=plans,
|
482
|
+
best_plan=best_plan,
|
483
|
+
plan_thoughts=plan_thoughts_str,
|
484
|
+
tool_output=tool_output_str,
|
485
|
+
test_results=tool_output,
|
486
|
+
tool_doc=tool_doc,
|
487
|
+
)
|
488
|
+
|
489
|
+
def log_progress(self, log: Dict[str, Any]) -> None:
|
490
|
+
if self.report_progress_callback is not None:
|
491
|
+
self.report_progress_callback(log)
|
492
|
+
|
493
|
+
|
494
|
+
class AnthropicVisionAgentPlanner(VisionAgentPlanner):
|
495
|
+
def __init__(
|
496
|
+
self,
|
497
|
+
planner: Optional[LMM] = None,
|
498
|
+
tool_recommender: Optional[Sim] = None,
|
499
|
+
verbosity: int = 0,
|
500
|
+
report_progress_callback: Optional[Callable[[Dict[str, Any]], None]] = None,
|
501
|
+
code_interpreter: Optional[Union[str, CodeInterpreter]] = None,
|
502
|
+
) -> None:
|
503
|
+
super().__init__(
|
504
|
+
planner=AnthropicLMM(temperature=0.0) if planner is None else planner,
|
505
|
+
tool_recommender=tool_recommender,
|
506
|
+
verbosity=verbosity,
|
507
|
+
report_progress_callback=report_progress_callback,
|
508
|
+
code_interpreter=code_interpreter,
|
509
|
+
)
|
510
|
+
|
511
|
+
|
512
|
+
class OpenAIVisionAgentPlanner(VisionAgentPlanner):
|
513
|
+
def __init__(
|
514
|
+
self,
|
515
|
+
planner: Optional[LMM] = None,
|
516
|
+
tool_recommender: Optional[Sim] = None,
|
517
|
+
verbosity: int = 0,
|
518
|
+
report_progress_callback: Optional[Callable[[Dict[str, Any]], None]] = None,
|
519
|
+
code_interpreter: Optional[Union[str, CodeInterpreter]] = None,
|
520
|
+
) -> None:
|
521
|
+
super().__init__(
|
522
|
+
planner=(
|
523
|
+
OpenAILMM(temperature=0.0, json_mode=True)
|
524
|
+
if planner is None
|
525
|
+
else planner
|
526
|
+
),
|
527
|
+
tool_recommender=tool_recommender,
|
528
|
+
verbosity=verbosity,
|
529
|
+
report_progress_callback=report_progress_callback,
|
530
|
+
code_interpreter=code_interpreter,
|
531
|
+
)
|
532
|
+
|
533
|
+
|
534
|
+
class OllamaVisionAgentPlanner(VisionAgentPlanner):
|
535
|
+
def __init__(
|
536
|
+
self,
|
537
|
+
planner: Optional[LMM] = None,
|
538
|
+
tool_recommender: Optional[Sim] = None,
|
539
|
+
verbosity: int = 0,
|
540
|
+
report_progress_callback: Optional[Callable[[Dict[str, Any]], None]] = None,
|
541
|
+
code_interpreter: Optional[Union[str, CodeInterpreter]] = None,
|
542
|
+
) -> None:
|
543
|
+
super().__init__(
|
544
|
+
planner=(
|
545
|
+
OllamaLMM(model_name="llama3.1", temperature=0.0)
|
546
|
+
if planner is None
|
547
|
+
else planner
|
548
|
+
),
|
549
|
+
tool_recommender=(
|
550
|
+
OllamaSim(T.TOOLS_DF, sim_key="desc")
|
551
|
+
if tool_recommender is None
|
552
|
+
else tool_recommender
|
553
|
+
),
|
554
|
+
verbosity=verbosity,
|
555
|
+
report_progress_callback=report_progress_callback,
|
556
|
+
code_interpreter=code_interpreter,
|
557
|
+
)
|
558
|
+
|
559
|
+
|
560
|
+
class AzureVisionAgentPlanner(VisionAgentPlanner):
|
561
|
+
def __init__(
|
562
|
+
self,
|
563
|
+
planner: Optional[LMM] = None,
|
564
|
+
tool_recommender: Optional[Sim] = None,
|
565
|
+
verbosity: int = 0,
|
566
|
+
report_progress_callback: Optional[Callable[[Dict[str, Any]], None]] = None,
|
567
|
+
code_interpreter: Optional[Union[str, CodeInterpreter]] = None,
|
568
|
+
) -> None:
|
569
|
+
super().__init__(
|
570
|
+
planner=(
|
571
|
+
AzureOpenAILMM(temperature=0.0, json_mode=True)
|
572
|
+
if planner is None
|
573
|
+
else planner
|
574
|
+
),
|
575
|
+
tool_recommender=(
|
576
|
+
AzureSim(T.TOOLS_DF, sim_key="desc")
|
577
|
+
if tool_recommender is None
|
578
|
+
else tool_recommender
|
579
|
+
),
|
580
|
+
verbosity=verbosity,
|
581
|
+
report_progress_callback=report_progress_callback,
|
582
|
+
code_interpreter=code_interpreter,
|
583
|
+
)
|