vision-agent 0.2.140__py3-none-any.whl → 0.2.141__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -1,8 +1,9 @@
1
1
  from .agent import Agent
2
2
  from .vision_agent import VisionAgent
3
3
  from .vision_agent_coder import (
4
+ AnthropicVisionAgentCoder,
4
5
  AzureVisionAgentCoder,
5
- ClaudeVisionAgentCoder,
6
6
  OllamaVisionAgentCoder,
7
+ OpenAIVisionAgentCoder,
7
8
  VisionAgentCoder,
8
9
  )
@@ -40,12 +40,18 @@ def _strip_markdown_code(inp_str: str) -> str:
40
40
 
41
41
 
42
42
  def extract_json(json_str: str) -> Dict[str, Any]:
43
- json_str = json_str.replace("\n", " ").strip()
43
+ json_str_mod = json_str.replace("\n", " ").strip()
44
+ json_str_mod = json_str_mod.replace("'", '"')
45
+ json_str_mod = json_str_mod.replace(": True", ": true").replace(
46
+ ": False", ": false"
47
+ )
44
48
 
45
49
  try:
46
- return json.loads(json_str) # type: ignore
50
+ return json.loads(json_str_mod) # type: ignore
47
51
  except json.JSONDecodeError:
48
52
  json_orig = json_str
53
+ # don't replace quotes here or booleans since it can also introduce errors
54
+ json_str = json_str.replace("\n", " ").strip()
49
55
  json_str = _strip_markdown_code(json_str)
50
56
  json_str = _find_markdown_json(json_str)
51
57
  json_dict = _extract_sub_json(json_str)
@@ -3,18 +3,23 @@ import logging
3
3
  import os
4
4
  import tempfile
5
5
  from pathlib import Path
6
- from typing import Any, Dict, List, Optional, Tuple, Union, cast, Callable
6
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union, cast
7
7
 
8
8
  from vision_agent.agent import Agent
9
9
  from vision_agent.agent.agent_utils import extract_json
10
10
  from vision_agent.agent.vision_agent_prompts import (
11
11
  EXAMPLES_CODE1,
12
12
  EXAMPLES_CODE2,
13
+ EXAMPLES_CODE3,
13
14
  VA_CODE,
14
15
  )
15
- from vision_agent.lmm import LMM, Message, OpenAILMM
16
+ from vision_agent.lmm import LMM, AnthropicLMM, Message, OpenAILMM
16
17
  from vision_agent.tools import META_TOOL_DOCSTRING
17
- from vision_agent.tools.meta_tools import Artifacts, use_extra_vision_agent_args
18
+ from vision_agent.tools.meta_tools import (
19
+ Artifacts,
20
+ check_and_load_image,
21
+ use_extra_vision_agent_args,
22
+ )
18
23
  from vision_agent.utils import CodeInterpreterFactory
19
24
  from vision_agent.utils.execute import CodeInterpreter, Execution
20
25
 
@@ -30,7 +35,7 @@ class BoilerplateCode:
30
35
  pre_code = [
31
36
  "from typing import *",
32
37
  "from vision_agent.utils.execute import CodeInterpreter",
33
- "from vision_agent.tools.meta_tools import Artifacts, open_code_artifact, create_code_artifact, edit_code_artifact, get_tool_descriptions, generate_vision_code, edit_vision_code, write_media_artifact, florence2_fine_tuning, use_florence2_fine_tuning",
38
+ "from vision_agent.tools.meta_tools import Artifacts, open_code_artifact, create_code_artifact, edit_code_artifact, get_tool_descriptions, generate_vision_code, edit_vision_code, write_media_artifact, view_media_artifact, object_detection_fine_tuning, use_object_detection_fine_tuning",
34
39
  "artifacts = Artifacts('{remote_path}')",
35
40
  "artifacts.load('{remote_path}')",
36
41
  ]
@@ -68,10 +73,18 @@ def run_conversation(orch: LMM, chat: List[Message]) -> Dict[str, Any]:
68
73
 
