vision-agent 0.2.154__py3-none-any.whl → 0.2.156__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- vision_agent/agent/agent_utils.py +6 -0
- vision_agent/agent/vision_agent.py +0 -2
- vision_agent/agent/vision_agent_coder.py +7 -3
- vision_agent/agent/vision_agent_prompts.py +7 -6
- vision_agent/tools/__init__.py +0 -1
- vision_agent/tools/meta_tools.py +3 -1
- vision_agent/tools/tool_utils.py +1 -1
- vision_agent/tools/tools.py +67 -64
- vision_agent/tools/tools_types.py +1 -1
- {vision_agent-0.2.154.dist-info → vision_agent-0.2.156.dist-info}/METADATA +1 -1
- {vision_agent-0.2.154.dist-info → vision_agent-0.2.156.dist-info}/RECORD +13 -13
- {vision_agent-0.2.154.dist-info → vision_agent-0.2.156.dist-info}/LICENSE +0 -0
- {vision_agent-0.2.154.dist-info → vision_agent-0.2.156.dist-info}/WHEEL +0 -0
@@ -77,3 +77,9 @@ def extract_code(code: str) -> str:
|
|
77
77
|
if code.startswith("python\n"):
|
78
78
|
code = code[len("python\n") :]
|
79
79
|
return code
|
80
|
+
|
81
|
+
|
82
|
+
def remove_installs_from_code(code: str) -> str:
|
83
|
+
pattern = r"\n!pip install.*?(\n|\Z)\n"
|
84
|
+
code = re.sub(pattern, "", code, flags=re.DOTALL)
|
85
|
+
return code
|
@@ -407,8 +407,6 @@ class VisionAgent(Agent):
|
|
407
407
|
code_interpreter.download_file(
|
408
408
|
str(remote_artifacts_path.name), str(self.local_artifacts_path)
|
409
409
|
)
|
410
|
-
artifacts.load(self.local_artifacts_path)
|
411
|
-
artifacts.save()
|
412
410
|
return orig_chat, artifacts
|
413
411
|
|
414
412
|
def streaming_message(self, message: Dict[str, Any]) -> None:
|
@@ -13,7 +13,11 @@ from tabulate import tabulate
|
|
13
13
|
|
14
14
|
import vision_agent.tools as T
|
15
15
|
from vision_agent.agent import Agent
|
16
|
-
from vision_agent.agent.agent_utils import
|
16
|
+
from vision_agent.agent.agent_utils import (
|
17
|
+
extract_code,
|
18
|
+
extract_json,
|
19
|
+
remove_installs_from_code,
|
20
|
+
)
|
17
21
|
from vision_agent.agent.vision_agent_coder_prompts import (
|
18
22
|
CODE,
|
19
23
|
FIX_BUG,
|
@@ -836,8 +840,8 @@ class VisionAgentCoder(Agent):
|
|
836
840
|
media=media_list,
|
837
841
|
)
|
838
842
|
success = cast(bool, results["success"])
|
839
|
-
code = cast(str, results["code"])
|
840
|
-
test = cast(str, results["test"])
|
843
|
+
code = remove_installs_from_code(cast(str, results["code"]))
|
844
|
+
test = remove_installs_from_code(cast(str, results["test"]))
|
841
845
|
working_memory.extend(results["working_memory"]) # type: ignore
|
842
846
|
plan.append({"code": code, "test": test, "plan": plan_i})
|
843
847
|
|
@@ -28,7 +28,8 @@ Here is the current conversation so far:
|
|
28
28
|
1. **Understand and Clarify**: Make sure you understand the task, ask clarifying questions if the task is not clear.
|
29
29
|
2. **Code Generation**: Only use code provided in the Documentation in your <execute_python> tags. Only use `edit_vision_code` to modify code written by `generate_vision_code`.
|
30
30
|
3. **Execute**: Do only what the user asked you to do and no more. If you need to ask the user a question, set `let_user_respond` to `true`.
