vision-agent 0.2.140__py3-none-any.whl → 0.2.141__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,8 +1,9 @@
1
1
  from .agent import Agent
2
2
  from .vision_agent import VisionAgent
3
3
  from .vision_agent_coder import (
4
+ AnthropicVisionAgentCoder,
4
5
  AzureVisionAgentCoder,
5
- ClaudeVisionAgentCoder,
6
6
  OllamaVisionAgentCoder,
7
+ OpenAIVisionAgentCoder,
7
8
  VisionAgentCoder,
8
9
  )
@@ -40,12 +40,18 @@ def _strip_markdown_code(inp_str: str) -> str:
40
40
 
41
41
 
42
42
  def extract_json(json_str: str) -> Dict[str, Any]:
43
- json_str = json_str.replace("\n", " ").strip()
43
+ json_str_mod = json_str.replace("\n", " ").strip()
44
+ json_str_mod = json_str_mod.replace("'", '"')
45
+ json_str_mod = json_str_mod.replace(": True", ": true").replace(
46
+ ": False", ": false"
47
+ )
44
48
 
45
49
  try:
46
- return json.loads(json_str) # type: ignore
50
+ return json.loads(json_str_mod) # type: ignore
47
51
  except json.JSONDecodeError:
48
52
  json_orig = json_str
53
+ # don't replace quotes here or booleans since it can also introduce errors
54
+ json_str = json_str.replace("\n", " ").strip()
49
55
  json_str = _strip_markdown_code(json_str)
50
56
  json_str = _find_markdown_json(json_str)
51
57
  json_dict = _extract_sub_json(json_str)
@@ -3,18 +3,23 @@ import logging
3
3
  import os
4
4
  import tempfile
5
5
  from pathlib import Path
6
- from typing import Any, Dict, List, Optional, Tuple, Union, cast, Callable
6
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union, cast
7
7
 
8
8
  from vision_agent.agent import Agent
9
9
  from vision_agent.agent.agent_utils import extract_json
10
10
  from vision_agent.agent.vision_agent_prompts import (
11
11
  EXAMPLES_CODE1,
12
12
  EXAMPLES_CODE2,
13
+ EXAMPLES_CODE3,
13
14
  VA_CODE,
14
15
  )
15
- from vision_agent.lmm import LMM, Message, OpenAILMM
16
+ from vision_agent.lmm import LMM, AnthropicLMM, Message, OpenAILMM
16
17
  from vision_agent.tools import META_TOOL_DOCSTRING
17
- from vision_agent.tools.meta_tools import Artifacts, use_extra_vision_agent_args
18
+ from vision_agent.tools.meta_tools import (
19
+ Artifacts,
20
+ check_and_load_image,
21
+ use_extra_vision_agent_args,
22
+ )
18
23
  from vision_agent.utils import CodeInterpreterFactory
19
24
  from vision_agent.utils.execute import CodeInterpreter, Execution
20
25
 
@@ -30,7 +35,7 @@ class BoilerplateCode:
30
35
  pre_code = [
31
36
  "from typing import *",
32
37
  "from vision_agent.utils.execute import CodeInterpreter",
33
- "from vision_agent.tools.meta_tools import Artifacts, open_code_artifact, create_code_artifact, edit_code_artifact, get_tool_descriptions, generate_vision_code, edit_vision_code, write_media_artifact, florence2_fine_tuning, use_florence2_fine_tuning",
38
+ "from vision_agent.tools.meta_tools import Artifacts, open_code_artifact, create_code_artifact, edit_code_artifact, get_tool_descriptions, generate_vision_code, edit_vision_code, write_media_artifact, view_media_artifact, object_detection_fine_tuning, use_object_detection_fine_tuning",
34
39
  "artifacts = Artifacts('{remote_path}')",
35
40
  "artifacts.load('{remote_path}')",
36
41
  ]
@@ -68,10 +73,18 @@ def run_conversation(orch: LMM, chat: List[Message]) -> Dict[str, Any]:
68
73
 