69
74
  prompt = VA_CODE.format(
70
75
  documentation=META_TOOL_DOCSTRING,
71
- examples=f"{EXAMPLES_CODE1}\n{EXAMPLES_CODE2}",
76
+ examples=f"{EXAMPLES_CODE1}\n{EXAMPLES_CODE2}\n{EXAMPLES_CODE3}",
72
77
  conversation=conversation,
73
78
  )
74
- return extract_json(orch([{"role": "user", "content": prompt}], stream=False)) # type: ignore
79
+ message: Message = {"role": "user", "content": prompt}
80
+ # only add recent media so we don't overload the model with old images
81
+ if (
82
+ chat[-1]["role"] == "observation"
83
+ and "media" in chat[-1]
84
+ and len(chat[-1]["media"]) > 0 # type: ignore
85
+ ):
86
+ message["media"] = chat[-1]["media"]
87
+ return extract_json(orch([message], stream=False)) # type: ignore
75
88
 
76
89
 
77
90
  def run_code_action(
@@ -136,10 +149,8 @@ class VisionAgent(Agent):
136
149
  code_sandbox_runtime (Optional[str]): The code sandbox runtime to use.
137
150
  """
138
151
 
139
- self.agent = (
140
- OpenAILMM(temperature=0.0, json_mode=True) if agent is None else agent
141
- )
142
- self.max_iterations = 100
152
+ self.agent = AnthropicLMM(temperature=0.0) if agent is None else agent
153
+ self.max_iterations = 12
143
154
  self.verbosity = verbosity
144
155
  self.code_sandbox_runtime = code_sandbox_runtime
145
156
  self.callback_message = callback_message
@@ -267,7 +278,8 @@ class VisionAgent(Agent):
267
278
  orig_chat.append({"role": "observation", "content": artifacts_loaded})
268
279
  self.streaming_message({"role": "observation", "content": artifacts_loaded})
269
280
 
270
- if isinstance(last_user_message_content, str):
281
+ if int_chat[-1]["role"] == "user":
282
+ last_user_message_content = cast(str, int_chat[-1].get("content", ""))
271
283
  user_code_action = parse_execution(last_user_message_content, False)
272
284
  if user_code_action is not None:
273
285
  user_result, user_obs = run_code_action(
@@ -309,8 +321,7 @@ class VisionAgent(Agent):
309
321
  else:
310
322
  self.streaming_message({"role": "assistant", "content": response})
311
323
 
312
- if response["let_user_respond"]:
313
- break
324
+ finished = response["let_user_respond"]
314
325
 
315
326
  code_action = parse_execution(
316
327
  response["response"], test_multi_plan, customized_tool_names
@@ -321,13 +332,22 @@ class VisionAgent(Agent):
321
332
  code_action, code_interpreter, str(remote_artifacts_path)
322
333
  )
323
334
 
335
+ media_obs = check_and_load_image(code_action)
336
+
324
337
  if self.verbosity >= 1:
325
338
  _LOGGER.info(obs)
339
+
340
+ chat_elt: Message = {"role": "observation", "content": obs}
341
+ if media_obs and result.success:
342
+ chat_elt["media"] = [
343
+ Path(code_interpreter.remote_path) / media_ob
344
+ for media_ob in media_obs
345
+ ]
346
+
326
347
  # don't add execution results to internal chat
327
- int_chat.append({"role": "observation", "content": obs})
328
- orig_chat.append(
329
- {"role": "observation", "content": obs, "execution": result}
330
- )
348
+ int_chat.append(chat_elt)
349
+ chat_elt["execution"] = result
350
+ orig_chat.append(chat_elt)
331
351
  self.streaming_message(
332
352
  {
333
353
  "role": "observation",
@@ -353,3 +373,63 @@ class VisionAgent(Agent):
353
373
 