|
31
|
-
4. **
|
31
|
+
4. **Response**: Keep your responses short and concise. Provide the user only with the information they need to continue the conversation.
|
32
|
+
5. **Output in JSON**: Respond in the following format in JSON:
|
32
33
|
|
33
34
|
```json
|
34
35
|
{{"thoughts": <your thoughts>, "response": <your response to the user>, "let_user_respond": <a boolean whether or not to let the user respond>}}.
|
@@ -62,7 +63,7 @@ OBSERVATION:
|
|
62
63
|
[{'score': 0.99, 'label': 'dog', 'box': [0.1, 0.2, 0.3, 0.4]}, {'score': 0.23, 'label': 'dog', 'box': [0.2, 0.3, 0.4, 0.5]}]
|
63
64
|
|
64
65
|
|
65
|
-
AGENT: {"thoughts": "Two dogs are detected, I will show this to the user and ask them if the result looks good.", "response": "
|
66
|
+
AGENT: {"thoughts": "Two dogs are detected, I will show this to the user and ask them if the result looks good.", "response": "The code detectd two dogs, do the results look good to you?", "let_user_respond": true}
|
66
67
|
"""
|
67
68
|
|
68
69
|
EXAMPLES_CODE1_EXTRA = """
|
@@ -91,7 +92,7 @@ OBSERVATION:
|
|
91
92
|
----- stdout -----
|
92
93
|
[{'score': 0.99, 'label': 'dog', 'box': [0.1, 0.2, 0.3, 0.4]}]
|
93
94
|
|
94
|
-
AGENT: {"thoughts": "One dog is detected, I will show this to the user and ask them if the result looks good.", "response": "
|
95
|
+
AGENT: {"thoughts": "One dog is detected, I will show this to the user and ask them if the result looks good.", "response": "The code detected one dog, do these results look good to you?", "let_user_respond": true}
|
95
96
|
"""
|
96
97
|
|
97
98
|
EXAMPLES_CODE2 = """
|
@@ -157,16 +158,16 @@ OBSERVATION:
|
|
157
158
|
----- stdout -----
|
158
159
|
2
|
159
160
|
|
160
|
-
AGENT: {"thoughts": "Two workers with helmets are detected, I will show this to the user and ask them if the result looks good.", "response": "
|
161
|
+
AGENT: {"thoughts": "Two workers with helmets are detected, I will show this to the user and ask them if the result looks good.", "response": "The code to detect workers with helmets is saved in code.py and the visualization under 'workers_viz.png'.", "let_user_respond": true}
|
161
162
|
|
162
163
|
USER: The detections are slightly off. Can you fine tune florence2 using these labels? "[{'image_path': 'image1.png': 'labels': ['worker', 'helmet'], 'bboxes': [[235, 118, 294, 241], [232, 118, 294, 128]]}, {'image_path': 'image2.png': 'labels': ['worker', 'helmet'], 'bboxes': [[235, 118, 294, 241], [232, 118, 294, 128]]}]"
|
163
164
|
|
164
|
-
AGENT: {"thoughts": "Because the user has supplied me with labels I can call object_detection_fine_tuning on their behalf to fine tune the model", "response": "
|
165
|
+
AGENT: {"thoughts": "Because the user has supplied me with labels I can call object_detection_fine_tuning on their behalf to fine tune the model", "response": "<execute_python>object_detection_fine_tuning([{'image_path': 'image1.png': 'labels': ['worker', 'helmet'], 'bboxes': [[235, 118, 294, 241], [232, 118, 294, 128]]}, {'image_path': 'image2.png': 'labels': ['worker', 'helmet'], 'bboxes': [[235, 118, 294, 241], [232, 118, 294, 128]]}])</execute_python>", "let_user_respond": false}
|
165
166
|
|
166
167
|
OBSERVATION:
|
167
168
|
[Fine tuning id: 23b3b022-5ebf-4798-9373-20ef36429abf]
|
168
169
|
|
169
|
-