69
74
  prompt = VA_CODE.format(
70
75
  documentation=META_TOOL_DOCSTRING,
71
- examples=f"{EXAMPLES_CODE1}\n{EXAMPLES_CODE2}",
76
+ examples=f"{EXAMPLES_CODE1}\n{EXAMPLES_CODE2}\n{EXAMPLES_CODE3}",
72
77
  conversation=conversation,
73
78
  )
74
- return extract_json(orch([{"role": "user", "content": prompt}], stream=False)) # type: ignore
79
+ message: Message = {"role": "user", "content": prompt}
80
+ # only add recent media so we don't overload the model with old images
81
+ if (
82
+ chat[-1]["role"] == "observation"
83
+ and "media" in chat[-1]
84
+ and len(chat[-1]["media"]) > 0 # type: ignore
85
+ ):
86
+ message["media"] = chat[-1]["media"]
87
+ return extract_json(orch([message], stream=False)) # type: ignore
75
88
 
76
89
 
77
90
  def run_code_action(
@@ -136,10 +149,8 @@ class VisionAgent(Agent):
136
149
  code_sandbox_runtime (Optional[str]): The code sandbox runtime to use.
137
150
  """
138
151
 
139
- self.agent = (
140
- OpenAILMM(temperature=0.0, json_mode=True) if agent is None else agent
141
- )
142
- self.max_iterations = 100
152
+ self.agent = AnthropicLMM(temperature=0.0) if agent is None else agent
153
+ self.max_iterations = 12
143
154
  self.verbosity = verbosity
144
155
  self.code_sandbox_runtime = code_sandbox_runtime
145
156
  self.callback_message = callback_message
@@ -267,7 +278,8 @@ class VisionAgent(Agent):
267
278
  orig_chat.append({"role": "observation", "content": artifacts_loaded})
268
279
  self.streaming_message({"role": "observation", "content": artifacts_loaded})
269
280
 
270
- if isinstance(last_user_message_content, str):
281
+ if int_chat[-1]["role"] == "user":
282
+ last_user_message_content = cast(str, int_chat[-1].get("content", ""))
271
283
  user_code_action = parse_execution(last_user_message_content, False)
272
284
  if user_code_action is not None:
273
285
  user_result, user_obs = run_code_action(
@@ -309,8 +321,7 @@ class VisionAgent(Agent):
309
321
  else:
310
322
  self.streaming_message({"role": "assistant", "content": response})
311
323
 
312
- if response["let_user_respond"]:
313
- break
324
+ finished = response["let_user_respond"]
314
325
 
315
326
  code_action = parse_execution(
316
327
  response["response"], test_multi_plan, customized_tool_names
@@ -321,13 +332,22 @@ class VisionAgent(Agent):
321
332
  code_action, code_interpreter, str(remote_artifacts_path)
322
333
  )
323
334
 
335
+ media_obs = check_and_load_image(code_action)
336
+
324
337
  if self.verbosity >= 1:
325
338
  _LOGGER.info(obs)
339
+
340
+ chat_elt: Message = {"role": "observation", "content": obs}
341
+ if media_obs and result.success:
342
+ chat_elt["media"] = [
343
+ Path(code_interpreter.remote_path) / media_ob
344
+ for media_ob in media_obs
345
+ ]
346
+
326
347
  # don't add execution results to internal chat
327
- int_chat.append({"role": "observation", "content": obs})
328
- orig_chat.append(
329
- {"role": "observation", "content": obs, "execution": result}
330
- )
348
+ int_chat.append(chat_elt)
349
+ chat_elt["execution"] = result
350
+ orig_chat.append(chat_elt)
331
351
  self.streaming_message(
332
352
  {
333
353
  "role": "observation",
@@ -353,3 +373,63 @@ class VisionAgent(Agent):
353
373
 