354
374
  def log_progress(self, data: Dict[str, Any]) -> None:
355
375
  pass
376
+
377
+
378
+ class OpenAIVisionAgent(VisionAgent):
379
+ def __init__(
380
+ self,
381
+ agent: Optional[LMM] = None,
382
+ verbosity: int = 0,
383
+ local_artifacts_path: Optional[Union[str, Path]] = None,
384
+ code_sandbox_runtime: Optional[str] = None,
385
+ callback_message: Optional[Callable[[Dict[str, Any]], None]] = None,
386
+ ) -> None:
387
+ """Initialize the VisionAgent using OpenAI LMMs.
388
+
389
+ Parameters:
390
+ agent (Optional[LMM]): The agent to use for conversation and orchestration
391
+ of other agents.
392
+ verbosity (int): The verbosity level of the agent.
393
+ local_artifacts_path (Optional[Union[str, Path]]): The path to the local
394
+ artifacts file.
395
+ code_sandbox_runtime (Optional[str]): The code sandbox runtime to use.
396
+ """
397
+
398
+ agent = OpenAILMM(temperature=0.0, json_mode=True) if agent is None else agent
399
+ super().__init__(
400
+ agent,
401
+ verbosity,
402
+ local_artifacts_path,
403
+ code_sandbox_runtime,
404
+ callback_message,
405
+ )
406
+
407
+
408
+ class AnthropicVisionAgent(VisionAgent):
409
+ def __init__(
410
+ self,
411
+ agent: Optional[LMM] = None,
412
+ verbosity: int = 0,
413
+ local_artifacts_path: Optional[Union[str, Path]] = None,
414
+ code_sandbox_runtime: Optional[str] = None,
415
+ callback_message: Optional[Callable[[Dict[str, Any]], None]] = None,
416
+ ) -> None:
417
+ """Initialize the VisionAgent using Anthropic LMMs.
418
+
419
+ Parameters:
420
+ agent (Optional[LMM]): The agent to use for conversation and orchestration
421
+ of other agents.
422
+ verbosity (int): The verbosity level of the agent.
423
+ local_artifacts_path (Optional[Union[str, Path]]): The path to the local
424
+ artifacts file.
425
+ code_sandbox_runtime (Optional[str]): The code sandbox runtime to use.
426
+ """
427
+
428
+ agent = AnthropicLMM(temperature=0.0) if agent is None else agent
429
+ super().__init__(
430
+ agent,
431
+ verbosity,
432
+ local_artifacts_path,
433
+ code_sandbox_runtime,
434
+ callback_message,
435
+ )
@@ -2,12 +2,10 @@ import copy
2
2
  import logging
3
3
  import os
4
4
  import sys
5
- import tempfile
6
5
  from json import JSONDecodeError
7
6
  from pathlib import Path
8
7
  from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union, cast
9
8
 
10
- from PIL import Image
11
9
  from rich.console import Console
12
10
  from rich.style import Style
13
11
  from rich.syntax import Syntax
@@ -29,8 +27,8 @@ from vision_agent.agent.vision_agent_coder_prompts import (
29
27
  )
30
28
  from vision_agent.lmm import (
31
29
  LMM,
30
+ AnthropicLMM,
32
31
  AzureOpenAILMM,
33
- ClaudeSonnetLMM,
34
32
  Message,
35
33
  OllamaLMM,
36
34
  OpenAILMM,
@@ -53,6 +51,9 @@ class DefaultImports:
53
51
  """Container for default imports used in the code execution."""
54
52
 
55
53
  common_imports = [
54
+ "import os",
55
+ "import numpy as np",
56
+ "from vision_agent.tools import *",
56
57
  "from typing import *",
57
58
  "from pillow_heif import register_heif_opener",
58
59
  "register_heif_opener()",
@@ -92,29 +93,6 @@ def format_plans(plans: Dict[str, Any]) -> str:
92
93
  return plan_str
93
94
 
94
95
 
95
- def extract_image(
96
- media: Optional[Sequence[Union[str, Path]]],
97
- ) -> Optional[Sequence[Union[str, Path]]]:
98
- if media is None:
99
- return None
100
-
101
- new_media = []
102
- for m in media:
103
- m = Path(m)
104
- extension = m.suffix
105
- if extension in [".jpg", ".jpeg", ".png", ".bmp"]:
106
- new_media.append(m)
107
- elif extension in [".mp4", ".mov"]:
108
- frames = T.extract_frames(m)
109
- with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
110
- if len(frames) > 0:
111
- Image.fromarray(frames[0][0]).save(tmp.name)
112
- new_media.append(Path(tmp.name))
113
- if len(new_media) == 0:
114
- return None
115
- return new_media
116
-
117
-
118
96
  def write_plans(
119
97
  chat: List[Message],
120
98
  tool_desc: str,
@@ -146,7 +124,7 @@ def pick_plan(
146
124
  log_progress: Callable[[Dict[str, Any]], None],
147
125
  verbosity: int = 0,
148
126
  max_retries: int = 3,
149
- ) -> Tuple[str, str]:
127
+ ) -> Tuple[Dict[str, str], str]:
150
128
  log_progress(
151
129
  {
152
130
  "type": "log",
@@ -199,7 +177,10 @@ def pick_plan(
199
177
 