AGENT: {"thoughts": "The model has finished fine tuning, I will now replace the original florence2_phrase_grounding call with the fine tuning id.", "response": "
|
170
|
+
AGENT: {"thoughts": "The model has finished fine tuning, I will now replace the original florence2_phrase_grounding call with the fine tuning id.", "response": "<execute_python>use_object_detection_fine_tuning(artifacts, "code.py", "23b3b022-5ebf-4798-9373-20ef36429abf")</execute_python>", "let_user_respond": false}
|
170
171
|
|
171
172
|
OBSERVATION:
|
172
173
|
[Artifact code.py edits]
|
vision_agent/tools/__init__.py
CHANGED
vision_agent/tools/meta_tools.py
CHANGED
@@ -116,7 +116,9 @@ class Artifacts:
|
|
116
116
|
)
|
117
117
|
output_str = "[Artifacts loaded]\n"
|
118
118
|
for k in self.artifacts.keys():
|
119
|
-
output_str +=
|
119
|
+
output_str += (
|
120
|
+
f"Artifact name: {k}, loaded to path: {str(loaded_path / k)}\n"
|
121
|
+
)
|
120
122
|
output_str += "[End of artifacts]\n"
|
121
123
|
print(output_str)
|
122
124
|
return output_str
|
vision_agent/tools/tool_utils.py
CHANGED
vision_agent/tools/tools.py
CHANGED
@@ -13,7 +13,7 @@ from uuid import UUID
|
|
13
13
|
import cv2
|
14
14
|
import numpy as np
|
15
15
|
import requests
|
16
|
-
from PIL import Image, ImageDraw,
|
16
|
+
from PIL import Image, ImageDraw, ImageFont
|
17
17
|
from pillow_heif import register_heif_opener # type: ignore
|
18
18
|
from pytube import YouTube # type: ignore
|
19
19
|
|
@@ -700,18 +700,22 @@ def countgd_counting(
|
|
700
700
|
{'score': 0.98, 'label': 'flower', 'bbox': [0.44, 0.24, 0.49, 0.58},
|
701
701
|
]
|
702
702
|
"""
|
703
|
-
|
703
|
+
buffer_bytes = numpy_to_bytes(image)
|
704
|
+
files = [("image", buffer_bytes)]
|
704
705
|
prompt = prompt.replace(", ", " .")
|
705
|
-
payload = {"
|
706
|
+
payload = {"prompts": [prompt], "model": "countgd"}
|
706
707
|
metadata = {"function_name": "countgd_counting"}
|
707
|
-
resp_data = send_task_inference_request(
|
708
|
+
resp_data = send_task_inference_request(
|
709
|
+
payload, "text-to-object-detection", files=files, metadata=metadata
|
710
|
+
)
|
711
|
+
bboxes_per_frame = resp_data[0]
|
708
712
|
bboxes_formatted = [
|
709
713
|
ODResponseData(
|
710
714
|
label=bbox["label"],
|
711
|
-
bbox=list(map(lambda x: round(x, 2), bbox["
|
715
|
+
bbox=list(map(lambda x: round(x, 2), bbox["bounding_box"])),
|
712
716
|
score=round(bbox["score"], 2),
|
713
717
|
)
|
714
|
-
for bbox in
|
718
|
+
for bbox in bboxes_per_frame
|
715
719
|
]
|
716
720
|
filtered_bboxes = filter_bboxes_by_threshold(bboxes_formatted, box_threshold)
|
717
721
|
return [bbox.model_dump() for bbox in filtered_bboxes]
|
@@ -1146,10 +1150,10 @@ def florence2_image_caption(image: np.ndarray, detail_caption: bool = True) -> s
|
|
1146
1150
|
def florence2_phrase_grounding(
|
1147
1151
|
prompt: str, image: np.ndarray, fine_tune_id: Optional[str] = None
|
1148
1152
|
) -> List[Dict[str, Any]]:
|
1149
|
-
"""'florence2_phrase_grounding'
|
1150
|
-
|
1151
|
-
|
1152
|
-
|
1153
|
+
"""'florence2_phrase_grounding' is a tool that can detect multiple
|
1154
|
+
objects given a text prompt which can be object names or caption. You
|
1155
|
+
can optionally separate the object names in the text with commas. It returns a list
|
1156
|
+
of bounding boxes with normalized coordinates, label names and associated
|
1153
1157
|
probability scores of 1.0.