354
374
  def log_progress(self, data: Dict[str, Any]) -> None:
355
375
  pass
376
+
377
+
378
+ class OpenAIVisionAgent(VisionAgent):
379
+ def __init__(
380
+ self,
381
+ agent: Optional[LMM] = None,
382
+ verbosity: int = 0,
383
+ local_artifacts_path: Optional[Union[str, Path]] = None,
384
+ code_sandbox_runtime: Optional[str] = None,
385
+ callback_message: Optional[Callable[[Dict[str, Any]], None]] = None,
386
+ ) -> None:
387
+ """Initialize the VisionAgent using OpenAI LMMs.
388
+
389
+ Parameters:
390
+ agent (Optional[LMM]): The agent to use for conversation and orchestration
391
+ of other agents.
392
+ verbosity (int): The verbosity level of the agent.
393
+ local_artifacts_path (Optional[Union[str, Path]]): The path to the local
394
+ artifacts file.
395
+ code_sandbox_runtime (Optional[str]): The code sandbox runtime to use.
396
+ """
397
+
398
+ agent = OpenAILMM(temperature=0.0, json_mode=True) if agent is None else agent
399
+ super().__init__(
400
+ agent,
401
+ verbosity,
402
+ local_artifacts_path,
403
+ code_sandbox_runtime,
404
+ callback_message,
405
+ )
406
+
407
+
408
+ class AnthropicVisionAgent(VisionAgent):
409
+ def __init__(
410
+ self,
411
+ agent: Optional[LMM] = None,
412
+ verbosity: int = 0,
413
+ local_artifacts_path: Optional[Union[str, Path]] = None,
414
+ code_sandbox_runtime: Optional[str] = None,
415
+ callback_message: Optional[Callable[[Dict[str, Any]], None]] = None,
416
+ ) -> None:
417
+ """Initialize the VisionAgent using Anthropic LMMs.
418
+
419
+ Parameters:
420
+ agent (Optional[LMM]): The agent to use for conversation and orchestration
421
+ of other agents.
422
+ verbosity (int): The verbosity level of the agent.
423
+ local_artifacts_path (Optional[Union[str, Path]]): The path to the local
424
+ artifacts file.
425
+ code_sandbox_runtime (Optional[str]): The code sandbox runtime to use.
426
+ """
427
+
428
+ agent = AnthropicLMM(temperature=0.0) if agent is None else agent
429
+ super().__init__(
430
+ agent,
431
+ verbosity,
432
+ local_artifacts_path,
433
+ code_sandbox_runtime,
434
+ callback_message,
435
+ )
@@ -2,12 +2,10 @@ import copy
2
2
  import logging
3
3
  import os
4
4
  import sys
5
- import tempfile
6
5
  from json import JSONDecodeError
7
6
  from pathlib import Path
8
7
  from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union, cast
9
8
 
10
- from PIL import Image
11
9
  from rich.console import Console
12
10
  from rich.style import Style
13
11
  from rich.syntax import Syntax
@@ -29,8 +27,8 @@ from vision_agent.agent.vision_agent_coder_prompts import (
29
27
  )
30
28
  from vision_agent.lmm import (
31
29
  LMM,
30
+ AnthropicLMM,
32
31
  AzureOpenAILMM,
33
- ClaudeSonnetLMM,
34
32
  Message,
35
33
  OllamaLMM,
36
34
  OpenAILMM,
@@ -53,6 +51,9 @@ class DefaultImports:
53
51
  """Container for default imports used in the code execution."""
54
52
 
55
53
  common_imports = [
54
+ "import os",
55
+ "import numpy as np",
56
+ "from vision_agent.tools import *",
56
57
  "from typing import *",
57
58
  "from pillow_heif import register_heif_opener",
58
59
  "register_heif_opener()",
@@ -92,29 +93,6 @@ def format_plans(plans: Dict[str, Any]) -> str:
92
93
  return plan_str
93
94
 
94
95
 
95
- def extract_image(
96
- media: Optional[Sequence[Union[str, Path]]],
97
- ) -> Optional[Sequence[Union[str, Path]]]:
98
- if media is None:
99
- return None
100
-
101
- new_media = []
102
- for m in media:
103
- m = Path(m)
104
- extension = m.suffix
105
- if extension in [".jpg", ".jpeg", ".png", ".bmp"]:
106
- new_media.append(m)
107
- elif extension in [".mp4", ".mov"]:
108
- frames = T.extract_frames(m)
109
- with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
110
- if len(frames) > 0:
111
- Image.fromarray(frames[0][0]).save(tmp.name)
112
- new_media.append(Path(tmp.name))
113
- if len(new_media) == 0:
114
- return None
115
- return new_media
116
-
117
-
118
96
  def write_plans(
119
97
  chat: List[Message],
120
98
  tool_desc: str,
@@ -146,7 +124,7 @@ def pick_plan(
146
124
  log_progress: Callable[[Dict[str, Any]], None],
147
125
  verbosity: int = 0,
148
126
  max_retries: int = 3,
149
- ) -> Tuple[str, str]:
127
+ ) -> Tuple[Dict[str, str], str]:
150
128
  log_progress(
151
129
  {
152
130
  "type": "log",
@@ -199,7 +177,10 @@ def pick_plan(
199
177
 