200
178
  # retry if the tool output is empty or code fails
201
179
  count = 0
202
- while (not tool_output.success or tool_output_str == "") and count < max_retries:
180
+ while (
181
+ not tool_output.success
182
+ or (len(tool_output.logs.stdout) == 0 and len(tool_output.logs.stderr) == 0)
183
+ ) and count < max_retries:
203
184
  prompt = TEST_PLANS.format(
204
185
  docstring=tool_info,
205
186
  plans=plan_str,
@@ -238,6 +219,7 @@ def pick_plan(
238
219
  if verbosity == 2:
239
220
  _print_code("Code and test after attempted fix:", code)
240
221
  _LOGGER.info(f"Code execution result after attempt {count + 1}")
222
+ _LOGGER.info(f"{tool_output_str}")
241
223
 
242
224
  count += 1
243
225
 
@@ -256,10 +238,10 @@ def pick_plan(
256
238
  chat[-1]["content"] = prompt
257
239
 
258
240
  count = 0
259
- best_plan = None
260
- while best_plan is None and count < max_retries:
241
+ plan_thoughts = None
242
+ while plan_thoughts is None and count < max_retries:
261
243
  try:
262
- best_plan = extract_json(model(chat, stream=False)) # type: ignore
244
+ plan_thoughts = extract_json(model(chat, stream=False)) # type: ignore
263
245
  except JSONDecodeError as e:
264
246
  _LOGGER.exception(
265
247
  f"Error while extracting JSON during picking best plan {str(e)}"
@@ -268,23 +250,27 @@ def pick_plan(
268
250
  count += 1
269
251
 
270
252
  if (
271
- best_plan is None
272
- or "best_plan" not in best_plan
273
- or ("best_plan" in best_plan and best_plan["best_plan"] not in plans)
253
+ plan_thoughts is None
254
+ or "best_plan" not in plan_thoughts
255
+ or ("best_plan" in plan_thoughts and plan_thoughts["best_plan"] not in plans)
274
256
  ):
275
- best_plan = {"best_plan": list(plans.keys())[0]}
257
+ _LOGGER.info(f"Failed to pick best plan. Using the first plan. {plan_thoughts}")
258
+ plan_thoughts = {"best_plan": list(plans.keys())[0]}
259
+
260
+ if "thoughts" not in plan_thoughts:
261
+ plan_thoughts["thoughts"] = ""
276
262
 
277
263
  if verbosity >= 1:
278
- _LOGGER.info(f"Best plan:\n{best_plan}")
264
+ _LOGGER.info(f"Best plan:\n{plan_thoughts}")
279
265
  log_progress(
280
266
  {
281
267
  "type": "log",
282
268
  "log_content": "Picked best plan",
283
269
  "status": "completed",
284
- "payload": plans[best_plan["best_plan"]],
270
+ "payload": plans[plan_thoughts["best_plan"]],
285
271
  }
286
272
  )
287
- return best_plan["best_plan"], tool_output_str
273
+ return plan_thoughts, "```python\n" + code + "\n```\n" + tool_output_str
288
274
 
289
275
 
290
276
  def write_code(
@@ -292,6 +278,7 @@ def write_code(
292
278
  chat: List[Message],
293
279
  plan: str,
294
280
  tool_info: str,
281
+ plan_thoughts: str,
295
282
  tool_output: str,
296
283
  feedback: str,
297
284
  ) -> str:
@@ -304,6 +291,7 @@ def write_code(
304
291
  docstring=tool_info,
305
292
  question=FULL_TASK.format(user_request=user_request, subtasks=plan),
306
293
  tool_output=tool_output,
294
+ plan_thoughts=plan_thoughts,
307
295
  feedback=feedback,
308
296
  )
309
297
  chat[-1]["content"] = prompt
@@ -339,6 +327,7 @@ def write_and_test_code(
339
327
  plan: str,
340
328
  tool_info: str,
341
329
  tool_output: str,
330
+ plan_thoughts: str,
342
331
  tool_utils: str,
343
332
  working_memory: List[Dict[str, str]],
344
333
  coder: LMM,
@@ -363,6 +352,7 @@ def write_and_test_code(
363
352
  plan,
364
353
  tool_info,
365
354
  tool_output,
355
+ plan_thoughts,
366
356
  format_memory(working_memory),
367
357
  )
368
358
  test = write_test(
@@ -634,31 +624,30 @@ class VisionAgentCoder(Agent):
634
624
  """Initialize the Vision Agent Coder.
635
625
 