|
1154
1158
|
|
1155
1159
|
Parameters:
|
@@ -1808,6 +1812,11 @@ def save_image(image: np.ndarray, file_path: str) -> None:
|
|
1808
1812
|
"""
|
1809
1813
|
from IPython.display import display
|
1810
1814
|
|
1815
|
+
if not isinstance(image, np.ndarray) or (
|
1816
|
+
image.shape[0] == 0 and image.shape[1] == 0
|
1817
|
+
):
|
1818
|
+
raise ValueError("The image is not a valid NumPy array with shape (H, W, C)")
|
1819
|
+
|
1811
1820
|
pil_image = Image.fromarray(image.astype(np.uint8)).convert("RGB")
|
1812
1821
|
display(pil_image)
|
1813
1822
|
pil_image.save(file_path)
|
@@ -1834,6 +1843,15 @@ def save_video(
|
|
1834
1843
|
if fps <= 0:
|
1835
1844
|
raise ValueError(f"fps must be greater than 0 got {fps}")
|
1836
1845
|
|
1846
|
+
if not isinstance(frames, list) or len(frames) == 0:
|
1847
|
+
raise ValueError("Frames must be a list of NumPy arrays")
|
1848
|
+
|
1849
|
+
for frame in frames:
|
1850
|
+
if not isinstance(frame, np.ndarray) or (
|
1851
|
+
frame.shape[0] == 0 and frame.shape[1] == 0
|
1852
|
+
):
|
1853
|
+
raise ValueError("A frame is not a valid NumPy array with shape (H, W, C)")
|
1854
|
+
|
1837
1855
|
if output_video_path is None:
|
1838
1856
|
output_video_path = tempfile.NamedTemporaryFile(
|
1839
1857
|
delete=False, suffix=".mp4"
|
@@ -1903,30 +1921,36 @@ def overlay_bounding_boxes(
|
|
1903
1921
|
bboxes = bbox_int[i]
|
1904
1922
|
bboxes = sorted(bboxes, key=lambda x: x["label"], reverse=True)
|
1905
1923
|
|
1906
|
-
|
1907
|
-
|
1908
|
-
|
1909
|
-
|
1910
|
-
|
1911
|
-
|
1912
|
-
|
1913
|
-
|
1914
|
-
|
1915
|
-
|
1916
|
-
|
1917
|
-
|
1918
|
-
|
1919
|
-
scores = elt["score"]
|
1920
|
-
|
1921
|
-
# denormalize the box if it is normalized
|
1922
|
-
box = denormalize_bbox(box, (height, width))
|
1923
|
-
draw.rectangle(box, outline=color[label], width=4)
|
1924
|
-
text = f"{label}: {scores:.2f}"
|
1925
|
-
text_box = draw.textbbox((box[0], box[1]), text=text, font=font)
|
1926
|
-
draw.rectangle(
|
1927
|
-
(box[0], box[1], text_box[2], text_box[3]), fill=color[label]
|
1924
|
+
if len(bboxes) > 20:
|
1925
|
+
pil_image = _plot_counting(pil_image, bboxes, color)
|
1926
|
+
else:
|
1927
|
+
width, height = pil_image.size
|
1928
|
+
fontsize = max(12, int(min(width, height) / 40))
|
1929
|
+
draw = ImageDraw.Draw(pil_image)
|
1930
|
+
font = ImageFont.truetype(
|
1931
|
+
str(
|
1932
|
+