200
178
  # retry if the tool output is empty or code fails
201
179
  count = 0
202
- while (not tool_output.success or tool_output_str == "") and count < max_retries:
180
+ while (
181
+ not tool_output.success
182
+ or (len(tool_output.logs.stdout) == 0 and len(tool_output.logs.stderr) == 0)
183
+ ) and count < max_retries:
203
184
  prompt = TEST_PLANS.format(
204
185
  docstring=tool_info,
205
186
  plans=plan_str,
@@ -238,6 +219,7 @@ def pick_plan(
238
219
  if verbosity == 2:
239
220
  _print_code("Code and test after attempted fix:", code)
240
221
  _LOGGER.info(f"Code execution result after attempt {count + 1}")
222
+ _LOGGER.info(f"{tool_output_str}")
241
223
 
242
224
  count += 1
243
225
 
@@ -256,10 +238,10 @@ def pick_plan(
256
238
  chat[-1]["content"] = prompt
257
239
 
258
240
  count = 0
259
- best_plan = None
260
- while best_plan is None and count < max_retries:
241
+ plan_thoughts = None
242
+ while plan_thoughts is None and count < max_retries:
261
243
  try:
262
- best_plan = extract_json(model(chat, stream=False)) # type: ignore
244
+ plan_thoughts = extract_json(model(chat, stream=False)) # type: ignore
263
245
  except JSONDecodeError as e:
264
246
  _LOGGER.exception(
265
247
  f"Error while extracting JSON during picking best plan {str(e)}"
@@ -268,23 +250,27 @@ def pick_plan(
268
250
  count += 1
269
251
 
270
252
  if (
271
- best_plan is None
272
- or "best_plan" not in best_plan
273
- or ("best_plan" in best_plan and best_plan["best_plan"] not in plans)
253
+ plan_thoughts is None
254
+ or "best_plan" not in plan_thoughts
255
+ or ("best_plan" in plan_thoughts and plan_thoughts["best_plan"] not in plans)
274
256
  ):
275
- best_plan = {"best_plan": list(plans.keys())[0]}
257
+ _LOGGER.info(f"Failed to pick best plan. Using the first plan. {plan_thoughts}")
258
+ plan_thoughts = {"best_plan": list(plans.keys())[0]}
259
+
260
+ if "thoughts" not in plan_thoughts:
261
+ plan_thoughts["thoughts"] = ""
276
262
 
277
263
  if verbosity >= 1:
278
- _LOGGER.info(f"Best plan:\n{best_plan}")
264
+ _LOGGER.info(f"Best plan:\n{plan_thoughts}")
279
265
  log_progress(
280
266
  {
281
267
  "type": "log",
282
268
  "log_content": "Picked best plan",
283
269
  "status": "completed",
284
- "payload": plans[best_plan["best_plan"]],
270
+ "payload": plans[plan_thoughts["best_plan"]],
285
271
  }
286
272
  )
287
- return best_plan["best_plan"], tool_output_str
273
+ return plan_thoughts, "```python\n" + code + "\n```\n" + tool_output_str
288
274
 
289
275
 
290
276
  def write_code(
@@ -292,6 +278,7 @@ def write_code(
292
278
  chat: List[Message],
293
279
  plan: str,
294
280
  tool_info: str,
281
+ plan_thoughts: str,
295
282
  tool_output: str,
296
283
  feedback: str,
297
284
  ) -> str:
@@ -304,6 +291,7 @@ def write_code(
304
291
  docstring=tool_info,
305
292
  question=FULL_TASK.format(user_request=user_request, subtasks=plan),
306
293
  tool_output=tool_output,
294
+ plan_thoughts=plan_thoughts,
307
295
  feedback=feedback,
308
296
  )
309
297
  chat[-1]["content"] = prompt
@@ -339,6 +327,7 @@ def write_and_test_code(
339
327
  plan: str,
340
328
  tool_info: str,
341
329
  tool_output: str,
330
+ plan_thoughts: str,
342
331
  tool_utils: str,
343
332
  working_memory: List[Dict[str, str]],
344
333
  coder: LMM,
@@ -363,6 +352,7 @@ def write_and_test_code(
363
352
  plan,
364
353
  tool_info,
365
354
  tool_output,
355
+ plan_thoughts,
366
356
  format_memory(working_memory),
367
357
  )
368
358
  test = write_test(
@@ -634,31 +624,30 @@ class VisionAgentCoder(Agent):
634
624
  """Initialize the Vision Agent Coder.
635
625
 