636
626
  Parameters:
637
- planner (Optional[LMM]): The planner model to use. Defaults to OpenAILMM.
638
- coder (Optional[LMM]): The coder model to use. Defaults to OpenAILMM.
639
- tester (Optional[LMM]): The tester model to use. Defaults to OpenAILMM.
640
- debugger (Optional[LMM]): The debugger model to
627
+ planner (Optional[LMM]): The planner model to use. Defaults to AnthropicLMM.
628
+ coder (Optional[LMM]): The coder model to use. Defaults to AnthropicLMM.
629
+ tester (Optional[LMM]): The tester model to use. Defaults to AnthropicLMM.
630
+ debugger (Optional[LMM]): The debugger model to use. Defaults to AnthropicLMM.
641
631
  tool_recommender (Optional[Sim]): The tool recommender model to use.
642
632
  verbosity (int): The verbosity level of the agent. Defaults to 0. 2 is the
643
633
  highest verbosity level which will output all intermediate debugging
644
634
  code.
645
- report_progress_callback: a callback to report the progress of the agent.
646
- This is useful for streaming logs in a web application where multiple
647
- VisionAgentCoder instances are running in parallel. This callback
648
- ensures that the progress are not mixed up.
649
- code_sandbox_runtime: the code sandbox runtime to use. A code sandbox is
650
- used to run the generated code. It can be one of the following
651
- values: None, "local" or "e2b". If None, VisionAgentCoder will read
652
- the value from the environment variable CODE_SANDBOX_RUNTIME. If it's
653
- also None, the local python runtime environment will be used.
635
+ report_progress_callback (Optional[Callable[Dict[str, Any]]]): a callback
636
+ to report the progress of the agent. This is useful for streaming logs
637
+ in a web application where multiple VisionAgentCoder instances are
638
+ running in parallel. This callback ensures that the progress are not
639
+ mixed up.
640
+ code_sandbox_runtime (Optional[str]): the code sandbox runtime to use. A
641
+ code sandbox is used to run the generated code. It can be one of the
642
+ following values: None, "local" or "e2b". If None, VisionAgentCoder
643
+ will read the value from the environment variable CODE_SANDBOX_RUNTIME.
644
+ If it's also None, the local python runtime environment will be used.
654
645
  """
655
646
 
656
- self.planner = (
657
- OpenAILMM(temperature=0.0, json_mode=True) if planner is None else planner
658
- )
659
- self.coder = OpenAILMM(temperature=0.0) if coder is None else coder
660
- self.tester = OpenAILMM(temperature=0.0) if tester is None else tester
661
- self.debugger = OpenAILMM(temperature=0.0) if debugger is None else debugger
647
+ self.planner = AnthropicLMM(temperature=0.0) if planner is None else planner
648
+ self.coder = AnthropicLMM(temperature=0.0) if coder is None else coder
649
+ self.tester = AnthropicLMM(temperature=0.0) if tester is None else tester
650
+ self.debugger = AnthropicLMM(temperature=0.0) if debugger is None else debugger
662
651
  self.verbosity = verbosity
663
652
  if self.verbosity > 0:
664
653
  _LOGGER.setLevel(logging.INFO)
@@ -785,7 +774,7 @@ class VisionAgentCoder(Agent):
785
774
  )
786
775
 
787
776
  if test_multi_plan:
788
- best_plan, tool_output_str = pick_plan(
777
+ plan_thoughts, tool_output_str = pick_plan(
789
778
  int_chat,
790
779
  plans,
791
780
  tool_infos["all"],
@@ -795,9 +784,12 @@ class VisionAgentCoder(Agent):
795
784
  self.log_progress,
796
785
  verbosity=self.verbosity,
797
786
  )
787
+ best_plan = plan_thoughts["best_plan"]
788
+ plan_thoughts_str = plan_thoughts["thoughts"]
798
789
  else:
799
790
  best_plan = list(plans.keys())[0]
800
791
  tool_output_str = ""
792
+ plan_thoughts_str = ""
801
793
 