resources.files("vision_agent.fonts").joinpath(
|
1933
|
+
"default_font_ch_en.ttf"
|
1934
|
+
)
|
1935
|
+
),
|
1936
|
+
fontsize,
|
1928
1937
|
)
|
1929
|
-
|
1938
|
+
|
1939
|
+
for elt in bboxes:
|
1940
|
+
label = elt["label"]
|
1941
|
+
box = elt["bbox"]
|
1942
|
+
scores = elt["score"]
|
1943
|
+
|
1944
|
+
# denormalize the box if it is normalized
|
1945
|
+
box = denormalize_bbox(box, (height, width))
|
1946
|
+
draw.rectangle(box, outline=color[label], width=4)
|
1947
|
+
text = f"{label}: {scores:.2f}"
|
1948
|
+
text_box = draw.textbbox((box[0], box[1]), text=text, font=font)
|
1949
|
+
draw.rectangle(
|
1950
|
+
(box[0], box[1], text_box[2], text_box[3]), fill=color[label]
|
1951
|
+
)
|
1952
|
+
draw.text((box[0], box[1]), text, fill="black", font=font)
|
1953
|
+
|
1930
1954
|
frame_out.append(np.array(pil_image))
|
1931
1955
|
return frame_out[0] if len(frame_out) == 1 else frame_out
|
1932
1956
|
|
@@ -2085,39 +2109,19 @@ def overlay_heat_map(
|
|
2085
2109
|
return np.array(combined)
|
2086
2110
|
|
2087
2111
|
|
2088
|
-
def
|
2089
|
-
image:
|
2090
|
-
|
2091
|
-
|
2092
|
-
|
2093
|
-
|
2094
|
-
Parameters:
|
2095
|
-
image (np.ndarray): The image to display the bounding boxes on.
|
2096
|
-
instances (List[Dict[str, Any]]): A list of dictionaries containing the bounding
|
2097
|
-
box information of each instance
|
2098
|
-
|
2099
|
-
Returns:
|
2100
|
-
np.ndarray: The image with the instance_id dislpayed
|
2101
|
-
|
2102
|
-
Example
|
2103
|
-
-------
|
2104
|
-
>>> image_with_bboxes = overlay_counting_results(
|
2105
|
-
image, [{'score': 0.99, 'label': 'object', 'bbox': [0.1, 0.11, 0.35, 0.4]}],
|
2106
|
-
)
|
2107
|
-
"""
|
2108
|
-
pil_image = Image.fromarray(image.astype(np.uint8)).convert("RGB")
|
2109
|
-
color = (158, 218, 229)
|
2110
|
-
|
2111
|
-
width, height = pil_image.size
|
2112
|
+
def _plot_counting(
|
2113
|
+
image: Image.Image,
|
2114
|
+
bboxes: List[Dict[str, Any]],
|
2115
|
+
colors: Dict[str, Tuple[int, int, int]],
|
2116
|
+
) -> Image.Image:
|
2117
|
+
width, height = image.size
|
2112
2118
|
fontsize = max(10, int(min(width, height) / 80))
|
2113
|
-
|
2114
|
-
draw = ImageDraw.Draw(pil_image)
|
2119
|
+
draw = ImageDraw.Draw(image)
|
2115
2120
|
font = ImageFont.truetype(
|
2116
2121
|
str(resources.files("vision_agent.fonts").joinpath("default_font_ch_en.ttf")),
|
2117
2122
|
fontsize,
|
2118
2123
|
)
|
2119
|
-
|
2120
|