636
626
  Parameters:
637
- planner (Optional[LMM]): The planner model to use. Defaults to OpenAILMM.
638
- coder (Optional[LMM]): The coder model to use. Defaults to OpenAILMM.
639
- tester (Optional[LMM]): The tester model to use. Defaults to OpenAILMM.
640
- debugger (Optional[LMM]): The debugger model to
627
+ planner (Optional[LMM]): The planner model to use. Defaults to AnthropicLMM.
628
+ coder (Optional[LMM]): The coder model to use. Defaults to AnthropicLMM.
629
+ tester (Optional[LMM]): The tester model to use. Defaults to AnthropicLMM.
630
+ debugger (Optional[LMM]): The debugger model to use. Defaults to AnthropicLMM.
641
631
  tool_recommender (Optional[Sim]): The tool recommender model to use.
642
632
  verbosity (int): The verbosity level of the agent. Defaults to 0. 2 is the
643
633
  highest verbosity level which will output all intermediate debugging
644
634
  code.
645
- report_progress_callback: a callback to report the progress of the agent.
646
- This is useful for streaming logs in a web application where multiple
647
- VisionAgentCoder instances are running in parallel. This callback
648
- ensures that the progress are not mixed up.
649
- code_sandbox_runtime: the code sandbox runtime to use. A code sandbox is
650
- used to run the generated code. It can be one of the following
651
- values: None, "local" or "e2b". If None, VisionAgentCoder will read
652
- the value from the environment variable CODE_SANDBOX_RUNTIME. If it's
653
- also None, the local python runtime environment will be used.
635
+ report_progress_callback (Optional[Callable[Dict[str, Any]]]): a callback
636
+ to report the progress of the agent. This is useful for streaming logs
637
+ in a web application where multiple VisionAgentCoder instances are
638
+ running in parallel. This callback ensures that the progress are not
639
+ mixed up.
640
+ code_sandbox_runtime (Optional[str]): the code sandbox runtime to use. A
641
+ code sandbox is used to run the generated code. It can be one of the
642
+ following values: None, "local" or "e2b". If None, VisionAgentCoder
643
+ will read the value from the environment variable CODE_SANDBOX_RUNTIME.
644
+ If it's also None, the local python runtime environment will be used.
654
645
  """
655
646
 
656
- self.planner = (
657
- OpenAILMM(temperature=0.0, json_mode=True) if planner is None else planner
658
- )
659
- self.coder = OpenAILMM(temperature=0.0) if coder is None else coder
660
- self.tester = OpenAILMM(temperature=0.0) if tester is None else tester
661
- self.debugger = OpenAILMM(temperature=0.0) if debugger is None else debugger
647
+ self.planner = AnthropicLMM(temperature=0.0) if planner is None else planner
648
+ self.coder = AnthropicLMM(temperature=0.0) if coder is None else coder
649
+ self.tester = AnthropicLMM(temperature=0.0) if tester is None else tester
650
+ self.debugger = AnthropicLMM(temperature=0.0) if debugger is None else debugger
662
651
  self.verbosity = verbosity
663
652
  if self.verbosity > 0:
664
653
  _LOGGER.setLevel(logging.INFO)
@@ -785,7 +774,7 @@ class VisionAgentCoder(Agent):
785
774
  )
786
775
 
787
776
  if test_multi_plan:
788
- best_plan, tool_output_str = pick_plan(
777
+ plan_thoughts, tool_output_str = pick_plan(
789
778
  int_chat,
790
779
  plans,
791
780
  tool_infos["all"],
@@ -795,9 +784,12 @@ class VisionAgentCoder(Agent):
795
784
  self.log_progress,
796
785
  verbosity=self.verbosity,
797
786
  )
787
+ best_plan = plan_thoughts["best_plan"]
788
+ plan_thoughts_str = plan_thoughts["thoughts"]
798
789
  else:
799
790
  best_plan = list(plans.keys())[0]
800
791
  tool_output_str = ""
792
+ plan_thoughts_str = ""
801
793
 