802
794
  if best_plan in plans and best_plan in tool_infos:
803
795
  plan_i = plans[best_plan]
@@ -832,6 +824,7 @@ class VisionAgentCoder(Agent):
832
824
  + "\n-".join([e for e in plan_i["instructions"]]),
833
825
  tool_info=tool_info,
834
826
  tool_output=tool_output_str,
827
+ plan_thoughts=plan_thoughts_str,
835
828
  tool_utils=T.UTILITIES_DOCSTRING,
836
829
  working_memory=working_memory,
837
830
  coder=self.coder,
@@ -862,7 +855,8 @@ class VisionAgentCoder(Agent):
862
855
  "code": DefaultImports.prepend_imports(code),
863
856
  "test": test,
864
857
  "test_result": execution_result,
865
- "plan": plan,
858
+ "plans": plans,
859
+ "plan_thoughts": plan_thoughts_str,
866
860
  "working_memory": working_memory,
867
861
  }
868
862
 
@@ -904,7 +898,9 @@ class VisionAgentCoder(Agent):
904
898
  )
905
899
 
906
900
 
907
- class ClaudeVisionAgentCoder(VisionAgentCoder):
901
+ class OpenAIVisionAgentCoder(VisionAgentCoder):
902
+ """Initializes Vision Agent Coder using OpenAI models for planning, coding, testing."""
903
+
908
904
  def __init__(
909
905
  self,
910
906
  planner: Optional[LMM] = None,
@@ -916,13 +912,44 @@ class ClaudeVisionAgentCoder(VisionAgentCoder):
916
912
  report_progress_callback: Optional[Callable[[Dict[str, Any]], None]] = None,
917
913
  code_sandbox_runtime: Optional[str] = None,
918
914
  ) -> None:
919
- # NOTE: Claude doesn't have an official JSON mode
920
- self.planner = ClaudeSonnetLMM(temperature=0.0) if planner is None else planner
921
- self.coder = ClaudeSonnetLMM(temperature=0.0) if coder is None else coder
922
- self.tester = ClaudeSonnetLMM(temperature=0.0) if tester is None else tester
923
- self.debugger = (
924
- ClaudeSonnetLMM(temperature=0.0) if debugger is None else debugger
915
+ self.planner = (
916
+ OpenAILMM(temperature=0.0, json_mode=True) if planner is None else planner
917
+ )
918
+ self.coder = OpenAILMM(temperature=0.0) if coder is None else coder
919
+ self.tester = OpenAILMM(temperature=0.0) if tester is None else tester
920
+ self.debugger = OpenAILMM(temperature=0.0) if debugger is None else debugger
921
+ self.verbosity = verbosity
922
+ if self.verbosity > 0:
923
+ _LOGGER.setLevel(logging.INFO)
924
+
925
+ self.tool_recommender = (
926
+ Sim(T.TOOLS_DF, sim_key="desc")
927
+ if tool_recommender is None
928
+ else tool_recommender
925
929
  )
930
+ self.report_progress_callback = report_progress_callback
931
+ self.code_sandbox_runtime = code_sandbox_runtime
932
+
933
+
934
+ class AnthropicVisionAgentCoder(VisionAgentCoder):
935
+ """Initializes Vision Agent Coder using Anthropic models for planning, coding, testing."""
936
+
937
+ def __init__(
938
+ self,
939
+ planner: Optional[LMM] = None,
940
+ coder: Optional[LMM] = None,
941
+ tester: Optional[LMM] = None,
942
+ debugger: Optional[LMM] = None,
943
+ tool_recommender: Optional[Sim] = None,
944
+ verbosity: int = 0,
945
+ report_progress_callback: Optional[Callable[[Dict[str, Any]], None]] = None,
946
+ code_sandbox_runtime: Optional[str] = None,
947
+ ) -> None:
948
+ # NOTE: Claude doesn't have an official JSON mode
949
+ self.planner = AnthropicLMM(temperature=0.0) if planner is None else planner
950
+ self.coder = AnthropicLMM(temperature=0.0) if coder is None else coder
951
+ self.tester = AnthropicLMM(temperature=0.0) if tester is None else tester
952
+ self.debugger = AnthropicLMM(temperature=0.0) if debugger is None else debugger
926
953
  self.verbosity = verbosity
927
954
  if self.verbosity > 0:
928
955
  _LOGGER.setLevel(logging.INFO)