-
for i, elt in enumerate(instances, 1):
|
2124
|
+
for i, elt in enumerate(bboxes, 1):
|
2121
2125
|
label = f"{i}"
|
2122
2126
|
box = elt["bbox"]
|
2123
2127
|
|
@@ -2139,7 +2143,7 @@ def overlay_counting_results(
|
|
2139
2143
|
text_y1 = cy + text_height / 2
|
2140
2144
|
|
2141
2145
|
# Draw the rectangle encapsulating the text
|
2142
|
-
draw.rectangle((text_x0, text_y0, text_x1, text_y1), fill=
|
2146
|
+
draw.rectangle((text_x0, text_y0, text_x1, text_y1), fill=colors[elt["label"]])
|
2143
2147
|
|
2144
2148
|
# Draw the text at the center of the bounding box
|
2145
2149
|
draw.text(
|
@@ -2150,7 +2154,7 @@ def overlay_counting_results(
|
|
2150
2154
|
anchor="lt",
|
2151
2155
|
)
|
2152
2156
|
|
2153
|
-
return
|
2157
|
+
return image
|
2154
2158
|
|
2155
2159
|
|
2156
2160
|
FUNCTION_TOOLS = [
|
@@ -2183,7 +2187,6 @@ UTIL_TOOLS = [
|
|
2183
2187
|
overlay_bounding_boxes,
|
2184
2188
|
overlay_segmentation_masks,
|
2185
2189
|
overlay_heat_map,
|
2186
|
-
overlay_counting_results,
|
2187
2190
|
]
|
2188
2191
|
|
2189
2192
|
TOOLS = FUNCTION_TOOLS + UTIL_TOOLS
|
@@ -1,11 +1,11 @@
|
|
1
1
|
vision_agent/__init__.py,sha256=EAb4-f9iyuEYkBrX4ag1syM8Syx8118_t0R6_C34M9w,57
|
2
2
|
vision_agent/agent/__init__.py,sha256=NF2LABqHixLvbsOIO-fe-VKZ7awvShLtcT0oQT4eWtI,235
|
3
3
|
vision_agent/agent/agent.py,sha256=2cjIOxEuSJrqbfPXYoV0qER5ihXsPFCoEFJa4jpqan0,597
|
4
|
-
vision_agent/agent/agent_utils.py,sha256=
|
5
|
-
vision_agent/agent/vision_agent.py,sha256=
|
6
|
-
vision_agent/agent/vision_agent_coder.py,sha256=
|
4
|
+
vision_agent/agent/agent_utils.py,sha256=eIpLz2NunEqEsBBrECJaD34-2uY0bsFNnW-XKfqqohs,2518
|
5
|
+
vision_agent/agent/vision_agent.py,sha256=wrfAWGLcJMJ62ATFLl0E0-2xszi9HQ4Amp82B7-_Ihw,18376
|
6
|
+
vision_agent/agent/vision_agent_coder.py,sha256=2ZoGikn2nakGDfs20XRshZjQUyvbw6l47UhExJAYkqI,38515
|
7
7
|
vision_agent/agent/vision_agent_coder_prompts.py,sha256=BmbTMhth4v1qLexuoSeyo47QQ0kPQvL1pLbCJHMsWDw,18910
|
8
|
-
vision_agent/agent/vision_agent_prompts.py,sha256=
|
8
|
+
vision_agent/agent/vision_agent_prompts.py,sha256=LZ9Bnx7ZFkqbNOMqwfdiWZU4niND9Z1ArcFHNSn_jzA,11187
|
9
9
|
vision_agent/clients/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
10
10
|
vision_agent/clients/http.py,sha256=k883i6M_4nl7zwwHSI-yP5sAgQZIDPM1nrKD6YFJ3Xs,2009
|
11
11
|
vision_agent/clients/landing_public_api.py,sha256=lU2ev6E8NICmR8DMUljuGcVFy5VNJQ4WQkWC8WnnJEc,1503