802
794
  if best_plan in plans and best_plan in tool_infos:
803
795
  plan_i = plans[best_plan]
@@ -832,6 +824,7 @@ class VisionAgentCoder(Agent):
832
824
  + "\n-".join([e for e in plan_i["instructions"]]),
833
825
  tool_info=tool_info,
834
826
  tool_output=tool_output_str,
827
+ plan_thoughts=plan_thoughts_str,
835
828
  tool_utils=T.UTILITIES_DOCSTRING,
836
829
  working_memory=working_memory,
837
830
  coder=self.coder,
@@ -862,7 +855,8 @@ class VisionAgentCoder(Agent):
862
855
  "code": DefaultImports.prepend_imports(code),
863
856
  "test": test,
864
857
  "test_result": execution_result,
865
- "plan": plan,
858
+ "plans": plans,
859
+ "plan_thoughts": plan_thoughts_str,
866
860
  "working_memory": working_memory,
867
861
  }
868
862
 
@@ -904,7 +898,9 @@ class VisionAgentCoder(Agent):
904
898
  )
905
899
 
906
900
 
907
- class ClaudeVisionAgentCoder(VisionAgentCoder):
901
+ class OpenAIVisionAgentCoder(VisionAgentCoder):
902
+ """Initializes Vision Agent Coder using OpenAI models for planning, coding, testing."""
903
+
908
904
  def __init__(
909
905
  self,
910
906
  planner: Optional[LMM] = None,
@@ -916,13 +912,44 @@ class ClaudeVisionAgentCoder(VisionAgentCoder):
916
912
  report_progress_callback: Optional[Callable[[Dict[str, Any]], None]] = None,
917
913
  code_sandbox_runtime: Optional[str] = None,
918
914
  ) -> None:
919
- # NOTE: Claude doesn't have an official JSON mode
920
- self.planner = ClaudeSonnetLMM(temperature=0.0) if planner is None else planner
921
- self.coder = ClaudeSonnetLMM(temperature=0.0) if coder is None else coder
922
- self.tester = ClaudeSonnetLMM(temperature=0.0) if tester is None else tester
923
- self.debugger = (
924
- ClaudeSonnetLMM(temperature=0.0) if debugger is None else debugger
915
+ self.planner = (
916
+ OpenAILMM(temperature=0.0, json_mode=True) if planner is None else planner
917
+ )
918
+ self.coder = OpenAILMM(temperature=0.0) if coder is None else coder
919
+ self.tester = OpenAILMM(temperature=0.0) if tester is None else tester
920
+ self.debugger = OpenAILMM(temperature=0.0) if debugger is None else debugger
921
+ self.verbosity = verbosity
922
+ if self.verbosity > 0:
923
+ _LOGGER.setLevel(logging.INFO)
924
+
925
+ self.tool_recommender = (
926
+ Sim(T.TOOLS_DF, sim_key="desc")
927
+ if tool_recommender is None
928
+ else tool_recommender
925
929
  )
930
+ self.report_progress_callback = report_progress_callback
931
+ self.code_sandbox_runtime = code_sandbox_runtime
932
+
933
+
934
+ class AnthropicVisionAgentCoder(VisionAgentCoder):
935
+ """Initializes Vision Agent Coder using Anthropic models for planning, coding, testing."""
936
+
937
+ def __init__(
938
+ self,
939
+ planner: Optional[LMM] = None,
940
+ coder: Optional[LMM] = None,
941
+ tester: Optional[LMM] = None,
942
+ debugger: Optional[LMM] = None,
943
+ tool_recommender: Optional[Sim] = None,
944
+ verbosity: int = 0,
945
+ report_progress_callback: Optional[Callable[[Dict[str, Any]], None]] = None,
946
+ code_sandbox_runtime: Optional[str] = None,
947
+ ) -> None:
948
+ # NOTE: Claude doesn't have an official JSON mode
949
+ self.planner = AnthropicLMM(temperature=0.0) if planner is None else planner
950
+ self.coder = AnthropicLMM(temperature=0.0) if coder is None else coder
951
+ self.tester = AnthropicLMM(temperature=0.0) if tester is None else tester
952
+ self.debugger = AnthropicLMM(temperature=0.0) if debugger is None else debugger
926
953
  self.verbosity = verbosity
927
954
  if self.verbosity > 0:
928
955
  _LOGGER.setLevel(logging.INFO)