|
@@ -14,12 +14,12 @@ vision_agent/fonts/default_font_ch_en.ttf,sha256=1YM0Z3XqLDjSNbF7ihQFSAIUdjF9m1r
|
|
14
14
|
vision_agent/lmm/__init__.py,sha256=jyY1sJb_tYKg5-Wzs3p1lvwFkc-aUNZfMcLy3TOC4Zg,100
|
15
15
|
vision_agent/lmm/lmm.py,sha256=B5ClgwvbybVCWkf9opDMLjTtJZemUU4KUkQoRxGh43I,16787
|
16
16
|
vision_agent/lmm/types.py,sha256=ZEXR_ptBL0ZwDMTDYkgxUCmSZFmBYPQd2jreNzr_8UY,221
|
17
|
-
vision_agent/tools/__init__.py,sha256=
|
18
|
-
vision_agent/tools/meta_tools.py,sha256=
|
17
|
+
vision_agent/tools/__init__.py,sha256=PLVbfTMjKxQlHIRWnq9b785W9a52AXQS_tOa0tkQ0ZY,2420
|
18
|
+
vision_agent/tools/meta_tools.py,sha256=Xu5h92YRfsbvW_iivTnOhlNAPOc2z7CShjOz8KLI4KA,25212
|
19
19
|
vision_agent/tools/prompts.py,sha256=V1z4YJLXZuUl_iZ5rY0M5hHc_2tmMEUKr0WocXKGt4E,1430
|
20
|
-
vision_agent/tools/tool_utils.py,sha256=
|
21
|
-
vision_agent/tools/tools.py,sha256=
|
22
|
-
vision_agent/tools/tools_types.py,sha256=
|
20
|
+
vision_agent/tools/tool_utils.py,sha256=VPGqGJ2ZYEJA6AW7K9X7hQv6vRlMtAQcybE4izdToCw,8196
|
21
|
+
vision_agent/tools/tools.py,sha256=aP4GCeuGJDMQAIajflgKPVMjrs7ecdEuNiA9GDnV-Pk,78470
|
22
|
+
vision_agent/tools/tools_types.py,sha256=8hYf2OZhI58gvf65KGaeGkt4EQ56nwLFqIQDPHioOBc,2339
|
23
23
|
vision_agent/utils/__init__.py,sha256=7fMgbZiEwbNS0fBOS_hJI5PuEYBblw36zLi_UjUzvj4,244
|
24
24
|
vision_agent/utils/exceptions.py,sha256=booSPSuoULF7OXRr_YbC4dtKt6gM_HyiFQHBuaW86C4,2052
|
25
25
|
vision_agent/utils/execute.py,sha256=FqSOr5gtBeKB1g2hbV6-bhox6qItDQNn2o9efq1w6f4,28017
|
@@ -27,7 +27,7 @@ vision_agent/utils/image_utils.py,sha256=rm9GfXvD4JrjnqKrP_f2gfq4SzmqYC0IdC1kKwd
|
|
27
27
|
vision_agent/utils/sim.py,sha256=ZuSS07TUXFGjipmiQoY8TKRmSes7XXCdtU9PI8PC1sw,5609
|
28
28
|
vision_agent/utils/type_defs.py,sha256=BE12s3JNQy36QvauXHjwyeffVh5enfcvd4vTzSwvEZI,1384
|
29
29
|
vision_agent/utils/video.py,sha256=xbMEoRk13l4fHeQlbvMQhLCn8RNndYmsDhUf01TUeR8,4781
|
30
|
-
vision_agent-0.2.
|
31
|
-
vision_agent-0.2.
|
32
|
-
vision_agent-0.2.
|
33
|
-
vision_agent-0.2.
|
30
|
+
vision_agent-0.2.156.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
31
|
+
vision_agent-0.2.156.dist-info/METADATA,sha256=sVOUUcMWZhi5qijAnzT7VrFUFZuIHKqRqU0cdl9eDoc,13758
|
32
|
+
vision_agent-0.2.156.dist-info/WHEEL,sha256=7Z8_27uaHI_UZAc4Uox4PpBhQ9Y5_modZXWMxtUi4NU,88
|
33
|
+
vision_agent-0.2.156.dist-info/RECORD,,
|
File without changes
|
File without changes
|